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Abstract

I propose a computationally tractable and simple way of building a technology set that is

homothetic and complete additevely separable. This results in a technology which is nonpara-

metric in the graph and has an input isoquant of a constant elasticity of substitution (CES)

functional form (not necessarily convex). The method introduced in this paper preserves

good discrimination power when the number of inputs is large (thus addressing the curse of

dimensionality), while preserving full flexibility in the graph of the technology and the form

of scale economies. A numerical simulation is presented to show the drastic improvement in

discrimination power compared to other methods. Two empirical illustrations are provided

to show the usefulness of the approach.
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1 Introduction

Data generated technologies, such as data envelopment analysis (DEA) and the free disposal

hull (FDH), suffer from low discrimination power when the number of inputs is large. This means

that even with datasets of moderate size, when the number of inputs is large most observations will

be classified as fully efficient even if they are not. This is especially the case with the FDH since

it dispenses of the assumption of convexity. The result of this state of affairs is that the applied
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researcher has been discouraged to use DEA or FDH in favour of more parametric alternatives,

since, otherwise, the analysis would simply reveal that most observations are efficient. This clearly

extends to other aspects of the analysis, such as the assessment of economies of scale and their

impact on the structure of industries.

An attempt in the direction of mitigating this lack of discrimination power is represented by

Peyrache (2022) who proposed to use the assumption of homotheticity in DEA. Although there

is indeed an improvement in discrimination power when using homotheticity, this is sometimes

overstated by Montecarlo simulations that only look at small dimensional problems (i.e. 1 output

and two or three inputs). Although homotheticity is a useful functional restriction on the tech-

nology that reduces dimensionality, it is really insufficient in large dimensional problems (let’s

say more than 3 inputs).

In this paper I propose to include together with homotheticity, complete additive separability

(as proposed and discussed in the seminal, although neglected by the modern researcher, contri-

bution of Blackorby et al. (1978)). The joint of homotheticity and complete additive separability

implies that the input isoquant is of the constant elasticity of substitution (CES) type. Notice

that although the CES is used for the input isoquant, in the discussion that will follow this is

derived in the framework of functional restrictions on the technology set. Neither homotheticity

nor complete additive separability are sufficient alone to impose a parametric form on the input

isoquant. This two functional restrictions will transform the model into a semiparametric pro-

duction model. It is somehow overlooked that a parametric functional form can, in principle,

always be derived via functional restrictions on a nonparametric function. If one approaches the

problem from this perspective, then the discussion is shifted towards what is the most appropriate

functional restriction to impose, rather than what is the most appropriate parametric functional

form.

As shown in the numerical simulation, while discrimination power collapses exponentially

2



with the number of dimensions for the homothetic model, it remains intact for the homothetic

additevely separable model. It seems therefore that the two assumptions of homotheticity and

complete additive separability are at least sufficient to guarantee good discrimination power in

almost all situations. Moreover, the graph of the technology set is preserved of a nonparametric

form, therefore allowing the researcher to test alternative assumptions on the scale economies

of the technology. I should end this small introduction by clarifying that the method preserves

the computational speed proper of the DEA and FDH models, therefore making it an effective

method to address discrimination power in all datasets sizes.

Rather than relying on ad hoc procedures or disputable rules of thumbs, what is proposed here

makes explicit what assumption is needed to address the problem of the lack of discrimination

power. Moreover, assuming a parametric form for the input isoquant can prove particularly useful

in order to simplify the interpretation of the results. Since the input isoquant cannot be visualized

in more than 3 dimensions, it is useful to be able to compute quantities such as the marginal rate

of substitution by using the CES function directly. In fact, given the strong discrimination power

of the model, the graph of the technology will be estimated more precisely as well, therefore

providing more accurate information on scale economies.

2 Definitions and Assumptions

Consider a production process where inputs x ∈ RP
+ are used to produce a single output

y ∈ R+ and let T denote the production possibilities set or technology (see O’Donnell (2018)):

T = {(x, y) ∈ RP
+ × R+ | x can produce y}

For any y ∈ R+ the input requirement set L (y) can be defined as the set of all input vectors

which yield at least y:

L(y) =
{
x ∈ RP

+ | (x, y) ∈ T
}
.
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The input isoquant is then defined as:

IL(y) =
{
x ∈ RP

+ | (x, y) ∈ T, (x/λ, y) /∈ T, λ > 1
}

The free disposal conical extension of the production set T is defined as:

C(T ) = {(x,y) : x ≥ δx, y ≤ δy, (x,y) ∈ T, δ ≥ 0} (1)

The technology satisfies CRS if and only if T ≡ C(T ). Note that even if T does not satisfy

CRS, the conical extension C(T ) can be defined as an enlargement of T according to the previous

formula1. It is worth stressing that the technology T is not necessarily convex, and this means

that when taking its conical extension C(T ) the cone so obtained will be non-convex as well. The

reader accustomed to think in terms of convex sets, can do so in what follows, keeping in mind

that none of the results are confined to the convex case and they apply as well to the non-convex

case.

2.1 Distance Functions, Efficiency and Homotheticity

Input and output distance functions measure the technical efficiency in the input and output

orientation and are defined as2:

DI (x, y) = sup {λ > 0 | (x/λ, y) ∈ T} (2)

and

DO (x, y) = inf {θ > 0 | (x, y/θ) ∈ T} . (3)

1This will imply some restrictions on the production set T in order for C(T ) to be a strict subset of the positive
orthant. Since, in the next section, the technology will be generated by a set of given data points, what is required
is that there are no observations that produce strictly positive output using a zero input vector. This is also known
as the no free lunch assumption: ∄k : xk = 0P and yk > 0.

2The assumptions of this paper are sufficient for all the functional properties discussed in this section to hold.
See O’Donnell (2018) for an exhaustive account of the properties.
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The input distance function is linearly homogeneous in the input vector and the output

distance function is linearly homogeneous in the output. Linear homogeneity of the output

distance function implies DO(x, y) = yDO(x, 1). By focusing on the boundary of the set (i.e.

