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Abstract

This study tackles the problem of building nonparametric production technologies that

satisfy homotheticity and (Hicks) neutrality. Since no current method is available, the

paper proposes a method for constructing a homothetic metatechnology and proves that this

metatechnology can be obtained as the union of homothetic group technologies that satisfy

(Hicks) neutrality. It is shown that all these technologies are the minimal technologies that

will satisfy the given set of axioms, therefore providing an axiomatic foundation for the

method. There is a non-negligible computational aspect in the fact that all technologies are

not only LP computable but are in fact computable as a linear function of the size of the

dataset (in fact in the non-convex case enumeration algorithms can be used). An empirical

illustration is provided to show the strength and range of applicability of the method.

Key Words: Data Envelopment Analysis, Free Disposal Hull, Input Homotheticity, Hicks Neutrality, Efficiency

1 Introduction

This paper proposes a method for building a data generated technology that satisfies homo-

theticity and (Hicks) neutrality. According to Blackorby et al. (1976) the notion of neutrality

of technical change dates back at least to Hicks (1932) with his definition of neutral technical

change as technical change that leaves the marginal product of different production factors con-

stant. Although the notion of neutrality of technical change has been around for some time, its

implementation through nonparametric production analysis, such as data envelopment analysis

(DEA) or free disposal hull(FDH), has never been attempted. This notion of neutrality clearly

extends to the metafrontier setting proposed by O’Donnell et al. (2008). In such a setting there

are multiple reference technologies that define different groups of firms or decision making units

(DMU). The distance between group frontiers has been called a technology gap and neutrality

would imply that this technology gap takes a very special form.

∗Centre for Efficiency and Productivity Analysis (CEPA), School of Economics, The University of Queensland,
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In a recent paper Peyrache (2024) builds on previous work of Olesen (2014) to show that

it is possible to build a homothetic reference technology. This method can be applied to the

group technologies, but the union of these group homothetic technologies will not give rise to a

homothetic metatechnology. The reason for this somewhat counter intuitive result is that the

homothetic group technologies do not satisfy neutrality. As it will be shown in this study, it

is possible to build group technologies that satisfy neutrality and homotheticity and give rise

to a metafrontier that is homothetic. A complete axiomatic characterization of this result will

be provided and an empirical application will show how to use the method. I will derive the

method both for the metafrontier defined as a union of sets and for the metafrontier defined as

a pooled technology. The two definitions only differ in the case of convexity and the strategy of

defining the metafrontier as the convexification of the union of the group technologies will be

addressed as well.

The ability to construct group technologies that satisfy homotheticity and neutrality also

solves another open problem that has not been addressed in the literature. This relates to the

ability to test for neutrality in the tradition of Hanoch and Rothschild (1972). Since the neutral

homothetic group technologies will be obtained as an enlargement of the variable returns to

scale (VRS) group technologies, testing for the neutrality assumption will reduce to compare

these two technologies. As pointed out in Peyrache (2024), since the homothetic technologies

can be computed fast (computational time is linear in the number of observations), this is a

non-negligible computational gain compared to using, for example, an extension of the approach

presented in Primont and Primont (1994).

One last point should be made about computational complexity. The method proposed has

roughly the same computational complexity of a DEA or FDH efficiency evaluation program.

Therefore it will be a series of linear programs (LP) for DEA and an enumeration algorithm

for FDH. By reducing the dimensionality of the problem, there is a significant gain in terms

of discrimination power. Peyrache (2024) documented that this can be substantial, with the

homothetic FDH having basically the same discrimination power as a standard DEA (a similar

results is obtained in this paper in the empirical application). This is a significant result since

one can retain discrimination power by using a homothetic FDH instead of a standard DEA,

while at the same time having very significant computational gains over large datasets. This is

even more relevant for the neutral homothetic technology proposed in this paper, since the neu-

trality assumption allows to use observations from the whole dataset to build the reference set,

therefore maintaining a good degree of discrimination under non-convexity. This has important
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consequences in analyzing the impact of returns to scale in the structure of the industry under

evaluation. This can be accomplished by studying the scaling function directly in the graph of

the technology (see Olesen and Ruggiero (2014, 2022) for an example).

2 Preliminary Definitions

Consider a production process that uses P inputs x ∈ RP
+ to produce a single output y ∈ R+.

The production possibilities set for group t = 1, . . . , N is defined as

Tt = {x can produce y in group t}

It should be immediately noted that the N groups can also be interpreted as N time periods,

giving rise to period specific technologies. The input requirement set Lt (y) and the input

isoquant ILt(y) can be defined as:

Lt(y) =
{
x ∈ RP

+ | (x, y) ∈ Tt

}
ILt(y) =

{
x ∈ RP

+ : x ∈ Lt(y), λx /∈ Lt(y), ∀ 0 ≤ λ < 1
}

The technology set can be described functionally via the input distance function:

DI(x, y, t) = sup {θ > 0 : (x/θ, y) ∈ Tt}

If the grouping variable t is interpreted as time periods, then the difference between any two

technology sets Tt and Ts is interpreted as technical change. If the grouping is interpreted in

the metafrontier tradition, then the difference is interpreted as a technology gap. The grouping

variable t may also represent a mix of groups and time periods. In other words all the results of

this paper will hold in the case in which one considers metafrontiers over several time periods.

Notice that here the only relevant difference is if the grouping variable t is ordinal or not1 and

since none of the results of this paper rely on the variable to be ordinal, this means that the

difference is only interpretational.

Consider two group technologies Ts, Tt, with Ts ̸= Tt. If Ts ⊂ Tt, then Tt is a more productive

technology (if t is a time index and t > s, this means there is no technical regress). On the

contrary if Ts ⊃ Tt, then Ts is a more productive technology (if t is a time index and t > s, this

1I will not consider the case of a continuous grouping variable (although this may be an interesting development
left for future research). In this section, for the sake of tradition, I will describe all the necessary functional
restrictions imposed on these technology sets in terms of the time period interpretation. This is mostly because
the economic literature has developed this material in terms of time and the associated notion of technical change.

3



means there is no technical progress). Finally it is said that the two technology sets intersects

if Tt ̸= Ts, but Ts ̸⊂ Tt and Ts ̸⊃ Tt. Input neutrality is defined as2:

DI(x, y, t) = DI(x, y, 1)/B(y, t) (1)

and I will refer to this functional restriction simply as neutrality. I will refer to two tech-

nologies that satisfy neutrality as being the homothethy of each other or being homothetic to

each other. For example if the definition above is satisfied by two technologies Tt, Ts, then I

will simply say that Tt and Ts are homothetic to each other, or that Tt is the homothety of Ts

(and viceversa). I will also refer to these two technologies as being neutral, in the sense that

they satisfy the functional definition of neutrality as stated in equation (1). It is important

to stress that neutrality is a property that is interesting only if there are at least two group

technologies, since if there is only one group technology, the definition of neutrality is trivially

satisfied! Therefore neutrality is a property that pertains to a given group technology in its

relationship to another group technology. It should also be stressed that neutrality does not

imply that the group technologies are nested or, to say it differently, neutrality is not sufficient

to avoid that two technologies intersect.

