
 
 
 
 
 

Centre for Efficiency and Productivity Analysis 
 
 
 
 
 
 
 

Working Paper Series 
No. 06/2004 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date: September 2004 
 
 
 

School of Economics 
University of Queensland 

St. Lucia, Qld. 4072 
Australia 

 

 
Title 

Regulatory Reform and Economic Performance in 

US Electricity Generation 

 
Authors 

Supawat Rungsuriyawiboon 

Tim Coelli 



Regulatory Reform and Economic Performance in US 

Electricity Generation 
 

 

Supawat Rungsuriyawiboon and Tim Coelli 
Centre for Efficiency and Productivity Analysis 

School of Economics 

University of Queensland 

 

 

10 September 2004 

 

ABSTRACT 

 

In this paper we investigate the effect of the introduction of incentive regulation upon the total 

factor productivity (TFP) growth of electricity generation companies in the United States, using 

sample data on 61 firms observed over a 13-year period from 1986 to 1998.  Empirical estimates 

of TFP growth are obtained using three techniques: Tornqvist index numbers, a stochastic cost 

frontier and a stochastic input distance function.  The results obtained using the stochastic cost 

frontier are discarded because they are found to differ from those obtained using the other 

techniques, apparently as a consequence of violations of the required cost minimizing behavioral 

assumptions, which are not uncommon in regulated industries.  Tests of hypotheses regarding the 

effect of regulatory reform upon TFP (using the distance function results) indicate that the 

introduction of incentive regulation has not had the desired positive effect upon the economic 

performance of the firms involved.  In fact, in the case of these data, we find that performance is 

negatively related with the introduction of the new regulatory regimes, a result that is the 

opposite of the theoretical predictions.   

 

Key words:  Incentive regulation, Total Factor Productivity Growth, Cost Frontier, Input 

Distance Function, Törnqvist index 
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1.  Introduction  

 The regulation of infrastructure industries, such as electricity, gas and water supply, has 

undergone substantial changes over the past few decades, with the rise in popularity of the so-

called incentive regulation approaches.  Changes have occurred in many countries around the 

world.  In countries such as the UK and Chile, a number of infrastructure industries have been 

privatized, and incentive regulation regimes, such as price-cap regulation, have been 

implemented.  In the USA, where investor owned utilities were more the norm, the traditional 

method of rate-of-return regulation is also being gradually replaced with alternative incentive 

regulation regimes (eg. see Newbery, 2000). 

It is widely argued that incentive regulation methods, such as price cap regulation, are 

expected to provide stronger incentives for cost reduction and technological innovation (relative 

to rate-of-return regulation).  This is because the regulated firm is permitted to keep any “extra” 

profits it may happen to earn, if it manages to reduce its costs of production at a rate greater than 

the rate of allowed (real) price changes.1  However, given that many countries have only recently 

introduced these incentive regulation methods, there is limited empirical evidence available for 

one to assess if the benefits that are predicted by the economic theory actually eventuate in 

practice.   

Thus the primary motivation of this study is to see if we can find empirical evidence to 

support the hypothesis that incentive regulation methods actually have had a positive influence 

upon the productivity of those US electricity supply businesses which have been exposed to 

these new regulatory methods.  To this end, we have compiled historical data on the generation 

businesses of 61 US electricity supply utilities, observed over a 13-year period from 1986 to 

1998.  This group of 61 firms include some that have faced incentive regulation methods and 

some that have not.  Furthermore, the year in which a particular firm first faced the change in 

regulatory regime differs between firms.  Hence, the nature of this data allows us to control for 

macro-economic effects to some extent. 

A secondary aim of this paper is to investigate the effect of choice of methodology upon 

the productivity measures obtained.  Previous studies have used a variety of methods to calculate 

total factor productivity (TFP) growth and efficiency levels in infrastructure industries.  For 

example, see the excellent survey of the methods used in electricity industries, provided by 

Jamasb and Pollitt (2002), who note the use of stochastic frontier production frontiers, cost 

functions, data envelopment analysis, and Tornqvist index numbers, among others.  Generally, 

                                                 

1 See Parker (1996) for a good introductory discussion of these issues. 
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each study tends to apply only one method to the data at hand.  However, as some studies have 

shown (eg. see the Coelli 2002 analysis of productivity growth in electricity generation in 

Australia) different methods can in some cases provide quite different measures, especially when 

perfect competition assumptions are violated – which is often the case in regulated industries.  In 

this study, we utilise three often used methods – Tornqvist index numbers, stochastic cost 

frontiers and stochastic input distance functions – to calculate our productivity measures.  This 

empirical analysis helps highlight the relative advantages and disadvantages of these methods, 

and in particular allows us to demonstrate the degree to which the performance measures can 

change when one uses different methodologies.   

The outline of this paper is as follows. In the next section we describe and discuss the 

three alternative performance measurement methods that we use to measure TFP growth in this 

study.  This is followed in section 3 with a brief description of the US electricity supply industry, 

along with a discussion of the data set used in this study. The next section provides an 

assessment of the influence of regulatory regime upon firm-level productivity measures, and then 

conclusions follow in the final section. 

 

2.  Methodology  

 

The methods that are used to measure the TFP change can be roughly classified into two 

groups according to the types of prices employed, i.e. market price and shadow prices. Market 

prices are the actual prices that people pay for the goods and services, while shadow prices 

(internal prices to the firms) are derived from the shape of the underlying production technology. 

Three TFP measurement approaches that are widely applied are: the Törnqvist price-based index 

number, stochastic frontier analysis (SFA) and data envelopment analysis (DEA). The Törnqvist 

price-based index number approach uses market prices, while the SFA and the DEA involve the 

estimation of a production technology, and hence the use of shadow prices derived from the 

shape of the estimated frontier.  

The Törnqvist price-based index number approach has the advantage that it can be used 

when limited data are available (e.g. aggregate industry-level data). The SFA and DEA frontier 

approaches require more data (i.e. firm-level panel data), however they have the advantage that 

they allow one to identify various components of the TFP growth (such as technical change, 

efficiency change and scale effects), which are often of particular interest to regulators. The SFA 

approach has an advantage over the DEA approach when analyzing data in a stochastic 

environment. This is because DEA typically does not attempt to take statistical noise into 
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account (and consequently may provide inaccurate efficiency measures), while the parametric 

approach does attempt to accommodate statistical noise and allows performing tests of 

hypotheses regarding the structure of the production technology.  

This study utilizes two alternative SFA approaches, i.e. cost frontier and input distance 

functions, in a TFP analysis of panel data on 61 U.S. electric utilities observed over the time 

period of 1986-1998, and compares the results with those obtained using the traditional 

Törnqvist price-based index number approach. The main objective is to examine the sensitivity 

of the estimates obtained to the choice of TFP measurement methodology, and to illustrate the 

implications that these choices may have in the implementation of incentive regulation.  We now 

describe each of these three methods in some detail. 

 

2.1. The Törnqvist Price-Based Index Number (TPIN) Approach 

 

 TFP change is generally defined as the residual growth in outputs not explained by the 

growth in input use.  Following Caves, Christensen and Diewert (1982), a Törnqvist TFP index 

may be constructed as the ratio of a Törnqvist output index to a Törnqvist input index.  The 

logarithmic form of the Törnqvist TFP change index between periods t and 1+t  is defined as 
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where the T  superscript refers to Törnqvist; Ii ,...,1=  indexes firms; Kk ,...,1=  indexes input 

variables; Mm ,...,1=  indexes output variables; tkix ,  is the log of the k-th input quantity, tkiX , ; 

tmiy ,  is the log of the m-th output quantity, tmiY , ; tmir ,  is the observed revenue share of the m-th 

output; and tkis ,  is the observed cost share of the k-th input. 

