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1 Introduction

The question of measuring industry (or sub-industry or more generally a group or

aggregate) efficiency and productivity is a very important question often faced both by

theorists as well as practitioners. This question of aggregation was approached in the

very early works in the area, most prominently by Farrell (1957) who, in his seminal

work, introduced a new concept which he dubbed as the ‘Structural Efficiency of an

Industry’.

This aggregation question was then also scrutinized by many scholars from different

perspectives, such as Førsund and Hjalmarsson (1979), Li and Ng (1995), Blackorby and

Russell (1999), Färe and Zelenyuk (2003), Briec et al. (2003), Li and Cheng (2007) Färe

et al. (2004), Färe et al. (2004), Färe and Zelenyuk (2005), Bogetoft and Wang (2005),

Zelenyuk (2006), Mussard and Peypoch (2006), Färe and Zelenyuk (2007), Cooper

et al. (2007a), Simar and Zelenyuk (2007), Nesterenko and Zelenyuk (2007), Färe et al.

(2008), Pachkova (2009), Kuosmanen et al. (2010), Raa (2011), Mayer and Zelenyuk

(2014a,b, 2017), Färe and Karagiannis (2014), Karagiannis (2015), Karagiannis and

Lovell (2015), to mention a few.

It is worth noting that the biggest forum for this important sub-area of research

was, as for many key works in the area of efficiency and productivity analysis, provided

by the OR literature, and most prominently by the European Journal of Operational

Research. The primary goal of this article is to clarify several key aspects that appears

to have been overlook in the current literature.

Fundamentally, most of this literature is grounded on the seminal essays of Koop-

mans (1957) and, at least indirectly, inspired and influenced by other classical works in

economic theory such as Debreu (1951), and especially works on aggregation by Gor-

man (1953, 1959), Theil (1954), Diewert (1974b, 1978, 1980, 1983) and related works

in econometrics (e.g., see reviews by Stoker (1993) and Blundell and Stoker (2005) and

references therein).

There is also an interesting connection to the game theoretic literature that has been

largely overlooked by the scholars in productivity and efficiency analysis, yet appears

to have a great potential for future research. The secondary, yet also as important,

goal of this article therefore is to point out the connections of the aggregation in the

productivity and efficiency literature to the economic theory and game theory literature.
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2 Definitions of Aggregate Technologies

In a nutshell, the main premise of aggregation theories in economics is that an ag-

gregation must have economic rational: Besides mathematical coherence, a proposed

relationship between disaggregated objects and their aggregates should reflect some eco-

nomic meaning, in the sense that the disaggregate objects are adequately represented

by their aggregates, preserving some (though not always all) fundamental aspects, justi-

fied through some economic theory reasoning. Typically, this is achieved by postulating

some economic principles, axioms, assumptions and then deriving the aggregation re-

sults from them. A simple example that illustrates the point is the case of aggregation

of efficiency scores measures between 0 and 1, regardless of an economic weight (e.g.,

share on the market)—simple averaging there may yield radically different conclusions

than averaging that accounts for an economic weight of individuals. Different economic

weights can also yield different conclusions and therefore the key is to derive various

systems of aggregating weights that can be justified by certain assumptions or beliefs.

A common way to approach the aggregation question in efficiency and productivity

analysis is to start with a definition of what is the aggregate technology and go from

there, defining various objects (correspondences, functions, efficiency measures, etc.)

based on such aggregate technology and then deriving relationships to their disaggregate

analogues. Different definitions of aggregate technology may (and typically do) result

in different aggregate measures of efficiency and of productivity and therefore it is

imperative to clearly understand the differences (and the resulting consequences) and

the relationships between these different definitions.

It is natural to define aggregate technology as a summation of individual technolo-

gies. A very general way to do so formally is to assume that the aggregate technology

can be characterized as

Ψn :=
n∑
⊕k=1

Ψk (2.1)

where Ψk is a technology set characterizing production possibilities of an individual

(e.g., firm) k ∈ {1, ..., n} being aggregated. While each particular industry or even a

firm may have its own Ψk, in general terms it is often formally defined in generic terms

as

Ψk =
{

(x, y) ∈ RN
+ × RM

+ : firm k can produce y from x
}
, (2.2)

where x = (x1, . . . , xN)′ ∈ RN
+ is a vector of N inputs that a firm uses to produce a
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vector of M outputs, denoted by y = (y1, . . . , yM)′ ∈ RM
+ .

