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Abstract	

Measuring	profit	efficiency	is	a	challenging	task.	This	paper	synthesizes	existing	approaches	to	form	a	

general	 Farrell-type	model	 of	 profit	 efficiency.	Our	 derivations	 help	 us	 unveil	 new	and	 interesting	

relationship	 between	 existing	 profit	 efficiency	 measures	 and	 the	 Farrell-type	 profit	 efficiency	

measures.	In	turn,	this	helps	us	establishing	a	complete	framework	of	studying	efficiency	behavior	of	

firms,	where	 the	profit	 efficiency	measure	 satisfies	 some	desirable	properties	 and	 contains	 Farrell	

output-oriented	 or	 input-oriented	 measures	 of	 technical	 efficiency	 and	 allocative	 efficiency	 as	

multiplicative	elements.	The	new	component,	revenue	efficient	allocative	efficiency,	introduced	in	this	

paper	can	help	firms	to	make	decision	and	has	not	been	studied	in	the	literature	before.	
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1.	 Introduction	 	

In	 measuring	 technical	 efficiency	 of	 production	 two	 types	 of	 scaling	 inputs	 and	 outputs	 are	

frequently	used:	(i)	scaling	each	component	of	a	vector;	and	(ii)	scaling	the	vector	by	itself.	These	two	

approaches	are	often	referred	to	as	the	Russell	measure	and	the	Farrell	measure,	respectively.	In	this	

paper	we	apply	 the	above	 scaling	methods	 to	 the	profit	 function	and	 introduce	 some	Farrell-type	

efficiency	measures	in	this	setting.	

The	Farrell	technical	efficiency	measure	was	proposed	by	Farrell	(1957)	and	then	generalized	and	

popularized	by	Charnes,	Cooper	and	Rhodes	(1978),	Färe	and	Lovell	(1978),	and	Banker,	Charnes	and	

Cooper	(1984),	just	to	mention	a	few.	To	strengthen	the	ability	of	measures	of	technical	efficiency	to	

differentiate	firm	performance,	researchers	impose	conditions	to	the	empirical	model.	For	examples,	

“assurance	region”	(Thompson	et	al.	1986),	“factor	weights”	(Ruggiero	2000),	“performance	standards”	

(Cook	 and	 Zhu	 2006)	 and	 “input	 allocation”	 (Cherchye	 et	 al.	 2013)	 are	 added	 to	 the	 model	 of	

measuring	 technical	 efficiency.	When	both	price	 and	quantity	data	 are	 available,	 investigating	 the	

profit	efficiency	would	be	a	natural	way	to	study	the	performance	of	a	firm,	and	this	is	the	approach	

we	take	in	this	paper.	

Farrell	 (1957)	 also	 introduced	 the	 concepts	 of	 overall	 (cost	 or	 revenue)	 efficiency	 and	 its	

decomposition	 into	 technical	 and	 allocative	 efficiencies.	 These	 efficiency	 measures	 can	 be	

characterized	by	the	scaling	method	(ii)	stated	above.	Here	we	refer	to	them	as	Farrell-type	efficiency	

measures.	The	dominating	popularity	of	Farrell-type	efficiency	measures	 in	practice	 is	 reflected	by	

thousands	 of	 empirical	 works	 in	 the	 past	 several	 decades.	 It	 is	 desirable	 to	 include	 them	 as	

components	when	the	performance	of	a	 firm	is	analyzed.	However,	all	Farrell	output-oriented	and	

input-oriented	measures	have	not	been	related	(at	least	explicitly)	to	any	profit	efficiency	measure	as	

multiplicative	components	and	filling	this	gap	is	one	of	the	main	contributions	of	this	paper.	

It	is	worth	noting	that	measuring	profit	efficiency	is	a	particularly	challenging	task.	For	example,	

the	maximal	profit	level	can	be	zero,	positive,	or	even	undefined.	Meanwhile,	the	actual	profit	level,	

besides	possibility	to	be	positive,	can	also	be	zero	or	even	negative.	This	complicates	the	problem	of	
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defining	a	suitable	measure	of	profit	efficiency	so	that	it	is	well	defined	mathematically	as	well	as	has	

convenient	(e.g.,	percentage)	interpretation.	Various	measures	of	profit	efficiency	were	suggested	to	

overcome	these	difficulties.	 	

Here	 we	 will	 synthesize	 existing	 ideas	 in	 the	 literature	 (some	 of	 which	 were	 proposed	 in	 a	

different	context)	into	a	Farrell-type	framework	of	studying	efficiency	behavior	of	firms.	Importantly,	

we	will	explicitly	relate	to	profit	maximization	principle	and	derive	several	Farrell-type	profit	efficiency	

measures	that	have	useful	interpretations	and	some	advantages	over	existing	measures.	Related	ideas	

of	these	profit-efficiency	measures	go	back	to	the	works	of	Banker	and	Maindiratta	(1988),	Chavas	

and	Cox	(1994),	Färe	and	Primont	(1995),	Chambers	et	al.	(1998),	and	Ray	(2004).	The	general	model	

introduced	 in	 this	 paper	 helps	 us	 unveil	 new	 and	 interesting	 relationship	 between	 existing	 profit	

efficiency	 measures	 and	 the	 Farrell-type	 profit	 efficiency	 measures.	 Further,	 the	 output-oriented	

profit	 efficiency	 measure	 contains	 Farrell	 output-oriented	 measures	 of	 technical	 efficiency	 and	

allocative	efficiency	as	multiplicative	elements.	

We	 illustrate	our	 approach	with	a	help	of	data	on	US	banks	 (from	Ray	 (2004)).	 By	employing	

Data	Envelopment	 Analysis	 (DEA)	,	 a	 new	 component,	 revenue	 efficient	 allocative	 efficiency,	 is	

identified	to	help	the	firm	to	determine	her	production	scale	and	input	mix.	Our	approach	can	also	be	

adapted	to	other	variants,	such	as	the	IDEA	(Cooper,	Park	and	Yu	(2001)	and	Zhu	(2004)),	CAR-DEA	

(Cook	 and	 Zhu	 (2008)),	 DEA	with	 non-homogeneous	 firms	 (Cook	 et	 al.	 (2013)),	 and	 based	 on	DEA	

nonparametric	models	of	optimizing	behavior	(Cherchye	et	al	(2008)),	to	mention	just	a	few.	

