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Abstract

We show that the application of the Generalized Constrained Probabilistic Se-

rial mechanism of Balbuzanov (2022) (which generalizes the Probabilistic Serial

mechanism of Bogomolnaia and Moulin (2001)) to school choice has attractive

properties. The mechanism is intuitively simple, assigning to each student, at each

moment in the unit interval, probability of receiving a seat in her favorite school

among those that are available then. It is sd-efficient and effectively strategy proof.

We provide an algorithm, based on a generalization of Hall’s marriage theorem,

for computing the mechanism, which has been implemented, and seems likely to

have reasonable running times even for the world’s largest school choice problems.

Keywords: School Choice, Object Allocation, Efficiency, Fairness, Strategy Proof-

ness, Probabilistic Serial Mechanism, Hall’s Marriage Theorem.

In a seminal paper Abdulkadiroğlu and Sönmez (2003) propose the application, to
school choice, of two mechanisms based on matching theory. The student proposes

deferred acceptance (DA) mechanism was originally proposed by Gale and Shapley
(1962), and it has been widely adopted for school choice and similar problems around
the world. The top trading cycles (TTC) mechanism was originated by David Gale, as
described by Shapley and Scarf (1974), and although it has some superior theoretical
properties, it has found less practical acceptance. This paper argues that the generalized

constrained probabilistic serial (GCPS) mechanism of Balbuzanov (2022), which is a
generalization of the probabilistic serial (PS) mechanism of Bogomolnaia and Moulin
(2001) (henceforth BM) is also viable and attractive as a school choice mechanism.
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In practice (e.g. Pathak (2017)) transparency and straightforward incentives are re-
quired in order for school choice mechanisms to be accepted by parents. The Boston

(or immediate acceptance) mechanism begins by assigning as many students to their
favorite (according to the submitted rankings) schools as possible. It then assigns as
many of the remaining students to their second favorite schools as possible, and it con-
tinues similarly, in the kth round assigning as many of the remaining students to their kth

favorite schools as possible. Since it is possible that a student can (for example) greatly
increase her chance of being accepted at her second favorite school if she ranks it as her
favorite, the Boston mechanism is not strategy proof, and in fact it is strategically tricky,
with high stakes. Nevertheless it continues to be widely used because it is conceptually
simple.

The GCPS mechanism has a similar conceptual simplicity: during the unit interval
of time, each student is assigned probability of receiving a seat in her favorite school,
among those she is eligible for, at unit speed, until some capacity constraint is encoun-
tered, at which point each student who can no longer be assigned probability in her
favorite school switches to receiving probability in the favorite school among those that
still have some available capacity. The process continues similarly, with each student at
each time receiving probability of receiving a seat in her favorite school among those
that are still available, so that at time 1 each student has a probability distribution over
schools. As we explain in Online Appendix A, it is possible to compute a random
deterministic assignment with a distribution that realizes these probabilities.

Strictly speaking, the GCPS mechanism is not strategy proof, but we will argue that
it is effectively strategy proof in an easily understood sense. In order to manipulate
by submitting a false ranking, there must first be a period of time during which the
student is receiving probability of a school that is worse than the one she would have
been consuming if she had told the truth, followed by a period of time during which
she is receiving probability of a school that is better than the one she would have been
consuming, but if many students are competing for desirable schools, the extension of
the latter period due to the manipulation is necessarily brief.

Both DA1 and TTC2 require that the schools have strict rankings of the students

1At the outset in DA each student applies to her favorite school. Each school with more applicants
than its capacity rejects the lowest priority applicants beyond the number it can serve. In each subsequent
round each student who was rejected in the preceding round applies to her favorite school among those
that have not rejected her, and each school retains the highest priority applicants, up to its capacity, among
those who have applied in all rounds, and rejects all others. The process continues in the same manner
until there is a round with no rejections.

2In TTC each student points to her favorite school and each school points to its highest priority
student. The resulting directed graph has at least one cycle, each student in a cycle is assigned to the
school she points to, and she is removed from the mechanism, along with the seat she claimed in her
school. This process is then repeated with the remaining students and seats, and it continues in this
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that are called priorities. The assignments produced by DA are ex post efficient3 if
the schools’ priorities actually reflect society’s values. However, if the priorities are
generated randomly, simply in order to fulfill the requirements of the mechanism, then
assignments can be inefficient4. In a study of New York City data Abdulkadiroğlu et al.
(2009) found that the inefficiencies arising in this way are quantitatively significant.

The outcomes produced by TTC are ex post efficient relative to the students’ prefer-
ences. Specifically, the students leaving the mechanism in the first round are receiving
their favorite schools, the students leaving the mechanism in the second round are re-
ceiving their favorite schools among those that remain, so their assignments cannot be
improved without disturbing the assignments from the first round, and so forth.

The assignment probabilities produced by GCPS are sd-efficient: there are no other
assignment probabilities that give each student a probability distribution over schools
that first order stochastically dominates the one given by the GCPS assignment, with
strict domination for some students. Consequently any probability distribution over
deterministic assignments that realizes the GCPS probabilities assigns positive proba-
bility only to ex post efficient assignments. An important observation of BM is that, in
the context of object allocation, random priority5 may produce assignment probabilities
that are not sd-efficient, even though it produces ex post efficient assignments.

