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A Scale Elasticity Measure for  

Directional Distance Function and its Dual:  

Theory and DEA Estimation1 

 
Valentin Zelenyuk* 

 
Abstract 

In this paper we focus on scale elasticity measure based on directional distance function for 

multi-output-multi-input technologies, explore its fundamental properties and show its 

equivalence with the input oriented and output oriented scale elasticity measures.  We also 

establish duality relationship between the scale elasticity measure based on the directional 

distance function with scale elasticity measure based on the profit function.  Finally, we discuss 

the estimation issues of the scale elasticity based on the directional distance function via the 

DEA estimator.  
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1. Introduction 

 
Since its inception by Chambers, Chung and Färe (1996, 1998), and earlier inspirations from the 

fundamental works by Luenberger (1992, 1994, 1995), the directional distance function or, 

Luenberger’s benefit function, has been gaining increasing popularity both in theoretical and 

empirical studies. While being a very convenient tool for characterizing, estimating and analyzing 

multi-output-multi-input technologies as well as for measuring welfare effects, the directional 

distance function and the benefit function found many theoretical and empirical uses, especially 

in analysis of production, productivity, efficiency and economic growth, environmental shadow 

price estimation, etc.1  One of the most important aspects in applied analysis of firms is 

measurement of economies and diseconomies of scale and here, in this article, we focus on this 

aspect within the framework of directional distance function. 

 
The aspect of measuring economies or diseconomies of scale was explored in many studies, 

including the seminal works of Hanoch (1975), Panzar and Willig (1977), Banker (1984), Banker 

et al (1984), Färe, Grosskopf and Lovell (1986), Banker and Thrall (1992), Førsund (1996), 

Golany and Yu (1997), as well as more recent and fundamental works of Fukuyama (2000, 2003), 

Førsund and Hjalmarsson (2004), Krivonozhko et al. (2004), Hadjicostas and Soteriou (2006, 

2010), and Podinovski et al. (2009), to mention just a few.  In the present work, we extend some 

of these works for the context of directional distance function (DDF). In particular, within the 

standard production economics theory framework (following Shephard (1953, 1970) and Färe 

and Primont (1995)), we define a scale elasticity measure based on the DDF and then derive the 

necessary and sufficient condition for the equivalence between our measure and the existing 

scale elasticity measures based on the input oriented and output oriented Shephard’s distance 

functions.  We also establish duality relationship between the scale elasticity measure based on 

the directional distance function and a scale elasticity measure based on the profit function.   
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Since the choice of characterization of technology in practice is often made arbitrarily, an 

empirical value of our theoretical result is that it provides researchers with an analytical condition 

(which is necessary and sufficient) that could be verified empirically with available data and an 

appropriate estimator.  In practice, testing this condition can help clarifying if the researcher’s 

results about scale elasticity estimates would be different if one were to use a different 

characterization of technology for this same data set. 

 
The rest of this paper is structured as following: Section 2 outlines the various approaches for 

technology characterization involved in this work.  Section 3 outlines alternative definitions of 

scale elasticity and, in particular, a scale elasticity measure based on the DDF. Section 4 states, 

proves and briefly discusses the primal results. Section 5 states, proves and briefly discusses the 

dual results related to the profit function.  Section 6 discusses the case of technology frontiers 

with ‘kinks’ and Section 7 provides details for estimation of the scale elasticities based on the 

DDF in the DEA context. Finally, Section 8 concludes.  

 
 
2.  Characterizations of Technology 
 

To facilitate our formal discussion, let 1( ,..., ) ' N

Nx x x    be a vector of inputs and 

1( ,..., ) ' M

My y y    be a vector of outputs, and assume that the production technology of a 

firm is characterized by the technology set 
N MT    , defined as 

 

 {( , ) : }N M M NT x y y is producible from x        .   (1) 

 
 
By convention in production theory, we admit that technology satisfies ‘standard regularity 

conditions’ of production theory such as 

 

(i) “no free lunch” ( (0, )y T  for any 0y  ),  

(ii)  “doing nothing is possible” ( Tx )0,(  for any 
Nx  ),  
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(iii) the set   is a closed set,  

(iv) the output sets of   (defined by }),(:{:)( TyxyxP  , 
Nx  ) are bounded for any 

Nx  ,   

(v) technology set   satisfies ‘free disposability’ for all inputs and all outputs, i.e.,  

( , ) ( , )o ox y T x y T   , oy y   and ox x  .  

 
For details of these regularity conditions and resulting properties see Färe and Primont (1995) as 

well as Chambers et al., (1996, 1998).2 

 

In a single output case, a common approach to completely characterize the technology set   is to 

use the production function : Nf     defined as 

 

}),(:max{)( Tyxyxf  ,      (2) 

 

To characterize technology in a multi-output-multi-input context, one can use many appropriate 

functions, most popular of which appears to be the Shephard’s distance functions, which we will 

involve later in this paper as well.  Specifically, recall that the output oriented Shephard’s (1970) 

distance function : { }N M

oD         is defined as  

 

  })/,(:0inf{),( TyxyxDo   ,     (3) 

 

while the Shephard’s (1953) input distance function : { }M N

iD         is defined as 

  

  ( , ) sup{ 0 : ( / , ) }iD y x x y T    .     (4) 

 
Under fairly mild regularity conditions on technology stated above, both functions possess many 

useful properties, in particular, they both completely characterize technology set   in the sense 

that 
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TyxxyDyxD io  ),(1),(1),(     (5) 

 

Our focus in this work is on the directional distance function that is more general than the 

Shephard’s distance functions, and includes them as special cases.  Formally, the directional 

distance function : { } { }N M

dD          is defined as  

 

  ( , | , ) sup{ : ( , ) ( , ) }d x y x yD x y d d x y d d T     ,   (6) 