(x, y) : DO(x, y) = 1) and defining F (x) = 1/DO(x, 1), then the production function representa-

tion of the technology frontier is obtained:

y = F (x) = max {y | (x, y) ∈ T} (4)

The technology satisfies input homotheticity (see Blackorby et al. (1978)) if the input sets

satisfy L(y) = L(1)H(y), with H(y) a non-decreasing, lower semi-continuous function of its

argument.

This definition implies the following functional separation of the input distance function:

DI (x, y) =
DI (x, 1)

H (y)
=

X (x)

H (y)
(5)

where X (x) is a linearly homogeneous, non-decreasing function in the input vector. While

the production function F (.) gives the maximum output producible with a given input vector,

under input homotheticity the function H(.) gives the minimal aggregate input vector that is

able to produce a given level of output; therefore the function H(.) can be interpreted as an

aggregate input requirement function. By choosing as a reference the unit output y = 1, the

input aggregates can be obtained as:

X(x) = DI(x, 1) (6)

where due to the separability of the input distance function, the choice of the reference output

is innocuous, since any other reference output vector would give rise to the same input aggregates

(up to a re-scaling factor, i.e. a change in the unit of measurement of the input aggregates). Input
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homotheticity can be equivalently stated as the following functional restriction on the production

function:

y = F (x) = f [X(x)] (7)

where X(x) is the input aggregator function and f(.) is non-decreasing and upper semi-

continuous (a proof of this can be found in Blackorby et al. (1978)).

3 Separability and Dimensionality Reduction

Input homotheticity reduces the dimensionality of the problem by separating the technology

set into the construction of a base isoquant and the building of the graph of the technology. The

graph of the technology is a 2-dimensional problem involving the output and the input aggregate.

Therefore the dimensionality of the overall problem is given by the number of inputs, since this

will determine the dimensionality of the input aggregator function X(x). Therefore, homothetic-

ity reduces the dimensionality of the problem from P + 1 to P . This results to be very effective

with a small number of inputs. In applications with a large number of inputs (say more than

3), unless additional assumptions are made about the input aggregator function, the benefits of

homotheticity will be limited. The dimensionality of the problem is still equal to the dimen-

sionality of the input aggregator function and the discrimination power of the homothetic model

will likely deteriorate exponentially with the number of dimensions (in the Montecarlo simulation

reported below this is very clear). Thus, although homotheticity is a step forward in reducing

the dimensionality of the problem, some additional assumptions are needed in applications with

a large number of inputs.

I start the discussion here by presenting what is known in economics as the two-level budgeting

model (see Blackorby et al. (1978)). In the two level budgeting model, there exists a partition of

the input variables intoG groups x = [x1, . . . ,xg, . . . ,xG] of dimensionality p1+. . .+pg+. . .+pG =
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P such that:

y = F (x) = f [X1(x1), . . . , XG(xG)] (8)

It should be noted that assumptions on the aggregator functions Xg(xg) and on the mother

function f(.) will determine the form of the functional restriction imposed on the technology. One

obvious possibility of making the previous grouping correspond to a restriction on the technology is

to assume that the aggregator functions are linearly homogeneous in their respective arguments.

This means that the groups are homothetically separable, a property that I shall call group

homotheticity. Notice that homotheticity of the groups does not imply homotheticity of the

mother function and vice-versa. In fact, assuming homotheticity of the mother function f(.), one

obtains:

y = f {I [X1(x1), . . . , XG(xG)]} (9)

In this model the various groups of inputs and outputs are aggregated into sub-vector aggre-

gators and these sub-vector aggregates are then aggregated into an overall input aggregate I(.).

The advantage of such a model is that the dimensionality of the computational problem is given

by the function with the highest number of dimensions. This means that by choosing the groups

carefully, once is able to reduce dimensionality substantially, as the next integer to the square

root of P . For example, with 9 inputs one may form 3 groups of 3 inputs each, thus reducing the

dimensionality from 9 to 3. Notice however that there are limits to this approach, either because

of the large dimension of P or, even more so, because of computational issues associated with the

estimation of the various aggregates (this is an aspect of the problem that is usually neglected,

although numerical stability of the results is an important feature in applications). Clearly, such

an approach could be extended by looking into more than two levels. For example, with three lev-

els, one can have that a given sub-aggregate is disaggregated into 3 additional groups. Although
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theoretically interesting, it is not clear if such an approach could lead to numerically stable re-

sults, but for sure, at least theoretically, the dimensionality is reduced to the ceiling of the cubic

root of P . For example in a model with 27 inputs, the three levels budgeting model reduces it

to aggregator functions of dimension 3. The end result of this discussion is that increasing the

number of levels, although conducive to a reduction in dimensionality, may be problematic in

computational terms. To the best of my knowledge there are no significant attempts at com-

puting this model directly. Notice that in principle, if a computational solution is found that is

numerically stable, the three level model would accommodate most practical situations. In fact,

as reported in Peyrache et al. (2020), with a dataset of 250 observations, the dimensionality of

the problem should not exceed 3 (which is achieved in the three-level budgeting model with 27

inputs!).

Given the computational complexities that are likely to arise in the previous discussion, I

now turn the attention to imposing alternative restrictions on the mother function f(.) and in

particular assume additive separability of the groups:

y = f [X1(x1) + . . .+XG(xG)] (10)

In the definition of additive separability, the group aggregator functions X(xg) are not as-

sumed to be linearly homogeneous in the group input vector, therefore additive separability is

different from homothetic separability. Additivity reduces the dimensionality of the problem to

the computation of the group functions, since the input aggregate is then obtained as the sum

of those functions. Notice that in such an approach, irrespective of the number of inputs one

can always define those groups such that they do not exceed a given dimension. In fact, at one

extreme it is found that one can make each group correspond to a particular input, with the

dimensionality of the group being equal to one. This case is known as the complete additive

separable model and it is defined as:
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y = f

[∑
p

Xp(xp),

]
(11)

From a dimensionality perspective this model is extremely effective since it reduces the prob-

lem to look at one dimensional aggregator functions, with perfect substitution between each pair

of aggregated inputs. This model is known in statistics as the generalized additive model. Again,

to the best of my knowledge, no attempt has been done in computing the generalized model in a

production context.