Importantly, note that the summation in (2.1) is not the usual summation used for

scalars, vectors or matrices, but the summation for sets, i.e., Minkowski summation (we

have indicated this by ⊕ sign). To be more precise, recall that Minkowski summation

of any two sets A and Z is defined as1

A⊕ Z := {a+ z : ∀a ∈ A, ∀z ∈ Z}.

The idea of using Minkowski summation for aggregation of technology sets in pro-

duction theory context can be found as early as Debreu (1951) and Koopmans (1957).

In the modern efficiency analysis context, the use of this concept goes back to at least

Li and Ng (1995) and Blackorby and Russell (1999), and has been more recently in-

vestigated by Briec et al. (2003), Nesterenko and Zelenyuk (2007), Färe et al. (2008),

Peyrache (2013, 2015), Mayer and Zelenyuk (2014a,b, 2017), to mention a few.

An alternative (yet closely related) approach is to apply Minkowski summation (over

k) for the output sets, defined as P k(x) := {y : (x, y) ∈ Ψk}, rather than the entire

technology, i.e.,

P n(x1, ..., xn) :=
n∑
⊕k=1

P k(xk) (2.3)

which also gives an aggregate technology characterization, although this does not al-

low for reallocation of inputs across individuals being aggregated (Färe and Zelenyuk

(2003)).

Yet another approach is to apply Minkowski summation (over k) just for the input

requirement sets, defined as Lk(y) := {x : (x, y) ∈ Ψk}, i.e.,

Ln(y1, ..., yn) :=
n∑
⊕k=1

Lk(yk), (2.4)

which is also an aggregate technology, yet this does not allow for reallocation of output

plans across individuals being aggregated (Färe et al. (2004)).

The last two approaches help to derive and justify theoretically a generalized version

of the concept of ‘Structural Efficiency of an Industry’ proposed by Farrell, for the out-

put orientation and input orientation, respectively, and their multi-output-multi-input

analogues and which then relate them to the aggregate efficiency measures defined

1E.g., see Krein and Smulian (1940), Schneider (1993) and references therein.
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on the more general aggregate technology, as in (2.1). The resulting aggregation ap-

proaches have systems of weights (and the aggregating functions) that are justified by

and derived from economic principles as well as possess intuitive economic meaning.

3 Properties of the Aggregate Technology

An important issue to note for general context where Ψk varies with k, is that it is critical

to assume that none of Ψk is an empty set. This is particularly important because when

n is large and especially if n → ∞ (as in the case we will consider below) where such

an event may not be totally unlikely, unless explicitly assumed otherwise. Indeed, if it

happens that at least for one of k we have Ψk = ∅, the theory of Minkowski summation

implies that we also get Ψn = ∅. Intuitively, if absolutely infeasible technology is

combined (in the sense of Minkowski summation) with any feasible technologies, the

aggregate result is still an absolutely infeasible technology. A way to rule out this

degenerate case (as well as many other peculiar and inconvenient cases) is to assume

that each technology satisfies a list of regularity axioms of production theory, e.g., such

as those advocated by Shephard (1953) and more recently in Färe and Primont (1995),

and we do so here.

It is natural that the properties of the aggregate technology are influenced and in

some sense inherited from the properties of individual technologies being aggregated,

yet this subject appears to have never been fully clarified precisely with respect to the

axioms of production theory and so the goal of this section is to clarify this aspect.

While there is apparently no list of axioms (or regularity conditions) of production

theory to which all researchers unanimously agree as necessary and sufficient (mainly

because both necessity and sufficiency is often dictated by a context under study), this

list usually includes the following axioms (for all k):

A1: ‘Producing nothing is feasible’, i.e.,

(x, 0M) ∈ Ψk, ∀x ∈ RN
+ . (3.1)

A2: ‘No free lunch’, i.e.,

(0N , y
k) /∈ Ψk, ∀yk ≥ 0M .

A3: The output correspondence P k(xk) is bounded ∀xk ∈ RN
+ .
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A4: The technology set Ψk is closed.

A5: Outputs and inputs are freely (strongly) disposable, i.e.,

(x0, y0) ∈ Ψk =⇒ (x, y) ∈ Ψk, ∀y 5 y0, ∀x = x0, y ≥ 0

A6: (As an alternative to A5) Outputs and inputs are weakly (or more precisely,

proportionately) disposable, i.e.,

(x0, y0) ∈ Ψk =⇒ (λx, θy) ∈ Ψk, ∀λ ∈ [1,∞), ∀θ ∈ (0, 1],

Intuitively, A1 means that a firm k can choose an option to produce nothing even if

they use some positive inputs. While very simple, this type of singularity condition is

a very important feature of economic reality, postulating that a firm has an option or a

right to have no output even if it used some inputs.2 This axiom also has an important

implication to the aggregation theory as will be clarified in the next section.