In	the	next	section,	we	introduce	a	general	framework	of	profit	efficiency	measure.	Then	section	

3	 discusses	 the	 Farrell	 output-oriented	 profit	 efficiency	 measure	 specifically.	 In	 section	 4,	 some	

interpretations	 of	 this	measure	 are	 provided.	 In	 section	 5,	 we	 show	 that	 the	 relationship	 among	

different	 measures	 in	 Farrell-type	 framework,	 technical	 efficiency,	 revenue	 efficiency	 and	 cost	

efficiency	 are	 just	 some	 special	 case	 of	 profit	 efficiency	 under	 different	 constraints.	 Section	 6	

expresses	multiplicative	decomposition	of	the	profit	efficiency	measure.	Section	7	links	this	Farrell-

type	profit	efficiency	measure	to	some	existing	profit	efficiency	measures.	Section	8	 illustrates	 the	
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Farrell-type	profit	efficiency	measure	and	its	decomposition.	Finally,	we	conclude	our	main	results	in	

section	9.	

	

2.	 A	General	Framework	for	Farrell-type	Measures	of	Profit	Efficiency	

Let	 	 ! ∈ 	ℝ%&	 and	 ' ∈ 	ℝ%( 	 be	input	and	output	vectors.	The	corresponding	prices	are	denoted	

with	row-vectors	 ) ∈ 	ℝ%&	 and	 * ∈ 	ℝ%(,	 respectively.	The	production	technology	 is	given	by	 ℑ =

	{(!, '):	!	234	*567829	'}	 which	we	assume	satisfying	standard	regularity	conditions	(see	Färe	and	

Primont	 (1995),	 Table	 2.1,	 p.	 27).	 Let	 (!;, ';) 	 be	 an	 observed	 input-output	 vector	 and	 let	 the	

observed	total	revenue	(or	sales)	at	output	prices	 *;	 and	observed	total	costs	at	input	prices	 );	 be	

denoted	by	 <; 	= 	 *;';	 and	 =; 	= 	);!;	 respectively.	Further,	let	 >;	 be	the	observed	profit,	i.e.,	

>; 	= 	 *;'; − );!; .	 The	 maximal	 profit	 a	 firm	 can	 attain	 facing	 prices	 *;, ); 	 and	 using	

technology	 ℑ	 is	given	by	 	

> *;, ); = @8*	
A,B

{*;'	–	);!:	 !, ' ∈ 	ℑ}																																								(1)	

In	the	following	discussions,	a	firm	will	be	referred	to	as	profit	efficient	if	an	only	if	it	achieves	maximal	

profit,	i.e.,	when	> *;, ); = >;.	

Before	going	further	with	a	definition	of	profit	efficiency,	it	is	important	to	note	that	there	are	

quite	many	 cases	where	 using	 > *, ) 	 is	 problematic.	 This	 includes	 the	 case	 of	 global	 increasing	

returns	to	scale	(IRS),	where		> *, ) = +�.	Similar	situation	 is	with	the	constant	returns	to	scale	

(CRS),	where	 > *, ) = +�	 or			> *, ) = 0,	depending	on	the	prices	 *, ) 	relative	to	the	shape	

of	 frontier	 of	 technology	 set 	ℑ .	 	 One	 potential	 remedy	 to	 such	 cases	 is	 to	 allow	 for	 additional	

constraints	 because	 in	 practice,	 firms	 indeed	 often	 face	 various	 constraints:	 e.g.,	 fixed	 inputs	 or	

endowments	 at	 a	 given	 period,	 minimal	 employment	 requirement,	 maximal	 amount	 of	 inputs	

available,	budget	 limits,	etc.	 	 We	will	denote	such	constraints	with	a	constraint	set	 G	 and,	so	the	

constrained	 profit	 will	 be	 denoted	 with 	> *, )|G , 	 where	 G	 = 	 {(!, '):	<IJ 	≦ 	*'	 ≦ <LJ, 'IJ 	≦

	'	 ≦ 	 'LJ, =IJ 	≦ 	)!	 ≦ 	=LJ, 347	!IJ 	≦ 	!	 ≦ !LJ} .	 One	 could	 also	 add	 many	 other	 types	 of	
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constraints.	 Such	 constraint	 set	 has	 been	 adopted	 extensively	 in	 the	 measurement	 of	 technical	

efficiency.	 For	 example,	 when	 there	 are	 some	 nondiscretionary	 input	 variables	 (Kopp	 1981,	 and	

Banker	and	Morey	1986),	the	lower	and	upper	bounds	for	some	inputs	are	equal.	If	each	input	 4	 and	

output	 N	 is	 associated	with	a	 “weight”	 	 )O	 or	 *P,	 the	assurance	 region	method	 introduced	by	

Thompson	et	al.	(1986)	imposes	constraints	like	 Q ≦ )R )S ≦ T	 where	 Q	 and	 T	 are	two	positive	

numbers.	In	the	special	case	when	each	lower	bound	is	zero	and	each	upper	bound	is	positive	infinity,	

the	 constraint	 set	becomes	 G	 = ℝ%(%&		 and	 > ), *|G 	 will	 be	 the	usual	 profit	 function.	We	will	

refer	 to	 > ), * 	 and	 > *, )|G 	 as	 unconstrained	 and	 constrained	 maximal	 profit	 function,	

respectively.	 	 An	example	of	such	generalized	profit	function	is	given	by	

> *, )|G = sup
A,B

*' − )! ∶ 	 !, ' ∈ ℑ ∩ G 																																																(2)	

Furthermore,	 let	 [ = !, '; ), * ∈ ℝ%&×ℝ%(×ℝ%&×ℝ%(: !, ' ∈ ℑ, ) ∈ ℝ%%& , * ∈ ℝ%%( .	 A	

general	 measure	 of	 profit	 efficiency	 for	 the	 observed	 quantity	 vector	 (!;, ';)	and	 price	 vector	

();, *;)	 is	a	function	 ^:	[ → 	ℝ% ∪ {+�},	and	subject	to	 G,	defined	as	

^ !;, ';; );, *; 	G = sup
a,b,A,B

{c(de, … , d(; ge, … , g&) 	 ∶		

*P; gP'P;
(

Phe

− )O; dO!O;
&

Ohe

≦ *;' − );!,					

!, ' ∈ 	ℑ	 ∩ G}																																																											(3)	

for	all	 !;, '; ∈ ℑ	 and	 c(. )	 is	bounded	from	above	under	the	constraints,	 	 while	 > *;, ); G =

