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crete choice models for time series data where dynamics is modeled via lags of the

discrete dependent variable appearing among regressors. Consistency and asymptotic
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assumption of stationarity with strong mixing condition. Monte Carlo examples are

used to illustrate performance of the proposed estimator relative to the fully paramet-
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1 Introduction

Discrete response (or choice) models have received substantial interest in many areas of

research. Since the influential works of McFadden (1973, 1974) and Manski (1975), these

models have become very popular in economics, especially microeconomics, where they were

elaborated on and generalized in many respects. Some very interesting applications of such

models are also found in macroeconomic studies where one needs to take into account time

series aspects of data. Typical applications of the time series discrete response models

deal with forecasting of economic recessions, the decisions of central banks on interest rate,

movements of the stock market indices, etc. (See Estrella and Mishkin (1995, 1998), Dueker

(1997, 2005), Russell and Engle (1998, 2005), Park and Phillips (2000), Hu and Phillips

(2004), Chauvet and Potter (2005), Kauppi and Saikkonen (2008), de Jong and Woutersen

(2011), Harding and Pagan (2011), Kauppi (2012) and Moysiadis and Fokianos (2014) to

mention just a few.)

The primary goal of this work is to develop a methodology for non-parametric estima-

tion of dynamic time series discrete response models, where the discrete dependent variable

is related to its own lagged values as well as other regressors. The theory we develop in the

next two sections is fairly general and can be used in many areas of research.

The reason for going non-parametric, at least as a complementary approach, is very

simple, yet profound: The parametric maximum likelihood in general, and probit or logit

approaches in particular, yield inconsistent estimates if the parametric assumptions are mis-

specified. Many important works addressed this issue in di↵erent ways, e.g., see Cosslett

(1983, 1987), Manski (1985), Klein and Spady (1989), Horowitz (1992), Matzkin (1992,

1993), Fan, Heckman and Wand (1995), Lewbel (2000), Honore and Lewbel (2002), Frölich

(2006), Dong and Lewbel (2011), Harding and Pagan (2011), to mention just a few.

The main contribution of our work to existing literature is that we generalize the

method of Fan et al. (1995) to the context that embraces time series aspects and in particular

the case with lags of the (discrete) dependent variable appearing among the regressors. Such

a dynamic feature of the model is very important in practice. For example, in weather

forecasting, one would also naturally expect that the lagged dependent variable, describing

whether the previous day was rainy or not, may play a very important role in explaining

the probability that the next day will also be rainy. Another example of the importance

of the dynamic component among the explanatory factors in discrete response models can

be found in the area of forecasting economic recessions (Dueker (1997) and Kauppi and

Saikkonen (2008)).

We derive the asymptotic theory for our estimator under the assumption of stationarity
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with strong mixing condition (in the spirit of Masry (1996)). Our approach is di↵erent from

and compliments to another powerful non-parametric approach based on the Nadaraya-

Watson estimator (e.g., see Harding and Pagan (2011)). Specifically, we use an alternative

estimation paradigm—the one based on the non-parametric quasi-likelihood and the local

likelihood concepts—which have well-known advantages over the least squares approach for

the context of discrete response models. Furthermore, we consider and derive the theory

for the local linear fit, which is known to provide more accurate estimation of a model than

the local constant approach and is more convenient for estimation of derivatives or marginal

e↵ects of the regressors on (the expected value of) the response variable.

It is also worth noting here that a related approach (a special case of ours) was used by

Frölich (2006) who considered the local likelihood method in the case of a binary logit-type

regression model with both continuous and discrete explanatory variables, in a cross section

set up. Specifically, Frölich (2006) provided very useful and convincing Monte Carlo evidence

about superior performance of the local likelihood logit relative to parametric logit for his set

up (cross-section), but without deriving asymptotic properties of the resulting estimators.

Our work encompasses the work of Frölich (2006) as a special case, and, importantly, allows

for time series nature of the data, including the dynamic aspect, and provides key asymptotic

results for this set up that appears to be missing in the literature. A natural extension to

our work would be to also allow for non-stationarity (e.g., as in Park and Phillips (2000)),

which is a subject in itself and so we leave it for future research.

Our paper is structured as following: Section 2 outlines the general methodology,

Section 3 outlines theoretical properties of the proposed estimator, Section 4 discusses the

choice of bandwidths, Section 5 provides some Monte Carlo evidence, while the Appendix

provides further details.

2 General Methodology

Suppose we observe (Xi,Zi, Y i), 1  i  n, where {(Xi,Zi, Y i)}1
i=�1 is a stationary random

process. We assume that the process satisfies a strong mixing condition, as described in

detail in the next section. The response variable Y i is of discrete type. For example, it

may be binary taking the values 0 and 1. The vector of covariates X

i is of d-dimension

and of continuous type, while Z

i is of k-dimension and of discrete type. The components

of the vector Zi are allowed to be lagged values of the response variable. For example,
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Z

i = (Y i�1, . . . , Y i�k). Our main interest is to estimate the mean function

m(x, z) = E(Y i

|X

i = x,Zi = z).

We employ the quasi-likelihood approach of Fan, Heckman and Wand (1995) to es-

timate the mean function. It requires two ingredients. One ingredient is the specification

of a quasi-likelihood Q(·, y), which is understood to take the role of the likelihood of the

mean when Y = y is observed. It is defined by @Q(µ, y)/@µ = (y � µ)/V (µ), where V is

a chosen function for the working conditional variance model �2(x, z) ⌘ var(Y |X = x,Z =

z) = V (m(x, z)), where here and below (X,Z, Y ) denotes the triple that has the same dis-

tribution as (Xi,Zi, Y i). The other ingredient is the specification of a link function g. The

link function should be strictly increasing. In a parametric model where it is assumed that

g(m(x, z)) takes a parametric form, its choice is a part of the parametric assumptions. Thus,

a wrong choice would jeopardize the estimation of m. In nonparametric settings, its choice

is less important. One may take simply the identity function as a link, but one often needs

to use a di↵erent one. One case is where the target function m has a restricted range, such

as the one where Y is binary so that m has the range [0, 1]. A proper use of a link function

guarantees the correct range.

With a link function g and based on the observations {(Xi,Zi, Y i)}n
i=1

, the quasi-

likelihood of the function f defined by f(x, z) = g(m(x, z)) is given by
P

n

i=1

Q(g�1(f(Xi,Zi)), Y i).

Let (x, z) be a fixed point of interest at which we want to estimate the value of the mean

function m or the transformed function f . We apply a local smoothing technique to the ob-

servations (Xi,Zi) near (x, z). In the space of the continuous covariates the weights applied

to the data points change smoothly on the scale of the distance to the point (x, z), while in

the space of discrete covariates they take some discrete values, one for the case Z

i = z and

the others for Zi

6= z. Specifically, we use a product kernel wi

c

(x)⇥ wi

d

(z) for the weights of

(Xi,Zi) around (x, z), where

wi

c

(x) =
dY

j=1

K
hj(xj

, X i

j

), wi

d

(z) =
kY

j=1

�
I(Z

i
j 6=zj)

j

.

Here, I(A) denotes the indicator such that I(A) = 1 if A holds, and zero otherwise,

K
h

(u, v) = h�1K(h�1(u� v)) is a symmetric kernel function K, while bandwidths h
j

and �
j

are real numbers such that 0  �
j

 1. The above kernel scheme for the discrete covariates

Z

i is due to Racine and Li (2004) and is in the spirit of Aitchison and Aitken (1976). Note

that this approach is di↵erent from a special case where � is set to be zero (e.g., see Harding
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and Pagan (2011) for the case of Nadaraya-Watson estimator). Indeed, as pointed out by

Racine and Li (2004), by setting bandwidths of the discrete variables to zero, the “estimator

reverts back to the conventional approach whereby one uses a frequency estimator to deal

with the discrete variables”, i.e., one performs separate estimation for each group identified

by the discrete variable (but with the same bandwidths for the continuous variables). In

fact, an important particular case is when �
j

= 1, implying that the discrete regressor j is

irrelevant (see Hall, Li and Racine (2007)). Thus, allowing for the flexibility that each �
j

can be anywhere between 0 and 1 is important both for generalizing the asymptotic theory

as well as for the applied work. One can also generalize further by allowing more adap-

tive bandwidths, e.g., allowing for bandwidths of some or all continuous variables to vary

across groups defined by some or all discrete variables, as was discussed in Li, Simar and

Zelenyuk (2016). Here we proceed with Aitchison-Aitken/Racine-Li type kernel for the sake

of simplicity.