In practice almost all school choice mechanisms limit the number of schools that
a student can rank, and in very large districts such restrictions seem unavoidable. We
focus on a version of the GCPS mechanism that finishes in a single round (other pos-
sibilities are described below) and does not assign any student to a school she did not
rank. Specifically, we assume that each student is assigned a safe school which is guar-
anteed to accept the student if she is not admitted to a school she prefers to it, and which
she may be required to attend if other schools do not admit her.

We assume that for each school, the number of students for whom that school is the
safe school is not greater than the school’s capacity. The GCPS mechanism requires
that there is a probabilistic assignment that assigns all students to schools they are el-
igible for and that does not exceed any school’s capacity, and our assumption insures
that the assignment of each student to her safe school is such an assignment. Other

manner until all students have been assigned. When different schools have different priorities, the role of
priorities in TTC is hard to grasp. (See Leshno and Lo (2020).)

3More precisely, DA produces assignments that are stable: there is no student-school pair such that
the student prefers that school to the one she has been matched with and the student has a higher priority
at that school than some other student that has been assigned to that school.

4In the simplest instance, if Bob prefers Carol School to Alice School, while Ted prefers Alice School,
the mechanism may nevertheless assign Bob to Alice School and Ted to Carol School if the schools’
priorities “prefer” that outcome.

5In random priority for object allocation the agents are ordered randomly, the first agent chooses her
favorite object, the second agent chooses her favorite of the remaining objects, and so forth.
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methods, such as requiring each student to rank the three closest schools, may be able
to insure the existence of a feasible allocation while also providing a lower bound on the
student’s outcome, and an upper bound on what the student can insist on by not ranking
other alternatives. Our focus on safe schools is primarily for the sake of simplicity and
concreteness.

Mechanisms that would be strategy proof without restrictions on the number of
schools that can be ranked become manipulable when such restrictions are imposed.
Haeringer and Klijn (2009) study the Nash equilibria of matching based mechanisms
with such limitations. Calsamiglia et al. (2010) is an experimental study of the effects of
constraining the number of schools that can be ranked, for DA and TTC; a main finding
is that constraints have a large negative effect on manipulability, and reduce efficiency
and stability while increasing segregation.

In the GCPS mechanism with safe schools each student submits only a ranking of
those schools she weakly prefers to her safe school. Safe schools are also possible
with DA: if each student has the highest possible priority at her safe school, and each
school has enough capacity for all the students for which it is the safe school, then a
student will never be rejected by her safe school, and only needs to rank schools she
weakly prefers to it. Both for GCPS and DA, strategy proofness is largely restored by
having safe schools if most students prefer at most a small number of schools to the
safe school. Of course having safe schools that students are likely to find desirable is
consistent with the main goal of school choice, which is to assign students to schools
they would like to attend. Some systems (e.g., the state of Victoria in Australia) have
neighborhood priority in which each student’s safe school is the one whose district
contains her residence.

In the New York City High School Match as of 2006 (Pathak, 2006) each student
submitted a ranking of up to 12 schools. Of the roughly 100,000 participants, over
8,000 were unmatched after the main round, in the sense that they were not offered a
seat by any school they ranked. These students submitted new rank ordered lists for the
supplementary round, in which schools with unfilled capacity participated. Students
who did not receive a seat in the supplementary round were assigned administratively.
We do not know the particular considerations that motivated this design. (One possi-
bility is that neighborhood priority would have impeded a goal of school desegregation
since there was a high degree of de facto residential segregation.)

The important point for us is that GCPS can also be employed in multiround sys-
tems: each student’s safe school in the first round is participation in the second round,
for each student in the second round the safe school is participation in the third round
or administrative assignment, and so forth. In the remainder we assume a single round
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because this setting is simple, but rich enough to encompass the relevant technical is-
sues.

One of the advantages of the GCPS mechanism is that the schools’ priorities need
not be strict. At one extreme, the GCPS mechanism makes it possible to have dichoto-

mous priorities: each school gives equal consideration to all students who are qualified,
perhaps by virtue of gender for single sex schools or test score cutoffs for selective
schools. Welfare analysis is simplified and clarified because one may consider only the
priorities that express societal values, whereas DA and TTC may mix such priorities
with arbitrary tie breaking.

However, the priorities in school choice mechanisms often express societal values.
For example, in China (Wang and Zhou, 2020) the student’s score on a standardized
exam is taken to be her priority, presumably reflecting a policy objective of providing
the most highly demanded resources, and the widest range of options, to the most tal-
ented students. Priorities may be affected by gender, minority status, and residential
location. In effect, DA computes a vector of priority cutoffs for the schools, and each
student is matched with the most preferred school among those whose threshhold she
exceeds. (This is also the case for TTC if all schools have the same priorities.)

GCPS can be used to attain similar outcomes. When each school has finitely many
priority classes, an ideal outcome for any particular school is that it either has excess
capacity, and accepts all students who apply, or it has a cutoff priority class, students
with lower priority are not admitted, students with higher priority have no probability
of being required to attend a school they like less, and the number of seats assigned to
students in the cutoff class allows the school’s capacity to be exactly utilized. In Section
5 we show that there is a setting of the parameters of the GCPS mechanism that attains
this ideal simultaneously at all schools.

Two technical innovations underlie the computational feasibility of the GCPS mech-
anism. To facilitate the discussion we quickly review some basic results (without
proofs) and terminology.