At this point one quite natural question to ask is what is the relationship between additive

separability and homothetic separability. The most known result on this (see Blackorby et al.

(1978) for a proof) is that the joint of complete additive separability and homotheticity implies

that the aggregator function is a CES. If we restrict the attention to a given group of inputs g,

then if inputs in this group are jointly homothetically separable and complete additively separable

from the other inputs, then the aggregator function has the known form of being a CES function:

Xg(xg) =

(∑
p

λpgx
ρg
p

)1/ρg

(12)

In other words, CES is the most general functional form that can satisfy additive separability

and homotheticity jointly. This has a number of consequences for the choice of the aggregators. If

one starts with the two-level group homothetic model and imposes complete additive separability

within each group, then the resulting group aggregator functions will be CES. On the contrary,

one can start with linearly homogeneous (homothetic) aggregator functions and assume input

homotheticity, in which case the functional restriction results to be:

y = F [I (X1(x1) + . . .+XG(xG))] (13)

We notice that since at the upper level one is assuming complete additive separability and
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homotheticity jointly, the aggregate of the sub-aggregates is a CES function, i.e.:

I (X1 + . . .+XG) =

(∑
g

λgX
ρ
g

)1/ρ

(14)

In such a specification the dimensionality is reduced to the highest dimension of the group

aggregators and with appropriate choice this will be very effective, since the mother function I(.)

is parametric, i.e. increasing the number of groups will increase the number of parameters, not

the dimensionality of the problem. Additionally, one may choose to specify complete additive

separability for the group aggregates in which case:

XG =

(∑
i

λigX
ρg
ig

)1/ρg

(15)

which gives rise to the nested-CES (NCES) function. The NCES function is here obtained as

the result of a functional separability assumption on the production function. Notice however that

attempting to estimate the NCES function directly is difficult since the functional form is non-

linear and any non-linear optimization will likely be numerically unstable and not guaranteed to

find a global optimum for the parameter values. Nevertheless, the NCES function corresponds to

a two-level budgeting model that satisfies both homotheticity and complete additive separability

at both levels of aggregation. In this sense the structure of the problem is reduced to the esti-

mation of a parametric functional form for the input aggregator function and a two-dimensional

nonparametric problem in the graph of the technology. This means that the dimensionality of

the problem is in fact reduced to a dimension 2 problem.

The functional restrictions presented so far impose alternative ways of reducing the dimen-

sionality of the problem, most of them are of academic interest only, since numerically stable and

reliable procedures for their computation are not available. I therefore focus on an even more nar-

row case, where I should consider an input aggregator function that satisfies input homotheticity
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and complete additive separability with respect to all inputs, and for this case I am able to obtain

some positive computational results. This will return a linearly homogeneous CES function for

the input aggregator function:

X(x) =

(∑
p

αpx
ρ
p

) 1
ρ

(16)

Notice how the dimensionality of the problem is here reduced drastically, since there are

P + 1 parameters that define the aggregator function, therefore increasing the dimensionality of

the problem will increase complexity parametrically by adding additional parameters. This last

option, although the most restrictive, is the one for which it is possible to find a simple and fast

computational method (which I will describe in the next section). To summarize this section, the

computationally tractable model that I choose to describe will be:

y = F (x) = f(X(x))

X(x) =
(∑

p αpx
ρ
p

) 1
ρ

(17)

Although all of the previous options are suitable ways of reducing dimensionality, imposing a

CES functional form is the most effective and simple way of reducing dimensionality.

4 Data Generated Technologies

In order to give empirical meaning to the previous definitions consider the production pos-

sibilities set generated by a set of data points or decision making units (DMUs) (xk, yk) (∀k =

1, . . . ,K), where the input vectors are column vectors. The free disposal hull (FDH) is defined

as:

T V =

{
(x, y) :

K∑
k=1

λkxk ≤ x,
K∑
k=1

λkyk ≥ y,
K∑
k=1

λk = 1, λk ∈ {0, 1}

}
(18)

Using the conical extension operator defined in equation (1) one can introduce the following
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CRS non-convex technology (FDH-CRS):

TC =

{
(δx, δy) :

K∑
k=1

λkxk ≤ x,

K∑
k=1

λkyk ≥ y,

K∑
k=1

λk = 1, λk ∈ {0, 1}, δ ≥ 0

}
(19)

It should be noted that the conical extension of the FDH set is a non-convex cone. This

non-convex cone technology has been studied in Kerstens and Eeckaut (1999), Podinovski (2004).

Briec and Kerstens (2006) show that computation of distance functions using a non-convex cone

technology can be accomplished by using an enumeration algorithm, as opposed to a linear

program (LP) for the convex technology. This makes computation over large datasets for the

non-convex case feasible and fast; in fact, orders of magnitude faster than in the convex case.

The convex VRS and CRS technologies are equivalent to the convex closure of the two sets

introduced above. Therefore the convex VRS technology (known as the BCC technology) is

equal to T V
Conv = Conv(T V ) and the CRS technology (also known as the CCR technology) is

equal to TC
Conv = Conv(TC)3. In what follows, readers accustomed at thinking in terms of

convex technologies can make this assumption without loss of generality. Readers not prone to

think in terms of convex sets can dispense of this assumption with no harm.