 For the single-output case, which is considered in the empirical part of this study, 

equation (2-1) is rewritten as 
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 As noted earlier, the Törnqvist TFP index approach has the advantage that it can be used 

to measure the TFP change when limited data is available. However, this approach also has some 

shortcomings. It requires information on both quantities and prices of outputs and inputs. In 

addition, it cannot be used to decompose the TFP change measure into its components, such as 
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technical change (frontier shift) and technical efficiency change (catch-up), which are of broad 

interest for regulators.2 This problem can be addressed by gaining access to panel data and using 

a frontier technique, such as a stochastic cost frontier or a stochastic input distance function, to 

decompose the measured TFP growth into its components. 

 

2.2. The Stochastic Cost Frontier Approach 

 

Following Greene (1980), a translog stochastic cost frontier may be defined as follows. 
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where c is the log of total cost, C ; kw  is the log of k-th input price, kW ; z  represents a time 

trend variable; v is a symmetric error term (designed to capture the effects of random noise); u is 

an asymmetric error term (included to capture the effects of cost inefficiency); the βs are 

unknown parameters to be estimated, and all other notation is as previously defined.   

 In this study, we follow the standard practice of assuming a normal distribution for v and 

a half-normal distribution for u.  That is, we set ),(N~v v
20 σ  and |),(N~|u u

20 σ .  Given these 

distributional assumptions, the parameters of this model can then be estimated using the method 

of maximum likelihood.  Furthermore, note that we follow the suggestion of Battese and Corra 

(1977), and replace the two variance parameters with the two new parameters 222
uv σσσ +=  and 

22 σσγ /u= .  By doing this we can search the parameter space of γ between 0 and 1, to provide 

good starting values for the iterative maximization routine which is used to calculate the 

maximum likelihood parameter estimates. 

 For the single-output and three-input case, equation (2-3) is rewritten as 
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Young’s theorem requires that symmetry restrictions are imposed so that 

 βkl = βlk  for all 3,2,1, =lk     (2-4a) 

and homogeneity of degree +1 in input prices requires imposition of the additional restrictions 
                                                 

2 See Coelli et al (2003) for further discussion. 
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These restrictions can be imposed by estimating a model where the cost variable and K-1 

input price variables are normalized by the K-th input price variable. Equation (2-4) can be 

rewritten as 
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where ( )Kitkitkit wcc =* , ( )Kitkitkit www =*  and ( )Kitlitlit www =* . Once the parameters of this 

equation have been estimated, the parameters associated with the K-th normalizing input can 

then be calculated using these estimated parameters and the restrictions in equation (2-4a) to    

(2-4e). 

A measure of total factor productivity change ( )1, +titTFPC , for each firm between any two 

time periods, can be calculated by using the estimates of the coefficients of the cost frontier in 

equation (2-5) and the firm-level sample data. The logarithmic form of the TFPC between period 

t  and 1+t  for the i-th firm is defined as 
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where the three terms on the right-hand-side of equation (2-6) represents the cost efficiency 

change ( )1, +titCEC , technical change ( )1, +titTC  and scale efficiency change ( )1, +titSEC , 

respectively.   

 The formula in equation (2-6) has been derived by exploiting Diewert’s (1976) Quadratic 

Identity Lemma, following a similar derivation to that outlined for the distance function case in 

Orea (2002).  This formula is quite similar to that provided in Bauer (1990), which was 

alternatively derived using a differential approach.  The main differences between the two sets of 

TFP decomposition formula is that the technical change and scale efficiency change measures in 
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equation (2-6) are evaluated at the t and t+1 data points, while the Bauer (1990) formula is only 

evaluated at the t data point.  This difference will have minimal effect on the empirical measures 

obtained in most instances. 

 The cost efficiency measure, ( )itCE , in equation (2-6) is the cost efficiency prediction of 

the i-th firm in the t-th time period, and is calculated from the cost frontier in equation (2-5) 

using the method outlined in Coelli (1996). The technical change measure, ( )1, +titTC , is the mean 

of the technical change measures evaluated at the period t  and period 1+t data points. The scale 

efficiency change measure, ( )1, +titSEC , relates to the change in scale efficiency, which requires 

calculation of the output elasticity in period t , yc ti ∂∂ , , and period 1+t , yc ti ∂∂ +1, . 

 When information on input quantities is also available, the regulator can also calculate an 

allocative efficiency change ( )1, +titAEC  component, which is equal to the difference between the 

( )1, +titTFPC  measure obtained from the cost frontier in equation (2-6) and the Törnqvist TFPC 

index in equation (2-2). The allocative efficiency change ( )1, +titAEC  measure yields 

 ( )( ) ( )( )[ ]( )∑
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++++ −−∂∂+−∂∂=
3

1
,1,1,1,,,1, 2

1
k
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This 1, +titAEC  measure will be equal to 0 when the observed cost shares, tkis , , are identical to the 

“efficient” cost shares, ktki wc ∂∂ , , or when there is no change in the input price vector. 

Thus, the total factor productivity change ( )1, +titTFPC  for each firm between any two time 

periods can be decomposed into four components: the cost efficiency change ( )1+t,itCEC , 

technical change ( )1, +titTC , scale efficiency change ( )1, +titSEC , and allocative efficiency change 

( 1, +titAEC ).  In the empirical part of this paper, we report two TFPC measures, one with and one 

without the AEC measure included.  That is, 

1,1,1,1,1 ++++ ++= tittittittit SECTCCECTFPC    (2-8) 

and 

1,1,1, 12 +++ += tittittit AECTFPCTFPC    (2-9). 

Cost functions have been used extensively in empirical analyses of production in 

infrastructure industries over recent decades3.  This has been in preference to the use of 

production function estimates.  This is most likely because of the ready availability of cost data; 

                                                 

3 For example, see Burns and Weyman-Jones (1996) and references cited therein. 
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the fact that they can accommodate multiple outputs; and also because in most cases input prices 

are more likely to be exogenous than the input quantities.  However, the cost function approach 

requires one to accept the behavioral assumption that the producer is cost-minimizing in 

production. If this assumption is incorrect, perhaps because of political intervention or a 

regulatory bias, the duality between the cost frontier and the production frontier will be violated, 

leading to incorrect measures of allocative efficiency, technical efficiency, scale efficiency, and 

technical change.  This issue has provided a motivation for the development of the distance 

function techniques that are discussed in the following section. 

 

2.3. The Stochastic Input Distance Function Approach 

 

Following Coelli and Perelman (1999), a translog input distance function may be defined 

as follows. 
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where d is the log of input distance, D ; and all other notation is as previously defined. 

 For the single-output and three-input case, equation (2-10) is rewritten as 
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Young’s theorem requires that symmetry restrictions are imposed so that 

  βkl = βlk  for all 3,2,1, =lk     (2-11a) 

and homogeneity of degree +1 in input requires imposition of the additional restrictions  
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Imposing these restrictions upon equation (2-11) yields the estimating form of the input 

distance function, in which the distance term, d, can be viewed as an error term as follows 
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where ( )Kitkitkit xxx =* .  By replacing the distance term, itd− , with a composed error term, 

itit uv − , equation (2-12) can be estimated as a standard stochastic frontier function. 

The total factor productivity change ( )1, +titTFPC  for each firm between any two time 

periods can be calculated by using the estimates of the coefficients of the input distance frontier 

in equation (2-12). The logarithmic form of the TFPC between period t  and 1+t  for the i-th 

firm is defined as 
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where the three terms on the right-hand-side of equation (2-13) represents the technical 

efficiency change ( )1, +titTEC , technical change ( )1, +titTC  and scale efficiency change ( )1, +titSEC , 

respectively.  