 

where ( , ) \{0}N M

x yd d d      is a direction vector specified by the researcher. (Note that 

the notation ( , )x yd d d  does not imply that d depends on x
 
or y , but only indicates that xd  

is a vector in  -space and 
yd
 
is a vector in  -space.)  Throughout this work, we assume that a 

suitable direction ( , )x yd d d  is chosen, in the sense that DDF attains a finite value, implying 

feasibility of DDF.3 

 
Many useful properties of this function were established in the literature (e.g., see Chambers, 

Chung and Färe (1996, 1998), Briec and Kerstens (2009), etc.).  A particularly useful property for 

us is that, under the standard regularity condition (i)-(v) and a suitable direction, the DDF 

completely characterizes the technology set T, in the sense that 

 

TyxddyxD yxd  ),(0),|,( .    (7) 

 

An important advantage of DDF-based characterization of technology over others is that, under 

certain conditions, it is dual to the profit function : { }M N       ,4 defined as   

  

,
( , ) max{ ' ' : ( , ) }   

x y
p w p y w x x y T ,    (8) 
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where 
Nw

 
is an input price vector and 

Mp  is an output price vector, corresponding to 

Nx
 
and 

My , respectively. 

 
In the next section we will consider various measures of scale elasticity based on the different 

primal characterizations of technology. 

 

3. Primal Measures of Scale Elasticity 
 
 
In the case of single output technology, a commonly used measure of scale elasticity cited in 

many economics textbooks is given by  

 

)(/)(
)(

)(

log

)(log
)( '

11

xfxxf
xf

x

x

xfxf
xe x

i
N

i i










 





.   (9) 

 

where )(xf  is the production function defined in (2) that is assumed to be continuously 

differentiable and where 
'

1( ) ( ( ) / ,..., ( ) / )x Nf x f x x f x x      ) is its gradient.    

 
In their seminal works, Färe, Grosskopf and Lovell (1986) and Färe and Primont (1995), 

modifying ideas of Hanoch (1975), Panzar and Willig (1977), generalized the scale elasticity 

measure in (9) to the multiple output case by employing the Shephard’s distance functions.  In 

particular, their output oriented measure of scale elasticity can be defined as 

 

1,1
log

log
),(











yxeo , such that    1),( yxDo  .   (10) 

 
Alternatively, one could measure returns to scale based on the input oriented distance function 

(4), defining the input oriented measure of scale elasticity as 

 

1,1
log

log
),(











xyei , such that    1),( xyDi  .   (11) 
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Intuitively, both measures are trying to gauge the scale elasticity by looking at the relationship 

between equi-proportional changes in all inputs with equi-proportional changes in all outputs, but they 

do it by using different characterizations of technology and, in a sense, in ‘orthogonal’ directions.  

In the definitions above, notice that while the output oriented measure of scale elasticity in (10) 

is exactly the same as that defined in Färe, Grosskopf and Lovell (1986) and in Färe and Primont 

(1995), our input oriented measure of scale elasticity in (11) is the reciprocal of their input 

oriented measure of scale elasticity.  The issue of which one to use is a matter of taste or 

convenience.  Here, we chose to use (11) for convenience, to preserve the analogy that exists 

between the output oriented and input oriented distance functions (this approach is also 

coherent with other works, including Førsund and Hjalmarsson (2004), Podinovski et al. (2009), 

etc.).  Indeed, note that because, the output oriented distance function is measuring (maximal 

equi-proportional) increase in outputs feasible at a given level of inputs, it is natural to define the 

output oriented scale elasticity measure as a ratio of equi-proportional percent change in outputs 

given equi-proportional percent increase in all inputs, and this is exactly how measure in (10) is 

stated.  Analogously, because the input oriented distance function is measuring (maximal equi-

proportional) decrease in inputs that makes a given level of outputs feasible, it is natural to 

define the input oriented scale elasticity measure as a ratio of equi-proportional percent change 

in inputs to equi-proportional percent increase in all outputs, and this is exactly how measure in 

(11) is formulated.  Notice, however, that while (10) has conventional interpretation (e.g., values 

bigger than 1 indicate about increasing returns to scale at the point of measurement), the 

measure in (11) has ‘reciprocal’ interpretation.  Indeed, for (11) to indicate increasing returns to 

scale it must yield a value below 1—because increasing returns to scale implies that increase of 

outputs by some (infinitesimal) percentage requires increase of inputs by an even smaller 

percentage. Of course, one could always convert (11) to the same units of measurement as (10) 
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by taking its reciprocal and, perhaps, this was one of the motivations for Färe, Grosskopf and 

Lovell (1986) and Färe and Primont (1995) when they defined their version.   

 
We now turn to the scale measurement based on the DDF.  While there might be different ways 

of defining a scale elasticity measure based on the DDF (e.g., see Fukuyama, 2003), it seems 

natural to define it on analogy with the measures defined in (10) and (11) and we will do so here, 

for a given direction. That is, a measure of scale elasticity based on the DDF, for a given 

direction ),( yx dd , is defined as 

 

1,1
log

log
),|,(











yxd ddyxe , such that    ( , | , ) 0d x yD x y d d   .  (12) 

 
Intuitively, and analogously to measures in (10) and (11), the scale elasticity measure in (12) is 

telling us about equi-proportional percent change in all outputs due to equi-proportional change in all 

inputs.5
 
 An alternative definition may involve also differentiation of the directional vector (e.g., 

see Fukuyama, 2003), yet it seems natural to keep the direction as a conditioning, outside of 

differentiation, as we do in what follows. 6 

 
Now, several natural questions arise: ‘What is a relationship between the scale elasticity measure 

based on the DDF and the scale elasticity measures based on the input and output oriented 