A group technology Tt is said to be homothetic if the input distance function satisfies the

following functional restriction:

DI(x, y, t) = DI(x, 1, t)/H(y, t) = X(x, t)/H(y, t) (2)

where the input aggregator function X(x, t) is linearly homogeneous in the input vector

(as stated in the equation, this function can be chosen to be X(x, t) = DI(x, 1, t) where the

unit isoquant is chosen as a reference). The function H(y, t) is an aggregate input requirement

function and represents the minimal amount of aggregate input that is needed to produce a

given output. Peyrache (2013) shows that a technology is both neutral and homothetic (which

means each group technology Tt is homothetic and any two group technologies Tt, Ts are the

homothety of each other) if and only if the input distance function can be written as:

DI(x, y, t) = DI(x, 1, 1)/B(y, t) = X(x)/B(y, t) (3)

where the input aggregator function X(x) is now independent of t (this function can be

2Blackorby et al. (1976) identified three alternative definitions of neutrality of technical change: Hicks neu-
trality, implicit Hicks neutrality and extended Hicks neutrality. This paper is using the notion of implicit Hicks
neutrality as defined in Blackorby et al. (1976).
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chosen to be X(x) = DI(x, 1, 1)). This definition implies that every single group technology Tt

is homothetic and that any two given group technologies Tt, Ts are homothetic to each other. I

will refer to the functional restriction of equation (3) as neutral homotheticity.

If the technology is homothetic, then it can be represented using its graph and base isoquant

(see Peyrache (2024) for a full discussion). In the case in which the technology is neutral

homothetic, then a time independent input aggregator X(x) can be defined. This means that

it is possible to use a common metric to aggregate inputs across the different technologies Tt.

The graphs of the group technologies are then given by:

Gt = {(X, y) : (x, y) ∈ Tt, X = X(x)} (4)

As noted earlier, the graphs of the group technologies may intersect with each other, since

neutral homotheticity is not sufficient for the technology sets to be nested.

3 Data Generated Technologies

Consider a set of data points, decision making units (DMUs), or observations (xkt, ykt)

(∀k = 1, . . . ,K and ∀t = 1, . . . , N) collected for each group t in a dataset in the form of

matrix Dt = [xkt, ykt]. All the technologies discussed in this paper will satisfy the following two

properties.

A1. Feasibility of observed DMUs: the observed data points belong to the production set,

(xkt, ykt) ∈ Tt, ∀k = 1, . . . ,K and ∀t = 1, . . . , N .

A2. Free Disposability : ∀(x, y) ∈ Tt, if x1 ≥ x, y1 ≤ y, then (x1, y1) ∈ Tt, ∀t = 1, . . . , N .

3.1 Group Technologies

The group free disposal hull (FDH) technology is defined as:

T V
t =

{
(x, y) :

K∑
k=1

λktxkt ≤ x,

K∑
k=1

λktykt ≥ y,

K∑
k=1

λkt = 1, λkt ∈ {0, 1}

}
(5)

and it is the smallest technology that satisfies properties A1, A2. It is also said that dataset

Dt generates or is a generator for technology T V
t , since the definition of the set is based on the

given generator (see Dulá and Thrall (2001)).
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The free disposal conical extension of a production set Tt is defined as:

C(Tt) = {(x, y) : x ≥ δx, y ≤ δy, (x, y) ∈ Tt, δ ≥ 0} (6)

The technology satisfies CRS if and only if Tt = C(Tt). The cone technology C(Tt) is said

to be generated by Tt, or it is said that Tt is a generator of C(Tt). The cone technology can in

most cases be generated directly from the dataset Dt by using the axiom of scalability. In fact,

the conical extension C(Tt) will always satisfy scalability, defined as:

P1. Scalability : ∀(x, y) ∈ Tt and δ ≥ 0 then (δx, δy) ∈ Tt.

The reverse is also true: if a free disposable technology Tt satisfies scalability, then it is a

cone in the sense of definition (6)3. Using the conical extension operator defined in equation

(6), one can generate the following CRS non-convex technology (FDH-CRS) from the FDH

technology (5)4:

TC
t = C(T V

t ) =

{
(x, y) : δ

K∑
k=1

λktxkt ≤ x, δ

K∑
k=1

λktykt ≥ y,

K∑
k=1

λkt = 1, λkt ∈ {0, 1}, δ ≥ 0

}
(7)

The cone extension so defined will always return the minimal technology that will satisfy A1,

A2 and P1. It should be noted that the conical extension of the FDH set is a non-convex cone.

This non-convex cone technology has been studied in Kerstens and Eeckaut (1999), Podinovski

(2004). Briec and Kerstens (2006) show that computation of distance functions using the non-

convex cone technology just defined can be accomplished by using an enumeration algorithm.

This makes computation over large datasets feasible and fast.

A production technology is said to satisfy convexity if it satisfies the following property5:

P2. Convexity : (x1, y1) ∈ T and (x2, y2) ∈ T =⇒ [γx1 + (1− γ)x2, γy1 + (1− γ)y2] ∈ T, 0 ≤

γ ≤ 1.

3To see this, consider a technology T that satisfies free disposability (A2) and scalability (P1). Then for any
point (x, y) ∈ T , scalability implies (δx, δy) ∈ T for δ ≥ 0, and free disposability implies (x, y) ∈ T , for all
(x ≥ δx, y ≤ δy), which is equivalent to definition (6).

4This will imply a restriction on the data in order for C(Tt) to be a strict subset of the positive orthant. What
is required is that there are no observations that produce strictly positive output using a zero input vector. This
is also known as the no free lunch assumption: ∄k : xk = 0P and yk > 0.

5Associated with the convexity property it is possible to define a convex operator which will extend any given
set to make it convex. Kerstens et al. (2019) define this operator as follows:

Conv(T ) =

{
(x, y) ∈ RP+1

+ : x =
∑
i

αixi, x =
∑
i

αixi, (xi, yi) ∈ T,
∑
i

αi = 1, αi ≥ 0

}
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Enlarging the FDH hull by convexity will return the following VRS hull (also known as the

BCC or DEA):

ΨV
t = Conv(T V

t ) =

{
(x, y) :

K∑
k=1

λktxkt ≤ x,
K∑
k=1

λktykt ≥ y,
K∑
k=1

λkt = 1, λkt ≥ 0

}
(8)

This is the minimal set satisfying A1, A2, P2. The convex CRS technology can be obtained

as the conical extension of (8) or as the convex closure of (7):

ΨC
t = C(ΨV

t ) = Conv(TC
t ) =

{
(x, y) :

K∑
k=1

λktxkt ≤ x,

K∑
k=1

λktykt ≥ y, λkt ≥ 0

}
(9)

This set will be the minimal set that satisfies A1, A2, P1 and P2. The last property and

operator to be discussed relates to homotheticity. Homotheticity is defined as follows

P3. Input Homotheticity. ∃Hkt, Hjt : HjtILt(ykt) = HktILt(yjt), ∀k, j, t.