+∞	 when	there	is	no	upper	bound	for	the	the	value	of	 c(. )	 under	the	restrictions.	Different	forms	

of	 c(de, … , d&; ge, … , g()	 can	be	chosen.	In	this	paper	we	will	focus	on	the	case	where	 	gP = 	g		for	

N	 = 	1, … ,k,	 and	 dO 	= d	 	 for		4	 = 	1, … , l.	 	 Thus,	(3)	becomes	

^ !;, ';; );, *; 	G 	

= sup
a,b,A,B

c d, g : *; g'; − );(d!;) ≦ *;' − );!, !, ' ∈ 	ℑ	 ∩ G	 .																	(4)	

Incidentally,	if	in	addition	we	have	 d = 1 g	 and	 c(. ) = g,	then	(4)	becomes	

^ !;, ';; );, *; 	G 	
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= sup
a,A,B

g: *; g'; − );(!; g) ≦ *;' − );!, !, ' ∈ ℑ ∩ G .	

This	is	the	reciprocal	of	the	overall	graph	efficiency	measure	introduced	by	Färe,	Grosskopf	and	Lovell	

(1985,	p.	119).	On	the	other	hand,	if	we	let	 g = d	 = T			and	 c(. ) = T	 instead,	then	(4)	becomes	

^ !;, ';; );, *; 	G 	

= sup
a,A,B

T: T *;'; − );!; ≦ *;' − );!, !, ' ∈ ℑ ∩ G 	

=
> !;, ';; *, )|G

>; .	

This	is	the	reciprocal	of	the	profit	efficiency	measure	defined	in	Banker	and	Maindiratta	(1988).	 	

The	attention	of	this	paper	is	on		c g, d = g − 	d + 1.	The	measure	of	profit	efficiency	(4)	

becomes	

	 ^ !;, ';; );, *; 	G 	

= @8*
a,b,A,B

g − d + 1: * g'; − ) d!; ≦ *;' − );!, !, ' ∈ ℑ	 ∩ G .																		(5)	

This	is	a	formulation	that	contains	many	ways.	Specifically,	let	 d = 1	and	use	subscript	“o”	to	denote	

the	measure	in	(5),	then	we	have	

^o !;, ';; );, *; 	G = @8*
a,A,B

g: *; g'; − ); !; ≦ *;' − );!, !, ' ∈ ℑ ∩ G .	

We	call	it	the	output-oriented	Farrell	profit	efficiency	measure.	Note	that	 	

^o !;, ';; );, *; 	G 	

= @8*
a,A,B

g: g *;'; − );!; ≦ *;' − );!, !, ' ∈ ℑ ∩ G 	

= @8*
a,A,B

g: g<; − =; ≦ > *;, );|G 	

=
> *;, );|G + =;

<; = 1 +
> *;, );|G − >;

<; .																																																																										(6)	

Since	> *;, );|G − >; ≧ 0,	we	have		^o !;, ';; );, *; 	G ≧ 1,	and	the	measure	tells	us	that	the	

firm	can	raise	profit	level	by	 (^o − 1)×100%	 of	the	observed	total	revenue.	

Similarly,	if	 g = 1	and	use	subscript	“i”	to	denote	the	measure	in	(5),	only	input	side	is	considered	

and	we	call	the	expression	input-oriented	Farrell	profit	efficiency	measure,	then	 	

^R !;, ';; );, *; 	G 	
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= @8*
b,A,B

2 − d: *; '; − ); d!; ≦ *;' − );!, !, ' ∈ ℑ ∩ G 	

= 2 − s4c
b,A,B

d: <; − d=; ≦ > *;, ); G 	

= 2 −
<; − >(*;, );|G)

=; 	

= 1 +
>(*;, );|G) − >;

=; .																																																																																															(7)	

Again,		^R !;, ';; );, *; 	G ≧ 1.	This	measure	has	a	meaning	of	raising	the	profit	level	by	 ^R	– 1 ×

100%	 of	the	observed	total	costs.	 	

Incorporating	both	output	and	input	sides	simultaneously	is	possible.	One	example	is	to	let		d =

2 − g	 in	(5).	We	call	this	the	jointly	oriented	Farrell	profit	efficiency	measure	and	use	a	subscript	“io”	

to	denote	it.	Then	

^Ro !;, ';; );, *; 	G 	

= @8*
a,A,B

g − 2 − g + 1: *; g'; − ); 2 − g !; ≦ *;' − );!, !, ' ∈ ℑ ∩ G .	

= @8*
a,A,B

2g − 1: g <; + =o − 2=; ≦ > *;, ); G 	

= @8*
a,A,B

2g − 1: g ≦
> *;, );|G + 2=o

<; + =o =
> *;, );|G − >;

<; + =o + 1 	

= 1 +
> *;, );|G − >;

<; + =o /2 .																																																																																																			(8)	

If	 <; + =o /2	 	 is	treated	as	an	estimate	of	the	firm	size,	then	the	profit	efficiency	measure	 		^Ro	

can	be	interpreted	as	the	firm	can	increase	profit	level	by	 ^Rw	– 1 ×100%		 of	the	firm	size.	 	

In	 summary,	we	have	 introduced	a	Farrell	measure	of	 profit	 efficiency	 (5)	 that	 includes	 radial	

changes	in	outputs	in	(6)	or	inputs	in	(7)	as	special	cases.	Further,	it	also	allows	for	simultaneous	radial	

changes	of	inputs	and	outputs	in	(8).	Each	of	these	three	measures	in	(6),	(7),	and	(8)	are	greater	than	

or	equal	to	one.	If	total	revenue,	total	costs	and	the	average	of	revenue	and	costs	are	regarded	as	

three	 different	 indicators	 of	 firm	 size,	 then 		^R, ^w, 347	^Rw 	 all	 have	 the	 interpretation	 that	 the	

potential	increase	in	profit	level	as	a	percentage	of	firm	size.	
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Clearly,	it	is	beyond	the	space	permitted	by	any	journal	to	consider	all	these	(and	other)	cases	in	

reasonable	details	in	one	paper	and	so	we	will	focus	only	on	one	of	them—the	output-oriented	Farrell	

Profit	Efficiency	measure.	We	develop	a	 framework	of	profit	efficiency	measure	 that	encompasses	

existing	Farrell	output-oriented	efficiency	measures	as	special	cases	of	the	model	and	as	multiplicative	

components	of	the	measure.	All	discussions	of	the	output-oriented	Farrell	profit	efficiency	measure	

apply,	 with	 some	 modifications,	 to	 the	 other	 two	 measures:	 the	 input-oriented	 Farrell	 efficiency	

measure	and	the	jointly	oriented	Farrell	efficiency	measure.	