Shephard’s distance functions?” In particular, are these measures equivalent? Always? Under 

what conditions? Since in general, the Shephard’s distance functions and the DDF do not have 

explicit one-to-one equality relationship with each other (except for peculiar cases such as CRS, 

or very special directions as (0, )y  or ( ,0)x ) the answer is not straightforward.  In the next 

section we establish one important result about such relationship.  As many proofs in economics 

and in optimization problems, the derivation in the proof of this result is facilitated with the 

Lagrangian method and the envelope theorem.  
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4.  Primal Equivalences 
 
 
To establish the equivalence of interest, we will focus on the subset of the technology set where 

all distance functions we considered suggest that the input-output allocation is technically 

efficient, i.e., we focus on points belonging to     , where 

 

   {(   )        (   )    (   )    (         )     }  
 

If there is an interest in an input-output allocation where (   )      , then one must choose 

a direction along which the inefficiency is to be measured, then find a suitable projection of this 

input-output allocation onto the frontier for this direction, call it ( ̂  ̂)    , and then measure 

the scale properties at that projection.  Importantly, note that for the technically inefficient 

points (where (   )      ), even if one uses the same (input or output or directional) distance 

function, the values of scale elasticity might differ substantially depending on the direction 

chosen for the efficiency measurement, and can even suggest opposite conclusions.  Therefore, 

in general, for input-output allocations where at least one of the distance functions suggests 

technical inefficiency, one cannot guarantee the equivalence except for some very special cases, 

and so in the derivation of our results we will focus only on (   )    .  Moreover, we will 

focus on the case when all the distance functions are continuously differentiable at points of 

interest and will consider a more general case of technology frontiers with ‘kinks’ later, in 

sections 6 and 7. 

 
Theorem 1.  

Given definitions (1), (3), (4), (6), (10), (11) and (12), standard regularity conditions of 

production theory (i)-(v) and assuming that in a neighborhood of a point of interest (   )      

the functions ),|,( yxd ddyxD ,  ),( xyDi  and ),( yxDo  are continuously differentiable w.r.t. 

each element of ),( yx , we have: 
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),(/1),(),|,( xyeyxeddyxe ioyxd      (13) 

 

if and only if  

 

0),('  yxyDiy       and     0),|,('  yddyxD yxdy    and   0),|,('  xddyxD yxdx . (14) 

 
Proof.  To prove the necessity of (14), assume that (13) is true and then note that the scale 

elasticity in (12), can be rewritten as 

 

yddyxD

xddyxD
ddyxe

yxdy

yxdx

yxd
),|,(

),|,(
),|,(

'

'




      (15) 

 
This result follows from applying the implicit function theorem to (12), and it requires condition 

0),|,('  yddyxD yxdy

 

to be valid.  Similarly, by using the implicit function theorem, we can 

rewrite definitions in (10) and (11), respectively, also in a more compact form: 

 

xyxDyxe oxo ),(),( ' ,     (16) 

and   

yxyDxye iyi ),(),( ' .     (17)7 

 

And so, if (13) is true then it also must be true that 0),('  yxyDiy . This, in turn, implies 

that 0),|,('  xddyxD yxdx  is ruled out because this could happen only when ( , | , )d x ye x y d d

( , ) 1/ ( , ) 0o ie x y e y x   , which is not possible since 
'( , ) ( , )i y ie y x D y x y   .  This 

concludes the proof of necessity of (14) for (13). 

 
To prove the sufficiency part, assume (14) is true and note that, due to (3) and (7), we can rewrite 

the output distance function as following:  
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}0),|/,(:0inf{),(  yxdo ddyxDyxD  .     (18) 

 
The corresponding Lagrangian function for this optimization problem can then be written as  

 

)0),|/,((),|,(  yxd ddyxDyxL  .      (19) 

 

Let ),(* yx   and ),(* yx   be optimal solutions to minimizing (19), then the associated 

f.o.c. is given by 

 

 0))/(1(),|/,(1 2**'

/

*

*

* 



 



 yddyxDL yxdy ,   (20) 

and    

0),|/,( *

*

* 


 yxd ddyxDL 


 ,     (21) 

 

Now, because 
*  is a solution to minimization of (19), its value must be equal to unity due to 

the fact that (   )    , and therefore (20) reduces to 

 

1),|,('*  yddyxD yxdy .       (22)

  

On the other hand, note that the envelope theorem applied to (19), tells us that 

 

),|/,(),|,(),( *'***''

yxdxxox ddyxDyxLyxD   .  (23) 

 

Post-multiplying both sides of (23) by the vector of inputs and by (-1), and using again our 

knowledge that at the optimum we must have 1*  ,  we can rewrite (23) as 

 

xddyxDxyxD yxdxox ),|,(),( '*'   .     (24) 
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Noting that the l.h.s. of (24) is the output oriented scale elasticity, due to (16), and combining 

this result with (22), and with our assumption that 0),|,('  yddyxD yxdy , we obtain 

 

),|,(
),|,(

),|,(
),(

'

'

yxd

yxdy

yxdx

o ddyxe
yddyxD

xddyxD
yxe 






 .   
(25)

 

 
Along the same logic as above, we can also rewrite the input distance function as  

 

}0),|,/(:0inf{),(  yxdi ddyxDxyD  ,     (26) 

 
 
and so the corresponding Lagrangian function for this optimization problem is  

 

)0),|,/((),|,(  yxd ddyxDyxL  ,      (27) 

 

Let ),(* yx   and ),(* yx   be optimal solutions to minimization of (27), then the 

associated f.o.c. is given by 

 

 0))/(1(),|,/(1 2**'

/

*

*

* 



 



 xddyxDL yxdx ,   (28) 

and    

0),|,/( *

*

* 


 yxd ddyxDL 


 ,     (29) 

 