A2 states that nothing (zero input) cannot produce something (any positive output).

A3 basically says that only finite amounts of output can be produced from finite amounts

of inputs. A4 is mainly a technical regularity condition ensuring that all the sequences

in Ψk have accumulation points inside Ψk and, together with A3, also implies that

P k(xk) is a compact set ∀xk ∈ RN
+ , thus guaranteeing existence of an optima of a

continuous function on P k(xk) and other bounded regions of Ψk. A5 says that, for

a given technology, if it was possible to produce some level of outputs with certain

amounts of inputs (e.g., because the extra outputs can be freely disposed), then it should

be possible to produce any lower amounts of outputs with the same inputs, or the same

amounts of outputs but with greater amounts of inputs (e.g., because the extra inputs

can be freely disposed). This axiom is quite natural, yet not always the case because

some outputs (e.g., undesirable outputs) or some inputs (congesting inputs) may not

be disposed freely but only in a combination with some other outputs or inputs and A6

is one of the most popular variations of weak disposability that allows the modeling of

such phenomena, restricting the disposability to be in equiproportionate manner.

When such axioms are imposed on the individual technologies, what will they mean

for the aggregate technologies, defined in (2.1), (2.3) and (2.4)? This question is clari-

fied in the next proposition.

2This axiom also allows for cases where a certain minimal level of input is required to get a positive
output, yet in that case the lower inputs will still belong to the technology sets when in combination
with zero output.
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Proposition. For any i ∈ {1, 2, 3, 4, 5, 6}, if the axiom Ai is satisfied by Ψk, ∀k
then so do the aggregate technologies based on (2.1), (2.3) and (2.4). However, if the

axiom Ai is not satisfied by Ψk for at least one of k being aggregated, then this may

prevent the entire aggregate technologies based on (2.1), (2.3) and (2.4) also not satisfy

that axiom.

This result follows from the definition of Minkowski summation. Here, it is worth

noting that in general, summation of closed sets is not automatically guaranteed to be

closed if those sets are unbounded (as are the technology sets and the input requirement

sets). In economics literature, it appears that this was first pointed out by Debreu

(1951), who also clarified that a sufficient condition to guarantee ‘closedness’ of a sum

of closed but unbounded sets would be to assume that all the sets under summation

can be contained in some closed, convex, pointed cone, which is typically the case in

production analysis.

Similar results can also be derived for many other properties. It seems worth clari-

fying the implications of constant returns to scale (i.e., if and only if δΨk = Ψk,∀δ > 0,

hereafter CRS), non-increasing returns to scale (i.e., if and only if δΨk ⊆ Ψk,∀δ ∈ (0, 1],

hereafter NIRS) and non-decreasing returns to scale (i.e., if and only if δΨk ⊆ Ψk,∀δ >
1) at disaggregate technologies onto the aggregate technologies. This is clarified in the

next proposition.

Proposition. If Ψk, ∀k satisfies the property of CRS or NIRS or NDRS then so

do the aggregate technologies based on (2.1), (2.3) and (2.4), respectively. However, if

CRS is not satisfied by Ψk for at least one of k being aggregated, then this may halt

the entire aggregate technologies based on (2.1), (2.3) and (2.4) also not satisfy that

property.

A similar result can be derived regarding the property of convexity (of Ψ or P (x)

or L(y)), which is sometimes imposed or obtained by construction or as a consequence

of other assumptions, although usually not considered as a critical axiom of production

theory. We will come back to convexity property at the end of this paper.
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4 The Relationships between Different Aggregations