	

3.	 The	Farrell	Output-oriented	Measure	of	Profit	Efficiency	and	its	Properties	

Formally,	we	define	the	Farrell	output-oriented	measure	of	profit	efficiency,	 ^o:	 [ → ℝ% 	∪ {+

�},	as	

^o !;, ';; );, *; 	G 	

= @8*
a,A,B

g > 0: *; g'; − ); !; ≦ *;' − );!, !, ' ∈ ℑ ∩ G 																												(9)	

for	all	 !;, '; ∈ ℑ ∩ G	 and	 *'; ≠ 0,	while	 ^o !;, '; *, ) = +∞	 for	 *'; = 0.1	

This	measure	can	be	restated	in	terms	of	the	maxi-max	(or	sup-sup)	principle—as	a	two-stage	

optimization	 strategy,	 first	 optimizing	 for	 profit	 and	 then	 optimizing	 for	 measuring	 the	 distance	

between	the	profit	efficient	allocation	and	the	actual	allocation,	i.e.,	

^o !;, ';; );, *; 	G 	

= sup
a
	 	 sup

A,B
	 	g > 0:		*; g'; − ); !; ≦ *;' − );!, !, ' ∈ 	ℑ ∩ G 	

= sup
a

sup
A,B

*;' − );! + );!;

*;'; : !, ' ∈ 	ℑ ∩ G ≧ g > 0 																															(10)	

for	all	 !;, '; ∈ ℑ ∩ G	 and	 *;'; ≠ 0,	while	 ^o !;, ';; );, *; 	G = +∞	 for	 *;'; = 0.	

Intuitively,	this	measure	expands	observed	outputs	equi-proportionally	or	radially,	in	the	spirit	of	

the	Farrell	measure,	to	raise	the	profit	level	to	the	maximal	possible	profit	level	under	the	reference	

technology.	The	constraints	Z	(e.g.,	on	revenue,	cost,	outputs	and	inputs)	are	included	for	the	sake	of	
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generality,	to	encompass	various	practical	cases	where	a	firm	is	required	to	satisfy	some	conditions.	

In	the	following	discussions,	let	 g∗	 be	a	solution	in	(9).	Note	that	 (!;, g∗';)	 may	be	an	infeasible	

input-output	vector.	 	

A	 geometric	 illustration	of	 the	 Farrell	 profit	 efficiency	measure	 is	 in	order.	 Consider	 Figure	1,	

where	 “abcde”	 denotes	 the	 production	 frontier	 and	 f1	 is	 the	 observed	 input-output	 vector.	 The	

output-oriented	 technical	 efficiency	 is	 measured	 by 		'e’/'e .	 **′ 	 is	 the	 iso-profit	 line.	 We	 can	

hypothetically	expand	the	output	to	raise	profit	until	it	coincides	the	optimal	iso-profit	line	 **’.	 Then	

'e"/'e	 can	be	regarded	as	a	measure	of	profit	efficiency,	while	the	gap	between	technical	efficiency	

and	 the	 profit	 efficiency	 can	 be	 regarded	 as	 the	 (profit-oriented)	 allocative	 efficiency,	 which	 is	

measured	via	 'e"/'e	 in	Figure	1.	

It	is	also	worth	reminding	again	that	without	some	upper	bounds	on	 !, '	 or	 )!, *',	there	will	

be	 no	 maximum	 profit	 level	 if	 technology	 exhibits	 IRS	 and	 so,	 as	 can	 be	 shown,	

^o !;, ';; );, *; 	G = +� .	 	 Similar	 situation	 may	 occur	 under	 CRS.	 In	 a	 sense,	 the	 upper	

constraints	we	have	 in	 the	definition	help	 regularizing	 the	profit	 function	and,	 in	 turn,	 the	 related	

Farrell	profit	efficiency	measure	for	such	cases,	besides	helping	to	tailor	these	concepts	closer	to	the	

reality.	

[Insert	Figure	1	here]	 	

Many	 researchers	 have	 stated,	 explicitly	 or	 implicitly,	 some	desirable	 properties	 of	 the	 profit	

efficiency	measure.	 To	adapt	 them	 to	our	 context,	 let	 �	 be	a	profit	 efficiency	measure.	Here	we	

summarize	 	

P.1	 �	 is	a	well-defined	function	for	all	maximal	and	observed	profit	levels,	and	for	all	 !;, '; ∈

ℑ.	

P.2	 There	exists	a	value	c	such	that	a	firm	is	identified	as	profit	efficient	if	and	only	if	 �	 = 	2.	

P.3	 �	 is	homogeneous	of	degree	zero	in	input	and	output	prices.	

P.4	 �	 is	independent	of	units	of	measurement,	i.e.,	commensurable.	
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These	properties	have	been	discussed	by	many	authors	before,	see	Nahm	and	Vu	(2013,	p.	46),	

Asmild	et	al.	(2007,	p.	318),	among	others.	The	intuition	behind	them	and	their	importance	are	obvious.	

It	is	natural	to	accept	them	as	axioms	that	one	would	expect	any	profit	efficiency	measure	to	satisfy.	

Our	measure	does	satisfy	all	the	above	four	properties.	In	particular,	suppose	the	observed	total	

revenue	is	positive	and	the	maximum	profit	level	is	a	finite	number.	I.e.,	 <; > 0	 and		π *;, );|G >

0.	In	(6),	

^o !;, ';; );, *; 	G = 1 +
> *;, );|G − >;

<; .																																(11)	

Since	the	denominator	is	positive	and	the	difference	between	the	maximum	and	observed	profits	is	

finite,	the	Farrell	output-oriented	profit	efficiency	measure	is	well-defined	for	all	observed	input	and	

output	quantities	and	prices	as	long	as	the	total	revenue	is	positive.	Further,	in	view	of	(11),	it	is	clear	

that	 ^o !;, ';; );, *; 	G = 1	 if	 and	 only	 if	 > *;, );|G − >; = 0	 which	means	 profit	 efficient.	