Similarly as above, because 
*  is a solution to minimizing (27), its value must be equal to unity 

due to the fact that (   )    , and therefore (28) reduces to 

 

1),|,('*  xddyxD yxdx .        (31) 

 

On the other hand, note that the envelope theorem applied to (27), tells us that
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),|/,(),|,(),( *'***''

yxdyyiy ddyxDyxLxyD   .  (32) 

 

Now, post-multiplying both sides of (32) by the vector of inputs and by (-1), and using again our 

knowledge that 1*  ,  we can rewrite (32) as 

 

yddyxDxxyD yxdyiy ),|,(),( '*'   .     (33) 

 

Thus, noting that the l.h.s. of (33) is exactly the input oriented scale elasticity, and combining this 

result with (31), and with assumption that 0),|,('  xddyxD yxdx , we obtain 

 
'

' 1

'

( , | , )
( , ) ( , ) ( ( , | , ))

( , | , )

y d x y

i y i d x y

x d x y

D x y d d y
e y x D y x x e x y d d

D x y d d x




    
  . (34) 

 
Q.E.D. 

 

This theorem is a generalization of the result on equivalence of input and output oriented scale 

elasticity measures found in Färe, Grosskopf and Lovell (1986) and Zelenyuk (2011), extending 

the latter to incorporate the scale elasticity measure based on the directional distance function.8 

Also, note that for strictly positive input output allocations, i.e., ( , ) N Mx y 

 , the condition 

(14) is immediately simplified into  

 

0),('  xyDiy       and     0),|,('  yxdy ddyxD    and   0),|,('  yxdx ddyxD .  (35) 

 
Intuitively, as one might expect, the theorem we stated and proved above tells us that, under 

fairly mild conditions, the three scale elasticity formulas we stated above measure the same 

property of technology equivalently.  Intuitively, the necessary and sufficient condition (14) states 

that, at the particular points where scale elasticity is to be measured, the gradient of the input 

distance function and the gradient of the directional distance function, both with respect to 

output vector, shall not be orthogonal to the output vector; while the gradient of the directional 
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distance function with respect to input vector shall not be orthogonal to the input vector. 

Moreover, as stated in (35), in the special case of measuring at strictly positive input-output 

combination, the necessary and sufficient condition reduces to the requirement that at least one 

partial derivative of the input distance function and at least one partial derivative of the 

directional distance function is non-zero. 

 
On one hand, the requirement (14) simply ensures not running into situation of division by zero 

and so by this condition, we ensure that at a given point of measurement, none of the two 

measures of scale elasticity explodes and none degenerates to zero, and then (and only then) they 

give equivalent information about the scale of technology at that particular point.  On the other 

hand, the necessary and sufficient condition (14) also has an economic meaning: it says that an 

increase in all inputs (outputs) by the same proportion should induce some proportional, non-zero 

finite change in all outputs (inputs). 

 
Importantly, note that the theorem above outlines the necessary and sufficient restriction on 

technology that is a local (rather than a global) requirement, i.e., it is about particular input-

output allocations at which elasticity is to be measured. In other words, while at some points the 

equivalence may happen to fail to be true, it still might hold for many other points of interest in 

practice (e.g., at the average, the median, certain quantiles of interest, etc.), and so, in practice, it 

might be enough to verify condition (14) at these points of interest only.  In this respect, our 

theoretical result attains an empirical importance in modelling multi-output-multi-input 

technologies, where it became very popular to estimate various distance functions.  Note that in 

empirical analysis some researchers choose output-oriented Shephard’s distance function, while 

others choose the input-oriented Shephard’s distance function and yet others give preference to 

the directional distance function.  Such choices are often arbitrary and it is not always clear 

whether results based on these alternative characterizations of technology would or should be 

the same or similar (due to some estimation noise), at least qualitatively.  As a matter of fact, for 
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some measurements it is well known that results would not be equivalent in general.  For 

example, technical efficiency measurement would give equivalent results only under the case of a 

constant return to scale technology, which is a trivial case for our context.  An empirical value of 

this paper is that it provides a testable theoretical condition on when such alternative approaches 

to modelling the production process should yield equivalent results for the particular case of 

measuring scale elasticity, and this condition can be tested.   

 
In the next section we discover another important equivalence result—equivalence between the 

DDF-based scale elasticity measure and a profit-based measure of scale elasticity, and so 

establish a duality relationship between these two alternative measures. 

 

5. Dual Equivalences 
 
 
Various duality results for DDF have been established in the literature (e.g., see Luenberger 

(1992), Chambers et al. (1996, 1998), Färe and Primont (2006), Briec and Kerstens (2009)). Some 

duality implications for scale elasticity measurement were established by Färe, Grosskopf and 

Lovell (1986) and reinstated in Färe and Primont (1995), who show duality relationship of (10) 

and reciprocal of (11) to scale elasticity measures based on the revenue and cost functions, 

respectively.  To our knowledge, duality relationship for the scale elasticity based on the profit 

function with that based on the DDF has not been derived yet and this is the goal of this 

section.9 

 
A measure of scale elasticity based on the profit function can be defined analogously to 

definitions in (10), (11) and (12), i.e., as 

 

  
1, 1

log
( , )

log
e p w

 




 





, such that   ( , ) op w    ,  (36) 
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where o   which can be set to zero to satisfy the zero-profit condition.  The intuition of this 

measure is similar to those we have for (10), (11) and (12), but with the dual meaning. 