A polytope Q may be defined to be the convex hull of a finite set of points, or as an
intersection of finitely many closed half spaces that happens to be bounded. To avoid
technical detail our discussion in this paragraph assumes that Q is full dimensional, in
the sense that its affine hull is the entire Euclidean space of which it is a subset. Among
the finite systems of weak linear inequalities that may be used to define Q, there is a
unique (up to rescaling of inequalities by multiplication by positive scalars) such system
that is minimal, and that is contained in any other such system. Its elements are the facet

inequalities of Q. For each facet inequality the corresponding facet is the subset of Q
on which the facet inequality holds with equality. A subset of Q is a face if it is Q itself,

5



the null set, or the intersection of some set of facets. A polytope Q is the convex hull
of a finite set of points, and among the finite sets whose convex hulls are Q, there is a
unique such set that is minimal in the sense that it is contained in any other such set,
whose elements are the vertices of Q. The vertices of Q may also be described as its
extreme points, where an extreme point of Q is a point that cannot be expressed as a
convex combination of other points of Q.

In Balbuzanov (2022) the set of feasible allocations is a given polytope Q in the
nonnegative orthant of the space of matrices of assignment probabilities. (Echenique
et al. (2021) follow this approach in their study of pseudo-market equilibria with con-
straints.) Let R be the intersection of the nonnegative orthant with the sum of Q and the
nonpositive orthant. That is, a point in the nonnegative orthant is in R if and only if it
lies below some point of Q.

The GCPS allocation process is a piecewise linear function p : [0, 1] → R. It begins
with p(0) equal to the origin and increases each student’s probability of receiving her
favorite school, among those she is allowed to consume, until one of the facet inequal-
ities of R is encountered. A key result (Balbuzanov’s Proposition 1) is that the facet
inequalities of R (other than the nonnegativity conditions) require that weighted sums
of probabilities, with nonnegative weights, not exceed certain quantities. When the pro-
cess encounters one or more facet inequalities, each student’s set of allowed objects is
updated by disallowing further consumption of probabilities that would result in one of
these facet inequalities being violated. The process then continues, with each student
increasing the probability of receiving her favorite allowed school until additional facet
inequalities of R are encountered, and again the students’ sets of allowed schools are
updated. (For the problems we study each student’s set of allowed schools is always
nonempty.) Eventually the process arrives at a point p(1) ∈ Q that is, by definition, the
GCPS allocation.

A computational implementation of the GCPS mechanism must have a way of de-
tecting when the allocation process encounters a facet of R. Our first main result is
a generalization of Hall’s marriage theorem that gives a set of inequalities, in closed
form, that contains the facet inequalities of R. Our second main innovation is a fast
algorithm for computing the GCPS allocation. In addition to computing p, it also com-
putes a piecewise linear path p : [0, 1] → Q such that p(t) ≤ p(t) for all t. Having
chosen a trajectory for p, p continues along the trajectory given by the students’ favorite
allowed schools, and p continues along the chosen trajectory, until the time at which
some resource constraint is encountered by p, or continuing further would result either
in p leaving Q or p no longer lying below p. At that time a combinatoric calculation of
bounded complexity gives either a new trajectory for p or a facet inequality of R that is
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satisfied by p and p at that time.
We briefly describe the structure of the remainder. The next section reviews related

literature. Section 2 states and proves our generalization of Hall’s marriage theorem.
During the allocation process there can be a critical pair consisting of a set J of agents
and a set P of objects such that the agents in J must be assigned all of the remaining
capacity of the objects in P . Section 3 studies such pairs. Section 4 describes the
algorithm for computing the GCPS allocation. Section 5 states the aforementioned
result concerning simultaneous satisfaction of priorities at all schools, and describes an
iterative adjustment procedure in which the GCPS allocation is computed repeatedly,
hoping to approximate this outcome.

Section 6 shows that GCPS allocations are sd-efficient, and also efficient in relation
to other orderings of the set of probability measures on objects derived from an ordinal
preference that correspond to the limits of extreme risk loving and extreme risk averse
cardinal preferences. Section 7 considers the fairness properties of GCPS allocations.
Section 8 argues that although the GCPS mechanism is not fully strategy proof, it is very
difficult to manipulate in its application to school choice, and we present two theoretical
results in this direction. Section 9 provides some concluding remarks.

Online Appendix A describes a special case of an algorithm of Budish et al. (2013)
that passes from a matrix of assignment probabilities to a random deterministic assign-
ment whose distribution realizes the given probabilities. Online Appendix B gives a
brief informal description of the software package GCPS Schools, which implements
the algorithms described in Section 4 and Online Appendix A. GCPS Schools also con-
tains an application that generates sample school choice problems. Online Appendix D
contains the proofs of the results of Section 8. Other proofs are in Online Appendix C.

1 Background and Related Literature
The literature on school choice is now vast; Abdulkadiroğlu and Andersson (2022) is
a recent survey. In this section we survey some of the literature that is most closely
related our work.

In response to the inefficiencies observed by Abdulkadiroğlu et al. (2009), a rather
extensive literature (Erdil and Ergin, 2008, Kesten, 2010, Tang and Yu, 2014, Kesten
and Ünver, 2015) studies how the outcome of DA might be adjusted ex post, possibly by
substituting new priorities. In fact there are theoretical barriers to improving efficiency
by manipulating the breaking of ties in the schools’ rankings. Gale and Shapley (1962)
show that DA yields the best outcome for each student that can be achieved in any
allocation without justified envy for the given priorities. Improving on results of Kesten
(2006) and Erdil and Ergin (2008), Theorem 1 of Abdulkadiroğlu et al. (2009) asserts
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that, for any member of a large class of tie breaking rules, there is no mechanism that
is both strategy proof for that tie breaking rule and gives outcomes that weakly Pareto
dominate those produced by DA.