4.1 Computing the CES Aggregates

Peyrache (2022) proposed a method to build a homothetic technology using the CRS isoquant

as a base isoquant. If the input isoquant is of the CES form and the technology is CRS, then the

3The explicit definition of the VRS production technology under convexity is:

TV
conv =

{
(x,y) :

K∑
k=1

λkxk ≤ x,

K∑
k=1

λkyk ≥ y,

K∑
k=1

λk = 1, λk ≥ 0,∀k

}

The CRS conical extension of this set is:

TC
conv =

{
(x,y) :

K∑
k=1

λkxk ≤ x,

K∑
k=1

γkyk ≥ y, λk ≥ 0, ∀k

}

Notice how the CRS technology under convexity can be obtained either as a conical extension TC
conv = C(TV

conv)
or as the convex closure of the FDH-CRS technology TC

conv = Conv(TC). Computation of distance functions with
these technologies implies solving linear programs and it is computationally slower than the non-convex alternative.
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production function is linearly homogeneous in inputs, returning the following form4:

yk =

(∑
p

αpx
ρ
kp

) 1
ρ

− uk (20)

To compute the parameters of this function, I adapt the parametric linear programming

approach introduced by Aigner and Chu (1968), embedded in the following non-linear program:

min
αp,ρ

K∑
k=1

uk

st uk ≥ 0, ∀k = 1, . . . ,K

(21)

This program is trying to select the parameters of the input isoquant so to minimize the

aggregate output loss. By substitution, the previous program can be written as:

min
αp,ρ

K∑
k=1

 P∑
p=1

αpx
ρ
kp

1/ρ

−
∑
k

yk

st

 P∑
p=1

αpx
ρ
kp

1/ρ

− yk ≥ 0, ∀k = 1, . . . ,K

(22)

In this program the objective function can be simplified (since
∑

k yk is a known constant, it

4An alternative objective function would look at the maximization of the sum of efficiency scores, by expressing
efficiency in multiplicative terms as:

yk = θk

(∑
p

αpx
ρ
kp

) 1
ρ

This would return the following program:

max
αp,ρ

K∑
k=1

θk

st θk ≤ 1, ∀k = 1, . . . ,K

This program can be linearized along the same lines. The interpretation of the objective function is not clear in
this case. Thus, I prefer to minimize the aggregate output loss.
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can be eliminated). The constraint can be simplified as well, returning the following program:

min
αp,ρ

K∑
k=1

 P∑
p=1

αpx
ρ
kp

1/ρ

st
(∑P

p=1 αpa
ρ
kp

)1/ρ
≥ 1, ∀k = 1, . . . ,K

(23)

where akp = xkp/yk. This program is non-linear in the parameters, but it should be noted

that the non-linearity is arising only because of the elasticity parameter ρ. If this parameter was

known, then it would be possible to convert it to a linear program. One needs to distinguish

two cases depending on the sign of ρ. In fact, for ρ > 0, notice that minimizing the objective is

equivalent to minimizing
K∑
k=1

P∑
p=1

αpx
ρ
kp, since the power function is a monotonic transform and

the optimal solution in terms of the αp would not change5. Similarly, for a given value of ρ, the

K constraints can be linearized. Therefore for a known ρ > 0 the solution in terms of the decision

variables will be obtained as the solution to the following linear program:

min
αp

K∑
k=1

P∑
p=1

αpx
ρ
kp

st
∑P

p=1 αpa
ρ
kp ≥ 1, ∀k = 1, . . . ,K

(24)

On the contrary when ρ < 0, minimizing the objective function would be equivalent to

maximizing
K∑
k=1

P∑
p=1

αpx
ρ
kp and the constraint can still be linearized but would have a different

5For ρ > 0 and any value of αp1, αp2 such that

K∑
k=1

(
P∑

p=1

αp1x
ρ
kp

)1/ρ

≥
K∑

k=1

(
P∑

p=1

αp2x
ρ
kp

)1/ρ

, then

K∑
k=1

P∑
p=1

αp1x
ρ
kp ≥

K∑
k=1

P∑
p=1

αp2x
ρ
kp.
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inequality sign6. For ρ < 0 the program becomes:

max
αp,ρ

K∑
k=1

P∑
p=1

αpx
ρ
kp

st
∑P

p=1 αpa
ρ
kp ≤ 1, ∀k = 1, . . . ,K

(25)

To summarize, the solution to the non-linear program can be obtained by a transformation of

the data and the solution of a linear program. Since in general ρ is unknown, it can be selected in

order to optimize the objective function. This can be accomplished via a grid search (or a golden

line search or a random search) over the single parameter ρ by solving the linear program over

several values of ρ and choosing it optimally.

Given the values of the CES parameters, the input aggregates can be easily computed by

applying the CES function to the observed input vectors:

Xk =

 P∑
p=1

αpx
ρ
kp

1/ρ

(26)

One can then proceed by computing efficiency scores in the graph of the technology directly

by looking at the two-dimensional dataset (Xk, yk).

5 Montecarlo Evidence

In tables 3, 4, 5, 6, 7, 8, 9, 10, I report the results of a Montecarlo simulation. The datasets

were generated for sample sizes of K = {25, 50, 100, 250, 500, 1000, 2500, 5000} and the number

of inputs varied from P = 2 to P = 20. The inputs were generated in the following way. The P

inputs were generated uniformly on the unit isoquant
∑

p xp = 1 (which implicitly assumes perfect

substitutes with ρ = 1 and αp = 1, ∀p). To do so, I generate random values from the multivariate

6For ρ < 0 and any value of αp1, αp2 such that

K∑
k=1

(
P∑

p=1

αp1x
ρ
kp

)1/ρ

≥
K∑

k=1

(
P∑

p=1

αp2x
ρ
kp

)1/ρ

, then

K∑
k=1

P∑
p=1

αp1x
ρ
kp ≤

K∑
k=1

P∑
p=1

αp2x
ρ
kp.
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standard normal. For each random draw k, I standardize it by the value rk =
∑

p |zpk|. Then

taking the absolute values of these draws |zk/rk| will return random draws uniformly distributed

on the unit surface of a polyhedron (the unit isoquant
∑

p xp). I then generate the aggregate

output Xk from a beta distribution with both parameters equal to 2. Taking xk = |zk/rk|/Xk

will place the different input mixes at different inputs level. This will provide good coverage of

the input mixes, but also insure that the aggregate output is distributed between zero and one.