4.1 Reallocation versus No Reallocation

The relationships between (2.1) on the one hand and (2.3) or (2.4) on the other hand

were investigated in various papers, e.g., Nesterenko and Zelenyuk (2007), Raa (2011)

and more recently in Mayer and Zelenyuk (2014a,b, 2017). In a nutshell, these works

clarified that

P n(x1, ..., xn) ⊆ Pn

(
n∑

k=1

xk

)
:= {y : (

n∑
k=1

xk, y) ∈ Ψn}

and

Ln(y1, ..., yn) ⊆ Ln

(
n∑

k=1

yk

)
:= {x : (x,

n∑
k=1

yk) ∈ Ψn}

and then pointed out that the gap between P n(x1, ..., xn) and Pn

(∑n
k=1 x

k
)

represents

the potential gains in ability to produce greater outputs due to reallocation of inputs

across the firms k ∈ {1, ..., n}, while the gap between Ln(y1, ..., yn) and Ln

(∑n
k=1 y

k
)

represents the potential gains in terms of possibility of using lower inputs due to real-

location of output plans across the firms k ∈ {1, ..., n}.
It is worth noting that the potential benefit of the reallocation can be very sub-

stantial even if individual technologies are the same and even if they exhibit CRS. To

see this vividly, consider a simple example of two firms, each having the same CRS

technology given by Ψ = {(x, y) : y ≤ (x1x2)
1/2} and are endowed with different

allocations of inputs, e.g., (xA1 , x
A
2 ) = (1, 100) and (xB1 , x

B
2 ) = (100, 1). In this case,

P n(x1, x2) = {y = yA + yB : 0 ≤ yA ≤ 10, 0 ≤ yB ≤ 10} = [0, 20]. Meanwhile, if the

firms cooperate by allowing reallocation of inputs, then their production possibilities

are characterized by Pn

(∑n
k=1 x

k
)

= {y : 0 ≤ y ≤ (101 × 101)1/2 = 101} = [0, 101].

Thus, the potential benefit of reallocation can be very dramatic and the extent of it

depends heavily on the degree of heterogeneity in allocations across the individuals (be-

sides possible heterogeneity in technologies), and even if all have the same technology,

even if it exhibits CRS.

Of course, having a potential does not mean all of it can be easily (or at all) re-

alized, which in practice may depend on many aspects, including the unpredictable

consequences of clashes of personalities of managers of firms, potentially fueled by im-

perfect and asymmetric information and mistakes, eventually leading to some unrealized
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potential3—an inefficiency that one can try to measure. In principle, various efficiency

measures suggested in the literature can be used for such measurement, although most

of the attention so far appears to have been on the Farrell-type measures. For example,

Nesterenko and Zelenyuk (2007), Raa (2011) and Mayer and Zelenyuk (2014a,b, 2017)

have explored the question of how to measure these gaps (or reallocative inefficiencies)

from various perspectives using Farrell-type measures of productivity indexes based on

them.4

An interesting future direction of research here is to explore how the reallocation

efficiency measures can be linked to the bargaining and cooperative games in the game

theoretic approach inspired by von Neumann (1945), Shapley and Shubik (1966), etc.

and, possibly, to the concept of Shapley value. After all, the problem of efficiency and

productivity analysis can typically be formulated as a programming problem, which in

turn can be equivalently represented as a game theoretic formulation (Dantzig (1951b);

David Gale (1951); Karlin (1959)).

4.2 The Union of Sets and Minkowski Sum of Sets

First of all, it should be clear that Minkowski summation of technology sets is very

different from the union of technology sets (or a convex-hull of such a union), which

sometimes is used for defining the so-called grand frontier (or meta-frontier). In general,

under the basic axioms of production theory A1-A5 (or A6 instead of A5), the union of

individual technology sets is always a sub-set in the Minkowski sum of these sets, i.e.,

∪nk=1Ψ
k ⊆ Ψn (4.1)

an similarly, we also have

∪nk=1P
k(xk) ⊆ P n(x1, ..., xn) (4.2)

while

Ln(y1, ..., yn) ⊆ ∪n
k=1L

k(yk). (4.3)

Recently, another aggregate technology that involved the union of sets was pro-

3E.g., see discussions in Greenwald and Stiglitz (1986); Leibenstein (1966); Leibenstein and Maital
(1992); Thaler and Sunstein (2009)

4Also see Bogetoft and Wang (2005) for related discussion.
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posed by Peyrache (2013), who called it “the industry technology (as different from the

aggregate and the firm technology)”, and defined it as5

Ψ̃ := ∪∞S=1ΨS (4.4)

It is useful to clarify the relationship of (2.1) with (4.4). It is worth mentioning here

that (4.4) was originally introduced when focussing on a specific type of technology:

when Ψk = Ψ, ∀k is characterized via Activity Analysis Model or Data Envelopment

Analysis (DEA) formulation for the technology set. For the sake of generality, here

we will first focus on a very general case, aiming to clarify what it means for a true

technology that satisfies standard regularity axioms of production theory, independently

of an estimator (DEA, SFA, etc.) employed to estimate it. Then we will consider the

specific case of the DEA-estimator.