Although it is not widely used, TTC continues to be a topic of research. Some
papers (Morrill, 2015, Hakimov and Kesten, 2018, Grigoryan, 2023) proposed modified
versions of the mechanism. Leshno and Lo (2020) analyze it in terms of cutoffs for the
schools.

The GCPS mechanism may be applied to domains other than school choice. For
example, motivated by matching of medical residents with hospitals in Japan and sim-
ilar problems, Kamada and Kojima (2015, 2017) study mechanisms in which regional
caps on the number of residencies are implemented by imposing caps on the number
of residencies at individual hospitals in the region. This can lead to a hospital reject-
ing applicants as a result of the hospital’s cap even though other hospitals in the region
have unfilled vacancies. They propose a more flexible version of DA in which some
hospitals are allowed to exceed their caps if the total number of doctors matched to the
region is below the region’s cap. Similar effects can be achieved by running the GCPS
mechanism repeatedly while adjusting the caps of individual hospitals.

One way to implement affirmative action objectives has been suggested by Ab-
dulkadiroğlu and Sönmez (2003). For example, a school may be divided into three
subschools, one with 30% of the seats that is reserved for minority students, one with
30% of the seats that is reserved for majority students, and one with 40% of the seats
that accepts all students. “Hard” upper and lower bounds for the percentages of students
of different types are extensively used in practice, but Kojima (2012) and Hafalir et al.
(2013) point out that they lead to conflicts with other objectives, and Ehlers et al. (2014)
suggest implementing affirmative action goals using soft bounds. Such an approach can
be implemented, at least informally, by running the GCPS algorithm multiple times
while adjusting the parameters to better reconcile competing objectives.

We now describe the PS mechanism of BM and subsequent generalizations. BM
study the problem of assigning a different object from a finite set to each of finitely
many agents, based on their reported strict ordinal preferences. BM provide an intuitive
description of the PS mechanism in which each object is regarded as a perfectly divisible
cake of unit size. At each moment in the unit interval of time each agent consumes, at
unit speed, probability of her favorite cake, among those that have not yet been fully
consumed. Provided that there are at least as many objects as agents, at time 1 each
agent has a probability distribution over the objects, and for each object the sum of the
assignment probabilities is not greater than one. Among the most important theoretical
results are that the PS mechanism is sd-efficient but not strategy proof.
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Extensions of BM’s cake eating procedure have been proposed in (at least) six other
papers. Using the method of network flows (see Section 2) Katta and Sethuraman
(2006) extend the PS mechanism to profiles of preferences with indifferences. Their
mechanism has both the PS mechanism for strict preferences and the mechanism pro-
posed by Bogomolnaia and Moulin (2004) for matching problems with dichotomous
preferences as special cases. Bogomolnaia (2015) provides a welfarist characterization
of it.

Kojima (2009) studies perhaps the simplest extension of BM in which agents receive
multiple objects. Each agent receives r ≥ 2 objects, and the number of objects is r times
the number of agents. The mechanism is shown to be sd-efficient and envy-free, but
not weakly strategy proof, as we explain in more detail in Section 8.

Yilmaz (2010) studies house allocation problems with existing tenants, which are
object allocation problems in which some objects have owners who can insist on not
receiving a worse object. He proposes the special case of the mechanism studied here
for that problem, and in particular he recognizes the relationship between Hall’s mar-
riage theorem, its generalization by Gale (1957), and the set of feasible allocations.
His algorithm is generalized by Athanassoglou and Sethuraman (2011) to problems in
which agents have fractional endowments. Yilmaz (2009) uses the methods of Katta
and Sethuraman (2006) to extend the mechanism to the domain of preferences with
indifferences.

Budish et al. (2013) study problems in which there are constraints that require that
certain sums of probabilities are bounded, either below, in which case the constraint
is a floor constraint, or above, in which case it is a ceiling constraint. For a problem
with only ceiling constraints in which there is a “null object” (e.g., being unemployed,
unhoused, or unschooled) that is available in infinite supply, and which is not involved
in any constraint, they propose a generalized probabilistic serial (GPS) mechanism. As
in BM, at each moment in [0, 1] each agent increases her probability of her favorite
available object. When a ceiling constraint binds with equality, the sets of available
objects are revised by disallowing further consumption of probabilities that would vio-
late a constraint. Since the null object is always available, each agent’s set of available
objects is always nonempty. Thus at time 1 each agent has total probability one, and the
GPS assignment is defined as the probability shares that have been consumed by each
agent at time 1.

As we have already described, Balbuzanov (2022) generalizes the Budish et al.
(2013) mechanism by allowing the set of feasible allocations to be an arbitrary polytope
Q in the nonnegative orthant of the space of matrices of assignment probabilities.
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2 A Generalized Hall’s Marriage Theorem

In this section we introduce the formal framework, state and prove the generalization of
Hall’s theorem, and provide useful characterizations of Q and R.