Notice that one could generate points uniformly directly inside the tetrahedron. The shortcoming

of this alternative method is that the sum of the coordinates (the aggregate output) will not be

distributed between zero and one (since the distribution would follow a Irwin-Hall distribution

with probability in the left tail close to zero). I then generate the frontier output according to

the following non-convex piecewise production function:

q = F (X) =



1
2X 0 ≤ X < 0.25

5
2X − 1

2 0.25 ≤ X < 0.5

1
2X + 1

2 0.5 ≤ X ≤ 1

The output so generated is then perturbed by an efficiency score. The efficiency score is

generated according to the following distribution:


1 p = 0.1

U(0.1, 1) 1− p = 0.9

This means there is a 10% chance of obtaining a frontier point and a 90% chance of obtaining

a random number distributed as a uniform between 0.1 and 1. This data generating process

implies that the production technology is input homothetic and the input isoquant of the CES

form with linear input isoquants. Notice also that the graph of the technology is non-convex.
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In the simulation study I compare the performance of three different sets of efficiency scores.

First, I compute the input aggregates using the CES function as described in this paper. Second, I

compute the input aggregates using the Homothetic FDH model as described in Peyrache (2022).

Last, I compute the efficiency scores directly with the FDH, ignoring the structure of the problem.

Two measures of performance are used: the proportion of incorrectly classified observations

and the mean square error (MSE). The MSE is quite a standard measure. The proportion of

incorrectly classified observations is taking the number of observations that have an efficiency

score lower than one but are classified by the model as fully efficient:

#(θk < 1, θ̂k = 1)

#(θk < 1)

This measure belong to the unit interval, with 0 meaning no mistakes are made and 1 meaning

that the model fails classification completely and gives all efficiency scores equal to one. This

second measure is in fact possibly the most relevant metric since the first test that an efficiency

model should satisfy in terms of discrimination power is to demarcate between efficient and non

efficient units.

A glance at the tables reported in the appendix will reveal that the CES model is in fact robust

to increases in dimensionality, but also it will improve performance more sharply with an increase

in the number of observations. The homothetic model, although useful in low dimensionality

(say up to dimension 3 or 4), deteriorates very quickly in performance for larger dimensional

problems. The tables also points to the problem with the FDH discrimination power, which

possibly discouraged its use in the past, due to lack of discrimination power when already using

2 inputs.

In figure 1 I report, for a dataset of 250 observations, the deterioration in performance of

the three different sets of efficiency scores. In the figure, on the x-axis the number of inputs are

reported and on the y-axis the proportion of incorrectly classified observations, i.e. observation
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that are inefficient but are incorrectly classified as efficient. This is the most direct and crude

measure of discrimination power that one can use, since it measure the basic task of demarcating

between efficient and inefficient observations. This measure is also easy to interpret since it varies

between zero and one. As it can be seen from this graph, in the case of a single input all three

models classify correctly more than 90% of observations. With two inputs the FDH is already

incorrectly classifying about 40%, while the homothetic FDH shows about the same performance

as the CES method. It is with 3 dimensions and above that the homothetic FDH performance

deteriorates quite fast and with 5 dimension the proportion of incorrectly classified observation

is already close to 40%, while the CES model mostly retains its discrimination power. Although

the homothetic FDH is a step forward compared to the FDH, it is still deteriorating quite fast in

high dimension.

Another way of looking at this same phenomena is to look at improvement when the number

of observations increases from 25 to 5,000. In figure 2 and 3 I report this improvement for the case

of 5 and 10 inputs respectively. From these two figures it is very clear that the CES model falls

below the 10% threshold very quickly and in fact close to zero (exponentially). On the contrary

for both the FDH and the homothetic FDH, although there is an improvement at the beginning

(mostly due to a poor performance in small samples), they very soon flatten out and any increase

in performance relies on exponential growth in the sample size.

The bottom line of this analysis is that the homothetic FDH is certainly a significant improve-

ment on the FDH and it performs very well in dimensions up to, say, 3 inputs. After that the

homothetic FDH, while still maintaining a large advantage compared to the FDH, cannot match

the performance of the CES. This points to the fact that homotheticity alone is insufficient to

deal with the curse of dimensionality.
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Figure 1: Proportion of incorrectly classified observations for a dataset with 250 observations and
different number of inputs.

Figure 2: Proportion of incorrectly classified observations for a dataset with 5 inputs and different
number of observations.
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Figure 3: Proportion of incorrectly classified observations for a dataset with 10 inputs and different
number of observations.

6 Empirical Illustration

In this section two real data examples are used to illustrate the practical use of the separability

assumptions. The first one considers courts of justice in Italy and the data were collected by

Professor Angelo Zago (see Peyrache and Zago (2016)). For simplicity, only the data in the year

2003 are considered. Input in the production process is the total number of employees of the

court of justice. Two outputs are considered in order to differentiate between civil and criminal

cases. Therefore a model with 1 input and 2 outputs is considered. Descriptive statistics are

reported in Table 1.

In Figure 4 the unit output isoquant is plotted. Since the output isoquants are all parallel

under output homotheticity, the shape of this isoquant is representative of the shape of the

isoquant at all points of the technology set. In the figure the homothetic FDH isoquant is

represented in blue and the CES isoquant in red. Interestingly enough the CES isoquant produces
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Civil Criminal Number of
Cases Cases Employees

Mean 15,507 7,538 140
Std Dev 24,962 10,069 200
Min 1,392 363 22
Max 216,210 76,046 1651

Total 2,558,690 1,243,804 23,071

Table 1: Descriptive Statistics for 165 courts of justice in the year 2003.

non-convex output sets and by construction it contains the homothetic FDH isoquant. The

substitution possibilities are large and a reduction of one hundred civil cases would correspond

to an increase of about 150 criminal cases. The value of the substitution parameter is ρ = 0.58

and the output coefficients are respectively 0.0365 and 0.0222.