4.2.1 Relationship between ΨS and Ψ̃ in a general case

When describing the relationship between the industry technology and the aggregate

technology, its is sometimes viewed that their main difference is that in the definition

of aggregate technology (2.1) the number of firms is fixed, while in the definition of

industry technology (4.4) this number is variable. It is important to clarify that it

is the opposite. Indeed, the number of firms in Ψ̃ is ‘integrated out’ (in the sense of

unions of the sets) over the entire domain of S, i.e., over N, and so Ψ̃ does not depend

on S anymore. On the other hand, in ΨS, the number of firms shall be considered as

a variable which ΨS depends upon, in a similar sense as the sample mean depends on

the sample size, and so we indicate this with the subscript (S or n), while we dropped

the subscript for Ψ̃.

More importantly, note that the axiom A1, which is a very natural axiom in pro-

duction theory, implies that the origin is always a point in the technology set, i.e.,

(0, 0) ∈ Ψk, ∀k. (4.5)

This condition was also advocated by Dantzig (1951a), who called it ‘Null activity’,

also requiring it to be feasible for firms. This condition also appears in many models of

economic theory, including economic growth models (as part of ‘Inada conditions’).

5The original definition also involved time subscript, which we drop here because it does not play
a role in our derivations and discussions.
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In its turn, (0, 0) ∈ Ψk provides a very important regularization for the aggregation

theory that follows directly from the definition of the Minkowski summation, namely

Ψk ⊆ Ψk ⊕Ψj,∀k, j

and therefore, using mathematical induction,

Ψj ⊆
n∑
⊕k=1

Ψk ⊆
n′∑
⊕k=1

Ψk,∀j = 1, ..., n′; n ≤ n′ (4.6)

This result is very intuitive and, in a sense, can also be viewed as a manifestation

of the idea of free disposability at the aggregate level, stating that the aggregation of

individuals should not be destructive in the sense that whatever was possible to produce

individually (or by a smaller group) must still be feasible to produce as a group (or by

an expanded group) of these individuals.

In turn, (4.6) implies that

∪nS=1

(
S∑
⊕k=1

Ψk

)
= Ψ1 ∪ (Ψ1 ⊕Ψ2) ∪ (Ψ1 ⊕Ψ2 ⊕Ψ3) ∪ ... ∪ (Ψ1 ⊕Ψ2 ⊕ ...⊕Ψn)

= Ψ1 ⊕Ψ2 ⊕ ...⊕Ψn

=
n∑
⊕k=1

Ψk,

using the “industry technology” as defined in (4.4), and yet for finite natural numbers

n and S, this is equivalent to the Koopman’s aggregate technology defined in (2.1).

Furthermore, within the range, when n→∞, as the original definition (4.4) requires,

we also have

∪∞S=1

(
S∑
⊕k=1

Ψk

)
= lim

n→∞
∪nS=1

(
S∑
⊕k=1

Ψk

)
= lim

n→∞

n∑
⊕k=1

Ψk =
∞∑
⊕k=1

Ψk,

i.e., the “industry technology” defined in (4.4) is also equivalent to (2.1) with infinite

number of individuals being aggregated.

The main reason for splitting the discussion into the last two (finite and infinite)

cases is because the latter case was not defined explicitly for (2.1) and, in fact, may

require proper normalization to be handled as will be clear below.
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In a special, yet important case when all technologies are equal (as is often assumed

in theoretical or applied analysis) and for simplicity when it is convex, i.e., when Ψk =

Ψ, ∀k and (x
′
, y

′
), (xo, yo) ∈ Ψ ⇒ δ(x

′
, y

′
) + (1− δ)(xo, yo) ∈ Ψ, ∀δ ∈ [0, 1], then by

using Minkowski summation theory, we have a very useful result, stating that

n∑
⊕k=1

αkΨ = αΨ (4.7)

where αk ∈ R+ and α =
∑n

k=1 αk.6

Intuitively, in the production context, the scalars αk can be understood as scalability

coefficients, reflecting a possibility to scale (up or down) any feasible allocation in Ψ,

e.g., Ψ can be understood as the benchmark technology, while αk can be understood as

the degree with which an individual (firm, region, country) k is able to replicate this

benchmark technology.