Specifically, scale elasticity measure in (36) is, intuitively, telling us at which percentage rate 

should all the output prices change (equi-proportionately) given one per cent (equi-

proportionate) change in all the input prices, such that the profit of the profit maximizing agent 

(e.g., firm) stays the same. The scale elasticity measure in (36) is particularly useful when 

researcher is operating with the profit function to characterize and analyse technology under 

assumption of optimal (profit-maximizing) behaviour of the analyzed firm. This framework is 

consistent with economic theory of firms as well as might be the only feasible approach when 

primal data (inputs and outputs) of a DMU of interest is unavailable but researcher has dual 

(prices) data, as required by ),( wp . In the next theorem, we establish relationship between 

),( wpe  and ),|,( yxd ddyxe .  Again, we will focus on the case when all the functions are 

continuously differentiable at the points of interest and will consider a more general case of 

technology frontiers with ‘kinks’ later, in sections 6 and 7. 

 

Theorem 2.  
 
Given definitions (1), (6), (8), (12) and (36), standard regularity conditions of production theory 

(i)-(v) and assuming that in a neighborhood of a point of interest, ),|,( yxd ddyxD  and 

),( wp  are continuously differentiable w.r.t. each of their argument, we have: 

 

),( wpe ),|,( **

yxd ddyxe  ,     (37)

  
if and only if  
 

 
' * * *( , | , ) 0y d x yD x y d d y    and ' ( , ) 0pp p w  ,   (38)  

and where   

)),(),,((),( ** wpywpxyx  }),(:''{maxarg
,

Tyxxwyp
yx

 .  (39) 
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Proof:  To prove necessity of (38), assume (37) is true and this would immediately require that  

0),|,( ***'  xddyxD yxdx .  Moreover, using implicit function theorem, we can rewrite (36) as 

 

' ( , )
( , )

' ( , )

w

p

w p w
e p w

p p w







 


     (40) 

which immediately requires that ' ( , ) 0pp p w  , completing the proof of necessity of (38) for 

(37).   

 
To prove sufficiency of (38) for (37), assume (38) is true and note that, in general, due to (6) and 

(7), we can rewrite the profit function as:  

   

,
( , ) max{ ' ' : ( , | , ) 0}   d x y

x y
p w p y w x D x y d d ,   (41) 

 
The corresponding Lagrangian function for this optimization problem can then be written as  

 

( , , | , , , ) ' ' ( ( , | , ) 0)x y d x yL x y p w d d p y w x D x y d d     .    (42) 

Let 
* ( , )y y p w , 

* ( , )x x p w , and 
* ( , )p w   be solutions to (41), then the system of 

equations defined by the associated first order condition is given by  

 

 *

*

*

* * *( , | , ) 0y y d x yy y

x x

L p D x y d d

 








     ,     (43) 

and 

 *

*

*

* * *( , | , ) 0x x d x yy y

x x

L w D x y d d

 








      ,     (44) 

and    

*

*

*

* *( , | , ) 0d x yy y

x x

L D x y d d

 







         (45) 

 



18 

 

Furthermore, rearranging (43) and (44), we get 

 
* * *( , | , )y d x yp D x y d d 

      

(46)

 and 
* * *( , | , )x d x yw D x y d d   ,      (47)

 
 
which in turn imply that 
 

* * ' * * *' ( , | , )y d x yp y D x y d d y 

     

(48) 

and

 
* * ' *' ( , | , )x d x yw x D x y d d x   .     (49)  

 
Moreover, from the envelope theorem applied to (42), we get

 
 

* * * *( , ) ( , , | , , , )p p x yp w L x y p w d d y    .    (50) 

and 
 

* * * *( , ) ( , , | , , , )w w x yp w L x y p w d d x     .    (51) 

 
which are the Hotelling/Shephard’s lemmas, and they in turn imply that 
 

*' ( , ) 'pp p w p y        and     
*' ( , ) 'ww p w w x   .   (52) 

 

Therefore, assuming ' ( , ) 0pp p w   in (38) implies that 
*' 0p y  , and so we can combine 

equations (48) and (49) to write  

 
*

*

' ( , ) '
( , )

' ( , ) '

w

p

w p w w x
e p w

p p w p y







  


.     (53)

 

 

Now, combining (48) and (49), and assuming that 
' *( , | , ) 0y d x yD x y d d y  , we get 

 
' **

* ' * * *

( , | , )'

' ( , | , )

x d x y

y d x y

D x y d d xw x

p y D x y d d y


 



* *( , | , )d x ye x y d d .  (54) 

 
Finally, combining (53) with (54) we arrive to (37), completing the proof.   

          Q.E.D.  
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Intuitively, Theorem 2 suggests that even if one does not have information on inputs and 

outputs, one can still obtain the same information about the scale economies or diseconomies 

inherited in that technology by using the dual (profit-based) scale elasticity measure defined in 

(36) or its simplified (and equivalent) version given in (40), provided that the necessary and 

sufficient condition (38) is satisfied and that the standard regularity conditions of production 

theory (i)-(v), and differentiability assumptions hold.  On the other hand, even if one does not 

have information on prices or cannot obtain/estimate the profit function (8), but can obtain 

DDF (6), one can still find the optimal level of scale economies or diseconomies suggested by 

the profit function of a profit-maximizing agent—by evaluating the scale elasticity measure based 

on the DDF at the profit-maximizing input-output allocations.  Importantly, note that this result 

does not require assumption that technology set   is convex. 

 
Notably, Theorem 1 and Theorem 2 together imply that the optimal level of scale economies or 

diseconomies for a profit-maximizing agent can also be found without knowledge of the 

directional distance function, just by using scale elasticity measures based on the input oriented 

or the output oriented Shephard’s distance functions, evaluating them at the profit-maximizing 

input-output allocations. 