Furthermore, note that approximating f(Xi,Zi) locally by f(x, z) does not make use of

the link function and the quasi-likelihood since it gives an estimator that results from using

the local least squares criterion. We take the following local approximation which is linear

in the direction of the continuous covariates and constant in the direction of the discrete

covariates.

f(u,v) ' f̃(u,v) ⌘ f(x, z) +
dX

j=1

f
j

(x, z)(u
j

� x
j

), (2.1)

where f
j

(x, z) = @f(x, z)/@x
j

. To estimate f(x, z) and its partial derivatives f
j

(x, z), we

maximize

n�1

nX

i=1

wi

c

(x)wi

d

(z)Q

 
g�1

 
�
0

+
dX

j=1

�
j

(X i

j

� x
j

)

!
, Y i

!
, (2.2)

with respect to �
j

, 0  j  d. The maximizer �̂
0

is the estimator of f(x, z) and �̂
j

are the

estimators of f
j

(x, z), respectively. Then, one can estimate the mean function m(x, z) by

inverting the link function, g�1(�̂
0

).

Our theory given in the next section tells us that the asymptotic properties of the

estimators do not depend largely on the choice of link function g as long as it is su�ciently

smooth and strictly increasing. This is mainly because the estimation is performed locally.

Approximating locally the function g
1

(m(x, z)) or g
2

(m(x, z)) for two di↵erent links g
1

and

g
2

does not make much di↵erence. However, it is suggested to use the canonical link when

it is available since its use guarantees the objective function (2.2) to be convex so that the

optimization procedure is numerically stable.

When the likelihood of the conditional mean function is available, one may use it
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in place of the quasi-likelihood Q in the description of our method. This is particularly

the case when the response Y is binary. In the latter case P (Y = y|X = x,Z = z) =

m(x, z)y[1�m(x, z)]1�y, y = 0, 1. Thus, one may replace Q(µ, y) by

`(µ, y) = y log

✓
µ

1� µ

◆
+ log(1� µ).

The canonical link g in this case is the logit function defined by g(t) = log(t/(1� t)). If one

uses the logit link (e.g., see Frölich (2006)), then one maximizes, instead of (2.2),

n�1

nX

i=1

wi

c

(x)wi

d

(z)`

 
g�1

 
�
0

+
dX

j=1

�
j

(X i

j

� x
j

)

!
, Y i

!
(2.3)

= n�1

nX

i=1

wi

c

(x)wi

d

(z)

"
Y i

 
�
0

+
dX

j=1

�
j

(X i

j

� x
j

)

!
� log

⇣
1 + e�0+

Pd
j=1 �j(X

i
j�xj)

⌘#
.

If one uses the probit link g(t) = ��1(t) where � denotes the cumulative distribution function

of the standard normal distribution, then one maximizes

n�1

nX

i=1

wi

c

(x)wi

d

(z)

"
Y i log

0

@
�
⇣
�
0

+
P

d

j=1

�
j

(X i

j

� x
j

)
⌘

1� �
⇣
�
0

+
P

d

j=1

�
j

(X i

j

� x
j

)
⌘

1

A (2.4)

+ log

 
1� �

 
�
0

+
dX

j=1

�
j

(X i

j

� x
j

)

!!#
.

Also note that when Y is binary, our local likelihood approach is related to the binary choice

model formulated as

Y i = I
�
f(Xi,Zi)� "i � 0

�
. (2.5)

Thus, the model is a non-parametric extension of the parametric model considered by de Jong

and Woutersen (2011) where it is assumed that f is a linear function and "i is independent

of (Xi,Zi). When "i has a distribution function G, then m(x, z) = P ("i  f(x, z)) =

G(f(x, z)). Thus, the non-parametric binary choice model (2.5) leads to our local likelihood

with link g = G�1. For example, the local likelihood (2.3) is obtained when "i has the

standard logistic distribution with distribution function of the form G(u) = eu(1 + eu)�1,

while the one at (2.4) corresponds to the case where "i has the standard normal distribution.

In this respect, the choice of a link function amounts to choosing an error distribution in the
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binary response model.

3 Theoretical Properties

3.1 Assumptions

Here, we collect the assumptions for our theoretical results. Throughout the paper we assume

h
j

⇠ n�1/(d+4), which is known to be the optimal rate for the bandwidths h
j

. For the weights

�
j

we assume �
j

⇠ n�2/(d+4). This assumption is mainly for simplicity in the presentation of

the theory. Basically, it makes the smoothing bias in the space of the continuous covariates

and the one in the space of the discrete covariates be of the same order of magnitudes.

The joint distribution of the response variable Y and the vector of discrete covariates Z

has a discrete measure with a finite support. For the kernel K, we assume that it is bounded,

symmetric, nonnegative, compactly supported, say [�1, 1]. Without a loss of generality we

also assume it integrates to one, i.e.,
´
K(u) du = 1.

We also assume the marginal density function of X is supported on [0, 1]d, and the joint

density p(x, z) of (X,Z) is continuous in x for all z, and is bounded away from zero on its

support, while the conditional variance �2(x, z) = var(Y |X = x,Z = z) is continuous in x.

We also assume the mean function m(x, z) is twice continuously di↵erentiable in x for each

z. These are standard conditions for kernel smoothing that are modified for the inclusion of

the vector of discrete covariates Z.

Now, we state the conditions on the stationary process {(Xi,Zi, Y i)}. The con-

ditional density of (Xi,Zi) given Y i exists and is bounded. The conditional density of

(Xi,Zi,Xi+l,Zi+l) given (Y i, Y i+l) exists and is bounded. For the mixing coe�cients

↵(j) ⌘ sup
A2F0

�1,B2F1
j

��P (A \B)� P (A)P (B)
��,

where F

b

a

denotes the �-field generated by {(Xi,Zi, Y i) : a  i  b}, we assume

↵(j)  (const)(j log j)�(d+2)(2d+5)/4, (3.1)

for all su�ciently large j. The assumptions on the conditional densities are also made in

Masry (1996) where some uniform consistency results are established for local polynomial

regression with strongly mixing processes. Our condition (3.1) on the mixing coe�cients is
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a modification of those assumed in Masry (1996) that fits for our setting.

We also assume typical conditions that are needed for the theory of the quasi-likelihood

approach. Specifically, we assume that the quasi-likelihood Q(µ, y) is three times continu-

ously di↵erentiable with respect to µ for each y in the support of Y , @2Q(g�1(u), y)/@u2 < 0

for all u in the range of the mean regression function and for all y in the support of Y , the

link function g is three times continuously di↵erentiable, V is twice continuously di↵eren-

tiable, V and g0 are bounded away from zero on the range of the mean regression function,

and the second and the third derivatives of g are bounded.

3.2 Main Theoretical Results

In this section we give the asymptotic distribution of f̂(x, z). Let p denote the density

function of (X,Z) and f
jk

(x, z) = @2f(x, z)/(@x
j

@x
k

). In the discussion below, we fix (x, z)

at which we estimate the mean function f . For the vector z, we let z�j

denote the (k � 1)-

vector which is obtained by deleting the jth entry of z.

