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Abstract

The goal of this article is to outline a very simple way of estimating profit efficiency

in the DEA and FDH frameworks, but avoiding the computational burden of linear

programming. With this result it is possible to compute profit efficiency even when

dimension of inputs and outputs are larger than the dimension of number of decision

making units (firms, individuals, etc.), as is often the case in the ‘big data’.
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1 Theoretical Underpinnings

Profit of a business activity is considered to be the main goal of any for-profit organization.

For this very reason, profit maximization criterion is also the corner stone of virtually any

model in neoclassical economic theory. The profit-oriented framework in economics typically

starts with a premise that the key benchmark is the (maximal) profit function, defined as

π(w, p|Ψ) = sup
x,y
{py − wx : (x, y) ∈ Ψ}, (1.1)

where x = (x1, ..., xN) ∈ RN
+ and y = (y1, ..., yM) ∈ RM

+ are inputs and outputs, respectively,

and w = (w1, ..., wN) ∈ RN
+ and p = (p1, ..., pM) ∈ RM

+ are their corresponding market prices,

and Ψ is the relevant technology set characterizing business activities, defined in very general

terms as

Ψ ≡ {(x, y) : x can produce y}, (1.2)

which is typically assumed to satisfy some standard regularity conditions of production theory

(e.g., see Shephard (1953); Färe and Primont (1995)).

Many profit efficiency measures were introduced in the literature, e.g., Cooper et al.

(2011); Aparicio et al. (2013, 2017), to mention a few (see Färe et al. (2018) for a review and

references).

Recently, Färe et al. (2018) developed a general approach that unified many other ap-

proaches. Specifically, they proposed a general measure of profit efficiency, defined for an

observed quantity vector (xj, yj) and price vector (w, p), as

E (xj, yj;w, p|Ψ) = sup
θ,λ,x,y

{f(θ, λ) :

M∑
m=1

pmθmy
j
m −

N∑
i=1

wiλix
j
i ≤ py − wx, (1.3)

(x, y) ∈ Ψ, θ = (θ1, . . . , θM), λ = (λ1, . . . , λN)}

where f(θ, λ) is an objective function chosen by a researcher, to be optimized jointly over

θ = (θ1, . . . , θM) and λ = (λ1, . . . , λN) and (x, y).1

This general profit efficiency measure can be viewed as a dual analogue of a technical effi-

ciency measure that satisfies Pareto-Koopmans efficiency criterion, but in addition to taking

into account efficiency with respect to technology it also takes into account the quintessence

from the input and output markets, i.e., the prices that reflect valuation of both buyers and

1Some constraints may be needed on Ψ (in addition to standard regularity conditions) to regularize the
non-decreasing returns to scale cases, where profit maximization may yield profit to be ∞ or 0.
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sellers on those markets. In this sense, this measure can be viewed as one that satisfies

a superior criterion relative to the primal Pareto-Koopmans efficiency that only considers

technical efficiency.

By selecting different forms of f(θ, λ) many useful efficiency measures can be obtained

from (1.3), as detailed in Färe et al. (2018). A particularly interesting case of (1.3) they show

is derived by setting λ1, . . . , λN = 1 and θ1, . . . , θM = θ so that f(λ1, . . . , λN ; θ1, . . . , θM) = θ,

to obtain

Eo(x
j, yj;w, p|Ψ) = sup

θ,x,y
{θ :

pθyj − wxj ≤ py − wx, (x, y) ∈ Ψ} (1.4)

which in turn can be stated in terms of the sup-sup (or “maxi-max”), as

Eo(x, y;w, p|Ψ) = sup
θ

{
sup
x,y

{
py − wx+ wxj

pyj
: (x, y) ∈ Ψ

}
≥ θ

}
, (1.5)

While looking very complicated and ‘too theoretical’, Färe et al. (2018) also derive several

very intuitive versions of this measure, that are composed of simple and intuitive notions

often used in business analysis. Specifically, they showed that

Eo(x
j, yj;w, p|Ψ) =

cj

rj
+
π(p, w|Ψ)

rj
(1.6)

where cj = wxj, rj = pyj are the observed total costs and total revenue of the firm at the

allocation (xj, yj) that face prices (wj, pj).

That is, intuitively, (1.6) says that the profit efficiency measure defined in (1.4) or (1.5)

can be decomposed into two key performance indicators used in business analysis: (i) the

realized cost-revenue ratio and the best possible profit margin for the firm with allocation

(xj, yj) that faces prices (w, p). Note that the first component is the reciprocal of the “return

to the dollar” measure of performance advocated by Georgescu-Roegen (1951).2

In practice, researcher does not observe Ψ and so cannot obtain the true value of π(w, p|Ψ)

and thus of Eo(xj, yj;w, p|Ψ), but the analytical developments in the next sub-section allow

an easy estimation.