 
6.  Practical matters 
 
The theoretical developments outlined above require standard differentiability of the considered 

functions.  In practice, when dealing with real data, estimations of technology sets of interest is 

usually done with such methods as the Data Envelopment Analysis (DEA) or the regression-

based methods, including Stochastic Frontier Analysis (SFA).  The regression-based estimators 

usually (if not always) presume standard differentiability for the technology-characterizing 

functions and so an application of results of this paper would be direct there.  On the other 

hand, the DEA-type estimators provide piece-wise-linear approximations of technology sets and 

this creates some difficulties for the measures based on standard derivatives.  The main difficulty 



20 

 

comes from the fact that DEA-estimated technology frontiers may (and usually do) have ‘kinks’ 

and the standard differentiation methods that we involved in previous sections cannot be applied 

at these ‘kinks’.  Note, however, that the results are still applicable everywhere else where the 

usual derivatives of the involved distance functions would exist.  Moreover, the ‘kinks’ can also 

be handled via more general differentiation methods, e.g., by using the lower Dini (or left-hand) 

and the upper Dini (or right hand) derivatives (e.g., see Royden, 1988).   

 
To our knowledge, using Dini-type derivatives has been first suggested and adopted to 

estimation of scale elasticities in the DEA-type framework in the seminal work of Banker and 

Thrall (1992).  Their paradigm  was then further elaborated and refined in Banker et al (1996), 

Førsund (1996), Golany and Yu (1997), Fukuyama (2000, 2003), Førsund and Hjalmarsson 

(2004), Krivonozhko et al. (2004), Hadjicostas and Soteriou (2006, 2010), Førsund et al (2007), 

and Podinovski et al. (2009). 

 
Specifically, Banker and Thrall (1992) introduced the concept of the so-called ‘left-hand scale 

elasticity’ and the ‘right-hand scale elasticity’.  In a nutshell, whether defined for the output or the 

input orientation, the ‘left-hand scale elasticity’ and the ‘right-hand scale elasticity’ measures yield 

different values at the ‘kinks’ and whenever they yield the same value (not at the kinks) they 

coincide with the usual scale elasticity measures of the type we defined in (10) and (11).
2
   To 

briefly outline this approach, let   
   (   )  and    

   (   ) denote the vectors of the left-hand 

and the right-hand partial derivatives of   (   ) w.r.t.  , while   
   (   )  and    

   (   ) 

denote the vectors of the left-hand and the right-hand partial derivatives of   (   ) w.r.t.  . 

Then, the ‘left-hand scale elasticity’ and the ‘right-hand scale elasticity’ at a point (   )    , 

based on the Shephard’s input distance function are, respectively, given by 

 

  
 (   )     

   (   )      (55) 
                                                           
2
 This was envisioned by Banker and Thrall (1992) and formally proven by Hadjicostas and Soteriou 

(2006), in particular, see their theorems 3.3 and 3.4 for more details. 
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and  

   
 (   )     

   (   )    (56) 

while, the ‘left-hand scale elasticity’ and the ‘right-hand scale elasticity’ at a point (   )    , 

based on the Shephard’s input distance function are, respectively, given by 

 

  
 (   )     

   (   )      (57) 
and  

  
 (   )     

   (   ).     (58) 
 

Using the same logic as above, the ‘left-hand scale elasticity’ and the ‘right-hand scale elasticity’ at 

a point (   )    , based on the directional distance function are, respectively, given by 

 

  
 (   |     )   

    
   (   |     )

    
   (   |     )

    (59) 

 

  
 (   |     )   

    
   (   |     )

    
   (   |     )

     (60) 

 

where,   
   (   |     ) and   

   (   |     ) denote the vectors of the left-hand and the 

right-hand partial derivatives of   (   |     ) w.r.t.  , while   
   (   |     ) and 

  
   (   |     ) denote the vectors of the left-hand and the right-hand partial derivatives of 

  (   |     ) w.r.t.  .   

 
Finally, the ‘left-hand scale elasticity’ and the ‘right-hand scale elasticity’ based on the profit 

function are, respectively, given by 

 

  
 (   )   

    
  (   )

    
  (   )

      (61) 

and 

  
 (   )   

    
  (   )

    
  (   )

     (62)
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where   
  (   ) and   

  (   ) denote the vectors of the left-hand and the right-hand partial 

derivatives of  (   ) w.r.t.  , while   
  (   ) and   

  (   ) denote the vectors of the left-

hand and the right-hand partial derivatives of  (   ) w.r.t.  .   

 
The theoretical results and their proofs that we derived in previous sections for the case of 

standard derivatives can now be re-produced here with replacement of the standard derivatives 

with the left-hand and the right-hand derivatives.   

 
Specifically, under the standard regularity conditions of production theory (i)-(v) and assuming 

that in a neighborhood of a point of interest (   )     and where the functions 

  
   (   |     ),   

   (   |     ),   
   (   |     ),   

   (   |     ) ,   
   (   ),  

  
   (   ),   

   (   )  and    
   (   ) exist, we have10 

 

     
 (   |     )    

 (   )      
 (   )   (63) 

 
if and only if  

   
   (   )     and      

   (   |     )     and      
   (   |     )   , (64) 

while 
 

  
   

 (   |     )    
 (   )      

 (   )   (65) 

 
if and only if  

 

   
   (   )     and      

   (   |     )     and      
   (   |     )   . (66) 

 
Moreover, given the standard regularity conditions of production theory (i)-(v) and assuming that  

  
   (   |     ),   

   (   |     ),   
   (   |     ),   

   (   |     ) and 

  
  (   ),   

  (   ),   
  (   ) and   

  (   ) exist, we have 

   
 (   )    

 (     |     )     (67)

  
if and only if  
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   ( 

    |     )        and        
  (   )     (68) 

 
and  

  
 (   )    

 (     |     )     (69)

  
if and only if  

     
   ( 

    |     )        and        
  (   )     (70) 

 
and where   

(     )            {        (   )   ̂   } .  (71) 

 
In the next section we give more details on the DEA formulations to obtain the estimates of 

scale elasticities based on the directional distance function. 