In Figure 5 a boxplot of seven sets of efficiency scores is reported. These efficiency scores

are, respectively: the FDH; the homothetic FDH; the CES-FDH; the FDH under CRS; the DEA

under VRS; the DEA under CRS; and the CES-FDH under CRS. The various distributions have

been plotted from the one with the least (FDH) discrimination power to the one with the highest

discrimination power (CES-CRS). It is interesting to note that the CES-FDH is returning almost

the same distribution as the homothetic FDH. This should not surprise given the discussion

about the Montecarlo results, since the homothetic FDH has high discrimination power when the

number of dimensions is low (in this case one input and two outputs). It is important to point

out that imposing CRS on the homothetic FDH or the CES-FDH will return quite a different set

of efficiency scores. This difference is quite marked for the CES model, since the CES-CRS will

contain by definition the FDH-CRS set. On the contrary if using a convex model these differences

are lost: one can easily see from the boxplot of the DEA-VRS and DEA-CRS that there are not

very significant differences in terms of the distribution of the efficiency scores.

Table 2 reports descriptive statistics for the Philippines rice farmers dataset (see Coelli et al.

(2005) for a complete description of the dataset). Here rice (the single output) is produced

using four inputs: land, labour, capital and fertilizers, and other inputs. Figure 6 reports the
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Figure 4: Output substitution possibilities for the Italian Courts of Justice (CES and Homothetic
FDH isoquants).

Rice Land Labour Capital and Other
Production Fertilizers Inputs

Mean 6.54 2.14 108.34 189.23 125.34
Std Dev 5.11 1.46 77.19 169.80 158.24
Min 0.09 0.20 8.00 10.00 1.46
Max 31.1 7.00 437.00 1,030.90 1,083.40

Total 2,249.90 737.37 3727.00 6,509.70 4,311.90

Table 2: Descriptive Statistics for 344 Rice farmers in the Philippines.
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Figure 5: Output efficiency scores for the Italian Courts of Justice.

Figure 6: Output efficiency scores for the Philippines Rice Farmers.
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boxplot of the same set of efficiency scores computed for the courts of Justice example and

ordered in terms of discrimination power. Notice how the picture that emerges here is quite

different. First of all, given that this dataset has four inputs the CES has more discrimination

power than the homothetic FDH. Interestingly, the CES-FDH has more discrimination power

than the DEA-VRS. Since the only difference between the FDH and the DEA-VRS is given by

the convexity assumption, this means that the big shift in the efficiency scores is entirely due to

convexity. Considering that the same outcome in terms of discrimination power can be obtained

via separability conditions, one is induced to question if the convexity assumption is warranted

in this case. Finally, notice how the CES model under CRS returns the highest discrimination

power among all models: this is not necessarily the case, since the CES-FDH is not based on an

assumption of convexity, in general. In this particular instance, though, the value of the elasticity

parameter is ρ = 0.073, which means that the elasticity of substitution is close to unity and the

shape of the input isoquant (in the four dimensional space) will resemble the Cobb-Douglas form.

Since under CRS the only non-convexity will arise from the shape of the isoquant for the CES

model, in this particular instance the CES under CRS will be an enlargement of the DEA-CRS,

as it is clear from the boxplot of efficiency scores. Notice how convexity plays a much minor role

in this empirical illustration and the major differences in the distribution of the efficiency scores

come from the assumption of CRS (i.e. scalability of the production process).

All in all, the CES model provides a very nice tool to explore the efficiency of production and

it is also providing some ease of interpretation, since its shape depends on a limited number of

parameters.

7 Conclusion

In this paper I used the properties of homotheticity and complete additive separability to

build a production technology that is nonparametric in the graph and has level sets of the CES
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form. In the paper several assumptions were discussed and the most interesting one is to tackle

computation of the same model under the assumption that the input isoquants are of the nested

CES form instead of the simple CES. This would allow more flexibility since the elasticity of

substitution would vary from one group to the next. The cost of this additional flexibility is an

increase in the number of parameters. And of course the additional burden of finding a suitable

numerical implementation, which in this case would not be as simple. This may provide material

for future research.

One question that stays unanswered is if it is possible to build a technology that satisfies

complete additive separability without satisfying homotheticity, in which case the shape of the

isoquant would not be a CES or of any parametric form.

Finally, all the previous computational methods have been delivered in the case of a single

output technology. This can be easily extended to the case of a single input multiple output

technology. Extension to multiple output multiple input technologies is definitely an important

method that needs to be researched.
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P \ K 25 50 100 250 500 1000 2500 5000