Define ↵̂
0

= f̂(x, z) � f(x, z) and ↵̂
j

= h
j

(f̂
j

(x, z) � f
j

(x, z)) for 1  j  d. By the

definition of f̃ at (2.1), it follows that the tuple (↵̂
j

: 0  j  d) is the solution of the

equation F̂(↵) = 0, where F̂(↵) = (F̂
0

(↵), F̂
1

(↵), . . . , F̂
d

(↵))>,

F̂
0

(↵) = n�1

nX

i=1

wi

c

wi

d

Y i

�mi(f̃ ,↵)

V (mi(f̃ ,↵))g0(mi(f̃ ,↵))
,

F̂
j

(↵) = n�1

nX

i=1

wi

c

wi

d

✓
X i

j

� x
j

h
j

◆
Y i

�mi(f̃ ,↵)

V (mi(f̃ ,↵))g0(mi(f̃ ,↵))
, 1  j  d,

and g0 is the first derivative of the link function g. Here, we suppress x and z in wi

c

and wi

d

,

and also write for simplicity

mi(✓,↵) = g�1

 
✓(Xi,Zi) + ↵

0

+
dX

j=1

↵
j

✓
X i

j

� x
j

h
j

◆!
,

for a function ✓ defined on Rd

⇥ Rk. As approximations of F̂
j

for 0  j  d, let

F ⇤
0

(↵) = E


wi

c

wi

d

mi(f,0)�mi(f,↵)

V (mi(f,↵))g0(mi(f,↵))

�
,

F ⇤
j

(↵) = E


wi

c

wi

d

✓
X i

j

� x
j

h
j

◆
mi(f,0)�mi(f,↵)

V (mi(f,↵))g0(mi(f,↵))

�
, 1  j  d.
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Note that mi(f,0) = E(Y i

|X

i,Zi). The following lemma demonstrates that F̂
j

(↵) are

uniformly approximated by F ⇤
j

(↵) for ↵ in any compact set.

Lemma 3.1. Assume the conditions stated in subsection 3.1. Then, for any compact set

C ⇢ Rd

sup{|F̂
j

(↵)� F ⇤
j

(↵)| : ↵ 2 C} = O
p

�
n�2/(d+4)(log n)1/2

�
, 0  j  d.

Under the condition that Q(g�1(u), y) is strictly convex as a function of u, the vector

F

⇤(↵) ⌘ (F ⇤
0

(↵), F ⇤
1

(↵), . . . , F ⇤
d

(↵))> is strictly monotone as a function of ↵. Thus, the

equation F

⇤(↵) = 0 has a unique solution ↵ = 0. This and Lemma 3.1 entail ↵̂ ! 0 in

probability. The convergence of ↵̂ and the following lemma justify a stochastic expansion

of ↵̂. To state the lemma, we define some terms that approximate the partial derivatives

F̂
jj

0(↵) ⌘ @F
j

(↵)/@↵
j

0 . Let

F̃
00

(↵) = E


wi

c

wi

d

V (mi(f̃ ,↵))g0(mi(f̃ ,↵))2

�
,

F̃
0j

(↵) = E

✓
X i

j

� x
j

h
j

◆
wi

c

wi

d

V (mi(f̃ ,↵))g0(mi(f̃ ,↵))2

�
, 1  j  d,

F̃
jj

0(↵) = E

"✓
X i

j

� x
j

h
j

◆ 
X i

j

0 � x
j

0

h
j

0

!
wi

c

wi

d

V (mi(f̃ ,↵))g0(mi(f̃ ,↵))2

#
, 1  j, j0  d,

and form a (d+ 1)⇥ (d+ 1) matrix F̃(↵) with these terms.

Lemma 3.2. Assume the conditions stated in subsection 3.1. Then, for any compact set

C ⇢ Rd

sup{|F̂
jj

0(↵)� F̃
jj

0(↵)| : ↵ 2 C} = O
p

�
n�2/(d+4)(log n)1/2

�
, 0  j, j0  d.

We note that F̃
jj

0(↵) are continuous functions of ↵. Thus, it follows that F̃
jj

0(↵̂⇤) =

F̃
jj

0(0) + o
p

(1) for any stochastic ↵̂⇤ such that k↵̂⇤
k  k↵̂k. This with F̂ (↵̂) = 0 and

Lemma 3.2 implies

↵̂ = �F̃(0)�1

F̂(0) + o
p

(n�2/(d+4)). (3.2)

In the above approximation we have also used the fact F̂(0) = O
p

(n�2/(d+4)) which is a direct

consequence of the following lemma.
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Lemma 3.3. Assume the conditions stated in subsection 3.1. Then,

(nh
1

⇥ · · ·⇥ h
d

)1/2


�2(x, z)p(x, z)

V (m(x, z))2g0(m(x, z))2

��1/2

D

�1/2

1

⇥

"
F̂(0)�

p(x, z)

V (m(x, z))g0(m(x, z))2

 
1

2
e

0

dX

j=1

f
jj

(x, z)h2

j

ˆ
u2K(u) du+ e

0

b(x, z)

!#

d

�! N(0, I
d+1

),

where I

d+1

denotes the (d + 1)-dimensional identity matrix, e
0

is the (d + 1)-dimensional

unit vector (1, 0, . . . , 0)>, D
1

is a (d+1)⇥ (d+1) diagonal matrix with the first entry being

(
´
K2(u) du)d and the rest (

´
K2(u) du)d�1

´
u2K2(u) du and

b(x, z) = g0(m(x, z))
kX

j=1

�
j

X

z

0
j 6=zj ,z

0
j2Dj

p(x, z�j

, z0
j

)

p(x, z)
[m(x, z�j

, z0
j

)�m(x, z)].

Also, it follows that F̃(0) = �D

2

· V (m(x, z))�1g0(m(x, z))�2p(x, z) + o(1), where D

2

is a

(d+ 1)⇥ (d+ 1) diagonal matrix with the first entry being 1 and the rest
´
u2K(u) du.

In Lemma 3.3, we see that the asymptotic variance does not involve the discrete weights

�
j

. This is because the contributions to the variance by the terms in F̂
j

(0) with wi

d

< 1 are

negligible in comparison to those by the terms with wi

d

= 1 which corresponds to the case

where Zi = z. This is not the case for the asymptotic bias. Note that the conditional mean of

the ith term in F̂
j

(0) given (Xi,Zi) contains the factormi(f,0)�mi(f̃ ,0) = g�1(f(Xi,Zi))�

g�1(f̃(Xi,Zi)). For Zi = z, it equals g�1(f(Xi, z))�g�1(f(x, z)+
P

d

j=1

f
j

(x, z)(X i

j

�x
j

)), so

that the leading terms come from the approximation of f along the direction of Xi. However,

Z

i with Z

i

6= z also contribute nonnegligible bias. Note that in this case we have

mi(f,0)�mi(f̃ ,0)

' g�1

 
f(x,Zi) +

dX

j=1

f
j

(x,Zi)(X i

j

� x
j

)

!
� g�1

 
f(x, z) +

dX

j=1

f
j

(x, z)(X i

j

� x
j

)

!

' g�1(f(x,Zi))� g�1(f(x, z)),

where the error of the first approximation is of order n�2/(d+4) and the second one of order

n�1/(d+4) for Xi in the bandwidth range, i.e., for Xi with wi

c

> 0. When the discrete kernel

weights wi

d

are applied to the di↵erences, the leading contributions of the di↵erences are
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made by Z

i with
P

k

j=1

I(Zi

j

6= z
j

) = 1 and they are of the magnitude �
j

⇠ n�2/(d+4).

From (3.2) and Lemma 3.3, we have the following theorem.

Theorem 3.1. Assume the conditions stated in subsection 3.1. Then, we have

(nh
1

⇥ · · ·⇥ h
d

)1/2

g0(m(x, z))2�2(x, z)

p(x, z)

��1/2

✓ˆ
K2(u) du

◆�d/2

⇥

"
f̂(x, z)� f(x, z)�

1

2

dX

j=1

f
jj

(x, z)h2

j

ˆ
u2K(u) du� b(x, z)

#
d

�! N(0, 1).