Defining a homothetic operator that will enlarge a given technology in order to return a

technology that satisfies homotheticity is not a trivial task. Peyrache (2024) shows that it is

possible to build a minimal homothetic technology as an enlargement of the FDH. A minimal

requirement for such an enlarged set is that it is contained in the CRS set. Thus, in order to

define such a homothetic technology, the following requirement needs to be added:

R1. Tt ⊆ TC
t , ∀t = 1, . . . , T .

This requirement states that the homothetic free disposal hull (HFDH) technology has to be

contained in the FDH-CRS technology (this extends to the convex case). Based on assumptions

A1, A2, P3 and R1, Peyrache (2024) shows how to build a minimal homothetic technology

TH
t . The conical extension of this group homothetic technology will return the group CRS

technology: C(TH
t ) = TC

t . This also means that the homothetic technology is a generator of

the CRS technology; in fact a minimal generator. In other words, for any given CRS technology

TC
t it is possible to build a homothetic technology TH

t that will generate the CRS technology

as its conical extension. In a nutshell, the homothetic technology is obtained by computing

the input aggregates as6 Xjt = DC
I (xjt, 1, t) and then use these aggregates to build an enlarged

6Compute the input aggregates as follows:

1

Xjt
= min

θ,λk

θ

s.t
∑

k λk
xkt
ykt

≤ θxjt∑
k λk = 1

λk ∈ {0, 1}

(10)
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dataset that will be a generator for TH
t . This enlarged dataset can be built by noting that the

definition of input homotheticity implies that if (xkt, ykt) ∈ Tt, then (xkt
Xjt

Xkt
, yjt) ∈ Tt. The

following enlarged dataset of K2 observations will then provide a generator for the homothetic

set TH
t :

DH
t =

[
xkt

Xjt

Xkt
, yjt

]
(11)

If parsimony is necessary, Peyrache (2024) shows how to obtain the frame from this enlarged

dataset. Alternatively, one can use the procedure described in Dulá and Thrall (2001) to

extract the frame from this generator set. DH
t will generate a homothetic set. I will refer to the

procedure for obtaining the generator of the homothetic group technology TH
t as the homothetic

operator, or the homothetic extension of the VRS technology T V
t , or, possibly more appropriate

in this context, the minimal homothetic generator of the CRS technology TC
t . This last sentence

is justified in the sense that the homothetic set so obtained is the smallest homothetic set that

can generate the CRS technology as its conical extension and contains all the data points. The

basic notion is that the base isoquant is taken from the CRS technology and then the graph is

obtained using the FDH definition. The technology so obtained will be deemed TH
t .

3.2 Pooled Technologies and Metatechnologies

The definition of a metatechnology has been done in two main alternative ways: one can

define the metatechnology as the union of the group technologies; alternatively, one can define

the metatechnology as the pooled technology. The two notions basically differ in the way they

treat the convexity assumption, as it should be clarified shortly. O’Donnell et al. (2008) seem

to define the metatechnology as the union of sets, although while implementing it using DEA

they use the pooled definition. Pastor and Lovell (2005) and Walheer (2018, 2023) use the

pooled definition for the metatechnology (under convexity). Kerstens et al. (2019), Jin et al.

(2020) and Jin et al. (2024) support the idea that the metatechnology should be a union of sets.

The difference lies in the fact that some authors take
⋃

t Tt and some others Conv (
⋃

t Tt) as

the definition of the metatechnology (irrespective of the fact if the group technologies satisfy

convexity). Notice that this difference only arises for convex technologies, since in the case of

the FDH the pooled technology is the union of the group FDH technologies. To maintain the

language simple and parsimonious I will refer to the metafrontier as the union of sets and to

the pooled technology in the standard way of using the pooled dataset as a generator for the
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technology7. Since the purpose of the current paper is to mainly provide a method to build

group technologies that satisfy neutrality and homotheticity, I will illustrate the method using

both the union of sets and the pooled definitions of the metafrontier. To avoid confusion in

the language I will refer to the metafrontier as the union of sets, which will avoid ambiguity.

This way the metafrontier will always be the union of the group technologies and the pooled

technology the one defined on the pooled dataset.

Starting with the FDH technology T V
t it is easy to show that the pooled technology is also

the union of the group technologies. The pooled FDH is:

T V =

{
(x, y) :

N∑
t=1

K∑
k=1

λktxkt ≤ x,

N∑
t=1

K∑
k=1

λktykt ≥ y,

N∑
t=1

K∑
k=1

λkt = 1, λkt ∈ {0, 1}

}
(12)

Interestingly this derives from the fact that the FDH technology is already defined as a

union of sets. In fact an alternative way of defining the FDH technology is as the union of the

sets T V
kt = {(x, y) : x ≥ xkt, y ≤ ykt}, i.e. T V

t =
⋃

k T
V
kt and therefore T V =

⋃
t T

V
t =

⋃
t

⋃
k T

V
kt .

Similarly, the pooled FDH-CRS is:

TC =

{
(x, y) : δ

N∑
t=1

K∑
k=1

λktxkt ≤ x, δ
N∑
t=1

K∑
k=1

λktykt ≥ y,
N∑
t=1

K∑
k=1

λkt = 1, λkt ∈ {0, 1}, δ ≥ 0

}
(13)

It is easy to show that the metatechnologies are the pooled technologies: T V =
⋃

t T
V
t ;

TC =
⋃

t T
C
t .

The following lemma clarifies the relationship between the conical extension operator and

the union operator (Kerstens et al. (2019) provide a similar lemma; I provide a proof for com-

pleteness, since I am using a slightly different definition of conical extension).

Lemma 3.1. The conical extension of the union of sets is the union of their conical extensions:

C (
⋃

t Tt) =
⋃

tC (Tt).

Proof. To show this consider a point (x, y) ∈
⋃

tC(Tt). Using the definition of conical extension,

this means that for some t, ∃(x, y) ∈ Tt such that x ≥ δx, y ≤ δy for some δ ≥ 0. If δ > 0,

then (x/δ, y/δ) ∈ Tt which implies (x/δ, y/δ) ∈
⋃

t Tt; then (x, y) ∈ C (
⋃

t Tt). If δ = 0, then

condition x ≥ δx, y ≤ δy simplifies to x ≥ 0, y ≤ 0, which implies (x, y) ∈ C (
⋃

t Tt).

On the contrary, suppose that (x, y) ∈ C(
⋃

t Tt), then using the definition of conical extension

x ≥ δx, y ≤ δy, for δ ≥ 0 and (x, y) ∈ Tt, for some t. This means that (x, y) ∈ C(Tt), therefore

7The alternative of using FDH group technologies and then the convexification of their union as the metate-
chnology has not been suggested, thus I will not discuss this case.
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(x, y) ∈
⋃

tC(Tt). QED

It is also clear that since TC
t = C(T V

t ), then TC = C(T V ), due to the Lemma just introduced.