Furthermore, in the special case when αk = 1, ∀k, from (4.7) we have
∑n
⊕s=1 Ψ =

nΨ. In practice, since n is always finite,
∑n
⊕s=1 Ψs is well-defined and can be used in

practical estimations as those we mention in the next section. In the case when n→∞
the aggregate technology is given by limn→∞

(∑n
⊕s=1 Ψ

)
= Ψ × limn→∞(n) = Ψ ×∞,

and so one may need to use normalization by a quantity of the order O(n) for Ψn or

for the objects defined upon it, to prevent them from exploding into infinity, as is done

in the case of deriving asymptotic results for the efficiency measures defined on the

aggregate technologies (e.g., see Simar and Zelenyuk (2017) for related discussions).

To summarize, under standard and fairly general regularity conditions on technology,

the industry technology defined in (4.4) is equivalent to the well-established concept of

aggregate technology (2.1) due to Koopmans (1957), i.e.,

Ψ̃n := Ψn (4.8)

and

Ψ̃ := Ψ∞ (4.9)

and in the latter case a normalization by a quantity of the order O(n) may be required

to avoid its explosion to infinity.

6E.g., see Schneider (1993) and references therein. In production theory, this result goes back to at
least Li and Ng (1995).
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4.2.2 The relationship between ΨS and Ψ̃ in the case of DEA

DEA is a very popular approach that provides a consistent estimator of a true tech-

nology.7 Its early roots and inspiration go back to works of Leontief (1925) and von

Neumann (1945)8, who in fact focused on aggregate context (the whole economy) rather

than individuals. Their ideas were shaped up further by Dantzig (1949, 1951a), Koop-

mans (1951a,b) and Shephard (1953), and most prominently by Farrell (1957) and

Charnes et al. (1978) and many others after them. While books have been written on

various types of DEA in various contexts,9 its most basic form for estimating Ψ can be

concisely stated as follows

Ψ̂ =

{
(x, y) ∈ RN

+ × RM
+ :

n∑
k=1

zkxk 5 x,
n∑

k=1

zkyk = y, δl ≤
n∑

k=1

zk ≤ δu, z
k ≥ 0

}
(4.10)

where (z1, ..., zn) is a vector of intensity variables that spans the set Ψ̂ by enveloping the

input-output data {(xk, yk)}nk=1, with a form that depends on the restrictions imposed

upon these variables. In particular, if δl = 0 and δu = +∞ then (4.10) gives the DEA

estimator of the true technology under the assumption of constant returns to scale

(DEA-CRS). If δl = 0 and δu = 1 then (4.10) gives the DEA estimator of the true

technology under the assumption of non-increasing returns to scale (DEA-NIRS). If

δl = 1 and δu = 1 then (4.10) gives the DEA estimator of the true technology under

the assumption of variable returns to scale (DEA-VRS, which we denote as Ψ̂V RS).10

Although involving data on all firms k ∈ {1, ..., n}, (4.10) is an estimator for a tech-

nology for an individual k (rather than the aggregate technology), with the assumption

that all individuals k = 1, ..., n share access to the same technology (though possibly

with different levels of efficiency).

The credit for the first DEA estimation of an efficiency measure based on aggregate

technology goes back to at least Maindiratta (1990), who also appears to be the first

to suggest using prioritized integer linear programming for this problem. The approach

of Maindiratta (1990) was later revisited and refined by Ray and Hu (1997); Ray and

7For more details on statistical properties of DEA, see a review by Simar and Wilson (2015) and
references therein.

8This is the English version of his article published in 1938.
9E.g., see Charnes et al. (1994), Ray (2004), Cooper et al. (2007b) and Cooper et al. (2011), to

mention just a few.
10While DEA-CRS form was considered by Farrell (1957) and Charnes et al. (1978), the non-CRS

form goes back to at least Färe et al. (1983) and Banker et al. (1984), with some earlier ideas from
Afriat (1972).
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Mukherjee (1998) and more recently by Peyrache (2013, 2015). An alternative (though

closely related) approach was taken by Li and Ng (1995), Bogetoft and Wang (2005),

Nesterenko and Zelenyuk (2007) and more recently refined and connected to the theory

of industrial organization by Raa (2011).

The results on the equivalence of Ψ̃n and Ψn established in the previous section

apply directly to DEA-CRS and DEA-NIRS because (0, 0) is guaranteed to be in the

estimated technology set by construction. It will also apply to DEA-VRS if the point

(0, 0) is included in the original data or as an out-of-sample information due to the

axiom A1. Otherwise, DEA-VRS gives an estimate of technology that is inconsistent

with (3.1), a key production theory axiom based on common sense, and in particular

such an estimator will not guarantee that (0, 0) ∈ Ψ̂V RS, even if (0, 0) ∈ Ψ, unless (0, 0)

is an observation in the data set.