The theorem stated above tells that the asymptotic distribution of the estimator f̂ is

normal and invariant under the misspecification of the conditional variance �2(x, z) in terms

of the mean function m(x, z), that is, the asymptotic distribution does not change even if

�2(x, z)) 6= V (m(x, z)). A close investigation into the term F̃(0) and Lemma 3.3 reveals

that the term V (m(x, z)) cancels out in the asymptotic variance of f̂(x, z). As for the

asymptotic bias of the estimator, the term
P

d

j=1

f
jj

(x, z)h2

j

´
u2K(u) du/2 typically appears

in nonparametric smoothing over a continuous multivariate regressor, while the term b(x, z)

is due to the discrete kernel smoothing.

4 Bandwidths

The asymptotic theory summarized in previous section is derived for any bandwidths sat-

isfying the mentioned convergence rates, namely h
j

/ n�1/(d+4) and �
j

/ n�2/(d+4), and

so, theoretically, they are not influenced when they are scaled by a constant. In practice,

however, the selection of bandwidths is an important matter. Usually, a small variation of

the bandwidths do not lead to dramatic changes in estimation results (as is also confirmed in

simulations below), but big changes in the bandwidths may be influential. Indeed, very large

values for bandwidths can lead to oversmoothing of the data. On the other hand, choos-

ing very small values may result in overfitting. For a discrete variable, taking very large

bandwidth (1 in the limit) would be equivalent to ignoring or omitting the discrete variable.

On the other hand, taking very small bandwidth for a discrete variable would be equivalent

to treating the di↵erent categories as completely di↵erent groups (only related through the

common continuous bandwidths). It is thus possible that the choice of the bandwidths in

practice may influence not only quantitative but also qualitative conclusions implied by the

regression estimates and so this choice must be made carefully.

To implement our estimator one may use various approaches already suggested in the

10



literature. Investigating which one of them is the best is by large a subject in itself that is

beyond the scope of this paper and so we limit our discussion here to a few practical tips

and explanations of what we used in the simulation sections that follow.

The simplest and very fast way, which is quite commonly used in the field of kernel-

based estimation, is to start with some types of rules-of-thumb. For example, at various

instances below, we make use of the so-called Silverman-type rule-of-thumb adapted to the

regression context, which for a continuous variable X is given by

h
0

(X) = 1.06⇥ n�1/(4+d)�̂
X

, (4.1)

where �̂
X

is the empirical standard deviation of observations on variable X. Similarly, for a

discrete variable, we make a use of the following rule-of-thumb bandwidth value

�
0

= n�2/(d+4). (4.2)

Another, more sophisticated and much more computer intensive, approach is to use

a data driven procedure to select the bandwidths optimally with respect to some desirable

criterion. One of the most popular of such approaches, for example, is based on the so-called

leave-one-out cross-validation (CV) criterion, e.g., where one selects such bandwidths h
cv

and �
cv

that jointly maximize the following likelihood-based cross-validation criterion

CV (h,�) =
1

n

nX

i=1

`
⇣
g�1

⇣
f̂
(�i)

h,�

(Xi,Zi)
⌘
, Y i

⌘
, (4.3)

where f̂
(�i)

h,�

(Xi,Zi) is the estimate of the function f at the point (Xi,Zi) computed from

the ‘leave-the ith observation-out’ sample with the value (h,�) for the bandwidths. (Here,

it might be worth noting that if there are no continuous regressors, the CV choice of � will

converge to zero at the rate n�1.)

The statistical properties of CV bandwidth selectors in kernel regression with only

continuous type covariates were first studied by Härdle, Hall and Marron (1988). See also

Hall and Johnstone (1992) for smoothing parameter selection based on various empirical

functionals. It is widely known that a CV bandwidth ĥ converges to its optimum, say h
opt

,

in the sense that (ĥ � h
opt

)/h
opt

= o
p

(1), which means ĥ = O
p

(n�1/(d+4)) in our context.

Racine and Li (2004) extended this result to the case where there is a discrete covariate.

They proved that both the bandwidth selectors ĥ and �̂ based on a CV criterion have

the properties that (ĥ � h
opt

)/h
opt

= o
p

(1) and (�̂ � �
opt

)/�
opt

= o
p

(1), where h
opt

and

�
opt

are the corresponding theoretically optimal bandwidths such that h
opt

⇣ n�1/(d+4) and

11



�
opt

⇣ n�2/(d+4). One may prove the same results in our context so that the bandwidth

selectors ĥ and �̂ that minimize the CV criterion (4.3) have asymptotically the magnitudes

n�1/(d+4) and n�2/(d+4), respectively.

Besides the rule-of-thumb and the CV bandwidths, many other approaches suggested in

the literature can also be used for our estimator (as long as they satisfy the theoretical rates).

For example, additional flexibility can be added by allowing more adaptive bandwidths, e.g.,

some or all bandwidths for continuous variables may be allowed to vary with some or all of

the discrete variables (e.g., see Li, Simar and Zelenyuk (2016)).

It should be also noted that maximization of CV function or its variations often is a

relatively challenging task, especially for high dimensions and large samples and typically

requires numerical optimization. The rule-of-thumb estimates of the bandwidths are often

used for the starting values to initiate the iterations of the numerical optimization. Depend-

ing on a sample, CV (h,�) may have multiple local minima, some of which are ‘spurious’ in

the sense described by Hall and Marron (1991) in the context of density estimation (also see

Park and Marron (1990) for related discussion). Here, this could lead to too small h, leading

to overfitting or an even worse value of h such that the local linear estimator is not defined;

so, imposing lower bounds on h could prevent to such degenerate solutions.

It is also worth noting that selecting the bandwidth via CV is the most computer

intensive part of all the estimation procedure here. For example, an estimation of a model

of the type described in Example 2 and 3 below with a given bandwidth is taking about 0.1

and 1 minutes for a sample of n = 100 and a sample of n = 1000, respectively (on machine

with 1.3 GHz Intel Core i5 with 8GB 1600 MHz DDR3). Meanwhile, for the same models,

obtaining CV bandwidths by minimizing (4.3) took about 30 minutes and about 2 hours

for a sample of n = 100 and a sample of n = 1000 respectively. While such timing seems

not excessive for one or even several estimations, it is prohibitively expensive to do for each

of the many replications in the Monte Carlo (MC) simulations. Therefore, some simplified

strategy for bandwidths estimation in the MC study is needed.

To expedite the computations in the simulations below, we use the following strategy:

for each scenario and di↵erent types of sample sizes, we estimate CV-optimal bandwidths

by minimizing (4.3) (using several starting values including (4.1) and (4.2)) and compared

the performance of the results to those obtained by using the rule-of-thumb bandwidths.

We did this only for the in-sample forecasts. Our experiments generally suggested that the

performance of our nonparametric approach with CV-bandwidths are very similar to those

for rule-of-thumb bandwidths and so we only use the rule-of-thumb bandwidths (because

they are much faster) for the MC evaluation of the out-of-sample forecasts. Even with such

not optimal but appropriate and very fast bandwidths, the results from the nonparametric
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model are much better than from the parametric model when the latter is misspecified and

very similar when the latter happens to be correctly specified.

5 Simulations

In this section we illustrate how the procedure behaves in finite samples in terms of in-sample

and out-of-sample forecasts, considering three simulated situations. In the first scenario, the

parametric probit with linear index (hereafter linear probit) is the true model, i.e., the

idea is to see how our estimator behaves when the “world” is linear. We expect that the

nonparametric estimator will be less accurate than the correctly specified parametric model,

but it is interesting to see whether the loss is substantial.

For the second scenario we have a model where the linear probit is wrong (we add

a quadratic term) and we expect that our estimator brings more accurate information on

the data generating process than the linear probit. In the third example, we intensify the

nonlinearity by considering a periodic index, to see if the nonparametric estimator is able to

capture the essence of the true model and how much it improves upon the linear probit.