This defines the VRS and CRS metatechnologies by using their pooled definition in the non-

convex case. For the convex case things are complicated by the fact that the union of sets is

not the pooled technology. The pooled convex VRS technology is:

ΨV
pooled =

{
(x, y) :

N∑
t=1

K∑
k=1

λktxkt ≤ x,

N∑
t=1

K∑
k=1

λktykt ≥ y,

N∑
t=1

K∑
k=1

λkt = 1, λkt ≥ 0

}
(14)

The pooled CRS is:

ΨC
pooled =

{
(x, y) :

N∑
t=1

K∑
k=1

λktxkt ≤ x,
N∑
t=1

K∑
k=1

λktykt ≥ y, λkt ≥ 0

}
(15)

The convex metafrontiers defined as union of sets are:

ΨV =
⋃

tΨ
V
t =

{
(x, y) :

N∑
t=1

K∑
k=1

λktxkt ≤ x,
N∑
t=1

K∑
k=1

λktykt ≥ y,

K∑
k=1

λkt = bt,
∑
t

bt = 1, bt ∈ {0, 1}, λkt ≥ 0

} (16)

and

ΨC =
⋃

tΨ
C
t =

{
(x, y) :

N∑
t=1

K∑
k=1

λktxkt ≤ x,
N∑
t=1

K∑
k=1

λktykt ≥ y,

K∑
k=1

λkt = δbt,
∑
t

bt = 1, bt ∈ {0, 1}, δ ≥ 0, λkt ≥ 0

} (17)

The next question that should be raised is if it is possible to build a homothetic metafrontier

and pooled homothetic technology starting with the group homothetic technologies TH
t and ΨH

t

(these two homothetic technologies can be built using the homothetic operator on TC
t and ΨC

t ).

It is tempting to apply the same definition of metatechnology to the group-specific homothetic

technologies to obtain the homothetic metatechnology:
⋃

t T
H
t . This definition will satisfy the

basic requirement that T V
t ⊆ TH

t ⊆ TC
t , which implies (using Lemma 3.1) T V ⊆

⋃
t T

H
t ⊆ TC .

This also means that the conical extension of this metatechnology coincides with the CRS

metatechnology C(
⋃

t T
H
t ) = TC . Unfortunately, this technology is not homothetic, i.e. homo-

theticity of the group technologies is not sufficient for homotheticity of their union. This stems

from the fact that homotheticity of the group technologies does not imply neutrality, therefore
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the homothetic group technologies are not homothetic to each other. Thus homotheticity of

the group technologies is not a sufficient condition for the homotheticity of the metatechnol-

ogy, since these group homothetic technologies will fail to be homothetic to each other, i.e.

they will fail neutrality. Therefore
⋃

t T
H
t must be disregarded as a candidate for a homothetic

metatechnology, i.e. this will provide a metatechnology but this metatechnology will not be

homothetic.

Things are different when it comes to the pooled homothetic technology, since in this case

the homothetic operator can be applied directly to the pooled CRS technology TC (ΨC
pooled and

ΨC can be used as well). In fact, it is possible to find a minimal pooled homothetic technology

that satisfies:

R2. T ⊆ TC

Requirement R2 is the pooled version of requirement R1, since
⋃

t Tt ⊆
⋃

t T
C
t = TC . R2 is

weaker than requirement R1, in fact it is implied by R1, although it does not imply R1. Call the

pooled homothetic technology so obtained TH . Since this pooled homothetic technology is the

minimal technology that satisfies R2, I will regard this technology as being the best candidate

and requirement R2 as being a very minimal requirement that should be maintained throughout

the analysis. A similar argument can be put forward for the convex case and the use of ΨC
pooled

and ΨC . Notice however that in spite of the fact that LC(1) ⊆ LC
Ψ(1) ⊆ LC

Ψpooled
(1), these

technolgies are not-nested (they intersect): ΨH
pooled ̸= ΨH ̸= TH .

In order to obtain a generator dataset for the pooled homothetic technology, the input

aggregates can be computed by solving the program associated with the computation of the

following input distance function Xjs = X(xjs) = DC
I (xjs, 1) for all observations in the dataset:

1

Xjs
= min θ

st δ

N∑
t=1

K∑
k=1

λktxkt ≤ θxjs

δ
N∑
t=1

K∑
k=1

λktykt ≥ 1

N∑
t=1

K∑
k=1

λkt = 1

λkt ∈ {0, 1},∀k, t

δ ≥ 0

(18)

An enumeration algorithm exists for the computation of this program (see Briec and Ker-
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stens (2006)). To obtain the program for the convex case, one eliminates the binary variables

constraints, transforming it into a linear program. The following dataset will be a generator for

TH :

DH =

[
xkt

Xjs

Xkt
, yjs

]
(19)

Notice that this dataset will be of dimension (NK)2, contrary to the dimensionality of the

generators DH
T of TH

t that return a pooled dataset of dimension NK2. Given the dimensionality

of (NK)2, this generator is not a very parsimonious representation of the technology set. The

most parsimonious representation of TH can be obtained by extracting the frame from this set

of observations using the method presented in Dulá and Thrall (2001), although this could be

computationally intensive, since it basically involves solving (NK)2 programs. The alternative

provided in Peyrache (2024) can be adapted here by considering the set of extreme efficient

points for the pooled CRS technology as defined in (this has been defined in Dulá and Thrall

(2001)). Notice that the approach of Dulá and Thrall (2001) can be improved computationally

by starting with the definition of the pooled FDH dominance set (assuming that no observations

are repeated and no observations are scalings of each other) which corresponds to the frame of

the pooled FDH:

SFDH = {(xjs, yjs) : (xjs ≤ xkt) ∩ (yjs ≥ ykt),∀k, t} (20)

This set is likely to be much smaller than the original pooled dataset. From this set it is

possible to extract the frame of the FDH-CRS (or the convex CRS) as follows:

SC =
{
(xjs, yjs) ∈ SFDH : DC

I (xjs, yjs) = 1
}

(21)

Since the pooled FDH set can be obtained by enumeration, the frame of the CRS technology

can be obtained faster than in the method proposed by Dulá and Thrall (2001), with this latest

method providing an upper bound to the computational time (in the case all observations are

extreme scale efficient; very unlikely in any empirical application). Call the dimensionality of

this set M < NK. Now, given this set it is possible to define the base unit isoquant as the list:

ajs = xjs/yjs, with (xjs, yjs) ∈ SC . Then the frame of the homothetic technology is given by

(assuming no output is duplicated):

DH = [ajsXkt, ykt] (22)

thus providing a generator with MNK observations, much lower than the (NK)2 required

12



before (by a factor of M < NK).

The next obvious question is if it is possible to find group technologies that satisfy homo-

theticity, are homothetic to each other and give rise to the pooled homothetic technology just

defined as their metatechnology (i.e. as a union of sets). One very intuitive way of building

such technologies would be to take the input aggregates just computed and define the following

generator sets of dimension NK2:

DNH
t =

[
xjs

Xkt

Xjs
, ykt

]
(23)

If computational parsimony is necessary, then it is possible to work directly with the frame:

DH = [ajsXkt, ykt] (24)

which is of dimension MK for each group technology. This will generate group technologies

TNH
t that are neutral homothetic. Moreover, since

⋃
tD

NH
t = DH , this means that

⋃
t T

NH
t =

TH , satisfying the basic requirement that the metatechnology is generated as union of sets.