 The formula in equation (2-13) has been derived by exploiting Diewert’s (1976) 

Quadratic Identity Lemma, following a similar derivation to that outlined for the output distance 

function case in Orea (2002).   

 The technical efficiency measure, ( )itTE , in equation (2-13) is the technical efficiency 

prediction of the i-th firm in the t-th time period, which is calculated using the method outlined 

in Battese and Coelli (1988). The technical change measure, ( )1, +titTC , is the mean of the 

technical change measures evaluated at the period t  and period 1+t data points. The scale 

efficiency change measure, ( )1, +titSEC , calculates the change in scale efficiency, which requires 

calculation of the production elasticity at the period t , yd ti ∂∂ , , and period 1+t , yd ti ∂∂ +1, . 

 When information on input prices is available, the one can also calculate an allocative 

efficiency change ( )1, +titAEC  component, which is equal to the difference between the 

( )1, +titTFPC  measure obtained from the input distance frontier in equation (2-12) and a Törnqvist 

TFPC index in equation (2-2). The allocative efficiency change ( )1, +titAEC  measure yields 
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This 1, +titAEC  measure will be equal to 0 when the market input shares, tkis , , equal to the shadow 

input shares, ktki xd ∂∂ , , or when there is no change in the input quantity vector. 

Thus, the total factor productivity change ( )1, +titTFPC  for each firm between any two time 

periods can be decomposed into four components: the technical efficiency change ( )1, +titTEC , 

technical change ( )1, +titTC , scale efficiency change ( )1, +titSEC , and allocative efficiency change 

( )1, +titAEC .  In the empirical part of this paper, we report two TFPC measures, one with and one 

without the AEC measure included.  That is, 

1,1,1,1,1,2 +++++ +++= tittittittittit AECSECTCTECTFPC   (2-15) 

1,1,1, 12 +++ += tittittit AECTFPCTFPC    (2-16) 

 This input distance function approach can be viewed as a multiple output version of a 

production frontier. It considers the amount by which the input set of each firm may be 

proportionally contracted with the output set held fixed. The advantages of this approach are that 

it avoids the problems associated with the cost function approach when cost minimization is 

violated and it is much less complicated than the shadow cost function approach. In addition, it 

allows one to specify multiple outputs in a primal setting and avoids the endogenous regressors 

criticism that is sometimes leveled at the production frontier approach [Coelli, (2000)].  There 

are increasing numbers of the studies applying this approach in analyses of infrastructure 

industries [e.g. Coelli and Perelman (1999, 2000), Carrington, Coelli, and Groom (2002), and 

Atkinson and Primont (2002)]. 

 

3. The U.S. Electricity Supply Industry  

 

3.1. Overview of the industry 

 

For a number of decades, the U.S. electricity supply industry has been predominantly 

comprised of investor-owned utilities (IOUs).  These IOUs traditionally have been vertically 

integrated utilities – generating, transmitting, and distributing the electricity that they sell to 

customers living in their territories, where regulations provide them with exclusive rights to 

supply electricity in their specified territory.  Traditionally, an electricity customer has paid one 

regulated price for electricity to a single vertically integrated utility responsible for generation, 
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transmission, distribution, and marketing.  Under this form of regulation, electric utilities have 

the potential to exert their market power and they will receive a guaranteed profit for the 

generation of electricity. This led to strong incentives to over invest in capital as well as 

operating at an inefficient level of production, which is of broad interest for regulators [e.g., 

Averch and Johnson (1962), Atkinson and Halvorson (1980), Rungsuriyawiboon and Stefanou 

(2003)]. This lack of efficiency incentives contributed to various legislative changes and to the 

recent adoption of more incentive compatible regulatory structures in some parts of the U.S.  

 The U.S. electricity supply industry has changed significantly in the past two decades.  

This has been partly driven by a number of legislative changes.  The first of note was when 

Congress passed the Public Utility Regulatory Policies Act of 1978 (PURPA), which allowed 

independent generators to sell their electricity to utilities at regulated rates.  Then the 1992 

Energy Policy Act, followed by the Federal Energy Regulatory Commission’s (FERC’s) Orders 

888 and 889 in 1996, expanded the PURPA initiative by forcing utilities with transmission 

networks to deliver power to third parties at nondiscriminatory cost-based rates. These policy 

initiatives recognize that while electricity transmission and distribution remain natural 

monopolies, competition in generation is possible with open access to transportation networks. 

Policies to open markets led to new competitors in generation and marketing, with a 

restructuring of the industry away from the regulated, single-provider model.4   

 During this period of legislative changes, a movement towards incentive regulation 

methods also began to gather pace.  There were relatively few applications of incentive 

regulation in U.S. electric utilities in the 1980s.  However, incentive regulation began to make 

substantial inroads in this industry in the early 1990s. By the end of the decade there were 28 

electric utilities with some form of incentive regulation in 16 states [Sappington et al (2001)].  

 

3.2. Electricity industry data 

 

The empirical analysis in this study focuses on steam electric power generation using a 

fossil fuel as the primary fuel for major investor-owned utilities in the United States. This 

generation source is the dominant part of the electricity industry5. Panel data on 61 electric 

                                                 

4 These changes have not all been implemented at the same pace in all parts of the U.S.  In some States the reforms 
have moved quite slowly. 
5 About 61.1 percent of all the electricity supplied by the U.S. electric power industry comes from steam turbines 
fired by fossil fuel. Recent figure indicate that coal-fired generation accounts for 84 percent, natural gas accounts for 
12.7 percent, and petroleum comprises 3.3 percent. Investor-Owned Utilities own 71 percent of the U.S. generating 
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utilities over the time period of 1986-1998 are used in the empirical analysis. A list of the electric 

utilities included in this study is available from the authors on request.  

The primary sources of data are obtained from the Energy Information Administration 

(EIA), the Federal Energy Regulatory Commission (FERC), the Bureau of Labor Statistics 

(BLS), and the Federal Reserve Board (FRB). The data set used to obtain the TFP measures 

contains measurements of firm output quantities, input quantities, input prices and costs for 

steam electric power production. The definitions of these variables are summarized below. 

 

Output  

 

 The output variable, itY , is represented by net steam electric power generation in 

megawatt-hours, which is defined as the amount of power produced using fossil-fuel fired boilers 

to produce steam for turbine generators during a given period of time. 

 

Price and Quantity of Fuel Input  

 

The price of fuel aggregate, itW1 , is a Tornqvist price index of fuels (i.e. coal, oil, gas) 

which is calculated as a weighted geometric average of the price relatives with weights given by 

the simple average of the value shares in period t and 1+t . 
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where  
∑
=

= 3

1f
fitfit

fitfit
fit

QP

QP
a , fitP  is the price of the f-th fuel (i.e. coal, oil, gas), and fitQ  is the 

consumption of the same fuel. The Törnqvist price index of fuel aggregate is converted into 

multilateral Törnqvist price index to confirm the transitivity property using the EKS method 

discussed in Coelli, Rao and Battese (1998, Ch 4). 

 

                                                                                                                                                             

capacity owned by both utilities and nonutility generators and are responsible for 74 percent of all retail sales of 
electricity (EIA 2000). 
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The quantity of fuel, itX1  , is calculated as the steam power production fuel costs divided 

by the multilateral Tornqvist price index for fuels. 

 

Price and Quantity of Aggregate Labor and Maintenance Input  

 

The price of labor and maintenance aggregate, itW2 , is a cost share-weighted Tornqvist 

price index for labor and maintenance. The price of labor is a firm-level average wage rate. The 

price of maintenance and other supplies is an industry-level price index of electrical supplies. 