In all the examples below we generate the time series according to the following simple

binary dynamic probit model

Y i

⇠ binomial
�
P (Y i = 1|x

i

, y
i�1

)
�
, i = 1, . . . , n, (5.1)

where

P (Y i = 1|x
i

, y
i�1

) = �( (x
i

, y
i�1

)), i = 1, . . . , n, (5.2)

with X i

⇠ U(lb, ub) and we initialize the series with y
0

= 0. The three examples presented

below involve di↵erent specifications of  (x
i

, y
i�1

).

For each replication, we estimated several measures of quality or ‘goodness of fit’ to

get an understanding of relative performance of the parametric linear probit and our non-

parametric approach. Specifically, to measure the quality of the in-sample forecasts, the first

basic measure that we used is the approximate mean squared error between the true and the

estimated probabilities, i.e.,

AMSE
P

=
1

n

nX

i=1

⇣
P (Y i = 1|x

i

, y
i�1

)� bP (Y i = 1|x
i

, y
i�1

)
⌘
2

. (5.3)
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This measure is very useful but limited by the fact that P (Y i = 1|x
i

, y
i�1

) is available

only in simulated data and so many other practical alternatives were proposed and used in

the literature (e.g., see Estrella (1998) and references cited there in) and we use some of

them here.

Specifically, the second measure of fit we use is in the spirit of Efron (1978), defined as

PseudoR2

Efron

= 1� AMSE
o

/AMSE
c

, (5.4)

where AMSE
o

is the approximate mean squared error between the observation Y i and the

estimated probability, i.e.,

AMSE
o

=
1

n

nX

i=1

⇣
Y i

�

bP (Y i = 1|x
i

, y
i�1

)
⌘
2

, (5.5)

while AMSE
c

is the approximate mean squared error of the naive estimator given by un-

conditional mean Ȳ , i.e.,

AMSE
c

=
1

n

nX

i=1

⇣
Y i

� Ȳ
⌘
2

, (5.6)

and so, in a sense, this measure indicates about performance of an estimator relative to the

naive approach of just looking at the unconditional mean of the sample, Ȳ (i.e., proportions

of observations where Y i = 1).

Finally, we also use the Pseudo-R2 proposed (in parametric context) by Estrella (1998),

defined as

PseudoR2

Estrella

= 1�

✓
log(L⇤

u

)

log(L⇤
c

)

◆�2 log(L

⇤
c)

, (5.7)

where log(L⇤
u

) is the value of the maximized (parametric or nonparametric) log-likelihood of

the full (unconstrained) model and log(L⇤
c

) is the value of maximized log-likelihood of the

constrained (or naive) model with only the intercept.

In the tables below we present the averages of these measures over M = 100 replica-

tions. The relatively small number of replications is dictated by the high cost of computations

(due to optimization of CV criterion), but to sense the variability of these measures across

all the replications (b = 1, ...,M), we also present the Monte Carlo standard deviations, i.e.,

std
MC

=

vuut 1

M(M � 1)

MX

b=1

�
gof

b

� gof
�
2

,
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where gof
b

is a goodness of fit measure among those presented above and gof is its average

over M replications.

For the same computational reasons, we mainly focus on MC results for n 2 {25, 50, 100, 200},

where we used both the CV and the rule-of-thumb bandwidths. We also experimented

with larger samples but using only the fast-to-compute bandwidths based on the rule-of-

thumb described above and slight deviations from it (e.g., changing them by about 10%)

and the conclusions were generally the same. We provide such evidence in Appendix B (for

n 2 {400, 800, 1600}). In this Appendix B we also provide typical plots of histograms of

the bandwidths over 100 MC replications, which helps sensing the variability of CV and

rule-of-thumb bandwidths across MC replications.

To investigate how the two models behave for the ‘out-of-sample’ forecasts, we use

AMSE
P

as described above except that the averaging is made not over n observations, but

over the ‘out-of-sample’ observations (which were not used in the model estimation) and

their forecasts. Specifically, here we investigated the results for the forecasts one-period

ahead and two-periods ahead, by starting the forecasting 10 periods before the end of the

series, supposing that the value of X i is known at least two periods in advance (i.e., we can

imagine X is an exogenous variable X⇤,i�` with lag ` � 2), and then rolling forward. This

gave 9 out-of-sample forecasts for each type of (one-period ahead and two-periods ahead)

forecasts of probabilities, which were then compared to the true probabilities. Also note

that for the one-period ahead forecast, the value of y
i

is available for forecasting Y i+1, and

so we can compute P (Y i+1 = 1|x
i+1

, y
i

) directly. Meanwhile, for the two-periods ahead

forecasts, we use the iterated approach of Kauppi and Saikkonen (2008)–we decompose the

forecast according to the conditional probabilities, considering the two possible paths for the

unobserved y
i+1

, which is either 0 or 1. Specifically, we have

P (Y i+2 = 1|x
i+1

, x
i+2

, y
i

) = P (Y i+1 = 1|x
i+1

, y
i

)P (Y i+2 = 1|x
i+2

, y
i+1

= 1)

+ P (Y i+1 = 0|x
i+1

, y
i

)P (Y i+2 = 1|x
i+2

, y
i+1

= 0), (5.8)

where the true values of all the probabilities on the right hand side are given by our probit

model (5.9). We then plug in our estimates to obtain our two-periods ahead forecasts. This

strategy was used in all the examples presented below.

Some remarks on the bandwidths selection are in order. Ideally, one may want to

compute optimal bandwidths in each replication. Due to computational burden, however,

researchers often choose to use a simple way to select bandwidths in each replication of an

MC scenario, e.g., using some rule-of thumb bandwidths or even the same bandwidths over

all replications (within the same scenario and the same sample size), e.g., median bandwidths
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obtained for a pilot of 20 or so replications. We tried all these approaches and noticed that

selecting optimal bandwidths for each replication may actually yield less favorable results

(e.g., higher average AMSE) than using a median of optimal bandwidths for a sub-set of

replications or even relative to the rule-of-thumb bandwidths. This is due to the fact that

CV sometimes gave too small or too large bandwidths, thus overfitting or oversmoothing the

true models relative to the case when the same median bandwidths were used for the same

scenario and sample size.

Finally, note that for the out-of-sample forecasts, the new bandwidths must be esti-

mated with each rolling forward–because (i) new information is added and (ii) the sample

size changes. Doing so with CV is too computationally intensive, and so we had to resort

to a simplified strategy, where we just used the rule-of-thumb bandwidths described in the

previous section, recomputing them for any changes in the sample.

5.1 Simulated Example 1

In this first example we generate the time series according to the simple dynamic linear

index function given by

 (x
i

, y
i�1

) = �
0

+ �
1

x
i

+ �
2

y
i�1

, i = 1, . . . , n, (5.9)

For the results summarized in the tables and figures below, we set �
0

= �0.2, �
1

=

�0.75 , �
2

= 2, lb = �3, ub = 3, while also noting that qualitatively similar conclusions

were also obtained with other values of these parameters. We use figures below to visu-

ally illustrate performance of parametric and nonparametric approaches for a more or less

typical MC replication (with n = 100), while tables below summarize results from 100 MC

replications for di↵erent sample sizes.

Of course, a priori, we expect that, on average, the parametric linear probit approach

must perform better than the nonparametric approach (although in some replications we also

observed the opposite), because the latter does not use the information about the (correct)

linearity of the true model while the former does. In particular, this is reflected in the faster

convergence rates of the parametric approach relative to the nonparametric one (in our

case, it is
p

n for parametric vs. n2/5 for the nonparametric with one continuous variable).