A communal endowment economy (CEE) is a quintuple E = (I, O, r, q, g) in which
I is a nonempty finite set of agents, O is a nonempty finite set of objects, r ∈ RI

+,
q ∈ RO

+, and g ∈ RI×O
+ . We say that ri is i’s requirement, qo is the quota of o, and gio is

i’s o-max. We say that E is integral if r ∈ ZI
+, q ∈ ZO

+, and g ∈ ZI×O
+ . In comparison

with most models of random assignment, the matrix g is the main novelty, and we will
see that it may represent several things and be used in various ways.

Several types of CEE occur in our discussion. A Gale supply-demand CEE is a CEE
E such that gio ∈ {0, ri} for all i ∈ I and o ∈ O. We say that E is a school choice

CEE if ri = 1 for all i, and we write E = (I, O, 1, q, g) to indicate that this is the
case. In a school choice CEE elements of I are students, elements of O are schools, and
each student must receive a seat in some school. In an integral school choice CEE each
school has an integral number of seats, and for each student i and school o, gio = 1 if
i is eligible to attend o and weakly prefers it to her safe school, and otherwise gio = 0.
(In Section 5 we will describe a method that uses fractional gio to adjust the GCPS
allocation when the schools have nondichotomous priorities.)

A Hall marriage problem is a CEE such that for all i and o, ri = 1, qo = 1, and
gio ∈ {0, 1}. In this case elements of I are boys and elements of O are girls. Intuitively
a Hall marriage problem is a bipartite graph with an edge connecting boy i to girl o if i
and o are compatible.

An allocation for I and O is a matrix p ∈ RI×O
+ . Such a p is integral if p ∈ ZI×O

+ .
In general, for any matrix p ∈ RI×O and any i ∈ I and o ∈ O, pi = (pio)o∈O and
po = (pio)i∈I are the corresponding row and column. A partial allocation for E is an
allocation p such that

∑
o po ≤ r,

∑
i pi ≤ q, and pio ≤ gio for all i and o. A feasible

allocation is a partial allocation m such that
∑

omo = r. A partial allocation p is
possible if there is a feasible allocation m such that p ≤ m. Let Q be the set of feasible
allocations, and let R be the set of possible partial allocations.

For J ⊂ I and P ⊂ O let J c = I \ J and P c = O \ P be the complements. We
say that E satisfies the generalized marriage condition (GMC) if, for every J ⊂ I and
P ⊂ O, ∑

i∈J

ri ≤
∑
i∈J

∑
o∈P c

gio +
∑
o∈P

qo.

We will refer to this relation as the GMC inequality for (J, P ). Note that the GMC
inequality for ({i}, ∅) is ri ≤

∑
o gio, and the GMC inequality for (I, O) is

∑
i ri ≤
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∑
o qo. The GMC is obviously necessary for the existence of a feasible allocation. Our

first main result is:

Theorem 1. The CEE E has a feasible allocation if and only if it satisfies the GMC.

The Gale (1957) supply-demand theorem6 is the special case of this for a Gale supply-
demand CEE.

If E is a Hall marriage problem, the set of neighbors of boy i is Ng(i) = { o ∈
O : gio = 1 }, and for J ⊂ I we set Ng(J) =

⋃
i∈J Ng(i). We say that E satisfies

the marriage condition if |J | ≤ |Ng(J)| for all J ⊂ I . The GMC inequality for J and
P = Ng(J) gives this inequality. Conversely, for a given J ⊂ I , the contribution of
o ∈ Ng(J) to the right hand side of the GMC inequality is minimized if o ∈ P , and the
contribution of o ∈ Ng(J)

c is minimized if o ∈ P c, so |J | ≤ |Ng(J)| for all J implies
that the GMC is satisfied. Therefore Theorem 1 implies that E has a feasible allocation
if and only if the marriage condition is satisfied.

For a Hall marriage problem an integral feasible allocation is called a matching.
(Each of the boys has a different partner.) Hall’s marriage theorem asserts that a Hall
marriage problem has a matching if and only if it satisfies the marriage condition. To
pass from a feasible allocation to a matching one can repeatedly adjust the allocation
along paths of fractional allocations that alternate between boys and girls, and either
form a loop or pass from one incompletely allocated girl to another. A more precise and
general version of this argument is given in Online Appendix A.

For i ∈ I let
αi = { o ∈ O : gio > 0 }

be the set of objects that are possible for i, and for P ⊂ O let JP = { i ∈ I : αi ⊂ P }
be the set of agents who cannot be allocated objects outside of P . If E is an integral
school choice CEE, then for any P ⊂ O, JP minimizes the difference between the right
hand side and the left hand side of the GMC inequality. Therefore E satisfies the GMC
if and only if, for each P ⊂ O,

|JP | ≤
∑
o∈P

qo.

Our proof of Theorem 1 is a simple application of the method of network flows.
(Ahuja et al. (1993) provides a general introduction and overview.) Let (N,A) be a
directed graph (N is a finite set of nodes and A ⊂ N ×N is a set of arcs) with distinct
distinguished nodes s and t, called the source and sink respectively. For the sake of

6Although this result is attributed to Gale (1957) by Yilmaz (2010), and perhaps others, this exact for-
mulation does not appear in Gale’s paper. The paper does consider slightly more complicated problems,
and it is easy to see that this result can be obtained from Gale’s methods in the same manner.
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simplicity and clarity of intuition (the formal analysis can be more general) we assume
that (n, s), (t, n), (n, n) /∈ A for all n ∈ N , and that (n′, n) /∈ A whenever (n, n′) ∈ A.