The Törnqvist price index of labor and maintenance aggregate is also converted into multilateral 

Törnqvist price index using the EKS method. 

 The quantity of labor and maintenance, itX 2 , is measured as the aggregate costs of labor 

and maintenance divided by the multilateral Tornqvist price index for labor and maintenance. 

Data on labor and maintenance costs are calculated by subtracting fuel expenses from total steam 

power production expenses.6 

 

Price and Quantity of Capital Input  

 

 The price of capital, itW3 , is the yield of the firm’s latest issue of long term debt adjusted 

for appreciation and depreciation of the capital good using the Christensen and Jorgenson (1970) 

cost of capital formula. 

 ( )[ ]tditeititditktit fdirsipW −+−+=3    (3-2) 

where pkt is a price index for electrical generating plant and equipment; idit is the adjusted 

corporate bond rate by firm based upon its bond ratings by Moody’s Investor Service; sit is the 

equity share of total capital defined as total proprietary capital (TPC) divided by the sum of total 

proprietary capital and total long-term debt (TOTB); reit is the equity rate of return defined as the 

ratio of net income to total proprietary capital; d is a depreciation rate assuming 30 years straight 

line depreciation; and ft the inflation rate. 

The values of capital stocks are calculated by the valuation of base and peak load 

capacity at replacement cost to estimate capital stocks in a base year and then updating it in the 

subsequent years based upon the value of additions and retirements to steam power plant as 

                                                 

6 These costs were not separated into labor and non-labor costs because the wide spread use of outsourcing has 
made such distinctions rather arbitrary.  
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discussed in Considine (2000). The base year capacity is calculated by multiplying the price of 

new generation capacity in dollars per megawatt and the base year nameplate capacity in 

megawatts.  

itcitit CPX =3 ,  1986=t     (3-3) 

where citP  is the price of new generation capacity in dollars per megawatt, and itC  is the 

nameplate capacity in megawatts. 

For the subsequent years, the values of capital stocks are calculated by 

( )
itit

kit

kitit
it RA

p
pXX −+

−
=

−

−

1

13
3

)1( υ ,   1998,...,1987=t  (3-4) 

where υ  denotes the depreciation rate;7 X3it is equal to the nominal stock divided by the price 

index for electrical generating plant and equipment, pkit ; Ait and Rit denote additions and 

retirements to steam power plant. 

 

Cost  

 

 The total cost for steam electric power generation, itC , is defined as the sum of the 

product of input prices and quantities for aggregate fuel, aggregate labor and maintenance and 

capital. 

 ∑=
=

3

1k
kitkitit XWC ,    (3-5) 

 The final data set is a balanced panel of 61 electric utilities for the years 1986 to 1998 

with a total of 793 observations.  Table 1 represents a summary of the data used in this study8. 

The average expenses of aggregate fuels, aggregate labor and maintenance, and capital are 

calculated to be 258.79, 66.66, and 97.43 million dollars, respectively. The mean cost shares of 

fuel, labor and maintenance, and capital account for 59, 18, and 23 percent, respectively. 

 

4.  Empirical results  
 

4.1 Discussion of parameter estimates 

                                                 

7 A depreciation rate of 0.033 is used. 
8 All price indices used in this study are obtained and calculated relative to the base period 1993. 



 15

The data described in the previous section were used in the calculation of Tornqvist TFP indices 

and also in the estimation of the cost and input distance functions described in section 2.  The 

maximum likelihood parameter estimates for these two functions (obtained using the computer 

program described in Coelli, 1996) are listed in Table 2.  The data variables used in the model 

estimation were each transformed by division by their respective geometric means.  This 

transformation does not alter the performance measures obtained, but does allow one to interpret 

the estimated first-order parameters as elasticities, evaluated at the sample means. 

 If we first focus on the estimates of the input elasticities in Table 2, we observe that the 

distance function estimates of 0.574, 0.136 and 0.290 (for fuel, labor and maintenance, and 

capital, respectively) differ significantly from the cost frontier estimates of 0.449, 0.361 and 

0.190.  These elasticities can also be interpreted as shadow shares, and hence indicate that when 

TFP measures are calculated using these estimates, the two TFP measures are likely to differ for 

the average firm, if the input quantities change at different rates through time.  Given that 

substantial labor shedding has occurred during this period, it is likely that this issue will be 

important.  Furthermore, we observe that the average observed shares in this data set are 0.59, 

0.18 and 0.23, respectively.  These shares are fairly similar to (but not identical to) the distance 

function shares, but clearly differ from the cost frontier shares.  Given this observation, we 

expect that the TFP growth estimates obtained using the Tornqvist index (which uses observed 

shares) is likely to more closely approximate the distance function TFP measures, relative to the 

cost frontier TFP measures. 

 The reasons for the large differences that we observe between the cost frontier shares and 

the other two sets of shares warrant further discussion.  One possible cause of these differences 

could be some type of systematic measurement error in either the input quantities or prices.  For 

example, in the way in which capital price is measured.  This possibility cannot be discounted, 

but as indicated in the previous section, we have taken great care in this regard.  A second 

possible culprit is that the distance function estimates suffer from some type of simultaneous 

equations bias, due to an endogenous regressors problem, as discussed in Atkinson, Cornwell 

and Honerkamp (2003).  However, given the arguments outlined in Coelli (2000) regarding the 

absence of an endogeneity problem in input distance functions (when firms are shadow cost-

minimisers), and given the fact that the distance function shares and shadow shares are fairly 

similar, we do not believe that this is likely to be an issue.   

 We then come to the third and most likely culprit, that of the violation of the cost 

minimization assumption.  In infrastructure industries such as this, this assumption is unlikely to 
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be appropriate, due to factors such as political and regulatory interventions.  Therefore, when 

cost minimization is no longer applicable, duality theory will no longer apply, and hence the cost 

elasticities cannot be assumed to equal the input shares.  Thus, any TFP calculations (and 

decompositions) based upon cost frontier estimates in this situation need to be treated with a 

large amount of caution.9 

 An issue closely related to this, is the Averch-Johnston (AJ) effect, which predicts that 

the use of rate of return regulation (which is applied to most businesses in this data sample) tends 

to cause the shadow price of capital to decrease and hence encourages over capitalization.  From 

our distance function shadow cost share of capital (0.290), we note that it closely approximates 

the observed capital share (0.23), suggesting that this is not an issue in this industry.  

Alternatively, when we look at the (most likely biased) cost frontier shadow cost share of capital 

(0.190), we appear to obtain evidence of this AJ effect.  However, given the above discussion, 

one is inclined to put more weight on the distance function results, relative to these cost frontier 

results. 

 The estimated parameters in Table 2 also provide information on scale economies and 

technical change.  Using the first order coefficient of the output variable, we can calculate the 

elasticities of scale relative to the cost and input distance functions as 

 ( ) ( ) 11 −− ∂∂−=∂∂= ydycRTS , 

where a value of RTS greater than one imply increasing returns to scale, while values less than 

one imply decreasing returns to scale, and values equal to one indicate constant returns to scale.  

From the Table 2 parameter estimates, we find RTS measures very close to one in value, 

indicating that the technology exhibits constant returns to scale, at the sample mean.  This result 

is not surprising given the results reported in past studies (e.g. see Christensen and Greene, 

1976). 