 
 
7. The DEA Formulations11 
 
 

To facilitate our further discussion, recall that given a sample of input-output data, {(     )  

       }, on some   DMUs, the DEA estimator of the true but unobserved technology set,  

allowing for variable returns to scale (VRS) technology, is given by  

 

     ̂    {(   )     ∑     
 
      ∑     

 
    ∑   

 
                     }   (72)

  
 

Intuitively, (72) gives the smallest convex, free disposal hull that fits the data {(     )     

    }. Now, to obtain an estimate of the scale elasticity based on the directional distance 

function via the DEA estimator (72), one can adopt the following procedure: 

 

Step 1. Check if condition (     )     is satisfied for the points of interest w.r.t. the DEA-

estimated technology. To do this, obtain estimates of the involved distance functions at the point 

of interest (     )    and check if these estimates are all indicating full technical efficiency.  

Specifically, the DEA estimate of the reciprocal of the input oriented Shephard’s distance 

function, for a particular DMU  , can be obtained by solving the following linear program (LP), 

hereafter LP1: 
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 ̂          
               (73) 

     ∑    

 

   

  

 

   ∑    

 

   

  

     ∑  

 

   

                       

 

The DEA estimate of the reciprocal of the output oriented Shephard’s distance function, for a 

particular DMU  , can be obtained by solving the following LP (hereafter LP2): 

 

 ̂          
               (74) 

   ∑    

 

   

  

     ∑    

 

   

  

     ∑  

 

   

                      

 

Similarly, the DEA estimate of the directional distance function, for a particular DMU  , can be 

obtained by solving the following LP (hereafter LP3): 

 

 ̂          
               (75) 

        ∑    

 

   

  

        ∑    

 

   

  

     ∑  
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If (73)-(75) yield  ̂    ̂     and  ̂   , (i.e., indicate full efficiency of (     )) then step 2 

is taken.  If at least one of them is violated, then the three elasticity measures are not guaranteed 

to give the same results.  In such a situation, it might be of interest to obtain scale elasticity 

estimates at a projection of the observation of interest (     ) onto some point ( ̂   ̂ ) on the 

DEA frontier where  ̂   ̂     and  ̂    hold.  For example, if  ̂    , while  ̂     

and  ̂   , then a suitable projection is given by ( ̂   ̂ )  (   ̂    ), or if  ̂    , while 

 ̂     and  ̂   , then a suitable projection is ( ̂   ̂ )  (    ̂   ), or if  ̂   ̂     

while  ̂    then a suitable projection is ( ̂   ̂ )  (    ̂        ̂   ).   

 

It is also possible (and often happens in practice) that  ̂   ,   ̂     and  ̂   , i.e., the 

DMU   is in the interior of  ̂    and so is not technically efficient w.r.t. any of the three distance 

functions.  In such cases, there is ambiguity about the choice of direction for a suitable 

projection, in the sense that conclusions about the returns to scale may heavily depend on the 

choice of the direction.  Moreover, note that projection based on only one direction (input or 

output or along the direction (      )) may not be enough to ensure that  ̂   ̂     and 

 ̂    at the projected point.  Indeed, after projecting, say, along (      ) one might also 

need to project radially in the input (or the output) space or vice versa.  Furthermore, note that 

different order of projections may yield quite different conclusions about the returns to scale—

not only quantitatively but also qualitatively different. So, evaluation of scale elasticity for DMUs 

that are inefficient according to all of the distance functions involved is a moot point and, 

perhaps, shall not be pursued.  

 

Step 2. Once it is ensured that for a DMU  , we have  ̂   ̂     and  ̂    at a point of 

interest ( ̂   ̂ ) (which could be an original observation or its projection onto the estimated 

frontier), the Banker-Thrall-type DEA-estimates can be obtained.  Due to the equivalence of the 

scale elasticity measures based on the DDF and those based on the Shephard’s distance 
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functions for a general case established above, one can simply focus on Shephard’s distance 

functions— the left-hand and the right-hand scale elasticities for input-oriented case, which we 

denote as  ̂ 
 ( ̂   ̂ ) and  ̂ 

 ( ̂   ̂ ) and those for the output oriented case, which we denote as 

 ̂ 
 ( ̂   ̂ ) and  ̂ 

 ( ̂   ̂ ).  For these measures to be well-defined at a point of interest 

( ̂    ̂  )   ̂    , additional regularity assumptions on the DEA frontier at these points are 

required.  Specifically, we need: 

 

A1.  ( ̂   ̂ )   ̂     (   ̂     ̂ )   ̂   , for some       (   ). 
 

A2.  ( ̂   ̂ )   ̂      (   ̂     ̂ )   ̂   , for some       (   ). 
 
 

In words, for a point of interest ( ̂   ̂ ), adding A1 to condition  ̂   ̂     and  ̂    

ensures existence of the right-hand input oriented elasticity, while adding A2 to condition 

 ̂   ̂     and  ̂    ensures existence of the left-hand output oriented elasticity.  Note 

that these are local assumptions, in the sense that they need to be ensured only at a point of 

estimation of elasticity (also, see Hadjicostas and Soteriou (2006) for similar conditions and 

discussions).  

 
If A1 holds, then the Banker-Thrall-type DEA-estimates of the left-hand and right-hand input 

oriented scale elasticity can be found, respectively, as 

 

     ̂ 
 ( ̂   ̂ )      

      (76) 
 
and 

 ̂ 
 ( ̂   ̂ )      

       (77) 
 

where   
   is obtained from the following LP (hereafter LP4):  

 

  
              

               (78) 

∑  ̂    
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  ∑      

 

   

 ∑     

 

   

                 

 

∑ ̂    

 

   

    

 

                             
 

while   
  is obtained from the following LP (hereafter LP5): 

 

  
              (79) 

 
subject to the same constraints as in LP4. 
 