A flow is a function f : N ×N → R such that:

(a) for all n and n′, if (n, n′) /∈ A, then f(n, n′) ≤ 0 ;

(b) for all n and n′, f(n, n′) = −f(n′, n);

(c)
∑

n′∈N f(n′, n) = 0 for all n ∈ N \ {s, t}.

If neither (n, n′) nor (n′, n) is in A, then (a) and (b) imply that f(n, n′) = 0. In con-
junction with the other requirements, (c) can be understood as saying that for each n

other than s and t, the total flow into n is equal to the total flow out. Note that (a) and
(b) imply that f(s, n), f(n, t) ≥ 0 for all n ∈ N . Applying (b), then (c), gives

0 =
∑
n∈N

∑
n′∈N

f(n′, n) =
∑
n′∈N

f(n′, s) +
∑
n′∈N

f(n′, t),

so we may define value of f to be

|f | =
∑
n∈N

f(s, n) =
∑
n∈N

f(n, t).

A capacity is a function c : N × N → [0,∞] such that c(n, n′) = 0 whenever
(n, n′) /∈ A. A flow f is bounded by a capacity c if f(n, n′) ≤ c(n, n′) for all (n, n′). A
maximum flow for c is a flow f that is maximal for |f | among the flows bounded by c.

A cut is a set S ⊂ N such that s ∈ S and t ∈ Sc where Sc = N \ S is the
complement. For a capacity c, the capacity of S is

c(S) =
∑

(n,n′)∈S×Sc

c(n, n′).

The value |f | is the net flow from S to Sc, hence the total flow from S to Sc minus the
total flow from Sc to S, so |f | ≤ c(S) when f is bounded by c, and thus the maximum
value of flows bounded by c is not greater than the minimum capacity of a cut for c. The
max-flow min-cut theorem (Ford and Fulkerson, 1956) asserts that these two quantities
are equal.

Let f be a flow bounded by c, and let S be a cut. If
∑

(n,n′)∈S×Sc f(n, n′) = c(S),
then f is a maximal flow for c, S is minimum capacity cut for c, and since f ≤ c we
have f(n, n′) = c(n, n′) for all (n, n′) ∈ S × Sc. Conversely, if f is a maximal flow
for c and S is minimum capacity cut for c, then c(S) = |f | =

∑
(n,n′)∈S×Sc f(n, n′).

It is well known (Ford and Fulkerson, 1956, Shapley, 1961, Ore, 1962) that the set of
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minimal cuts is a lattice in the sense that if S1 and S2 are minimal cuts, then so are
S1 ∪ S2 and S1 ∩ S2

7.
For the given CEE E we define a particular directed graph (NE, AE) in which NE =

{s} ∪ I ∪O ∪ {t} and

AE = { ai : i ∈ I } ∪ { aio : i ∈ I, o ∈ O } ∪ { ao : o ∈ O }

where, for i ∈ I and o ∈ O, ai = (s, i), aio = (i, o), and ao = (o, t). Let cE be the
capacity in which cE(ai) = ri, cE(aio) = gio, and cE(ao) = qo. If p is an allocation,
there is a unique flow fp such that fp(aio) = pio for all i and o that has fp(ai) =

∑
o pio

for all i and fp(ao) =
∑

i pio for all o. Evidently p is a partial allocation if and only if fp
is bounded by cE , and it is a feasible allocation if and only if, in addition, fp(ai) = ri

for all i, which is the case if and only if |fp| =
∑

i ri. Conversely, if f is a flow bounded
by cE with |f | =

∑
i ri and thus f(ai) = ri for all i, then setting mio = f(aio) gives a

feasible allocation m.
Thus there is a feasible allocation if and only if the maximum value of a flow

bounded by cE is
∑

i ri. The max flow-min cut theorem implies that this is the case
if and only if the minimum capacity of a cut for cE is

∑
i ri. Since cE({s}) =

∑
i ri,

there is a feasible allocation if and only cE(S) ≥
∑

i ri for all cuts S.
For J ⊂ I and P ⊂ O let S(J,P ) = {s} ∪ J ∪P . This is a cut, and if S is a cut, then

S = S(J,P ) where J = S ∩ I and P = S ∩ O. An arc can go from a node in S(J,P ) to a
node in Sc

(J,P ) by going from s to a node in J c, by going from a node in J to a node in
P c, and by going from a node in P to t, so

cE(S(J,P )) =
∑
i∈Jc

ri +
∑
i∈J

∑
o∈P c

gio +
∑
o∈P

qo.

Thus there is a feasible allocation if and only if
∑

i ri ≤ cE(S(J,P )) for all J ⊂ I

and P ⊂ O, and subtracting
∑

i∈Jc ri from both sides reveals that this inequality is
equivalent to the GMC inequality for J and P .