In practice, even if (0, 0) is in the data set then researchers usually discard it (ex-

plicitly or implicitly) when doing computations of efficiency scores in order to ensure

convergence of LP algorithms.11 This however does not mean that (0, 0) is not in the

true technology set Ψ. Indeed, the DEA-VRS formulation is not a true technology but

just an estimator of it, with an artifact (or perhaps a defect) that it is being sharply

‘abrupt’ at the observation level with the lowest inputs, pretending that the technology

set does not exist below that level, even if the common sense (and axiom A1) suggests

that all the lower combinations of inputs, including zero input, shall be feasible for a

firm at least in combination with the zero output.

This undesirable property of DEA-VRS that violates a key production axiom is

known, yet rarely acknowledged. A very simple cure to this problem is to add the

theoretically required feasible points ex post, i.e., amend it as follows Ψ̂∗V RS := Ψ̂V RS ∪
{(RN

+ , 0)}.
Clearly, Ψ̂∗V RS may be non-convex (unless (0, 0) was in the data set used to get

Ψ̂V RS) and here a researcher may want to choose what property is more imperative to

keep as a maintained assumption: convexity of Ψ vs. the basic axiom A1. An opinion

of the author of this paper is that the axiom A1 is more important to satisfy than

requiring convexity of the entire technology set, which appears to be too strict. Indeed,

even basic microeconomic theory textbooks typically have pictures of the technology

set looking more like a logistic function rather than having an abrupt shape as in the

DEA-VRS case. Meanwhile, if a researcher strongly believes in convexity of the true

11See von Neumann (1945) and Karlin (1959).
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technology set a priori, and also wants to satisfy the basic axiom A1, then the resulting

DEA-VRS will become equivalent with DEA-NIRS.

On the other hand, if a researcher believes in increasing returns to scale at some

lower level of input and that it then changes to constant returns to scale at some

level (at least one point) and then continues into decreasing returns to scale, then one

clearly has in mind a non-convex technology and the DEA-VRS estimator would be an

appropriate one to use for the observed area of technology. With the acknowledgment

that the frontier of technology does not stop at the lowest input but continues towards

the origin, and includes the origin, whether smoothly (but that area is not identified by

DEA-VRS) or along the input space with zero output, i.e., the final technology estimate

is Ψ̂∗V RS := Ψ̂V RS ∪ {(RN
+ , 0)}, which will satisfy the production theory axioms, and in

particular the common sense that (0, 0) ∈ Ψ, and in turn will ensure that (4.4) is

equivalent to the concept of aggregate technology (2.1) of Koopmans (1957).

Finally, it is also worth noting that this view on convexity is coherent with a common

view of convexity in general economic theory, e.g., succinctly described by Koopmans

(1961), while commenting on the discussion of Farrell (1959), stating that:

“As explained by Farrell, the convexity assumptions imply perfect divisibility

of all commodities, constant or decreasing returns to scale in production,

and a diminishing marginal rate of substitution in consumption.” (see p.

478-479 in Koopmans (1961)).

Somehow, this understanding appears to have eventually been lost for the context of

DEA-VRS and hopefully this article will help clarifying it.

5 Convexity, Non-Convexity and Approximate Con-

vexity

Convexity is an important property that frequently appears in various models of eco-

nomic theory. It is particularly important for many (although not all) the results in

duality theory in economics. It is important to emphasize, however, that many of these

results still hold without convexity of the technology sets (Ψk), because many require

convexity of only the input requirement sets or convexity of the output sets, and not

necessarily a convexity of the entire technology.12 For this and other reasons, convexity

12See Shephard (1953, 1970) as well as Diewert (1974a, 1982); Färe and Primont (1995).
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of a technology set is usually viewed as not a critical assumption and so non-convexity

of Ψk may often appear in practice (e.g., as in the case of using Ψ̂∗V RS). A natural ques-

tion is then, what is happening to the aggregate technologies defined in (2.1), (2.3) and

(2.4) when all or some of the individual technologies are convex or not? This question

is clarified in the next proposition.

Proposition. If individual technologies are such that

1. If Ψk is convex ∀k then the aggregate technology based on (2.1) (and also on (2.3)

and on (2.4)) is also convex.