Property	 P.2	 is	 satisfied,	 too.	 Also	 one	 expression	 in	 (6)	 is 			^o !;, ';; );, *; 	G =

> *;, );|G + );!; *;';.	Since	the	profit	function	is	homogeneous	of	degree	one	in	 input	and	

output	 prices,	 we	 have,	 for	 t	 >	 0,	 ^o !;, ';; Å);, Å*; 	G = > Å*;, Å);|G + Å);!; Å*;'; 	 =

> *;, );|G + );!; *;'; 	 = ^o !;, ';; );, *; 	G .	 The	 Farrell	 output-oriented	 profit	 efficiency	

measure	is	homogeneous	of	degree	zero	in	input	and	output	prices.	Finally,	let	 !∗, '∗ 	 be	a	profit-

maximizing	 input-output	 vector.	 Then	 ^o !;, ';; );, *; 	G = *;'∗ − );!∗ + );!; /*;'; .	

Since	after	 changes	of	units	of	measurement,	prices	 and	quantities	will	 adjust	 so	 that	 *P'P 	 and	

)O!O	 remain	unchanged	for	all	 N	 and			4,	the	commensurability	of	 ^o !;, ';; );, *; 	G 	 follows.	

Hence	the	Farrell	output-oriented	profit	efficiency	measure	satisfies	all	the	four	properties	P.1	to	P.4.	

In	addition	to	the	above	properties	for	any	profit	efficiency	measure,	the	output-oriented	profit	

efficiency	measure	is	homogeneous	of	degree	-1	in	the	observed	output	vector	q0.	It	is	also	continuous	

in	input	and	output	prices	as	well	as	in	inputs	and	outputs	(for		*'; > 	0).	

	

4.	 Intuition	of	the	Farrell	Output-oriented	Profit	Efficiency	Measure	
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To	simplify	further	discussions	and	notations,	we	assume	that	the	maximum	profit	level	exists	at	

the	input	and	output	prices	under	consideration	and		*;'; > 	0.	Many	interpretations	of	the	Farrell	

output-oriented	profit	efficiency	measure	can	be	found	by	rearranging	its	formula.	

Firstly,	from	(6),	 ^o(!;, ';; *;, );|G) 	= 	 (>(*;, );|G) 	+ 	=o)	/<o	.	It	follows	that	

^o !o, 'o; );, *;|G =
=o

<o +
>(*;, );|G)

<o .																																					(12)	

The	interpretation	of	(12)	is	very	useful	because	 ^o(∙)	 is	expressed	in	terms	of	two	factors:	(i)	realized	

cost-benefit	ratio,	and	(ii)	the	best	possible	profit	margin	for	the	firm.	Both	of	these	factors	are	well	

understood	by	practitioners	in	business	and	investment	community.	Indeed,	the	cost-benefit	ratio	is	

among	 the	most	 important	 key	 performance	 indicators	 (KPI)	 in	 business	 practice,	 as	 is	 the	 profit	

margin	indicator.	

Secondly,	subtracting	and	adding	R0	to	the	numerator	of	(6),	we	get	

^o !o, 'o; );, *;|G =
>(*;, );|G) − >o

<o + 1.																																(13)	

The	Farrell	output-oriented	profit	efficiency	measure	 ^o(∙)	 in	the	form	of	(13)	tells	about	unrealized	

or	lost	profit	in	percentage	to	actual	total	revenue	or	sales	and	so	can	be	understood	by	practitioners	

as	the	‘lost	profit	margin’	(additively	normalized	by	1).	

Thirdly,	let	 <∗	 and	 =∗	 be	the	profit-maximizing	total	revenue	and	total	costs	respectively	and	

noting	that		> *;, );|G = <∗ − =∗,	one	can	rewrite	(6)	as	follows:	

^o !o, 'o; );, *;|G =
<∗

<; + 	
=; − =∗

<; 																																																									(14)	

This	interpretation	is	very	useful	because	it	shows	decomposition	into	(i)	ratio	of	best	possible	revenue	

to	actual	total	revenue	(sales)	and	(ii)	excessive	cost	(beyond	the	possible	minimum)	relative	to	the	

actual	sales.	 	 Note	that	 <∗/<;	 might	be	larger,	equal	or	small	than	unity,	which	can	be	interpreted	

as	 undersell,	 efficient	 sale	 and	 oversell,	 all	 relative	 to	 the	 profit	 maximizing	 efficiency	 criterion.	

Similarly,	 	 (=; − =∗)/<;	 might	be	 larger,	 equal	 or	 small	 than	unity,	which	 can	be	 interpreted	as	

overspend,	efficient	cost	and	underspend,	all	with	respect	to	the	profit	maximizing	efficiency	criterion.	 	 	
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5.	 Some	Important	Special	Cases	

Many	special	cases	can	be	derived	from	the	proposed	Farrell	output-oriented	profit	efficiency	

measure	in	(9)	by	setting	various	restrictions	to	cater	to	particular	situations	a	firm	may	be	facing	in	

practice.	We	will	present	just	a	few	here,	which	are	perhaps	the	most	interesting	to	general	audience.	

When	the	maximum	profit	level	is	zero	(which	can	happen	in	long-run	competitive	equilibrium),	

the	profit	efficiency	measure	will	coincide	with	the	very	intuitive	and	frequently	used	in	practice	cost-

benefit	ratio	(reciprocal	to	the	‘return	to	dollar’	efficiency	measure),	i.e.,	 ^; = =o <o.	