Hall’s marriage theorem, the Gale supply-demand theorem, and the max-flow min-
cut theorem are three members of a large and important class of results in combinatorial
matching theory that are equivalent in the informal sense that relatively simple argu-
ments (described in detail by Reichmeider (1978, 1985)) allow one to pass from any
member of the class to any other. As yet another member of this class, Theorem 1 does
not provide distinctly novel mathematical information. Its primary significance here,

7If n ∈ S1 ∪ S2 and n′ ∈ (S1 ∪ S2)
c = Sc

1 ∩ Sc
2 (or n ∈ S1 ∩ S2 and n′ ∈ Sc

1 ∪ Sc
2) then either

n ∈ S1 and n′ ∈ Sc
1 or n ∈ S2 and n′ ∈ Sc

2, and in either case f(n, n′) = c(n, n′).
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and perhaps more generally, is that the test it provides is in closed form.
The next result gives a finite collection of inequalities, in closed form, that contains

the facet inequalities of R. If p is a partial allocation, let

E − p = (I, O, r′, q′, g′)

be the derived CEE in which r′i = ri −
∑

o pio, q
′
o = qo −

∑
i pio, and g′io = gio − pio. If

p is a partial allocation, m is an allocation, and p ≤ m, then m is a feasible allocation
for E if and only if m− p is a feasible allocation for E − p. Thus a partial allocation p

is possible if and only if E − p has a feasible allocation, which of course is the case if
and only if E − p satisfies the GMC. Substituting the definitions above into the GMC
inequality for E − p and (J, P ), then simplifying, gives∑

i∈Jc

∑
o∈P

pio ≤
∑
o∈P

qo +
∑
i∈J

∑
o∈P c

gio −
∑
i∈J

ri. (1)

Proposition 1. R is the set of partial allocations p such that pio ≤ gio and
∑

o pio ≤ ri

for all i and o and (1) holds for all J ⊂ I and P ⊂ O.

3 Critical Pairs
In this section we work with a given CEE E that satisfies the GMC. For J ⊂ I and
P ⊂ O we say that the pair (J, P ) is critical for E if (J, P ) ̸= (∅, ∅) and it satisfies the
GMC inequality for (J, P ) with equality:∑

i∈J

ri =
∑
i∈J

∑
o∈P c

gio +
∑
o∈P

qo.

We refer to this condition as the GMC equality for (J, P ). Our goal in this section is to
understand the relationship between critical pairs and feasible allocations, and how the
various critical pairs for E are related to each other.

Evidently, if (J, P ) is critical for E, then any feasible allocation m gives the agents
in J all of the endowment of objects in P and also as much of the objects in P c as g

allows. Conversely, if m is a feasible allocation such that
∑

i∈J mio = qo for all o ∈ P

and mio = gio for all i ∈ J and o ∈ P c, then∑
i∈J

ri =
∑
i∈J

∑
o

mio =
∑
i∈J

∑
o∈P c

mio +
∑
o∈P

∑
i∈J

mio =
∑
i∈J

∑
o∈P c

gio +
∑
o∈P

qo.

Lemma 1. For J ⊂ I and P ⊂ O the following are equivalent:

(a) (J, P ) is critical for E;
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(b) There is a feasible allocation m such that
∑

i∈J mio = qo for all o ∈ P and
mio = gio for all i ∈ J and o ∈ P c;

(b) For every feasible allocation m,
∑

i∈J mio = qo for all o ∈ P and mio = gio for
all i ∈ J and o ∈ P c.

In particular, if (J, ∅) is critical, then then every feasible allocation m has mio = gio for
all i ∈ J and o ∈ O, and if (∅, P ) is critical, then qo = 0 for all o ∈ P . (The latter
situation will arise during the allocation process as objects’ quotas are exhausted.)

If (J, P ) is critical, let

E(J,P ) = (J,O, r|J , q′, g|J×O) and E(J,P ) = (J c, P c, r|Jc , q′′, g|Jc×P c)

where q′o = qo if o ∈ P , q′o =
∑

i∈J gio if o ∈ P c, and q′′ : P c → R+ is the function
q′′o = qo −

∑
i∈J gio. Any feasible allocation for E is the sum of a feasible allocation

for E(J,P ) and a feasible allocation for E(J,P ), so E(J,P ) and E(J,P ) satisfy the GMC.
Conversely, any sum of a feasible allocation for E(J,P ) and a feasible allocation for
E(J,P ) is a feasible allocation for E. Thus a critical pair splits the given allocation
problem into two smaller problems of the same type. This is very important because it
allows our algorithm to be recursive.

We say that E is critical if (I, O) itself is a critical pair, which is the case if and
only if

∑
i ri =

∑
o qo, so that any feasible allocation consumes all of the available

resources. If (J, P ) is a critical pair for E, then E(J,P ) is critical, and E(J,P ) is critical
if and only if E is critical.

We say that E is simple if there are no critical pairs (J, P ) with (J, P ) ̸= (I, O). A
critical pair (J, P ) is minimal if there is no critical pair (J ′, P ′) with J ′ ⊂ J , P ′ ⊂ P ,
and (J ′, P ′) ̸= (J, P ). The next result (whose proof follows easily from the discussion
above and is therefore left as an exercise) implies that if (J, P ) is a minimal critical pair
for E, then E(J,P ) is simple.

Lemma 2. If (J, P ) is critical for E, J ′ ⊂ J , and P ′ ⊂ P , then (J ′, P ′) is critical for
E if and only if it is critical for E(J,P ).

A pair (J, P ) is critical if and only if
∑

i ri = cE(S(J,P )), i.e., S(J,P ) is a minimal
cut for cE . For any pairs (J, P ) and (J ′, P ′) the definition of S(J,P ) easily implies that
S(J,P ) ∪ S(J ′,P ′) = S(J∪J ′,P∪P ′) and S(J,P ) ∩ S(J ′,P ′) = S(J∩J ′,P∩P ′). Since the set of
minimal cuts for cE is a lattice we have:

Proposition 2. The set of critical pairs for E is a lattice in the sense that if (J, P ) and
(J ′, P ′) are critical pairs, then so are (J ∪ J ′, P ∪ P ′) and (J ∩ J ′, P ∩ P ′).
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If (J, P ) is a critical pair, then any feasible allocation m has mio = 0 for all i ∈ J c

and o ∈ P , and in this sense gio > 0 is illusory. We say that E is tight if gio = 0 for all
critical pairs (J, P ) and all i ∈ J c and o ∈ P .