2 0.315 0.217 0.150 0.083 0.051 0.031 0.015 0.009

3 0.311 0.221 0.148 0.083 0.051 0.031 0.015 0.009

4 0.331 0.224 0.146 0.084 0.053 0.031 0.015 0.009

5 0.334 0.219 0.149 0.084 0.052 0.031 0.016 0.009

6 0.321 0.226 0.151 0.083 0.052 0.032 0.015 0.009

7 0.328 0.220 0.149 0.085 0.051 0.032 0.016 0.009

8 0.324 0.227 0.145 0.084 0.051 0.031 0.015 0.009

9 0.318 0.222 0.156 0.083 0.051 0.031 0.015 0.009

10 0.320 0.223 0.147 0.084 0.052 0.032 0.015 0.009

11 0.323 0.215 0.152 0.083 0.053 0.031 0.015 0.009

12 0.326 0.219 0.150 0.084 0.051 0.032 0.015 0.009

13 0.321 0.221 0.150 0.085 0.051 0.031 0.015 0.009

14 0.326 0.218 0.148 0.082 0.052 0.032 0.015 0.009

15 0.322 0.222 0.149 0.082 0.051 0.031 0.016 0.009

16 0.332 0.222 0.148 0.084 0.052 0.031 0.015 0.009

17 0.320 0.227 0.152 0.082 0.052 0.031 0.015 0.009

18 0.315 0.224 0.148 0.085 0.052 0.032 0.015 0.009

19 0.325 0.223 0.153 0.082 0.053 0.032 0.016 0.009

20 0.305 0.217 0.149 0.082 0.052 0.031 0.015 0.009

Table 3: Oracle - Proportion of Incorrectly Classified Observations

P \ K 25 50 100 250 500 1000 2500 5000

2 0.333 0.218 0.148 0.081 0.050 0.031 0.015 0.009

3 0.341 0.232 0.147 0.081 0.050 0.030 0.015 0.009

4 0.365 0.233 0.148 0.082 0.051 0.031 0.015 0.009

5 0.366 0.235 0.152 0.082 0.050 0.030 0.015 0.008

6 0.379 0.249 0.152 0.083 0.050 0.031 0.015 0.009

7 0.394 0.255 0.158 0.084 0.051 0.030 0.015 0.009

8 0.400 0.261 0.164 0.086 0.051 0.031 0.015 0.009

9 0.411 0.273 0.167 0.086 0.050 0.031 0.015 0.009

10 0.420 0.278 0.172 0.088 0.050 0.031 0.015 0.008

11 0.428 0.268 0.175 0.089 0.053 0.031 0.015 0.009

12 0.433 0.283 0.181 0.090 0.053 0.032 0.015 0.009

13 0.444 0.285 0.180 0.093 0.054 0.031 0.015 0.008

14 0.447 0.286 0.185 0.094 0.053 0.032 0.015 0.009

15 0.451 0.305 0.193 0.093 0.055 0.032 0.015 0.009

16 0.457 0.305 0.191 0.096 0.056 0.032 0.015 0.009

17 0.447 0.299 0.196 0.097 0.056 0.032 0.015 0.008

18 0.459 0.309 0.192 0.101 0.058 0.032 0.015 0.009

19 0.459 0.309 0.198 0.102 0.058 0.033 0.015 0.009

20 0.461 0.309 0.199 0.103 0.059 0.033 0.015 0.008

Table 4: CES - Proportion of Incorrectly Classified Observations

27



P \ K 25 50 100 250 500 1000 2500 5000

2 0.409 0.270 0.179 0.092 0.055 0.032 0.015 0.008

3 0.525 0.391 0.290 0.176 0.122 0.080 0.046 0.029

4 0.629 0.499 0.396 0.278 0.214 0.162 0.110 0.079

5 0.690 0.577 0.471 0.368 0.301 0.246 0.184 0.146

6 0.731 0.635 0.542 0.441 0.373 0.316 0.256 0.215

7 0.783 0.681 0.597 0.495 0.438 0.381 0.318 0.276

8 0.815 0.725 0.640 0.546 0.489 0.433 0.372 0.331

9 0.839 0.754 0.681 0.588 0.532 0.479 0.420 0.378

10 0.861 0.777 0.706 0.624 0.567 0.518 0.461 0.420

11 0.862 0.802 0.738 0.657 0.604 0.556 0.498 0.458

12 0.886 0.823 0.765 0.688 0.632 0.585 0.532 0.492

13 0.896 0.840 0.776 0.709 0.659 0.616 0.561 0.523

14 0.905 0.859 0.803 0.734 0.685 0.640 0.587 0.550

15 0.922 0.871 0.819 0.753 0.708 0.663 0.612 0.576

16 0.926 0.885 0.833 0.772 0.724 0.686 0.635 0.600

17 0.928 0.887 0.848 0.787 0.744 0.705 0.657 0.621

18 0.936 0.898 0.857 0.801 0.761 0.724 0.677 0.642

19 0.949 0.909 0.869 0.818 0.777 0.739 0.693 0.660

20 0.954 0.915 0.878 0.827 0.789 0.756 0.711 0.679

Table 5: Homothetic FDH - Proportion of Incorrectly Classified Observations

P \ K 25 50 100 250 500 1000 2500 5000

2 0.663 0.552 0.449 0.330 0.257 0.197 0.136 0.102

3 0.824 0.750 0.668 0.549 0.467 0.392 0.306 0.251

4 0.911 0.857 0.793 0.700 0.626 0.551 0.462 0.399

5 0.949 0.915 0.870 0.800 0.735 0.671 0.587 0.527

6 0.969 0.948 0.917 0.866 0.812 0.759 0.684 0.629

7 0.983 0.964 0.945 0.904 0.869 0.824 0.759 0.709

8 0.991 0.978 0.962 0.936 0.906 0.870 0.816 0.772

9 0.992 0.986 0.977 0.954 0.931 0.904 0.859 0.820

10 0.996 0.990 0.985 0.967 0.952 0.927 0.891 0.859

11 0.996 0.994 0.988 0.978 0.964 0.946 0.916 0.889

12 0.998 0.996 0.992 0.984 0.974 0.959 0.935 0.912

13 0.998 0.997 0.994 0.987 0.979 0.969 0.949 0.931

14 0.999 0.998 0.996 0.991 0.985 0.976 0.961 0.945

15 1.000 0.998 0.998 0.993 0.989 0.982 0.969 0.956

16 0.999 0.999 0.998 0.995 0.992 0.986 0.976 0.965

17 0.999 0.999 0.999 0.996 0.994 0.989 0.981 0.972

18 1.000 0.999 0.999 0.997 0.995 0.992 0.985 0.978

19 0.999 0.999 0.999 0.998 0.996 0.993 0.988 0.982

20 1.000 1.000 0.999 0.999 0.997 0.995 0.991 0.985

Table 6: FDH - Proportion of Incorrectly Classified Observations
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P\K 25 50 100 250 500 1000 2500 5000