2Färe et al. (2018) also show that this profit efficiency measure can be further decomposed into three
sources: (i) revenue efficiency, (ii) Farrell technical efficiency (output oriented here) and (iii) a new allocative
efficiency measure measuring the gap between profit maximization and revenue maximization.
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2 DEA and FDH Estimation

Let x = (xk1, ..., x
k
N) ∈ RN

+ and yk = (yk1 , ..., y
k
M) ∈ RM

+ be observations on inputs and outputs

for a decision making unit k ∈ {1, ..., n}, then it is well-known that the DEA formulation for

the maximal profit function is given by

π̂(w, p|DEA− V RS) ≡ max
x1,...,xN , y1,...,yM

z1,...,zn

M∑
m=1

pmym −
N∑
l=1

wlxl, (2.1)

s.t.
n∑
k=1

zkykm ≥ yjm, m = 1, ...,M,

n∑
k=1

zkxkl ≤ xl, l = 1, ..., N,

n∑
k=1

zk = 1,

zk ≥ 0, k = 1, ..., n.

Because the optimization is done over all x and all y, with strictly positive prices for inputs

and outputs, there must exists an optimum where all the inequalities turn to equalities (i.e.,

no slacks), reaching Pareto-Koopmans efficiency. Thus, one can multiply each mth output

equality constraint by the corresponding output price pm, (m = 1, . . . ,M) and sum these

inequality constraints over m; similarly, one can multiply each ith input equality constraint

(2.1) by the corresponding input price wi, (i = 1, . . . , N), while keeping the other constraints

the same, to get the following optimization problem

π̂(w, p|DEA− V RS) ≡ max
x1,...,xN , y1,...,yM

z1,...,zn

M∑
m=1

pmym −
N∑
l=1

wlxl,

s.t.
n∑
k=1

zk
M∑
m=1

pmy
k
m =

M∑
m=1

pmy
j
m, m = 1, ...,M,

n∑
k=1

zk
N∑
l=1

wlx
k
l =

N∑
l=1

wlxl, l = 1, ..., N,

n∑
k=1

zk = 1,

zk ≥ 0, k = 1, ..., n.
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which is equivalent to the following problem

π̂(w, p|DEA− V RS) = max
z1,...,zn

n∑
k=1

zkrk −
n∑
k=1

zkck = max
z1,...,zn

n∑
k=1

zkπk,

s.t.
n∑
k=1

zk = 1

zk ≥ 0, k = 1, ..., n.

which in turn implies that

π̂(w, p|DEA− V RS) = max{π1, ..., πn}. (2.2)

That is, one can estimate π̂(wj, pj) without information on (w, p) and even without infor-

mation on (xj, yj), but simply having the aggregated information about costs and revenue,

(cj, rj), for each j to compute the observed profit for each j, rank the computed profits across

all j and select the highest value, which will be π̂(wj, pj) for the given sample. To the best

of our knowledge, this appears to be a new result, although very simple, yet very useful for

practice. This result is especially useful for cases when dimension of x and y are very large,

e.g., including ‘big data’ cases, because the DEA estimator is known to be not immune from

the so-called ‘curse of dimensionality’ problem.

Also note that the same result holds for the case of DEA with decreasing returns to

scale, i.e., when
n∑
k=1

zk = 1 is replaced with
n∑
k=1

zk ≤ 1. Similar result can also be derived for

the DEA with increasing returns to scale (i.e.,
n∑
k=1

zk = 1 is replaced with
n∑
k=1

zk ≥ 1) and

with constant returns to scale (i.e., when
n∑
k=1

zk = 1 is removed from the formulation) when

additional constraints are imposed (e.g., maximal bounds on inputs) that will prevent the

objective function going to infinity. Moreover, this results also holds for the Free Disposal

Hull (FDH) estimator, proposed by Deprins et al. (1984), because it can be represented as

the DEA-VRS problem where zk ≥ 0 is replaced with zk ∈ {0, 1}, and so by similar logic as

above we arrive to the following formulation
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π̂(w, p|FDH) = max
z1,...,zn

n∑
k=1

zkrk −
n∑
k=1

zkck = max
z1,...,zn

n∑
k=1

zkπk,

s.t.
n∑
k=1

zk = 1

zk ∈ {0, 1}, k = 1, ..., n.

which also implies that

π̂(w, p|FDH) = max{π1, ..., πn}. (2.3)

3 Concluding Remarks

While looking fairly simple (after seen the proof), this result opens the door for many appli-

cations that would have been infeasible due to the absence of information on all the outputs

or when the dimensionality of the output space is too large in comparison with the available

sample size, including the ‘big data’ cases.

With this result, a researcher can substitute all the unobserved inputs and outputs (how-

ever ‘big’ their dimensions are) by the observed total cost and total revenue, compute profits,

and then obtain the estimate of overall output efficiency. The resulting estimates, in fact,

might even have more valuable information about efficiency from an economic point of view,

since they incorporate such economically important information as output prices, the corre-

sponding allocation of inputs and the underlying behavior of the decision making units.

For example, for the context of the general framework of measuring efficiency developed

by Färe et al. (2018) briefly described above, if one wants to use the DEA framework for

estimating Ψ, then the estimated output oriented Farrell-type profit efficiency measure can

be easily obtained as

Êo(x
j, yj;w, p|Ψ̂) =

cj

rj
+
π̂(w, p)

rj
, (3.1)

where π̂(w, p) is the estimated profit function from (2.2), obtained without actual computa-

tion of DEA or FDH model, and possible even if some of x, y, p, w are not observed or their

dimension is too large for DEA and FDH to handle, as long as total revenue and total costs

are observed for the firms of interest. In a similar fashion, this result may be also adapted

for estimating other profit efficiency measures (e.g., see Cooper et al. (2011); Aparicio et al.

(2013, 2017)).
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