 
On the other hand, if A2 holds, then the Banker-Thrall-type DEA-estimates of the left-hand and 

right-hand output oriented scale elasticity can be found, respectively, as 

 

 ̂ 
 ( ̂   ̂ )      

       (80) 
and 

 ̂ 
 ( ̂   ̂ )      

       (81) 
 

where   
  is obtained from the following LP (hereafter LP6):  

 

  
               

               (82) 

∑ ̂    

 

   

      

∑     

 

   

   ∑      

 

   

              

 

∑  ̂    

 

   

    

 

                             
 

while   
  is obtained from the following LP (hereafter LP7):  

 

  
              (83) 

 
subject to the same constraints as LP6. 
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It might be worth pausing and noting here that if A1 does not hold, then   
     and so 

 ̂ 
 ( ̂   ̂ ) would be   or undefined.  Similarly, if A2 does not hold, then   

     and so 

 ̂ 
 ( ̂   ̂ ) would be   or undefined. 

 
Note that, because of (63) and (65), as long as (64) and (66) hold, one would only need to 

compute two of those measures, e.g., the input oriented ‘right-hand scale elasticity’  ̂ 
 ( ̂   ̂ ) 

and the output oriented ‘left-hand scale elasticity’  ̂ 
 ( ̂   ̂ ) or, alternatively,   ̂ 

 ( ̂   ̂ ) and 

 ̂ 
 ( ̂   ̂ ).  For the points when these measures are not equivalent but are finite numbers, it is 

useful to present both estimates, for the reader to see the ambiguity and, perhaps, qualitatively 

different conclusions, which can be hidden if an average is presented. Finally, for the points 

when one is finite and the other is undefined (or  ), it would also be useful to present both 

estimates, for the reader’s convenience.  

 

8. Concluding remarks 
 
In this work we investigated equivalences between various measures of scale elasticity for multi-

output-multi-input technologies.  We focused on the scale elasticity measure based on the 

directional distance function and derived the necessary and sufficient condition for its 

equivalence with scale elasticity measures based on the Shephard’s distance functions.  We also 

established a dual equivalence: a relationship between the scale elasticity measure based on the 

directional distance function and the scale elasticity measure based on the profit function.  We 

proved our results using the Lagrangian function and the envelope theorem.  We also discussed 

the case of measuring scale elasticities in the case of technology frontiers with ‘kinks’ (e.g., piece-

wise linear technologies) and provided details for DEA estimation of the scale elasticities based 

on the directional distance function based on the Banker-Thrall paradigm. 
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Our result, although theoretical, is valuable for empirical researchers as it provides testable 

(necessary and sufficient) conditions that answer when (and only when) the alternative 

definitions of scale elasticity, primal or dual, yield equivalent conclusions about economies or 

diseconomies of scale.    

 
A natural extension to the present work would be a development of the statistical procedures for 

obtaining estimates of standard errors and confidence intervals for the scale elasticity measures, 

as well as for various statistical tests for them.  Such work is a subject in itself and so is left for 

future research. 
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NOTES 

                                                           
1 E.g., see Chung et al. (1997), Chambers et al., (1996, 1998), Färe et al. (2005, 2008), Luenberger 

(1992, 1994, 1995), to mention just a few. 

 
2 It might be worth noting that not all of these conditions are required to be satisfied to establish 

the main results of the paper and we admit these conditions here to be coherent with axiomatic 

framework that is frequently used in economic theory of production.  Specifically, these 

regularity conditions ensure desirable (from economic theory perspectives) properties of the 

distance functions employed in this paper, which were derived in various works we cited and 

relied upon here.  Further generalizations or extensions are possible.  

 
3 See Briec and Kerstens (2009) for thorough theoretical discussions on this issue.  

 
4 See Chambers et al. (1996, 1998) and Färe and Primont (2006) and related results in Luenberger 

(1992, 1994, 1995). 

 
5 Similar definition appeared in the work in progress by Färe and Karagiannis (2011). 

 
6 It is worthwhile to note here that the definitions of scale elasticity of the type given in (10), (11) 

and (12) (as well as the one defined later, in (36)) relate the vector of inputs to the vector of 

outputs implicitly, and so rely on the implicit function theorem and assumptions required by it. 

 

7 To be precise, note that ( , ) 0o MD x 0  and ( , ) ,i M ND x x   0 0 , as well as 

( , )o ND y  0 and  ( , ) 0,i N MD y y  0 0 , but these peculiar cases are ruled out from our 

consideration by the definition of the output and input scale elasticity measures. 

 
8 For related results, also see Hanoch (1975), Panzar and Willig (1977), Färe, Grosskopf and 

Lovell (1986), Banker and Thrall (1992), Golany and Yu (1997), as well as more recent works of 
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Krivonozhko et al. (2004), Podinovski et al. (2009) and most extensively in Hadjicostas and 

Soteriou (2006, 2010). 

 
9 An exception is the working paper of Färe and Karagiannis (2011) who established some 

similar results using alternative strategy of proof. They used duality relationship derived in 

Chambers et al. (1998) and required stricter assumptions (convexity of  ) than we do in our 

work. (Their work got to my attention after similar and more general results of this paper were 

established and shared with them.) 

 
10 A related result (for equivalence of input and output oriented elasticity measures) was formally 

established by Hadjicostas and Soteriou (2006) for general convex technologies and their proof 

can also be adopted to provide a proof for the elasticity measures based on the directional 

distance function. The equivalence of the input and output oriented scale elasticity measures also 

is given (without a proof) in Podinovski et al (2009). 

 
11

 We thank the editor and anonymous referees for inspiring this section.  
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