When	we	impose	restrictions	on	quantities	and	prices,	we	find	that	the	Farrell	profit	efficiency	

measure	 is	 closely	 related	 to	other	 Farrell	measures.	 First,	when	 !IJ = 	 !LJ = !;,	 i.e.,	 the	 firm	 is	

required	(e.g.,	in	the	short-run)	to	utilize	the	already	available	resources	and	there	are	no	bounds	on	

*' 	 and 		' .	 Let	 G ! = !; = !, ' : !, ' ∈ G, ! = !; .	 Then	 the	 profit	 efficiency	 measure	

coincides	with	the	standard	revenue	efficiency	measure,	i.e.,	from	(10),	

^o !o, 'o; );, *;|G ! = !; 	

= sup
a

sup
A,B

*;' − );!; + );!;

*;'; : !, ' ∈ 	ℑ ∩ G ! = !; ≧ g > 0 	

= sup
a

sup
A,B

*;'
*;'; : !, ' ∈ 	ℑ ∩ G ! = !; ≧ g > 0 	

=
< !;, *;

*;'; = <É !;, ';, *; .																																																																																			(15)	

for	all	 !;, '; ∈ 	ℑ	and	 *;'; > 	0,	where	 <(!;, *;)	 is	the	maximum	revenue	at	 (!;, *;).	Second,	

in	addition	to	 !IJ = !LJ = !;	 consider	the	supremum	when	the	output	prices	can	take	any	positive	

values,	and	the	constraints	in	Z,	other	than	the	input	vector,	are	non-binding.	Then,	(10)	becomes	

^o !o, 'o; );, *|G ! = !; , * > 0 	

= sup
a

sup
A,B

*' − );!; + );!;

*;'; : !, ' ∈ 	ℑ ∩ G ! = !; ≧ g > 0 : * > 0 	

= sup
a,B

g: g ≦
*'
*'; , !, ' ∈ ℑ ∩ G ! = !; , * > 0 	
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Let	 the	 solution	 to	 this	 optimization	problem	be	g∗	 and		'∗.	 For	 the	 case	where	 the	output	 set	 is	

convex,	due	to	the	Supporting	Hyperplane	theorem	in	mathematics,	there	exists	some	nonzero	price	

vector	 *Ñ 	≥ 0	 such	that	 	 *Ñ'∗ 	≧ *Ñ'	 for	 !;, ' ∈ ℑ.	As	proved	similarly	in	Debreu	(1951),	 	

sup
a,B

g: g ≦
*'
*'; , !, ' ∈ ℑ ∩ G ! = !; , * > 0 	

= inf
âä;

sup
B∈ℑ

*'
*'; =

*Ñ'∗

*Ñ';	

= @8*
a

g: !;, g'; ∈ ℑ = ã; !;, '; .	

where	 ã; !;, '; 	is	the	Farrell	output-oriented	technical	efficiency	measure.	Thus	we	have	

^o !o, 'o; *Ñ, )|G ! = !; = ã; !;, '; .å 																																						(16)	

Therefore	the	Farrell	output-oriented	profit	efficiency	measure	encompasses	the	Farrell	output-

oriented	measures	of	revenue	efficiency	and	technical	efficiency	as	special	cases.	Recall	that	the	profit	

efficiency	 measure	 can	 be	 expressed	 in	 the	 form	 of	 equation	 (13)	 and	 the	 value	 of	 ã; !;, '; is	

independent	of	output	prices,	all	the	profit	efficiency,	revenue	efficiency	and	technical	efficiency	can	

be	interpreted	as	the	percentage	of	inefficiency	losses	in	profit	to	the	total	revenue.	 	

	

6.	 Decomposition	of	the	Farrell	Profit	Efficiency	Measure	

The	relationships	 in	(15)	and	(16)	provide	a	unified	framework	that	unites	the	profit	efficiency	

with	 revenue	 efficiency	 and	 Farrell	 technical	 efficiency,	 as	 well	 as	 help	 establishing	 various	

decompositions	of	the	former.	In	view	of	the	increasing	restrictions	imposed	on	the	Farrell	output-

oriented	profit	efficiency	measure,	we	have	

^o !o, 'o; );, *;|G ≧ ^o !o, 'o; );, *;|G ! = !; ≧ ^o !o, 'o; );, *Ñ|G ! = !; .											(17)	

Applying	(15)	and	(16)	to	(17),	it	follows	that	

^o !o, 'o; );, *;|G ≧ <É !o, 'o, *; ≧ ão !o, 'o .ç 																														(18)	

We	can	define	the	profit	allocative	efficiency	as	

éÉè !o, 'o; );, *;|G =
^o !o, 'o; );, *;|G

ã; !o, 'o
	≧

<É !o, 'o, *;

ã; !o, 'o
≧ 	1.									(19)	
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Rewrite	(19),	the	output-oriented	profit	efficiency	measure	can	be	decomposed	into	two	

components:	profit	allocative	efficiency	and	Farrell	output-oriented	technical	efficiency:	

^o !o, 'o; );, *;|G = éÉè !o, 'o; );, *;|G ∙ ã; !o, 'o .																							(20)	

Denote	the	output-oriented	allocative	efficiency	by	 éÉo !o, 'o, *; .	 Recall	that	 éÉo !o, 'o, *; =

<É !o, 'o, *; ã; !o, 'o .	 It	 is	clear	from	(19)	that	 éÉè ≧ éÉ;.	 	 Thus	 ^o = éÉè×ã; ≧ éÉ;×ã;.	

Define	 	

éÉêë !o, 'o; );, *;|G =
éÉè !o, 'o; );, *;|G

éÉo !o, 'o, *;
=
^o !o, 'o; );, *;|G
<É !o, 'o, *; .										(21)	

éÉêë 	 shows	 the	 improvement	 of	 profits	 from	 the	maximum	 revenue	 for	 a	 given	 input	 vector	 to	

maximum	 profits	 when	 all	 inputs	 and	 outputs	 are	 variable.	 We	 call	 éÉêë 	 the	 revenue	 efficient	

allocative	efficiency.	So	(20)	can	be	further	written	as	

^o !o, 'o; );, *;|G = éÉêë !o, 'o; );, *;|G ×éÉo !o, 'o, *; ×ã; !o, 'o .	 	 	 (22)	 	

Decomposition	of	profit	efficiency	is	in	general	additive	in	the	literature	of	efficiency	analysis.	A	

decomposition	that	 included	multiplicative	components	was	suggested	by	Aparicio,	Pastor	and	Ray	

(2013).	However,	their	decomposition	of	profit	efficiency	consists	of	both	additive	and	multiplicative	

elements.	None	of	those	decompositions	included	explicitly	Farrell	technical	and	allocative	efficiency	

measures	 as	 components.	 Our	 decomposition	 in	 (22)	 fills	 in	 the	 gap	 of	 the	 literature.	 It	 provides	

decomposition	 of	 the	 profit	 efficiency	 that	 explicitly	 includes	 the	 Farrell	 technical	 and	 allocative	

efficiency	measures	as	multiplicative	components	with	meaningful	interpretation	in	each	item.	