Although this approach provides a way of building group technologies that satisfy homotheticity

and neutrality, it is not clear what the properties of these group technologies are. In particular,

it is not clear if these technologies can be given axiomatic foundation. The next section should

address this issue and also provide the frame (a parsimonious generator) for these neutral

homothetic sets.

I will refer to the metafrontiers as simply T V and TC and their associated distance func-

tions as DV
I (x, y) and DC

I (x, y). All the results obtained for T V and TC will extend to

ΨV ,ΨV
pooled,Ψ

C ,ΨC
pooled. I will indicate in the discussion and the proofs when results may

diverge.

4 The Neutral Homothetic Group Technologies

In this section I will consider two technologies that satisfy both neutrality and homotheticity,

one under the CRS assumption and the other one under the VRS assumption (i.e. one will

satisfy scalability P1 and the other will not). Before presenting the methods used to build such

technologies it is useful to introduce the property of neutral homotheticity, the joint satisfaction

of neutrality and homotheticity:

A3. Neutral Homotheticity : ∃Bkt, Bjs : BktIL(ykt, t) = BjsIL(yjs, s), ∀k, j, s, t.

13



This property is stating that all input sets have to be scaling of each other even if they belong

to different group technologies. The definition of homotheticity P3 on the contrary makes the

same statement for each technology separately. Therefore A3 is stronger than P3.

4.1 The Neutral CRS Group Technologies

It is useful to start the discussion with the group CRS technologies TC
t . These technologies

are homothetic (they always satisfy P3) but, in general, they are not homothetic to each other

(they will violate A3), therefore they are not neutral. On the contrary, the metafrontier (or

pooled) CRS technology is homothetic. Strangely enough, such technologies are not neutral,

yet they return a metatechnology that is homothetic, showing that neither neutrality nor ho-

motheticity are necessary for the metafrontier to be homothetic (remember that the union of

the homothetic group technologies TH
t is not homothetic). In what follows it is assumed that

the group CRS technologies are not neutral, i.e. they fail property A3. If this were not the case,

then as it will be shown below, the group homothetic technologies TH
t will in fact satisfy axiom

A3. It is therefore assumed that TC
t do not satisfy condition A3 and it is therefore necessary to

find appropriate enlargements of these technologies that will satisfy such condition. Assumption

A3 can be easily checked using the procedure outlined in this subsection, since the resulting

neutral CRS group technologies (call them TNC
t ) will in this case be the same as TC

t , the CRS

group technologies. In the case of CRS technologies, scalability (P1) and neutral homotheticity

(A3) will imply a very neat property that is presented in the next lemma.

Lemma 4.1. If the technology satisfies A1, A2, A3 and P1, then there exist constants At such

that (∀t, s = 1, . . . , N):

As ILs(1) = At ILt(1)

Proof. Using the definition of neutral homotheticity (A3) and scalability (P1), it is possible to

write:

BktyktILt(yjs) = BjsyjsILs(yjs)

Define now B′
kt = Bktykt. Using scalability this implies:

B′
ktILt(1) = B′

jsILs(1)

Consider now x ∈ ILt(1), which means
B′

kt
B′

js
x ∈ ILs(1). Since x ∈ ILt(1) if and only if

14



DI(x, 1, t) = 1, it is possible to write:

B′
kt

B′
js

=
DI(x, 1, t)

DI(x, 1, s)
=

DI(1, 1, t)

DI(1, 1, s)

where the last passage follows from the neutral homotheticity assumption. Since the right

hand side only depends on s, t, so does the left hand side. Therefore it must be: B′
kt = Bktykt =

At. In other words scalability and neutral homotheticity imply that:

Bkt =
At

ykt

This also means that Bktykt = Bjtyjt. QED

The importance of this lemma should not be underestimated, since it implies a stronger

notion of neutrality8, where the time shift function is reduced to a set of constants independent

of the output level. I will call this set of constants the neutral deflators, since they will “deflate”

the unit isoquant of the group CRS technologies to their base level.

The first step in building a technology that satisfies A1, A2, A3, P1 and R2 is to use

scalability and express all the group technologies in terms of their unit input set: x ∈ Lt(y)

implies x/y ∈ Lt(1) (any other output level can be chosen, this is innocuous). Then any

difference in the technologies can be seen as a difference in this unit isoquant (since all the

others are linear scalings). In other words, all these CRS group technologies will only differ

in the shape of the unit isoquant, since given this unit isoquant the rest of the technology is

obtained as a cone by scaling. Since the neutral deflators At are not known, a method needs

to be found in order to compute them. Requirement R2 can be restated as requiring that

Lt(1) ⊆ LC(1), which means any neutral deflator will need to satisfy a condition that the

enlarged CRS technology still satisfy this condition. Consider the following set of programs for

all k, t:

akt = min
θ

{
θ : θ

xkt
ykt

∈ LC(1)

}
(25)

These coefficients are projecting each observation onto the unit CRS metafrontier (pooled)

isoquant. The neutral deflators can then be derived as (∀t = 1, . . . , N):

At = max
k

{akt} (26)

8Blackorby et al. (1976) call this concept extended Hicks neutrality. There is also a theorem in Blackorby
et al. (1976) that proves a result similar to the one presented in the lemma.
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where clearly At ≤ 1 where equality only happens for those group technologies that have

one observation on the metafrontier (pooled) unit isoquant. Given these deflators, the neutral

CRS group technologies are then given by the unit input set LNC
t (1) = LC(1)/At = LC(1/At).

The technology is defined as a scaling of this unit input set:

TNC
t =

{
(x, y) : x/y ∈ LNC

t (1)
}
=

{
(x, y) : Atx ∈ LC(y)

}
(27)

The following proposition should clarify that these deflators are optimal in the sense of

providing the smallest or tightest technology that satisfies the given requirements.

Theorem 4.1. TNC
t are the smallest group technologies satisfying axioms A1, A2, A3, P1 and

requirement R2.

Proof. Requirement R2 states that
⋃

t Tt ⊆ TC . Suppose now that one were to choose at < At,

where At is the optimal coefficient determined above. Then ∃k : atxkt ̸∈ LC(1), violating R2.

It must then be that at ≥ At.

Consider now the possibility that at > At. In such a case ∀k, At
at
xkt ∈ Lt(1), but

At
at
xkt ̸∈

ILt(1), i.e. none of the observations of group t will be part of the unit isoquant of the group

technology. This means that the associated technology is not minimal.

Therefore TNC
t will be the smallest technologies compatible with the stated axioms. QED

Corollary 4.1. The neutral CRS technologies TNC
t are nested, with the neutral deflators At

determining this nesting.