This expectation is confirmed in most of MC replications, summarized in Table 1 and Table

2. Moreover, Figure 2 displays the time series view of the behavior of the 100 in-sample

forecasts of the two approaches, where we plot the realizations of Y in the simulation (0 or

1, depicted with dots) against the respective time-series of probabilities estimated via the
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Figure 1: Example 1, the linear probit case. Left panel, true values and estimates of the index
function as a function of x, and right panel, the true values and estimates of the probabilities
as function of x, evaluated at observed points. We can also see in the right panel the realized
y
i

. The two levels correspond to the realizations of either y
i�1

= 1 (higher level) or y
i�1

= 0
(lower level).

parametric and nonparametric approaches using CV bandwidths (depicted with broken and

solid curves).

Table 1 presents the averages of measures of goodness-of-fit over 100 replications and

one can draw several conclusions from this scenario. First, note that the parametric ap-

proach by using correct parametric information is performing substantially better than the

nonparametric method in terms of the in-sample forecasting of the true probabilities, with

AMSE
P

for both converging to zero as sample size increases. Despite this, however, the

nonparametric method is doing similarly well, and sometimes slightly better than the cor-

rectly specified parametric approach in terms of both of the Pseudo � R2 measures. Also

note that for n = 25 and n = 50, the nonparametric approach with the rule-of-thumb band-

widths performed better than the same approach with CV bandwidths in terms of AMSE
P

,

but the latter outperformed for the larger samples (n = 100 and n = 200), although both

were already fairly close to converging to zero. The nonparametric approach with the rule-

of-thumb bandwidths and with CV bandwidths showed very similar performance in terms of

Pseudo�R2 measures, except for n = 25 where the estimator with CV bandwidths outper-

formed. Also note that in all cases except when n = 25, the median of the CV bandwidths

are very large, suggesting that in most cases the CV approach to bandwidths selection was

able to recognize that the true model is linear by yielding CV bandwidths that is well beyond

the range of simulated x implying the linear model. Overall, the Table 1 confirms that for

the in-sample forecasts, the nonparametric estimator behaves well in the in-sample forecasts
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Figure 2: Example 1: In sample forecasts of the 100 data points of the simulated series, with
the linear probit and nonparametric estimates. The •’s are the realizations Y i (0 or 1).

although it is not using the information about linearity, which happened to be correct in

this example.

91 92 93 94 95 96 97 98 99
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
One period ahead forecast

data
true Pr
NP-probit
P-probit

92 93 94 95 96 97 98 99 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Two periods ahead forecast

data
true Pr
NP-probit
P-probit

Figure 3: Example 1: Out of sample forecasts of the 10 last observations of the series,
starting with the observation 1 to 90. Left panel, one-period ahead forecasts and right panel
two-periods ahead forecasts. The •’s are the realizations Y i (0 or 1).

Let us now look at the performance in terms of out-of-sample forecasts. The results for

one replication with n = 100 are presented in Figure 3, which displays the true probabilities

and their out-of-sample forecasts, for one-period and two-periods ahead. The forecasts seem

particularly good for both the (correctly specified) parametric estimator and the nonpara-

metric estimators. Table 2 presents the averages over 100 replications and confirms that the

parametric approach is performing substantially better than the nonparametric one. Impor-

tantly, AMSE
P

for both approaches tend to zero as the sample size increases. Also note
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that the nonparametric approach gave similar results whether using the rule-of-thumb band-

widths or their smaller (divided by 1.1) versions, which was the case for both the one-period

ahead and the two-periods ahead forecasts.

5.2 Simulated Example 2

Here we simulate the same model as in Example 1, except that we also add a quadratic term

in x. The true index is now given by

 (x
i

, y
i�1

) = �
0

+ �
1

x
i

+ �
2

y
i�1

+ �x2

i

,

where �
0

and �
1

are the same as above and � = �0.5. As expected we will observe a

poor performance of the incorrectly specified linear probit approach and we will see that the

nonparametric approach approximates this model fairly well.
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Figure 4: Example 2, quadratic index case. Left panel, true values and estimates of the index
function as a function of x, and right panel, the true values and estimates of the probabilities,
as function of x, evaluated at observed points. The two levels correspond to the realizations
of either y

i�1

= 1 (higher level) or y
i�1

= 0 (lower level).

The results for the estimation in one typical replication with n = 100 observations are

shown in Figure 4 for the index function (left panel) and the probabilities (right panel) and

in Figure 5 for the 100 in-sample forecasts over the time series. These figures do not require

much comments: the fit of the nonparametric approach here is clearly much better than that

for the parametric linear probit.

Table 3 confirms the conclusions from the figures, presenting a summary of the MC

results for the in-sample forecasts over 100 replications. One can see that the nonparametric
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Figure 5: Example 2, quadratic index case. In sample forecasts of the 100 data points of
the simulated series, with the linear probit and nonparametric estimates. The •’s are the
realizations Y i (0 or 1).

approach outperforms parametric in all the in-sample goodness-of-fit measures–having sub-

stantially lower AMSE
P

and substantially higher PseudoR2

Estrella

and PseudoR2

Efron

, even

for such small samples as n = 25 and n = 50. Also note that in terms of AMSE
P

, the

di↵erence in performance increases with sample size, as for the nonparametric approach it

tends to zero while for the parametric approach it seems to rather quickly converge to a

positive value near 0.05 rather than zero. In a sense, it is an illustration of the so-called

‘root-n inconsistency’. It is also worth noting that the nonparametric approach with rule-of-

thumb bandwidths showed significantly better performance in terms of AMSE
P

for smaller

samples (n = 25 and n = 50) and very similar performance in the larger samples, relative

to the nonparametric approach with CV bandwidths estimated in every replication. On

the other hand, their performance was almost identical in terms of the PseudoR2

Estrella

and

PseudoR2

Efron

for all the sample considered.

We now turn to the out-of-sample forecasts of this example. The superior performance

of the nonparametric approach relative to the parametric linear probit approach is also

confirmed here. The results for one typical replication are shown in Figure 6, which illustrates

how the nonparametric out-of-sample forecasts (with CV bandwidths) follow rather well the

true probabilities, both in the one-period and the two-periods ahead forecasts. Meanwhile,

Table 4 presents the summary over 100 replications confirming the same conclusions as drawn

from the figure. Specifically, one can see that the nonparametric approach, as expected, is

performing substantially better than the parametric approach in terms of both (one-period

and two-periods) out-of-sample forecasts of the true probabilities: An exception is for the

smallest sample case (n = 25) where performance is somewhat similar, while already for
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Figure 6: Example 2, quadratic index case. Out of sample forecasts of the 10 last observations
of the series, starting with the observation 1 to 90. Left panel, one-period ahead forecasts
and right panel two-periods ahead forecasts. The •’s are the realizations Y i (0 or 1).

n = 50 the di↵erence in AMSE
P

became about two-fold, while about 4-times and 6-times

for n = 100 and n = 200. This is because AMSE
P

for the nonparametric approach tends

to zero while for the linear parametric model it appears to be converging to a positive

(misspecification) bias around 0.05. Also note that reducing the bandwidths by about 10%

from the rule-of-thumb values almost did not change the results and certainly did not change

the conclusions.

5.3 Simulated Example 3

In this last example we generate the time series according to the following dynamic index

function

 (x
i

, y
i�1

) = �
0

+ sin(�
1

x
i

+ �
2

y
i�1

), i = 1, . . . , n. (5.10)

Note that the index function is also nonlinear in parameters and so it is not so simple

to approximate it just by adding a quadratic term in the linear index as would have been

possible in the preceding example. Also note that the discrete variable is also inside the

sin-function and so its impact on the dependent variable is more complicated than just a

vertical parallel shift. For the results presented below we had �
0

= �0.2, �
1

= �1.75 ,

�
2

= 2.