	

7.	 Relationship	to	other	measures	

As	we	mentioned	in	the	introduction,	some	roots	to	the	framework	of	profit	efficiency	discussed	

here,	 can	be	 found	 in	 various	works	 in	different	 contexts.	 The	most	prominent	 and	perhaps	most	

closely	related	formula	is	found	in	Chavax	and	Cox	(1994).	Specifically,	in	their	insightful	paper,	Chavax	

and	Cox	(1994)	used	the	following	formula	

ío !;, '; = 	min
a

g ∶ 		 *;
';

g –	);!; 		≦ 		>(*;, );) 	.																										(23)	
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After	fixing	some	details	(e.g.,	changing	min	to	inf,	re-defining	the	domain	and	range	of	the	function	

to	circumvent	peculiar	cases,	etc.),	one	can	see	that	the	 ío(!;, ';)	 in	(23)	is	the	reciprocal	of	the	

Farrell	output-oriented	measure	of	profit	efficiency	 in	the	unrestricted	case.	 It	 is	also	 important	to	

note	that	the	attention	of	Chavax	and	Cox	(1994)	was	not	the	profit	efficiency	measurements	but	the	

outer	bounds	of	the	input	and	output	distance	functions	and	they	(and	to	the	best	of	our	knowledge	

others),	have	not	explored	 the	possibility	of	using	 this	 formula	as	a	profit	efficiency	measure.	 In	a	

related	work,	Asmild	et	al.	(2007,	Theorem	4,	p.	316)	showed	that	the	same	formula	is	the	limit	of	a	

linked	cone	model.	

Another	very	important	and	perhaps	the	most	general	model	of	profit	efficiency	measure	is	the	

directional	technology	measure	of	profit	efficiency,	introduced	by	Chambers,	Chung	and	Färe	(1998).	

^îï !o, 'o; );, *;; ñA, ñB =
>(*;, );) − >;

*ñB + )ñA
.																																										(24)	

	

The	measure	 ^îï 	 actually	contains	many	existing	measures	as	special	cases.	It	is	closely	related	to	the	

measures	proposed	in	this	paper.	Indeed,	note	that	if	we	let	 ñB = ';	and	 ñA = 0	 in	(24),	then	their	

measure	 is	 equivalent	 to	 the	 unrestricted	 version	 of	 the	 output	 oriented	 Farrell	 profit	 efficiency	

measure.	Specifically,	we	have	

^îï !o, 'o; );, *;; ñA, ñB =
> *;, ); − >;

*;'; =
> *;, ); − >;

<; + 1 − 1 = ^o − 1.	

The	vitality	of	this	result	for	the	Farrell	profit	efficiency	measure	is	that	one	does	not	need	to	derive	a	

new	duality	theory	for	this	measure	as	well	as	other	technical	properties—it	 is	already	provided	in	

Chambers,	Chung	and	Färe	(1998),	 for	the	unrestricted	case	and	can	be	adapted	accordingly	when	

some	restrictions	are	necessary.	

Furthermore,	Ray	(2004,	pp.	233	–	234)	proposed	the	following	profit	efficiency	measure	 	 	

^óòô !o, 'o; );, *; = (> *;, ); 	− 	>;)	/	<;.	

Clearly,	this	measure	is	equivalent	to	the	Farrell	profit	efficiency	in	the	unrestricted	case	(i.e.,	 ^o =

^óòô + 1).	It	is	also	worth	noting	that	both	Chambers,	Chung	and	Färe	(1998)	and	Ray	(2004)	treated	
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the	denominator	in	their	formulation	as	an	arbitrary	normalization.	In	this	paper,	we	explicitly	show	

that	such	normalization	can	be	justified	by	a	certain	orientation	as	in	(6).	The	normalization	can	be	

used	 to	 relate	 the	 profit	 efficiency	 measure	 to	 the	 output-oriented	 Farrell	 measure	 of	 technical	

efficiency	for	decomposing	the	profit	efficiency	measure	into	various	sources,	as	we	do	in	the	previous	

section.	

It	is	also	important	to	note	that	Ray	(2004)	also	mentioned	normalizing	the	difference	by	total	

costs,	which	has	been	applied	by	Färe,	Grosskopf	and	Weber	(2004)	and	Das	and	Ghoshb	(2009).4	 	 It	

can	be	shown	by	similar	reasoning	and	derivations	as	we	have	done	above	that	normalization	by	total	

cost	can	be	justified	if	one	instead	use	the	input	oriented	Farrell	profit	efficiency	measure.	 	

	

8	 Numerical	Illustration	

The	theoretical	developments	we	presented	above	are	general	rather	than	specifically	related	to	

a	particular	estimation	approach.	 	 Here,	in	this	section	we	present	numerical	illustration	using	one	

of	the	most	popular	methods	of	estimating	efficiency	measures	in	practice—the	data	envelopment	

analysis	(DEA)	approach,	while	other	popular	approaches	(e.g.,	stochastic	frontier	analysis	approach)	

can	also	be	used.	

Specifically,	 suppose	 there	are	K	 firms.	 It	 is	observed	 that	 firm	k	 uses	N	 inputs	 to	produce	M	

outputs.	The	observed	 input	and	output	vectors	are	 !ö = !öe,⋯ , !ö& 	 and		'ö = 'öe,⋯ , 'ö( .	

For	illustration,	no	explicit	bounds	are	imposed.	Let	empirical	technology	set	used	in	the	computation	

be	

úùêÑ = !, ' : ûö'öP ≧ 'P,
ü

öhe

ûö!öO ≦ !O,
ü

öhe

ûö = 1
ü

öhe

,	

ûS ≧ 0, † = 1,⋯ , °,N = 1,⋯k, 4 = 1,⋯ , l .	

The	various	efficiency	measures	mentioned	in	previous	sections	are	computed	as	follows:	

Farrell	output-oriented	profit	efficiency	

^o !;, ';; );, *; 	
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= max
a,§,A,B

g: *; g'; − );!; ≦ *;' − );!, !, ' ∈ úùêÑ, ! ≧ 0, ' ≧ 0 	

Revenue	efficiency	

<É !;, ';, *; = max
a,§,B

g: *; g'; ≦ *;', !;, ' ∈ úùêÑ, ' ≧ 0 .	

Farrell	output	oriented	technical	efficiency	

ã; !;, '; = max
a,§

g: !;, g' ∈ úùêÑ .	