Proof. This is a consequence of scalability, neutrality and homotheticity. QED

Interestingly enough, even if the neutral CRS group technologies TNC
t are enlargements of

the CRS group technologies TC
t , they will return the same metatechnology!

Corollary 4.2.
⋃

t T
C
t =

⋃
t T

NC
t = TC .

Proof. Requirement R2 states that
⋃

t T
NC
t ⊆ TC . Since TC

t ⊆ TNC
t , then

⋃
t T

C
t ⊆

⋃
t T

NC
t .

These two conditions can be stated as
⋃

t T
C
t ⊆

⋃
t T

NC
t ⊆ TC , and given that

⋃
t T

C
t = TC , the

statement follows. QED

4.2 The Neutral Homothetic Group Technologies

The previous section provided CRS group technologies that satisfy neutrality. In this section

I am trying to understand if a similar procedure can be delivered for the VRS technologies. The
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class of technologies that satisfy A1, A2 and P3 (and P2 if convexity is assumed) is Tt; if

requirement R1 is added then the class becomes Ht ⊆ Tt. Call Ht the complement to Ht in Tt,

so that Ht
⋃
Ht = Tt. Define the class of group technologies that satisfy A1, A2, A3 (and P2 if

convexity is assumed) as Zt, and indicate a technology in this class as Tt ∈ Zt, ∀t = 1, . . . , N .

It is clear that Zt ⊆ Tt, since A3 is stronger than P3.

Lemma 4.2. ∀Tt ∈ Zt, T
V
t ⊆ Tt.

Proof. Trivial.

Ok, I’ll show you...

Consider (x, y) ∈ T V
t . Using the definition of T V

t , ∃k : x ≥ xkt, y ≤ ykt. Feasibility of

observations (A1), implies that (xkt, ykt) ∈ Tt and free disposability (A2) implies that (x, y) ∈ Tt,

proving T V
t ⊆ Tt. The proof is similar in the convex case. QED

Lemma 4.3. The neutral CRS group technology is a subset of the conical extension of the

neutral homothetic group technology: ∀Tt ∈ Zt, T
NC
t ⊆ C(Tt)

Proof. Consider a point (x, y) ∈ TNC
t . Using the definition of TNC

t , x/y ∈ LNC
t (1) or Atx/y ∈

LC(1). Then ∃k, s : xks/yks ≤ Atx/y, or ∃k, s, δ : δxks ≤ Atx, δyks ≥ Aty. Feasibility of

observations (A1) implies that (xks, yks) ∈ Ts ⊆ TC ; neutrality implies that (xks/At, yks) ∈ Tt.

Since Tt ⊆ C(Tt), (xks/At, yks) ∈ C(Tt). Scalability of C(Tt) implies that (δxks/At, δyks) ∈

C(Tt) which means (using free disposability) (x, y) ∈ C(Tt), proving that TNC
t ⊆ C(Tt). The

proof for the convex case is similar. QED

It is interesting to note that it is impossible to satisfy both R1, neutrality and homotheticity

at the same time. This can only happen if TNC
t = TC

t . In such a case the group homothetic

technologies TH
t would also be neutral and the search for a neutral homothetic group technology

would be concluded. It is therefore assumed in the following analysis that TC
t ⊂ TNC

t (again, the

reason for this is that if TC
t TNC

t then the problem becomes trivial). The following impossibility

result is interesting at this point of the discussion.

Proposition 4.1. There is no technology that satisfies A1, A2, A3, R1.

Proof. This can be proved by contradiction. Suppose that there exists a technology Tt that is

neutral homothetic, then by lemma 4.3 TNC
t ⊆ C(Tt). R1 requires that Tt ⊆ TC

t which implies

C(Tt) = TC
t (a proof of this can be found in Peyrache (2024)). Since TC

t ⊂ TNC
t this would

imply C(Tt) ⊂ TNC
t in contradiction with TNC

t ⊆ C(Tt). QED
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This proposition proves that it is not possible to build neutral homothetic group technolo-

gies that satisfy R1. Therefore a weakening of this condition is necessary for building such a

technology. In order to find this weaker condition, the following lemma is useful.

Lemma 4.4. TNC
t = C(Tt) if and only if Tt ⊆ TNC

t .

Proof. For the sufficiency part, note that Tt ⊆ C(Tt), and since we are assuming TNC
t = C(Tt),

this proves Tt ⊆ TNC
t .

For the necessity part, note that Lemma 4.3 implies TNC
t ⊆ C(Tt). Then, Tt ⊆ TNC

t implies

C(Tt) ⊆ TNC
t and this together with the previous condition implies TNC

t = C(Tt). QED

This lemma states that in order for the conical extension of Tt to be minimal, the technology

must be contained in the neutral CRS group technology TNC
t . It is therefore possible to state

the following condition as a requirement that the neutral homothetic group technology needs

to satisfy:

R3. Tt ⊆ TNC
t .

This requirement is stronger than R2. R3 is also weaker than R1 since the neutral CRS

technologies are enlargements of the CRS technologies. Call the class of technologies that satisfy

this additional requirement R3, Nt ⊆ Zt. It is now possible to find a minimal technology in

this class. Requirement R3 also characterizes the class of technologies Nt as being those neutral

homothetic technologies that generate the neutral CRS group technologies TNC
t as their conical

extensions. In this sense, this class of technologies contains all the homothetic generators of

TNC
t .

Lemma 4.5.
⋃

t Tt ⊆ TC if and only if TC = C (∪tTt) = ∪tC(Tt).

Proof. C(T ) = C(
⋃

t Tt) =
⋃

tC(Tt) =
⋃

t T
NC
t = TC . QED

There is a very useful property that all technologies in Nt share and it is useful in order to

build the minimal technology. In order to derive this property, first define the set of efficient

points with reference to TNC
t is:

SNC
t =

{
(xkt, ykt) : D

NC
O (xkt, ykt, t) = 1

}
(28)

The sets SC , SNC
t do not contain points with zero output, unless the input vector is zero.

Therefore the origin (0, 0) can be part of these sets, but a point (x, 0) with x ̸= 0 will never be

part of this set. Therefore, without loss of generality, the origin can be excluded from this set.
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A generator of the input set LNC
t (ykt) can be derived from the generator of the neutral CRS

technology DNC
t (they generate the same technology):

dNC
t =

{
(xjs, ykt) : xjs =

As

At

ykt
yjs

xjs, (xjs, yjs) ∈ SC

}
(29)

The following lemma then follows.

Lemma 4.6 (Cone Isoquant Lemma). ∀Tt ∈ Nt, C(Tt) = TNC
t =⇒ Lt(ykt) = LNC

t (ykt) =

LC(ykt)/At, ∀ykt such that (xkt, ykt) ∈ SNC
t .

Proof. Graphical proof for the two inputs case.