2. If P k(xk) is convex ∀k then the aggregate technology based on (2.3) is also convex

(though the one based on (2.1) or (2.4) may be non-convex).

3. If Lk(yk) is convex ∀k then the aggregate technology based on (2.4) is also convex

(though the one based on (2.1) or (2.3) may be non-convex).

On the other hand, if for at least one of k being aggregated, the convexity is not satisfied

for Ψk or P k(xk) or Lk(yk), then the corresponding aggregate technology (i.e., (2.1),

(2.3) or (2.4), respectively) may also not satisfy convexity.

The last part of this proposition might sound disappointing. However, there is

another important result in mathematics—the Shapley-Folkman lemma13—that says

that the Minkowski sum of non-convex sets can be viewed as approximately convex

when the number of summands is larger than the number of dimensions. That is,

even if Ψk or P k(xk) or Lk(yk) is not convex for some or even all of k, the aggregate

technology sets defined as Minkowski summations in (2.1) or (2.3) or (2.4), can still be

viewed as approximately convex (if n > N+M or n > M or n > N , respectively, which

is typically the case in practice).

Moreover, by the same Shapley-Folkman lemma, even if Ψk or P k(xk) or Lk(yk) is

not convex for some or even all of k, their Minkowski summations, (2.1), (2.3) and (2.4)

are asymptotically convex when n→∞, in the sense that a measure of ‘non-convexity’

converges to zero while n increases to ∞.

Finally, recall that if Ψk is convex and also satisfies A1 and additivity (i.e., (x′, y′) ∈
Ψk and (xo, yo) ∈ Ψk implies (xo, yo)+(x′, y′) ∈ Ψk), then Ψk is a cone, i.e., exhibits

13E.g., see Starr (2008) for details.
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CRS.14 Combining this with previous proposition one can immediately conclude that if

for all k we have Ψk is convex, satisfies A1 and additivity, then the aggregate technology

Ψn defined in (2.1) exhibits CRS.

It seems fair to say that the additivity assumption might be viewed as a too strong

assumption on a disaggregated level (for an individual technology). On the aggregate

level, however, this assumption is coherent with how Ψn is defined in (2.1). Along

with the ‘approximate convexity’ result from Shapley-Folkman lemma, this gives a

justification for the CRS assumption at the aggregate level, for Ψn.

6 Concluding remarks

In this article we clarified various aspects of aggregate technologies that were recently

employed in theoretical studies on aggregation in productivity and efficiency analysis,

especially in this journal.

First, we clarified that satisfaction of the basic axioms of production theory by

all the individual technologies is a sufficient condition for the aggregate technology to

satisfy these axioms.

We also clarified relationship between aggregate technologies based on Minkowski

summation and those based on unions. Here, we also showed that under the stan-

dard regularity axioms of production theory, the aggregate technology concept (4.4) is

equivalent to the aggregate technology concept (2.1).

Third, we clarified that even though a non-convexity for just one individual being

aggregated can make the aggregate technology non-convex, due to the Shapley-Folkman

lemma it is still asymptotically convex (even if all individual technologies are not con-

vex), while for finite number of individuals aggregated, the aggregate technology can be

viewed as ‘approximately convex’, when the number of individuals aggregated exceeds

the dimension of the technology set.

Here it is also interesting (from historical point of view) to note that Shapley’s work

on dealing with non-convexities was also influenced, inter alia, by works of gurus of

productivity and efficiency analysis—Farrell and Koopmans, e.g., due to Farrell (1959,

1961) and Koopmans (1961) and the discussion they inspired.15 It would therefore

be not surprising, yet quite outstanding, if there was still great research potential in

further synthesis of the area of efficiency analysis (including recent developments with

14This result in economics goes back to at least Debreu (1951).
15E.g., see Shapley and Shubik (1966) and Starr (2008) for more details and references.
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the aggregate perspective) and the area of game theory, especially cooperative game

theory. The roots of such a synthesis can be seen starting from the seminal works of von

Neumann (1945); Dantzig (1951b); David Gale (1951); Karlin (1959) and more recently

explored in Hao et al. (2000); Nakabayashi and Tone (2006); Liang et al. (2008); Lozano

(2012), to mention a few.16

16For more works in this area, Cook et al. (2010) and Lozano et al. (2016).
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Färe, R. and Primont, D. (1995). Multi-Output Production and Duality: Theory and

Applications. New York, NY: Kluwer Academic Pubishers.
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