 The first order coefficients of the time trend variable in Table 2 provide estimates of the 

average annual rate in technical change.  The cost frontier estimates suggest that the technology 

                                                 

9 Another possible reason for the differences in the estimates could be the result of violations of regularity 
conditions.  Economic theory indicates that these economic functions should satisfy certain monotonicity and 
curvature conditions.  A cost function should be non-decreasing and concave in input prices and non-decreasing in 
output quantities, while an input distance function should be non-decreasing and concave in input quantities and non 
increasing in output quantities.  Tests of these conditions indicate that the concavity condition is satisfied at 
approximately two thirds of observations in the distance function, while it is violated in all observations in the cost 
function.  This result adds further weight to our concerns about the reliability of the cost function estimates.  With 
regard to the monotonicity conditions, we note that these are 15 violations in the cost frontier case and six in the 
distance function case.  This rate of violation is quite low, indicating that this condition is satisfied at the vast 
majority of observations.   
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is improving at a rate of 2.2% per year, while the distance function estimates suggest a more 

modest 0.8% per year.  The latter measure is likely to be more reliable, given the above 

discussion.  In addition, we note that it also more closely approximates the technical change 

measures reported in other studies of the US electricity supply industry (e.g. see Atkinson et al, 

2003). 

 

4.2 Discussion of performance measures 

 

 Some summary measures of the TFP growth measures (and components) described in 

section 2 are listed in Table 3.  The mean value reported for the Tornqvist index (TPIN) is 1.518, 

indicating that the average annual change in this TFP measure over this period is 1.518 percent 

per year.  This is quite similar to the value of 1.496 reported for the distance function case, but 

differs significantly from the value of 3.545 reported for the cost function case.  The fact that the 

cost function measure differs from the others is not surprising given the previous discussion.  In 

the following discussion we will focus most attention on the distance function measures, since 

they are expected to be the more reliable ones. 

 In looking at which components contribute most to TFP change in the distance function 

section of Table 3, we observe that the major contribution is from TC (0.826%),10 followed by 

TEC (0.318%), AEC (0.315) and lastly SEC (0.038%).  The large contribution from TC 

conforms with most past studies of this industry (e.g. Atkinson and Primont, 2002).  The near 

zero contribution of SEC is not surprising, given that the estimated technology exhibits constant 

returns to scale (at the sample mean).   

 In Table 4 we produce weighted averages of our results, where the firm-level results have 

been weighted by the output of each firm.  These weighted average results are likely to give a 

more accurate picture of the industry-level changes over time.  We note that the weighted mean 

TFP growth measure is quite similar to the unweighted mean, in the case of the Tornqvist and 

distance function results.  However, it is interesting to observe that the weighted TC measure is 

almost 40% larger than the unweighted measure, indicating that larger firms have been pushing 

out the frontier at a faster rate.  This is perhaps due to them having greater resources devoted to 

research and development, or maybe due to these larger firms having higher growth rates and 

                                                 

10 It is reassuring to note that these TC measures, formed by averaging firm-level measures, are similar to those 
obtained earlier, which were derived by evaluating the time derivative at the sample means. 
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hence more opportunities to benefit from embodied technical change in new investments.  

However, further research is required confirm these hypotheses. 

 Tables 3 and 4 also contain year-by-year averages.  These annual measures indicate the 

degree of volatility in the TFP growth measures.  For example, in the final column of Table 4, 

we see that TFP growth varies from a high of 5.598% in 1986/87 to a low of negative 1.202% in 

1989/90, and from the associated TEC column, we see that most of this TFP volatility is due to 

TEC.  These measures illustrate the degree to which exogenous factors, such as the business 

cycle and climatic conditions, can affect efficiency measures.  Given this, it would clearly be 

prudent for an analyst to not base TFP growth measures upon only a handful of years of data, 

where the danger that an unusual event could significantly affect the measures obtained. 

 Annual averages of the firm-level measures are reported in Table 5.  There is a wealth of 

information in this table.  Of particular note is the degree to which TFP performance varies from 

firm to firm, from an annual average decrease of 3.858% for firm 43 to an increase of 10.758% 

for firm number 2.  The distribution of TFP scores is further illustrated using the frequency 

distributions reported in Table 6 and Figure 1.  This variability in performance is of particular 

interest to us in this study.  In particular, to what extent can this variation be explained by 

different regulatory regimes? 

 

4.3 The influence of regulation 

 

 In this section we test a number of hypotheses regarding the degree to which the 

regulatory regime has influenced firm-level productivity performance.  Firstly, as noted in 

Sappington et al (2001), by the end of the 1990’s, 28 electric utilities in 16 different States faced 

some form of incentive regulation.  Of the 61 utilities included in the data set used in the present 

study, 11 faced some form of incentive regulation for some part of the sample period.  Details of 

these schemes are summarised in Table 7.  As can be seen in this table, incentive regulation was 

introduced in different States in different years.  

 The first hypothesis we consider is whether there was a significant difference in 

performance of firms when they faced incentive regulation versus those under more traditional 

forms of regulation.  The means of TE, TFP1 and TFP2 for these two groups are reported under 

hypothesis (1) in Table 8.  The null hypothesis that the means of the two groups are equal is 
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rejected for all three pairs of means at the 5% level of significance.  In fact, for all pairs of means 

reported in Table 8 this null hypothesis was rejected at he 5% level in all cases. 

 What is of interest is to note that those firms facing incentive regulation have lower mean 

TE levels and lower mean TFP growth.  This is contrary to what the theory predicts should 

happen.  One possible reason for this finding is that we have perhaps not accounted for particular 

macro economic effects that may be making the earlier part of the 1986-1998 data period look 

good and hence given that adoption of incentive regulation methods occurred in the latter half of 

the period, our measures may be affected.  To attempt to remove the effect of this possibility we 

excluded the 1986-1990 data (which is the period prior to 1991, the date on which the first firm 

in the sample faced incentive regulation) and then re-ran the t-tests.  The results, which are 

reported as hypothesis (2) in Table 8, come to the same set of conclusions as the first set.  Hence 

the macro effects issue does not appear to be crucial. 

 Another possible explanation of our unexpected results is that of “endogenous selection”, 

in that those State regulators who decided to implement incentive regulation methods did so 

because they knew that the firms in their State were not performing well and hence needed some 

encouragement.  To test this hypothesis we took the 1986-1990 results and dived the firms into 

those that would subsequently adopt incentive regulation and those that would not.  The results 

reported in Table 8 under hypothesis (3) confirm our suspicions.  Those firms that subsequently 

face incentive regulation do have lower performance during this period.  This means that we 

cannot have much faith in the reliability of the results of hypothesis (1). 

 Hence we consider one final hypothesis test.  In this test we focus only upon those firms 

that actually do face incentive regulation and we look at the period of three years immediately 

prior to the regulatory change for that firm and compare it to the following first three years of the 

regulatory regime for that firm.  Given that we are no longer comparing adopters and non-

adopters the endogenity issue is removed.  Furthermore, given that we focus on a short time 

period, macro effects should also be minimised.  The results of hypothesis (4) in Table 8 indicate 

that performance declines following the introduction of incentive regulation, which confirms the 

conclusion of hypothesis (1).  Thus, in this instance, the empirical evidence suggests that 

incentive regulation has not achieved the desired result. 
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5.  Conclusions 

 

 In this paper we have sought to make a number of contributions.  First, we have provided 

up to date information on productivity growth in fossil-fuel steam electricity generation in the 

United States.  Using sample data on 61 firms observed over a 13-year period from 1986 to 

1998, we found that productivity has improved at the rate of approximately 1.5 percent per year 

over this period.  We have also calculated productivity growth for each firm in the sample, 

finding that they range from a four percent annual decline for one firm to an 11 percent annual 

increase for the best performing firm. 

 Second, we have compared and contrasted three different methods of productivity 

measurement.  Namely, Tornqvist index numbers, stochastic cost frontiers and input distance 

functions.  We argue that the latter method is to be preferred because of its ability to deal with 

violations of cost minimizing behavior (which are common in regulated industries) and because 

it allows one to decompose productivity growth into various components that are of interest to 

regulators (such as technical change and efficiency change). 