Figure 7 illustrates the results for the estimation for one of replications, with n = 100

observations, for the index function (left panel) and the probabilities (right panel), meanwhile

Figure 8 displays results in time series perspective for the 100 in-sample forecasts for this

24



T
ab

le
4:

M
on

te
-C

ar
lo

R
es
u
lt
s
fo
r
th
e
O
u
t-
of
-s
am

p
le

F
or
ec
as
ts
,
E
xa

m
p
le

2.

n
=

2
5

n
=

5
0

n
=

1
0
0

n
=

2
0
0

c
o
l
#

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

P
a
r
a
m
e
t
r
i
c

N
P

0
N
P

0
/
1
.
1

P
a
r
a
m
e
t
r
i
c

N
P

0
N
P

0
/
1
.
1

P
a
r
a
m
e
t
r
i
c

N
P

0
N
P

0
/
1
.
1

P
a
r
a
m
e
t
r
i
c

N
P

0
N
P

0
/
1
.
1

A
M

S
E

P

(
1
-
a
h
e
a
d
)

0
.
0
9
3
5

0
.
0
8
6
8

0
.
0
8
8
0

0
.
0
6
5
9

0
.
0
3
2
1

0
.
0
3
1
0

0
.
0
6
3
9

0
.
0
1
6
5

0
.
0
1
5
6

0
.
0
5
7
1

0
.
0
1
0
6

0
.
0
0
9
9

s
t
d

M
C

0
.
0
0
5
0

0
.
0
0
9
4

0
.
0
0
9
4

0
.
0
0
3
9

0
.
0
0
3
1

0
.
0
0
3
1

0
.
0
0
3
1

0
.
0
0
1
7

0
.
0
0
1
6

0
.
0
0
2
4

0
.
0
0
1
0

0
.
0
0
1
0

A
M

S
E

P

(
2
-
a
h
e
a
d
)

0
.
0
9
5
9

0
.
0
7
6
7

0
.
0
7
7
0

0
.
0
7
0
3

0
.
0
3
2
7

0
.
0
3
2
2

0
.
0
7
3
6

0
.
0
1
7
8

0
.
0
1
6
7

0
.
0
6
5
3

0
.
0
1
2
2

0
.
0
1
1
3

s
t
d

M
C

0
.
0
0
4
9

0
.
0
0
9
3

0
.
0
0
9
3

0
.
0
0
4
5

0
.
0
0
3
5

0
.
0
0
3
5

0
.
0
0
3
7

0
.
0
0
2
2

0
.
0
0
2
0

0
.
0
0
2
6

0
.
0
0
1
2

0
.
0
0
1
1

m
e
d
i
a
n

ˆ

h
-

0
.
9
6
3
4

0
.
8
7
5
9

-
0
.
8
4
4
8

0
.
7
6
8
0

-
0
.
7
3
3
0

0
.
6
6
6
4

-
0
.
6
3
7
5

0
.
5
7
9
6

m
e
d
i
a
n

ˆ

�
-

0
.
2
7
5
9

0
.
2
5
0
9

-
0
.
2
0
9
1

0
.
1
9
0
1

-
0
.
1
5
8
5

0
.
1
4
4
1

-
0
.
1
2
0
1

0
.
1
0
9
2

N
o
t
e
s
:
(i
)
‘P
ar
am

et
ri
c’
st
an

d
s
fo
r
th
e
p
ar
am

et
ri
c
d
yn

am
ic
li
n
ea
r
pr
ob
it
;
(i
i)
N
P
0

st
an

d
s
fo
r
ou

r
n
on

-p
ar
am

et
ri
c
ap

p
ro
ac
h
w
h
er
e

th
e
b
an

d
w
id
th
s
w
er
e
se
le
ct
ed

vi
a
th
e
ru
le
-o
f-
th
u
m
b
(h

0

=
1.
06

⇥
n
�
1
/
(
4
+
d
)

st
d
(X

);
�
0

=
n
�
2
/
(
d
+
4
)

);
(i
ii
)
N
P
0

/1
.1

is
th
e
sa
m
e

m
et
h
od

as
in

N
P
0

b
u
t
w
it
h
th
e
ru
le
-o
f-
th
u
m
b
b
an

d
w
id
th
s
d
iv
id
ed

by
1.
1.

25



Values of X
-3 -2 -1 0 1 2 3

In
de

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

true
NP fit
Param fit

Values of X
-3 -2 -1 0 1 2 3

Pr
ob

ab
ilit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data
true
NP fit
Param fit

Figure 7: Example 3, periodic index case. Left panel, true values and estimates of the index
function as a function of x, and right panel, the true values and estimates of the probabilities,
as function of x, evaluated at observed points. The two levels correspond to the realizations
of either y

i�1

= 1 (higher level) or y
i�1

= 0 (lower level).

same replication. As should be expected, all figures show a rather poor behavior of the

parametric linear probit approach and much better (although not perfect) performance of

the nonparametric approach, which captures the periodic nature of the true model. Indeed,

the parametric linear probit approach here suggests that both the index function and the

probabilities are almost flat with respect to x and forecasts probabilities that are fluctuating

around 0.4, which is very di↵erent from the true model that exhibits a periodic relationship

with respect to x. (In Appendix B we also provide typical plots for n = 1000, to illustrate

the improvement of the fit by the nonparametric approach.)

These conclusions are also confirmed by averages over 100 MC replications. Specif-

ically, Table 5 that summarizes performance in the in-sample forecasts, suggests that the

nonparametric approach generally outperforms the parametric linear probit approach in all

the goodness-of-fit measures. Indeed, note that as was also the case in the previous example,

the di↵erence in performance in terms of AMSE
P

was increasing with an increase of the

sample size–because for the nonparametric approach AMSE
P

tends to zero while for the

parametric approach it appears to be converging to a positive value around 0.06. Also note

that, as in the previous example, the nonparametric approach with the rule-of-thumb band-

widths showed significantly better performance for smaller samples (n = 25 and n = 50)

and similar performance in the larger samples relative to the nonparametric approach where

bandwidths were obtained by optimizing CV in every replication.

Turning to the out-of-sample forecasts, one can also see that the superior performance

of the nonparametric approach relative to the parametric linear probit approach is also
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Figure 8: Example 3, periodic index case: In sample forecasts of the 100 data points of
the simulated series, with the linear probit and nonparametric estimates. The •’s are the
realizations Y i (0 or 1).

quite evident, both for the one-period and the two-periods ahead forecasts. The results are

shown in Figure 9, which illustrates a typical replication, while Table 6 presents the averages

over 100 replications confirming the general conclusions that we drew also in the previous

example. Indeed, one can see that the nonparametric approach, as expected, is performing

substantially better than the parametric approach in terms of out-of-sample forecasting of

the true probabilities, except perhaps for the smallest sample case (n = 25) where their

performance is more similar, but the di↵erence in AMSE
P

reaches about 1.5 times already

for n = 50 and about 2-times and 3-times for n = 100 and n = 200. Again, this is because

AMSE
P

for the nonparametric approach tend to zero while for the linear parametric model

it seems to be converging to a positive value around 0.06. As before, also note that reducing

the bandwidths by about 10% from the rule-of-thumb values almost had no impact on results

and did not change any conclusions.

6 Concluding Remarks

In this work we generalized the non-parametric quasi-likelihood method to the context of

discrete response models for time series data, allowing for lags of the discrete dependent

variable to appear among regressors. We derived the consistency and asymptotic normality

of the estimator for such models. The theory we presented is fairly general and can be used

in many areas of research. The Monte Carlo study confirmed a good performance of our

nonparametric approach in finite samples, substantially improving upon the linear paramet-
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Figure 9: Example 3, periodic index case: Out of sample forecasts of the 10 last observations
of the series, starting with the observation 1 to 90. Left panel, one-period ahead forecasts
and right panel two-periods ahead forecasts. The •’s are the realizations Y i (0 or 1).

ric probit (when the latter is misspecified), and whether using cross-validation bandwidths

or the rule-of-thumb bandwidths.