C(Tt) = TNC
t implies Tt ⊆ TNC

t which implies Lt(ykt) ⊆ LNC
t (ykt). For all (xkt, ykt) ∈ SNC

t ,

it must be that xkt ∈ ILt(ykt). If this were not the case, then it would be possible to find a point

(xkt, ykt) ∈ SNC
t such that xkt ̸∈ ILt(ykt). Now, due to the feasibility of observations assumption

(A1), this point must belong to Tt; thus this point must be in the interior of Lt(ykt), meaning

that DNC
I (xkt, ykt, t) ≥ DI(xkt, ykt, t) > 1. Therefore this would mean 1/DNC

I (xkt, ykt, t) =

DNC
O (xkt, ykt, t) < 1, in contradiction with the fact that (xkt, ykt) ∈ SNC

t . This proves the

statement by contradiction. So it must be that xkt ∈ ILt(ykt).

Consider now the points in set dNC
t . For all (xjs, yjs) ∈ dNC

t , it must be that xjs ∈ ILt(ykt).

This can be proved by contradiction. Suppose that xjs ̸∈ ILt(ykt). Since it is assumed that

C(Tt) = TNC
t , then (xjs, ykt) ∈ C(Tt). This means, using the definition of conical extension

(and the fact that (xkt, ykt) ̸= (0, 0)), that there exists δ > 0 such that (δxjs, δykt) ∈ Tt, which

can be restated as δxjs ∈ IL(δykt) (if δxjs were to be in the interior of L(δykt) this would

contradict C(Tt) = TNC
t , since xjs ∈ ILNC

t (ykt)). Homotheticity implies that there exists a

constant α such that αILt(ykt) = ILt(δykt), and xjs ̸∈ ILt(ykt) implies that α ̸= δ. Now, if

α > δ, then since (δxjs, δykt) ∈ Tt, then
(
δ
αxjs, ykt

)
∈ Tt. Since

δ
α < 1, then

(
δ
αxjs, ykt

)
̸∈ TNC

t in

contradiction with the assumption that Tt ⊆ TNC
t (or C(Tt) = TNC

t ). If, on the contrary, α < δ,

then using homotheticity αxkt ∈ ILt(δykt), and scalability of C(Tt) implies (αδ xkt, ykt) ∈ C(Tt),

but since α/δ < 1, then (αδ xkt, ykt) ̸∈ TNC
t , in contradiction with the assumption that Tt ⊆ TNC

t

(or C(Tt) = TNC
t ). Therefore it must be that xjs ∈ ILt(ykt).

Take now LNC
t (ykt), for all ykt such that (xkt, ykt) ∈ SNC

t . Since the set of points xjs,

∀(xjs, ykt) ∈ dNC
t is a generator of LNC

t (ykt), the input set can be described by free disposability

as follows: LNC(ykt) =
{
x | ∃j, s : x ≥ xjs, (xjs, ykt) ∈ dNC

t

}
. Since all points in dNC

t also belong

to Lt(ykt), this proves that LNC
t (ykt) ⊆ Lt(ykt). Since it has been established already that

Lt(ykt) ⊆ LNC(ykt), this implies LNC
t (ykt) = Lt(ykt) for all ykt such that (xkt, ykt) ∈ SNC

t . The
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proof is similar in the convex case. QED

The result of lemma 4.6 can be used to establish the following theorem that characterizes

technologies Tt ∈ Nt.

Theorem 4.2. For any two technologies Tt ̸= T ′
t satisfying axioms A1, A2, A3, R3, there exists

a set of constants such that:

IL′
t(yit) = hijILt(yjt) , ∀i, j = 1, . . . ,K

In other words, the alternative homothetic technologies T, T ′ ∈ Nt are homothetic to each

other (one is a homothetic transform of the other).

Proof. Too see this, pick two alternative technologies T ′ ̸= T . From Lemma 4.6, it follows that

L′
t(ykt) = LNC

t (ykt) = Lt(ykt), ∀ykt such that (xkt, ykt) ∈ SNC
t . Consider now two points (xit, yit)

and (xjt, yjt) i, j,= 1, . . . ,K (not necessarily in SNC
t ). Since both Tt and T ′

t are homothetic,

using property A3 it must be that:

a) HjtILt(yit) = HitILt(yjt)

b) H ′
jtIL

′
t(ykt) = H ′

ktIL
′
t(yjt);

c) HjtILt(ykt) = HktILt(yjt)

where (xkt, ykt) ∈ SNC
t and the choice of k is innocuous. Since it follows from lemma 4.6

that IL′
t(ykt) = ILt(ykt). Using b) and c), one obtains:

Hkt

Hjt
ILt(yjt) = ILt(ykt) = IL′

t(ykt) =
H ′

kt

H ′
jt

IL′
t(yjt)

Using a) and substituting in the latter expression:

Hkt

Hit
ILt(yit) =

H ′
kt

H ′
jt

IL′
t(yjt)

which returns the hij constants:

hij =
H ′

jt

H ′
kt

Hkt

Hit

QED

Since all technologies in set Nt are homothetic to each other (due to theorem 4.2) and

since they satisfy neutral homotheticity, this also means that any two technologies Tt ∈ Nt and

Ts ∈ Ns are also homothetic to each other. This does not extend to the set Zt and technologies
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in this set are not necessarily homothetic to each other. This means that while it is possible to

find a minimal technology in Nt, it is not easy to define a minimal technology in the complement

of Nt in Zt. Consider now the set of neutral homothetic technologies that are the complement

of Nt, N t = Zt \ Nt, so that Zt = N t
⋃
Nt.

Corollary 4.3. ∀Tt ∈ N t, T
NC
t ⊂ C(Tt).

Proof. This can be proved by contradiction. Lemma 3.2 states that ∀Tt ∈ Zt, T
C
t ⊆ C(Tt).

Suppose now that it were possible to find a technology Tt ∈ N t for which C(Tt) = TC . This

technology would satisfy requirement R3 and therefore also belong to Nt which leads to a

contradiction, since Nt and N t are disjoint sets. QED

This corollary proves that if a neutral homothetic technology does not satisfy requirement

R3, then its conical extension will be a strict superset of the neutral CRS technology. Thus,

the conical extension of such a technology will not coincide with the minimal CRS technology.

The neutral homothetic technology is obtained by choosing as base isoquant the unit isoquant

of TC , LC(1). The input aggregates are computed against this isoquant and they will provide

the group-specific graphs and the group specific technologies. This is equivalent to the procedure

described in program (18). The second step in the procedure will now differ. Given the Xkt

input aggregates so determined, the neutral homothetic technology can be represented in its

graph (which I shall call GNH
t ). This graph is defined by applying definition (5) to the dataset

(Xkt, ykt):

GNH
t =

{
(X, y) :

K∑
k=1

λkXkt ≤ X,

K∑
k=1

λkykt ≥ y,

K∑
k=1

λk = 1, λk ∈ {0, 1}

}
(30)

This will provide the graphs of the neutral homothetic technologies. A generator for this

neutral homothetic technology can be obtained by considering the following enlarged dataset:

(
xkt

Xjt

Xkt
, yjt

)
, ∀k, j = 1, . . . ,K (31)

which is the same as the one described in equation (23). The frame of the neutral homothetic

technology can be extracted using either the method presented in Peyrache (2024) or Dulá and

Thrall (2001). This method of defining the neutral homothetic group technologies will also

return a minimal set in Nt as shown in the next theorem.