 Finally, we have used our empirical results to test various hypotheses regarding the effect 

of regulatory reform upon productivity.  From the results of this analysis, we conclude that the 

introduction of incentive regulation has not had the desired positive effect upon the economic 

performance of the firms involved.  In fact, in the case of these data, we find that performance is 

negatively related with the introduction of the new regulatory regimes.  Whether this is a result 

of the failure of these regulatory methods, or a failure to properly implement the methods is an 

issue that warrants further attention. 
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Table 1:  Data summary for 61 electric utilities over the periods of 1986-98 

Variable Units Mean S. D. Minimum Maximum 

Output, Y 

Fuel, X1 

Labor and  Maintenance, X2     

Capital, X3       

Price Index of Fuel, W1    

Price Index of Labor and Maintenance, W2 

User Costs of Capital, W3 

Total Cost, C          

(× 106 MWhr) 

(× 106 dollars) 

(× 106 dollars) 

(× 106 dollars) 

 

 

 

(× 106 dollars) 

13.709  

300.568  

    61.776 

955.225 

0.861 

1.079 

0.102 

410.643 

12.561 

351.842 

53.366 

877.403 

0.208  

0.255   

0.019 

376.033   

0.499   

12.823 

1.810   

9.070 

0.306 

  0.443 

        0.009 

25.668   

79.723 

2,522.324 

444.453 

3,878.295 

       1.338 

1.928 

0.203 

2,233.418   

Note: The observed shares are 58.6% by fuel, 17.9% by labor and maintenance, and 23.5% by capital 
 

Table 2:  Parameter estimates for the cost frontier and input distance function 

Model Cost Frontier  Input Distance Function 

Parameter Estimates S.D. t-ratio Estimates S.D. t-ratio 

 
β0 
β1 
β2 
β3 
β11 
β12 
β13 
β22 
β23 
β33 
βy 
βyy 
β1y 
β2y 
β3y 
βz 
βzz 
β1z 
β2z 
β3z 
βyz 
σ2 

γ 

 
-0.270 
0.449 
0.361 
0.190 
0.267 

-0.360 
0.093 
0.525 

-0.164 
0.071 
0.966 
0.028 

-0.059 
-0.011 
0.069 

-0.022 
0.002 
0.038 

-0.048 
0.010 

-0.005 
0.113 
0.974 

 
0.012 
0.022 
0.030 

 
0.128 
0.110 

 
0.169 

 
 

0.006 
0.012 
0.025 
0.031 

 
0.002 
0.001 
0.008 
0.011 

 
0.002 
0.007 
0.008 

 
-22.055 
19.998 
11.983 

 
2.095 

-3.287 
 

3.111 
 
 

155.078 
2.400 

-2.337 
-0.343 

 
-10.455 

1.458 
4.756 

-4.453 
 

-2.297 
16.177 

122.552 

 
0.256 
0.574 
0.136 
0.290 

-0.118 
0.127 

-0.009 
-0.011 
-0.116 
0.125 

-0.976 
-0.023 
-0.056 
-0.004 
0.060 
0.008 
0.001 
0.006 
0.007 

-0.013 
0.006 
0.110 
0.979 

 
0.010 
0.017 
0.018 

 
0.047 
0.042 

 
0.041 

 
 

0.008 
0.014 
0.018 
0.017 

 
0.002 
0.001 
0.005 
0.004 

 
0.002 
0.007 
0.009 

 
24.495 
34.655 
7.671 

 
-2.516 
3.041 

 
-0.266 

 
 

-128.787 
-1.676 
-3.034 
-0.252 

 
5.015 
1.456 
1.346 
1.466 

 
3.195 

15.175 
112.813

Log likelihood 
function  
 
LR test of the  
one-sided error 

 
200.651 

 
 

207.896 

 
220.574 

 
 

190.514 
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  Table 3:  Annual average TFP change measures (unweighted)* 

Cost Frontier Model Input Distance Model 
Year TPIN 

CEC TC SEC AEC TFPC1 TFPC2 TEC TC SEC AEC TFPC1 TFPC2 

 

86-87 

87-88 

88-89 

89-90 

90-91 

91-92 

92-93 

93-94 

94-95 

95-96 

96-97 

97-98 

 

6.631 

1.575 

4.003 

-2.570 

-2.287 

0.999 

0.109 

1.767 

0.428 

2.377 

3.488 

1.696 

 

6.455 

1.962 

2.748 

-4.401 

-2.052 

0.096 

-0.922 

0.012 

-0.817 

0.089 

0.702 

-0.961 

 

1.652 

1.888 

2.073 

2.062 

2.109 

2.208 

2.273 

2.361 

2.467 

2.514 

2.451 

2.500 

 

0.146 

0.042 

0.250 

-0.165 

-0.062 

-0.069 

-0.282 

0.114 

-0.032 

-0.120 

0.498 

0.244 

 

2.001 

2.615 

1.477 

-0.371 

1.971 

1.222 

1.156 

0.421 

1.008 

0.362 

0.516 

0.128 

 

8.253 

3.892 

5.071 

-2.504 

-0.006 

2.235 

1.069 

2.486 

1.617 

2.483 

3.651 

1.783 

 

10.255 

6.507 

6.548 

-2.874 

1.966 

3.457 

2.225 

2.907 

2.626 

2.845 

4.167 

1.912 

 

6.550 

0.083 

2.574 

-3.294 

-3.550 

0.443 

0.131 

0.387 

-1.006 

1.223 

0.956 

-0.686 

 

0.083 

0.270 

0.469 

0.598 

0.695 

0.792 

0.880 

0.977 

1.076 

1.170 

1.325 

1.572 

 

-0.078 

0.199 

0.063 

-0.049 

0.012 

-0.006 

-0.243 

0.070 

-0.059 

-0.127 

0.501 

0.171 

 

-0.281 

1.068 

0.569 

0.454 

0.764 

-0.265 

-0.725 

0.530 

0.279 

0.129 

0.372 

0.890 

 

6.555 

0.552 

3.106 

-2.745 

-2.843 

1.228 

0.768 

1.434 

0.010 

2.266 

2.782 

1.057 

 

6.274 

1.620 

3.675 

-2.291 

-2.079 

0.963 

0.043 

1.964 

0.290 

2.396 

3.154 

1.947 

Mean 1.518 0.243 2.213 0.047 1.042 2.503 3.545 0.318 0.826 0.038 0.315 1.181 1.496 

* All measures are in percentage terms. 
 
 

Table 4: Weighted annual average TFP change measures  

Cost Frontier Model Input Distance Model 
Year TPIN 

CEC TC SEC AEC TFPC1 TFPC2 TEC TC SEC AEC TFPC1 TFPC2 

 

86-87 

87-88 

88-89 

89-90 

90-91 

91-92 

92-93 

93-94 

94-95 

95-96 

96-97 

97-98 

 

5.867 

1.465 

2.108 

-1.416 

-1.133 

1.227 

1.557 

1.040 

0.864 

3.371 

2.156 

1.624 

 

5.641 

1.378 

0.452 

-3.662 

-1.497 

1.431 

-1.723 

-0.027 

-0.805 

0.475 

-0.699 

-0.852 

 

2.099 

2.367 

2.532 

2.541 

2.605 

2.702 

2.752 

2.835 

2.982 

3.090 

3.105 

3.116 

 

-0.049 

0.023 

0.055 

-0.040 

-0.002 

0.007 

-0.020 

0.019 

0.029 

0.012 

0.121 

0.125 

 

2.169 

2.567 

1.104 

-0.059 

2.028 

2.886 

-0.344 

1.538 

1.273 

0.613 

0.812 

0.373 

 