Possible extensions of our work would be to extend our estimator to the case of ordered

discrete choice models, the case non-stationary variables, the case of panel data, etc., which

we leave for future endeavors.
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Appendix A: Further Theoretical Details

A.1 Proofs of Lemmas 3.1 and 3.2

We prove Lemma 3.1 for F̂
0

only. First, we observe F̂

0

(↵) =
P

4

j=1

S
j

(↵), where

S
1

(↵) = n�1

nX

i=1

wi

c

wi

d

Y i

�mi(f,0)

V (mi(f̃ ,↵))g0(mi(f̃ ,↵))
,

S
2

(↵) = n�1

nX

i=1

wi

c

wi

d

"
mi(f,↵)

V (mi(f,↵))g0(mi(f,↵))
�

mi(f̃ ,↵)

V (mi(f̃ ,↵))g0(mi(f̃ ,↵))

#
,

S
3

(↵) = n�1

nX

i=1

wi

c

wi

d


mi(f,0)

V (mi(f̃ ,↵))g0(mi(f̃ ,↵))
�

mi(f,0)

V (mi(f,↵))g0(mi(f,↵))

�
,

S
4

(↵) = n�1

nX

i=1

wi

c

wi

d


mi(f,0)�mi(f,↵)

V (mi(f,↵))g0(mi(f,↵))

�
.

Let ⌧
n

= n2/(d+4)(log n)�1/2. We prove

sup
↵2C

|S
1

(↵)| = O
p

(⌧�1

n

), (A.1)

sup
↵2C

|S
j

(↵)| = O
p

(n�2/(d+4)), j = 2, 3, (A.2)

sup
↵2C

|S
4

(↵)� ES
4

(↵)| = O
p

(⌧�1

n

). (A.3)

The proofs of these results can be done along the lines of the proofs of Theorems 2 and

5 in Masry (1996) with some modifications (also see Bierens (1983) and Robinson (1983) and

Li and Racine (2007)). Specifically, we take a finite number L
n

of points in C, denoted by D

n

,

in such a way that any point in C has at least one point in D

n

within a distance L
�1/(d+1)

n

.

We can bound |S
1

(↵) � S
1

(↵0)| for all ↵ and ↵0 with k↵ � ↵0
k  L

�1/(d+1)

n

by a constant

which we can make as small as we want by choosing L
n

su�ciently large. This enables us

to take care of only max↵2Dn |Sj

(↵)| or max↵2Dn |Sj

(↵)� ES
j

(↵)| for (A.1)–(A.3).

For S
1

(↵), we decompose the sum into 2q
n

equal-sized blocks V
1

, . . . , V
2qn , so that we

have S
1

(↵) =
P

qn

j=1

V
2j�1

+
P

qn

j=1

V
2j

. Here, we assume n/(2q
n

) is an integer without loss

of generality. The blocks V
2j�1

in the first sum are away from each other at the distance

n/(2q
n

), and so are the blocks in the second sum. By using the strong mixing condition

(3.1) we can then approximate these blocks su�ciently well by independent copies V ⇤
2j�1

of

V
2j�1

and V ⇤
2j

of V
2j

. Using the independence of V ⇤
2j�1

and of V ⇤
2j

for di↵erent values of j we
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can derive an exponential inequality for
P

qn

j=1

V ⇤
2j�1

and for
P

qn

j=1

V ⇤
2j

. For this, we need to

use the strong mixing condition (3.1) again to make the covariances within each block V ⇤
2j�1

or V ⇤
2j

. Let h = n�1/(d+4). By choosing L
n

= (⌧
n

/hd)d+1 and q
n

= n/⌧
n

, we derive

P

✓
sup
↵2C

|S
1

(↵)| > A
1

⌧�1

n

◆
 nC�⌘1(A1) + ⌘

2

(A
1

)
nL

n

⌧
n

✓
n

hd log n

◆
1/4

↵(⌧
n

), (A.4)

where C is an absolute constant that depends on the dimension d only, ⌘
1

is a function such

that ⌘(A
1

) ! 1 as A
1

! 1, and ⌘
2

decreases to zero as A
1

increases. In the proof of (A.4),

we have also used max
1in

wi

d

 1. By the strong mixing condition (3.1), we can show that

the second term at (A.4) tends to zero at a speed of (log n)�C for some constant C > 0 as

n increases. This proves the first assertion (A.1).

To prove (A.2), we claim that

sup
↵2C

|S
j

(↵)� E(S
j

(↵))| = O
p

(⌧�1

n

n�2/(d+4)), j = 2, 3. (A.5)

This establishes (A.2) since sup↵2C |E(S
j

(↵))| = O(n�2/(d+4)) for j = 2, 3. The latter follows

from the observation that those with Z

i = z in the sum S
j

(↵) contribute
P

d

j=1

h2

j

, while

those with Z

i

6= z contribute
P

k

j=1

�
j

. Now, the proof of (A.5) is similar to that of (A.1).

Using the same choices of L
n

and q
n

, we can obtain the same upper bound as in (A.4) for

P
�
sup↵2C |Sj

(↵)� ES
j

(↵)| > A
1

⌧�1

n

n�2/(d+4)

�
. The proofs of (A.3) and Lemma 3.2 are

also similar to that of (A.1).

A.2 Proof of Lemma 3.3

We write F̂
j

(0) = n�1

P
n

i=1

wi

c

wi

d

U i

j

with appropriate definitions of U i

j

. Then,

var(F̂
j

(0)) = n�2

nX

i=1

var(wi

c

wi

d

U i

j

) + n�2

X

i 6=i

0

wi

c

wi

0

c

wi

d

wi

0

d

cov(U i

j

, U i

0

j

).

The second part can be shown to be negligible using the condition (3.1) on the strong mixing

coe�cients. The calculation of the first part can be done by the standard kernel smoothing

theory. We simply note that

var(wi

c

wi

d

U i

j

) = var
�
wi

c

U i

j

I(Zi = z)
�
+ o(n�d/(d+4)).
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Also, we can prove that cov(F̂
j

(0), F̂
l

(0)) = o(n�4/(d+4)) for 1  j 6= l  d. Furthermore, for

the bias expansion, we observe that

E(wi

c

wi

d

U i

j

) = E[wi

c

U i

j

I(Zi = z)] +
kX

l=1

�
l

E[wi

c

U i

j

I(Z
l

6= z
l

,Z�l

= z�l

)]. (A.6)

Note that under the condition that h
j

⇠ �
1/2

j

⇠ n�1/(d+4), both terms in (A.6) have contri-

butions to the bias that are of magnitude n�2/(d+4). Finally, note that the leading terms of

the two parts can be obtained by the standard kernel smoothing theory.
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Appendix B: Further Results from Simulations
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Figure 10: Example 1 (linear index) with n = 100. Histograms for estimates of h in 100 MC
replications using the rule-of thumb bandwidth (left panel) and minimization of CV criterion
(right panel).
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Figure 11: Example 2 (quadratic index) with n = 100. Histograms for estimates of h in
100 MC replications using the rule-of thumb bandwidth (left panel) and minimization of CV
criterion (right panel).
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Figure 12: Example 2 (quadratic index) with n = 1000. Left panel, true values and estimates
of the index function as a function of x, and right panel, the true values and estimates of
the probabilities, as function of x, evaluated at observed points. The two levels correspond to
the realizations of either y

i�1

= 1 (higher level) or y
i�1

= 0 (lower level).

Values of X
-3 -2 -1 0 1 2 3

In
de

x

-1.5

-1

-0.5

0

0.5

1
true
NP fit
Param fit

Values of X
-3 -2 -1 0 1 2 3

Pr
ob

ab
ilit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
data
true
NP fit
Param fit

Figure 13: Example 3 (periodic index) with n = 1000. Left panel, true values and estimates
of the index function as a function of x, and right panel, the true values and estimates of
the probabilities, as function of x, evaluated at observed points. The two levels correspond to
the realizations of either y

i�1

= 1 (higher level) or y
i�1

= 0 (lower level).
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