Output	oriented	allocative	efficiency	

éÉo(!;, ';, *;) = <É(!;, ';, *;)/	ã; !;, '; 	

Revenue	efficient	allocative	efficiency	

éÉêë !;, ';; *;, ); = ^o !;, ';; *;, ); /<É !;, ';, *; 	

We	compute	the	values	of	these	measures	using	the	data	set	in	Ray	(2004).	There	are	price	and	

quantity	 data	 of	 five	 outputs	 and	 four	 inputs.	 Each	 observation	 is	 a	 bank	 in	 the	 US	 in	 1996.	 For	

illustration,	 although	all	 50	observations	are	used	 for	 computation,	only	 the	 results	of	 the	 first	20	

banks	are	reported	in	the	following	Table.	 	

[Insert	Table	1	here]	

In	Table	1,	the	geometric	mean	of	the	Farrell	output-oriented	profit	efficiency	measure	(^o)	is	2.85.	

This	 means	 that,	 on	 average,	 the	 banks	 could	 increase	 their	 profit	 levels	 by	 about	 185%	 of	 the	

observed	total	revenue.	On	average,	the	value	of	the	output-oriented	technical	efficiency	measure	(ão)	

is	1.02	which	means	many	banks	are	operating	on	or	close	to	the	production	frontier.	Although	the	

banks	 are	 fairly	 allocatively	 inefficient	 (éÉo =	 1.15),	 the	 value	 of	 the	 revenue	 efficient	 allocative	

efficiency	 is	 the	 biggest	 (éÉêë 	 =	 2.42).	 On	 average,	 the	 sources	 of	 profit	 inefficiency	 come	 from	

technical	 inefficiency	 (2.2%),	 output-oriented	 allocative	 inefficiency	 (15.1%),	 and	 revenue	 efficient	

allocative	efficiency	(142.4%).	Thus	most	profit	 inefficiency	comes	from	revenue	efficient	allocative	

inefficiency.	When	firms	in	this	sample	are	revenue	efficient,	they	can	still,	on	average,	raise	the	profit	

level	by	142%	by	changing	input	mix	and	input	quantities.	This	component	of	allocative	inefficiency	

after	the	firm	is	revenue	efficient	has	not	been	discussed	in	the	literature	before.	
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9.	 Conclusion 

By	synthesizing	various	approaches	in	the	literature,	this	paper	presents	a	cohesive	framework	of	

profit	efficiency	measure.	The	Farrell	output-oriented	measure	of	profit	efficiency	derived	from	this	

model	satisfies	some	nice	properties	discussed	by	other	researchers	in	the	literature.	This	measure	

has	 intuitive	 interpretation	 and	 includes	 Farrell	 output-oriented	 measure	 of	 technical	 efficiency,	

revenue	 efficiency	 as	 special	 cases.	 This	 is	 the	 first	 time	 in	 the	 literature	 that	 a	 profit	 efficiency	

measure	is	expressed	as	multiplicative	elements	containing	Farrell	technical	efficiency	and	revenue	

efficiency.	 	
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Notes	
1.	 The	framework	for	the	input	oriented	version	is	analogous	and	so	is	omitted	for	the	sake	of	

space.	

2.	 Färe	and	Primont	(1995,	p.	129)	has	a	similar	expression	that	 1 D¶ x¶, q¶ =

sup
®

θ: p θq¶ − wx; ≦ π p,w , p, w ≥ 0 .	Their	derivation	requires	convex	technology	set	

whereas	the	technology	set	in	our	formulation	is	not	assumed	but	inputs	are	fixed.	When	the	

technology	set	is	not	convex,	it	is	possible	that	 sup
®

θ: p θq¶ − wx; ≦ π p,w , p, w ≥

0 > 1 D¶ x¶, q¶ .	

3.	 The	left-	and	right-hand	side	of	(18)	can	be	rewritten	as	 π p¶, w¶ + w¶x; /p¶q; ≧

1/D¶ x;, q; 	 where	 D¶ x;, q; 	 is	the	output	distance	function.	Färe	and	Primont	(1995,	p.	131)	

have	mentioned	this	inequality	from	duality	relation.	Färe	and	Grosskopf	(2004,	p.	39)	have	stated	

the	same	through	the	relation	between	the	profit	function	and	the	directional	output	distance	

function.	

4.	 Aparicio,	Pastor,	and	Ray	(2013)	also	proposed	another	normalization--using	the	average	total	costs	

of	all	firms.	
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Figure	1.	The	output-oriented	Farrell	profit	efficiency	measure	

	

	

	

	 	

��

��

��

��

��

��

��

�
��

ℑ�

���
������

���

�

��

���



����������
�

	

Table	1:	 	 Farrell	output-oriented	profit	efficiency	and	its	components	

Firm	 Technical	 	
efficiency	

Allocative	
efficiency	

Revenue	
efficient	
allocative	
efficiency	

Profit	 	
efficiency	

f1	 1.00 	 1.09 	 1.48 	 1.61 	
f2	 1.00 	 1.60 	 2.62 	 4.18 	
f3	 1.00 	 1.00 	 2.79 	 2.79 	
f4	 1.12 	 1.12 	 2.49 	 3.14 	
f5	 1.00 	 1.00 	 2.99 	 2.99 	
f6	 1.06 	 1.13 	 2.44 	 2.93 	
f7	 1.00 	 1.17 	 2.24 	 2.62 	
f8	 1.10 	 1.17 	 2.30 	 2.96 	
f9	 1.00 	 1.06 	 2.39 	 2.52 	
f10	 1.00 	 1.46 	 1.91 	 2.80 	
f11	 1.00 	 1.00 	 2.89 	 2.89 	
f12	 1.00 	 1.00 	 3.03 	 3.03 	
f13	 1.00 	 1.00 	 2.86 	 2.86 	
f14	 1.09 	 1.09 	 2.34 	 2.78 	
f15	 1.00 	 1.23 	 2.31 	 2.85 	
f16	 1.06 	 1.43 	 2.14 	 3.23 	
f17	 1.00 	 1.27 	 2.11 	 2.68 	
f18	 1.00 	 1.14 	 2.42 	 2.76 	
f19	 1.00 	 1.28 	 3.00 	 3.83 	
f20	 1.00 	 1.00 	 2.43 	 2.43 	

Geometric	
Mean	

1.02	 1.15	 2.42	 2.85	
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