7.692 

3.768 

3.038 

-1.161 

1.105 

4.139 

1.009 

2.827 

2.206 

3.577 

2.527 

2.390 

 

9.861 

6.335 

4.142 

-1.220 

3.133 

7.025 

0.665 

4.365 

3.479 

4.189 

3.339 

2.762 

 

5.516 

0.316 

1.043 

-2.662 

-2.543 

0.186 

0.528 

-0.192 

-0.814 

1.760 

0.583 

-0.242 

 

0.539 

0.673 

0.830 

0.948 

1.023 

1.089 

1.213 

1.325 

1.406 

1.523 

1.662 

1.896 

 

-0.126 

0.020 

-0.023 

0.016 

0.033 

0.048 

-0.017 

0.006 

0.006 

0.020 

0.168 

0.095 

 

-0.330 

0.447 

0.076 

0.496 

0.547 

-0.199 

-0.376 

0.169 

0.360 

-0.217 

-0.864 

0.224 

 

5.929 

1.010 

1.849 

-1.698 

-1.486 

1.322 

1.724 

1.139 

0.598 

3.303 

2.414 

1.749 

 

5.598 

1.457 

1.926 

-1.202 

-0.939 

1.123 

1.348 

1.308 

0.958 

3.086 

1.550 

1.973 

Mean 1.561 0.009 2.727 0.023 1.246 2.760 4.006 0.290 1.177 0.021 0.028 1.488 1.516 
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 Table 5: Average TFPC Decomposition by Firm (in Percentage) 

Cost Frontier Model Input Distance Model 
Firm TPIN 

TFPC CEC TC SEC AEC TFPC1 TFPC2 TEC TC SEC AEC TFPC1 TFPC2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

 

0.683 
11.175 
-0.047 
2.877 
0.285 
1.758 
0.098 
0.827 
0.337 

-0.152 
1.971 
1.934 
1.615 

-0.960 
0.569 
1.854 
2.529 
1.907 
2.601 
9.341 
1.121 
3.318 
2.017 
0.593 
2.447 

-0.337 
1.475 
2.848 
3.222 
0.906 
2.017 
0.784 
2.415 

-0.392 
0.861 
1.627 
0.147 

-0.826 
-0.532 
0.918 
2.023 
1.727 

-3.943 
2.556 
1.674 
2.915 

-0.580 
1.433 
2.191 
3.498 
1.679 
1.521 
2.079 
4.422 
0.785 

-1.966 
0.102 
2.115 
0.418 
0.582 
1.539 

 

-0.328 
8.650 

-2.192 
1.652 
0.530 
1.533 

-0.333 
-0.203 
-0.615 
-1.079 
1.238 

-0.232 
0.758 

-2.175 
-0.578 
0.084 
1.252 
0.325 
1.033 
5.622 
0.212 
1.704 
1.806 
1.026 
0.549 

-0.866 
-1.366 
0.909 
1.211 

-0.146 
0.001 
0.294 
1.959 

-0.556 
-1.402 
0.278 
0.710 

-1.146 
-2.680 
0.588 

-0.719 
-0.806 
-3.891 
1.526 
0.559 

-1.245 
-1.569 
0.580 
1.608 
0.582 
0.446 

-0.787 
0.135 
3.449 

-0.067 
-2.953 
-0.049 
0.200 

-0.755 
-0.072 
0.596 

 

2.247 
0.756 
2.892 
1.319 
1.281 
2.649 
1.065 
1.996 
1.882 
0.710 
0.979 
3.493 
1.424 
0.847 
3.209 
3.172 
1.659 
2.064 
3.026 
3.032 
2.905 
2.491 
0.636 

-0.562 
3.042 
1.023 
4.921 
2.568 
3.376 
2.443 
2.813 
1.082 
0.953 
1.169 
3.106 
1.685 
2.359 
1.911 
3.683 
0.500 
4.718 
4.174 
2.891 
1.142 
2.234 
4.742 
1.568 
2.788 
0.297 
4.079 
1.246 
3.509 
2.626 
1.881 

-0.152 
2.268 
1.641 
4.284 
3.620 
1.488 
2.149 

 

0.050 
0.663 

-0.045 
-0.023 
-0.243 
-0.089 
0.086 
0.029 
0.020 
0.058 

-0.078 
0.018 
0.028 

-0.175 
-0.023 
0.015 
0.056 
0.073 
0.203 
0.288 
0.014 

-0.098 
0.373 
0.182 

-0.254 
-0.012 
0.018 
0.045 

-0.037 
0.066 
0.109 
0.060 
0.006 
0.047 

-0.080 
0.106 
0.329 
0.005 
0.051 
0.115 

-0.007 
0.106 

-0.833 
0.336 
0.015 

-0.072 
0.084 

-0.012 
0.199 
0.171 
0.010 
0.018 

-0.032 
0.082 
0.103 

-0.121 
0.333 

-0.037 
-0.012 
0.478 
0.102 

 

1.227 
1.153 
0.578 
0.117 
1.307 
2.413 
0.624 
0.984 
0.736 

-0.447 
0.253 
1.338 
0.615 

-0.605 
2.022 
1.458 
1.001 
0.550 
1.690 

-0.341 
2.123 
0.811 
0.862 
0.094 
0.907 
0.461 
2.056 
0.702 
1.371 
1.419 
0.875 
0.697 
0.537 
1.041 
0.724 
0.972 
3.167 
1.468 
1.541 
0.374 
1.930 
1.740 
2.041 
1.078 
1.184 
0.479 
0.530 
1.935 

-0.046 
1.657 
0.031 
0.871 
0.875 
1.162 

-0.904 
1.077 
1.776 
2.340 
2.289 
1.307 
1.351 

 

1.969 
10.068 

0.655 
2.948 
1.568 
4.093 
0.818 
1.823 
1.287 

-0.311 
2.139 
3.279 
2.210 

-1.502 
2.608 
3.271 
2.967 
2.462 
4.263 
8.942 
3.130 
4.098 
2.815 
0.646 
3.337 
0.145 
3.573 
3.522 
4.550 
2.363 
2.923 
1.437 
2.918 
0.660 
1.624 
2.069 
3.398 
0.769 
1.054 
1.204 
3.991 
3.474 

-1.834 
3.004 
2.808 
3.425 
0.084 
3.356 
2.103 
4.832 
1.702 
2.739 
2.729 
5.412 

-0.115 
-0.805 
1.925 
4.447 
2.852 
1.895 
2.848 

 

3.196 
11.221 

1.232 
3.064 
2.875 
6.505 
1.443 
2.807 
2.024 

-0.759 
2.393 
4.617 
2.825 

-2.107 
4.630 
4.729 
3.968 
3.012 
5.952 
8.600 
5.253 
4.909 
3.677 
0.740 
4.244 
0.606 
5.630 
4.225 
5.920 
3.782 
3.798 
2.133 
3.456 
1.701 
2.348 
3.041 
6.565 
2.238 
2.595 
1.578 
5.921 
5.215 
0.207 
4.082 
3.991 
3.904 
0.614 
5.291 
2.057 
6.489 
1.733 
3.610 
3.604 
6.574 

-1.019 
0.272 
3.701 
6.787 
5.141 
3.202 
4.199 

 

-1.052 
8.322 

-1.496 
0.480 
0.143 
0.711 

-0.440 
-0.315 
-0.508 
-1.091 
0.235 
1.635 
0.610 

-2.943 
-0.385 
0.417 
1.013 

-0.190 
0.972 
2.740 
0.013 
2.033 
1.375 
0.161 
1.210 

-1.406 
-0.250 
0.608 
1.839 
0.240 
0.254 

-0.227 
1.865 

-0.253 
-0.598 
0.111 
0.249 

-0.672 
-0.591 
0.394 
0.676 

-0.603 
-3.982 
1.053 
0.649 

-0.285 
-1.627 
1.263 
1.716 
2.726 
0.067 
0.080 
0.628 
3.723 

-0.140 
-1.553 
0.382 
0.598 

-0.790 
-0.736 
0.321 

 