Theorem 4.3. The neutral homothetic technologies TNH
t are minimal in Nt.
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Proof. The proof is by contradiction. Minimality requires that ∀Tt ∈ Nt, T
NH
t ⊆ Tt. Suppose,

on the contrary, that there exists a technology Tt ∈ Nt that violates this condition: ∃(x, y) ∈

TNH
t : (x, y) ̸∈ Tt. Since the two technologies are homothetic to each other (they belong to

Nt, this last condition implies that ∃(X, y) ∈ GNH
t : (X, y) ̸∈ Gt, where X = X(x) = DC

I (x, 1)

(where LC(1) has been selected as the reference input isoquant for the aggregates).

Using now the definition of GNH
t in (30), we know that (X, y) ∈ GNH

t means ∃k : Xkt ≤

X, ykt ≥ y, implying that (Xkt, ykt) ̸∈ Gt (otherwise free disposability would be violated). This

means a violation of assumption A1 (feasibility of observations) for technology Tt in contra-

diction with the stated assumptions. A similar argument can be easily used for the convex

case. QED

Since the neutral homothetic group technologies are minimal and the union of their gen-

erators is equal to the generator of the pooled homothetic technology, this means that the

metafrontier generated by the neutral homothetic group technologies is in fact the same as the

minimal homothetic pooled technology.

Theorem 4.4. The homothetic metafrontier TH can be obtained as the union of the neutral

homothetic group technologies: ⋃
t

TNH
t = TH

Proof. The proof of this is easy by noting that
⋃

t T
NH
t = TH is equivalent to

⋃
tG

NH
t =

GH
t . This is because the input aggregates are the same, computed against the isoquant LC(1).

Another way of looking at this is to notice that the union of the generator sets of TNH
t is indeed

a generator set for TH . QED

I SHOULD DISCUSS THE CASE FOR THE CONVEX TECHNOLOGIES?

The following corollary emphasizes that if the neutral CRS group technologies TNC
t are the

same as the CRS group technologies TC
t , then the neutral homothetic group technologies TNH

t

will coincide with the homothetic group technologies TH
t (as one would expect).

Corollary 4.4. TNH
t = TH

t if and only if TNC
t = TC

t .

Proof. This is trivial, since condition R3 (Tt ⊆ TNC
t ) becomes equivalent to condition R1

(Tt ⊆ TC
t ). If on the contrary one assumes TNH

t = TH
t , then it must be due to requirements

R2 and R3 that TNC
t = C(TNH

t ) = C(TH
t ) = TC

t . QED
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Capital Labor Materials Output

0% 8.89 79.57 19.57 0.16
25% 43.4 151.37 72.98 1.58
50% 71.7 200.27 122 2.75
75% 117.16 283.79 209.37 5.39
100% 500.45 1682.2 1523.78 41.74
Mean 95.21 251.66 184.07 4.51
Std 79.85 172.31 187.95 5.34

Table 1: Descriptive Statistics for 405 Farms in the years 1984, 1985, 1986.

5 Empirical Illustration

To illustrate the proposed method, the agricultural dataset collected by Ivaldi et al. (1996)

on French farmers has been used. There is a single output and three inputs: capital, labour

and materials. The dataset is an unbalanced panel with 130 farms in 1984, 135 farms in 1985

and 140 farms in 1986. This is a good illustration of the fact that the method here proposed

does not rely on the assumption of the panel being balanced.

Table 1 reports descriptive statistics for the four different variables used. The dataset shows

a large dispersion with the largest farm (in terms of output produced) about 250 times largest

than the smallest one.

All calculations have been performed in R using the solver GLPK for all linear programs.

I report the results for the pooled frontiers only, without reporting the results for the union

of convex group frontiers. Table 1 reports the boxplots of six sets of input efficiency scores:

the pooled FDH T V (FDH); the pooled DEA ΨV
pooled (DEA); the pooled homothetic FDH TH

(HFDH); the pooled homothetic convex DEA ΨH
pooled (HDEA); the pooled FDH under CRS TC

(FDH-CRS); the pooled DEA under CRS ΨC
pooled (DEA-CRS). The first thing that jumps to the

eyes is the gain in discrimination power obtained from homotheticity as opposed to convexity.

In fact the distribution of the pooled DEA scores is well above the distribution of the HFDH.

Thus homotheticity buys more discrimination power than convexity (at least for this empirical

application). The second point to notice is the effect of the assumption of scalability once we

remove the effect of homotheticity. Since the CRS technologies are also homothetic, if one were

to compare the efficiency scores of, say, the pooled FDH to the scores of the pooled FDH-CRS,

this would point to the overall effect of scalability and homotheticity. Therefore not all the

change can be attributed to the scalability assumption only. The homothetic technologies allow

one to disentangle the effect of scalability from the effect of homotheticity. In fact, if one looks
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Figure 1: Efficiency Scores for the Metatechnologies.

at the distributions of the homothetic efficiency scores compared to the CRS scores and the

VRS scores, it is quite evident that a large share of the shift in the distribution of the scores

is given by the homotheticity assumption. These very same results have been found also in

Peyrache (2024) using two alternative datasets.

Figure 2 reports the boxplots of a set of eight efficiency scores: the group FDH T V
t (FDH);

the group DEA ΨV
t (DEA); the group homothetic FDH TH

t (HFDH); the group homothetic

DEA ΨH
t (HDEA); the group neutral homothetic FDH TNH

t (NH-FDH); the group neutral

homothetic DEA ΨNH
t (NH-DEA); the group FDH under CRS (FDH-CRS); the group DEA

under CRS (DEA-CRS). As for the previous boxplots it is clear that homotheticity increases

discrimination power quite dramatically (especially for the non-convex technologies). Moreover

the neutral homothetic technologies shifts the distribution to left even further, pointing out that

the discrimination power is increased by the assumption of neutral homotheticity.

All in all, these results point to the fact that neutrality and homotheticity can play a big role

in allowing to disentangle the pure effect of scale economies from the effects of homotheticity.

Moreover, given the gains in discrimination power of the non-convex homothetic and neutral

homothetic technologies, this also questions the widespread use of the convexity assumption.

Notice for example that the homothetic FDH is superior to the standard DEA in terms of

discrimination power. This fact, coupled with the faster computational time of the homothetic
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Figure 2: Efficiency Scores for the Group Technologies.

FDH points to this technology as a viable alternative to the use of the convexity assumption.

6 Conclusion

In this paper several new technology sets have been proposed under the assumptions of

neutrality and homotheticity for a series of group technologies and their metafrontiers. The

paper provides an axiomatic foundation for these technologies and discusses the relationships

among them. An empirical application has been provided to show that the method can be

easily implemented and has the same computational complexity as a standard efficiency model.

The empirical application also points out to the usefulness of using homotheticity as a way of

increasing the computational power of the model, without necessarily reverting back to using

the convex model.
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