2 0.212 0.163 0.121 0.079 0.054 0.039 0.024 0.016

3 0.215 0.162 0.121 0.076 0.056 0.038 0.023 0.016

4 0.220 0.168 0.122 0.076 0.054 0.038 0.023 0.016

5 0.221 0.163 0.119 0.078 0.054 0.037 0.023 0.016

6 0.218 0.165 0.119 0.076 0.054 0.038 0.023 0.016

7 0.216 0.165 0.119 0.076 0.055 0.038 0.024 0.016

8 0.220 0.159 0.119 0.078 0.053 0.039 0.023 0.016

9 0.219 0.163 0.122 0.077 0.053 0.038 0.023 0.016

10 0.215 0.161 0.118 0.078 0.054 0.037 0.023 0.016

11 0.223 0.161 0.119 0.079 0.055 0.037 0.022 0.016

12 0.219 0.166 0.120 0.077 0.054 0.038 0.023 0.016

13 0.217 0.163 0.122 0.079 0.055 0.039 0.023 0.016

14 0.220 0.161 0.121 0.076 0.054 0.038 0.023 0.016

15 0.213 0.164 0.120 0.078 0.055 0.038 0.023 0.016

16 0.221 0.160 0.120 0.077 0.054 0.037 0.023 0.016

17 0.216 0.161 0.120 0.078 0.054 0.038 0.023 0.016

18 0.220 0.164 0.122 0.078 0.055 0.037 0.024 0.016

19 0.214 0.164 0.119 0.079 0.054 0.039 0.023 0.016

20 0.217 0.166 0.119 0.079 0.055 0.038 0.023 0.016

Table 7: Oracle - Mean Square Error

P \ K 25 50 100 250 500 1000 2500 5000

2 0.225 0.170 0.124 0.082 0.056 0.041 0.024 0.016

3 0.242 0.174 0.134 0.083 0.061 0.041 0.025 0.017

4 0.253 0.192 0.135 0.087 0.062 0.042 0.025 0.017

5 0.263 0.194 0.139 0.091 0.064 0.044 0.027 0.017

6 0.269 0.202 0.147 0.094 0.067 0.047 0.027 0.018

7 0.272 0.206 0.150 0.095 0.072 0.049 0.028 0.018

8 0.282 0.205 0.155 0.103 0.072 0.052 0.030 0.019

9 0.285 0.216 0.159 0.109 0.075 0.054 0.030 0.020

10 0.288 0.218 0.162 0.112 0.076 0.056 0.032 0.021

11 0.297 0.217 0.165 0.111 0.082 0.056 0.033 0.021

12 0.286 0.222 0.169 0.115 0.085 0.059 0.034 0.023

13 0.297 0.228 0.168 0.119 0.090 0.063 0.036 0.023

14 0.303 0.226 0.174 0.118 0.089 0.065 0.038 0.024

15 0.297 0.222 0.175 0.120 0.092 0.067 0.039 0.025

16 0.305 0.229 0.173 0.126 0.096 0.068 0.041 0.026

17 0.300 0.228 0.176 0.125 0.096 0.069 0.042 0.027

18 0.302 0.233 0.175 0.127 0.099 0.073 0.044 0.028

19 0.301 0.234 0.176 0.128 0.099 0.074 0.046 0.029

20 0.311 0.235 0.175 0.128 0.103 0.076 0.046 0.030

Table 8: CES - MSE
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P \ K 25 50 100 250 500 1000 2500 5000

2 0.262 0.213 0.164 0.129 0.118 0.113 0.112 0.116

3 0.310 0.256 0.218 0.179 0.164 0.161 0.161 0.164

4 0.345 0.300 0.258 0.215 0.194 0.182 0.175 0.174

5 0.374 0.327 0.289 0.245 0.222 0.206 0.190 0.184

6 0.393 0.354 0.317 0.274 0.248 0.228 0.209 0.198

7 0.409 0.369 0.337 0.296 0.272 0.251 0.228 0.215

8 0.424 0.386 0.351 0.315 0.292 0.271 0.247 0.232

9 0.434 0.398 0.370 0.334 0.310 0.289 0.265 0.249

10 0.444 0.410 0.383 0.350 0.326 0.305 0.280 0.265

11 0.452 0.421 0.394 0.360 0.339 0.319 0.296 0.279

12 0.454 0.432 0.406 0.373 0.352 0.332 0.309 0.293

13 0.458 0.438 0.413 0.383 0.363 0.344 0.321 0.306

14 0.465 0.442 0.421 0.392 0.374 0.355 0.333 0.317

15 0.465 0.443 0.425 0.400 0.382 0.364 0.343 0.327

16 0.469 0.451 0.431 0.407 0.388 0.373 0.352 0.337

17 0.471 0.455 0.438 0.415 0.396 0.381 0.361 0.346

18 0.476 0.457 0.443 0.419 0.404 0.389 0.370 0.354

19 0.476 0.461 0.446 0.427 0.411 0.395 0.376 0.362

20 0.479 0.466 0.449 0.431 0.414 0.401 0.383 0.369

Table 9: Homothetic FDH - MSE

P \ K 25 50 100 250 500 1000 2500 5000

2 0.365 0.323 0.276 0.216 0.177 0.142 0.104 0.080

3 0.430 0.400 0.370 0.315 0.280 0.242 0.198 0.168

4 0.457 0.441 0.419 0.381 0.351 0.318 0.274 0.244

5 0.476 0.460 0.447 0.417 0.393 0.369 0.331 0.304

6 0.479 0.475 0.465 0.442 0.423 0.404 0.372 0.349

7 0.483 0.479 0.473 0.459 0.444 0.429 0.402 0.382

8 0.488 0.484 0.478 0.469 0.458 0.447 0.425 0.407

9 0.491 0.487 0.483 0.478 0.469 0.459 0.441 0.427

10 0.493 0.489 0.488 0.484 0.477 0.468 0.454 0.442

11 0.499 0.492 0.488 0.484 0.481 0.474 0.464 0.453

12 0.493 0.497 0.492 0.487 0.485 0.480 0.471 0.463

13 0.494 0.494 0.493 0.491 0.487 0.483 0.476 0.469

14 0.497 0.491 0.493 0.490 0.488 0.487 0.480 0.474

15 0.492 0.490 0.492 0.491 0.489 0.488 0.483 0.478

16 0.494 0.491 0.491 0.490 0.490 0.488 0.486 0.481

17 0.496 0.494 0.492 0.493 0.491 0.490 0.487 0.484

18 0.497 0.493 0.495 0.492 0.492 0.491 0.489 0.485

19 0.493 0.491 0.493 0.493 0.493 0.492 0.489 0.488

20 0.494 0.495 0.493 0.494 0.492 0.492 0.490 0.488

Table 10: FDH - MSE
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