0.789 
0.769 
1.282 
1.280 

-0.215 
0.693 
0.634 
0.957 
1.110 
0.552 
1.117 
1.091 
0.885 
1.411 
1.593 
1.001 
0.892 
0.663 
1.118 

-0.072 
1.188 
0.154 
0.798 
0.139 
1.145 
1.327 
2.343 
1.096 
1.037 
0.851 
0.667 
1.102 

-0.098 
-0.393 
1.039 
1.031 

-0.048 
-0.188 
1.140 
0.514 
1.047 
2.443 
0.814 
0.284 
1.178 
2.104 
0.830 
0.985 

-0.143 
0.286 
1.046 
1.257 
1.131 

-0.517 
0.810 
1.097 

-1.138 
1.808 
1.155 
0.386 
1.104 

 

0.068 
-0.095 
-0.118 
-0.005 
-0.168 
-0.080 
0.043 
0.034 
0.031 
0.130 

-0.058 
0.007 
0.029 
0.029 

-0.029 
0.067 
0.075 
0.159 
0.063 
0.815 
0.006 

-0.179 
0.108 
0.280 

-0.292 
-0.051 
0.015 
0.052 
0.045 
0.030 
0.147 
0.049 
0.052 

-0.048 
-0.099 
0.115 
0.275 
0.009 

-0.001 
0.051 
0.009 

-0.182 
-0.739 
0.221 

-0.034 
-0.095 
0.087 
0.006 
0.164 
0.153 
0.046 
0.019 
0.027 
0.190 
0.120 

-0.054 
0.410 

-0.058 
0.050 
0.360 
0.039 

 

1.002 
1.762 
0.323 
1.111 
0.521 
0.419 
0.000 
0.157 

-0.119 
0.570 
0.643 

-0.834 
0.077 
0.606 

-0.602 
0.247 

-0.074 
1.280 
0.427 
5.795 

-0.089 
1.266 

-0.294 
0.009 
0.359 

-0.176 
-0.628 
1.074 
0.262 

-0.244 
0.943 

-0.032 
0.556 
0.308 
0.532 
0.007 

-0.335 
0.094 

-1.068 
-0.081 
0.277 
0.082 
0.048 
0.643 

-0.145 
1.197 
0.692 

-0.848 
0.417 
0.068 
0.519 
0.162 
0.216 
0.762 

-0.001 
-1.421 
0.370 

-0.249 
0.029 
0.588 
0.055 

 

-0.195 
8.996 

-0.332 
1.755 

-0.239 
1.324 
0.237 
0.677 
0.633 

-0.409 
1.293 
2.733 
1.525 

-1.503 
1.179 
1.485 
1.979 
0.632 
2.153 
3.484 
1.206 
2.008 
2.282 
0.580 
2.062 

-0.130 
2.108 
1.755 
2.921 
1.121 
1.068 
0.924 
1.819 

-0.694 
0.342 
1.257 
0.476 

-0.850 
0.548 
0.959 
1.731 
1.658 

-3.906 
1.558 
1.793 
1.724 

-0.710 
2.255 
1.737 
3.164 
1.159 
1.356 
1.786 
3.396 
0.790 

-0.510 
-0.346 
2.347 
0.415 
0.010 
1.463 

 

0.807 
10.758 
-0.009 
2.867 
0.281 
1.743 
0.237 
0.834 
0.514 
0.161 
1.936 
1.899 
1.602 

-0.897 
0.577 
1.732 
1.905 
1.911 
2.580 
9.279 
1.117 
3.274 
1.988 
0.590 
2.421 

-0.306 
1.480 
2.829 
3.183 
0.877 
2.011 
0.892 
2.375 

-0.386 
0.874 
1.264 
0.141 

-0.757 
-0.520 
0.878 
2.009 
1.739 

-3.858 
2.201 
1.648 
2.921 

-0.018 
1.406 
2.154 
3.232 
1.678 
1.518 
2.002 
4.158 
0.789 

-1.931 
0.023 
2.098 
0.444 
0.598 
1.518 

 

Mean 1.518 0.243 2.213 0.047 1.042 2.503 3.545 0.318 0.826 0.038 0.315 1.181 1.496 
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 Table 6: Distribution of Average Total Factor Productivity Change 

TFPC1 TFPC2 Total Factor 
Productivity 

Change  
(%) 

TPIN 
Approach 
Number of 

Firms 

Cost Frontier 
Approach 

Number of Firms 

Input Distance 
Approach 

Number of Firms 

Cost Frontier 
Approach 

Number of Firms 

Input Distance 
Approach 

Number of Firms 
< -2.0 

-2.0-0.0 

0.0-2.0 

2.0-4.0 

4.0-6.0 

6.0-8.0 

8.0-10.0 

> 10.0 

1 

9 

31 

19 

1 

0 

1 

1 

0 

5 

18 

29 

7 

0 

1 

1 

1 

11 

36 

12 

0 

0 

1 

0 

1 

2 

10 

25 

16 

5 

1 

1 

1 

8 

34 

15 

1 

0 

1 

1 

 

Table 7: Incentive Regulation of U.S. Electric Utilities in the Sample Data 
No Name State Period Type of Plans 

6 
 

7 
8 

25 
26 
34 

 
35 

 
46 
52 
54 

 
59 

Niagara Mohawk Power  
 
Central Illinois Light  
Central Illinois Public Service  
Southern California Edison  
Tampa Electric  
Central Maine Power  
 
Consolidated Edison -NY 
 
Montana Power  
Public Service of Colorado 
Rochester Gas & Electric  
 
Union Electric  

NY 
 

IL 
IL 
CA 
FL 
ME 

 
NY 

 
MT 
CO 
NY 

 
MO 

1991-1995 
1998-2002 
1998-2002 
1998-2003 
1997-2001 
1995-1999 
1991-1993 
1995-2000 
1995-1997 
1997-2000 
1997-1998 
1997-2001 
1993-1996 
1996-2002 
1995-2001 

Revenue cap 
Rate freeze 
Price cap 
Price cap 
Price cap 
Rate freeze 
Revenue-per-customer cap 
Price cap 
Revenue-per-customer cap 
Rate case moratorium 
Price cap 
Rate case moratorium 
Revenue cap 
Rate case moratorium 
Rate freeze 

 
 

Table 8:  Tests of hypotheses regarding the effects of regulatory regime* 

Period Incentive 
Regulation TE TFP1 TFP2 

(1) H0 = means between adopters and non-adopters during 1986-98 are equivalent 

1986-1998 no 
yes 

0.842 
0.715 

1.205 
1.103 

1.539 
1.380 

(2) H0 = means between adopters and non-adopters during 1991-98 are equivalent 

1991-1998 no 
yes 

0.841 
0.715 

1.200 
1.103 

1.531 
1.380 

(3) H0 = means between adopters and non-adopters during 1986-90 are equivalent 

1986-1990 no 
yes 

0.854 
0.793 

1.296 
1.154 

1.588 
1.415 

(4) H0 = means between 3 year before and after adoption for all IR adopters are equivalent 

various before 
after 

0.805 
0.759 

1.301 
1.126 

1.431 
1.398 

* All differences were found to be significant at the 5% level. 
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 Figure 1: Distribution of Average Total Factor Productivity Change 
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Distribution of Average TFPC2 by Firm
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