If (J, P ) is a critical pair for E, the (J, P )-tightening of E is E ′ = (I, O, q, r, g′)

where g′io = 0 if i ∈ J c and o ∈ P , and otherwise g′io = gio. Since E satisfies the
GMC, it has a feasible allocation m, which necessarily has mio = 0 for all i ∈ J c and
o ∈ P , so it is a feasible allocation for E ′, and consequently E ′ satisfies the GMC.
A tightening sequence for E is a sequence (J1, P1), . . . , (Jℓ, Pℓ) for which there is a
sequence E0 = E,E1, . . . , Eℓ of CEE’s such that for each j = 1, . . . , ℓ, (Jj, Pj) is a
critical pair for Ej−1 and Ej is the (Jj, Pj)-tightening of Ej−1. By induction each Ej

satisfies the GMC.
The following result is obvious:

Lemma 3. If E = (I, O, r, q, g) satisfies the GMC, (J, P ) is a critical pair for E, g′ ≤ g,
E ′ = (I, O, r, q, g′), and E ′ satisfies the GMC, then (J, P ) is a critical pair for E ′.

In view of the last result, if (J1, P1), . . . , (Jℓ, Pℓ) and (J ′
1, P

′
1), . . . , (J

′
ℓ′ , P

′
ℓ′) are

tightening sequences, then so is (J1, P1), . . . , (Jℓ, Pℓ), (J
′
1, P

′
1), . . . , (J

′
ℓ′ , P

′
ℓ′). There-

fore starting with E and repeatedly tightening with respect to critical pairs, including
pairs that become critical as a result of the tightening, until no further tightening is pos-
sible, leads to a tight CEE that is independent of the order of tightening, that we call the
tightening of E.

4 The Allocation Procedure

We now describe how the GCPS mechanism can be computed. We work with a fixed
CEE E = (I, O, r, q, g) that satisfies the GMC and a profile ≻ = (≻i)i∈I of strict
preferences8 over O. (The symbols ≺i, ⪰i, and ⪯i have their usual meanings.) Let
T = maxi ri. The allocation procedure is a piecewise linear function p : [0, T ] → R

with p(0) = 0, p(t) ∈ R \Q for all t < T , and p(T ) ∈ Q. The GCPS allocation is

GCPS(E,≻) = p(T ).

At each moment the trajectory of p increases, at unit speed, each agent’s assignment
of her favorite object, among those that are still available to her, while leaving other
allocations fixed. This direction is adjusted when an agent attains her requirement,
when an agent i’s assignment of an object o reaches gio, and when p arrives at one of

8The mechanism actually depends only on the preferences of each agent i over her set αi of possible
objects, but it is simplest to treat each ≻i as a complete ordering of O.
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the facets of R. If t∗ is the first time such that p(t∗) is in a facet of R, so that for some
pair (J, P ) the GMC equality holds, then the residual CEE E − p(t∗) is not simple and
(J, P ) is a minimal critical pair for it. The GCPS allocation has a recursive definition:
for t ∈ (t∗, T ], p(t) is, by definition, the sum of p(t∗) and the results of applying the
allocation procedure to (E − p(t∗))(J,P ) and (E − p(t∗))(J,P ) on the interval [t∗, T ].

The main computational challenge is to detect when p arrives at a facet of R.
One possible implementation first passes to the description of Q as a convex hull of

vertices. The vertices of R are all the points obtained from vertices of Q by changing
some of the components to zero, and one may then pass from this set of vertices to the
description of R as an intersection of finitely many half spaces. The computational
problem of passing from the description of a polytope as a convex hull of vertices
to its description as an intersection of half spaces, and the reverse computation, are
well studied, and efficient softwares for these tasks are available. (See Section 3 of
Balbuzanov (2022).) However, even if the number of bounding inequalities of Q and
the number of bounding inequalities of R are small, large data structures can arise at
intermediate stages of the computation. For example, for the problem of assigning n

objects to n agents the numbers of facet inequalities of Q and R are constant multiples
of n, but Q has n! vertices.

Theorem 1 improves on this by showing that the facet inequalities of R are a subset
of the set of GMC inequalities. For a given P ⊂ O it is easy to find the J ⊂ I that
minimizes the difference between the two sides of the GMC for (J, P ). Thus there is a
computational burden that is roughly proportional to the number 2|O| of subsets of O.
An algorithm using this approach has been implemented, and works reasonably well
for moderate (roughly |O| ≤ 50) numbers of schools.

The procedure we describe now is much more efficient, especially for large prob-
lems. While computing p, we also compute an auxilary piecewise linear function
p : [0, T ] → Q such that p(t) ≤ p(t) for all t. We assume that p(0) is given. Possi-
bly p(0) is the assignment of safe schools, or it may be the output of an algorithm that
computes a maximal flow for the network (NE, AE).

The combined function (p, p) is piecewise linear, and [0, T ] is a finite union of inter-
vals [t0, t1], [t1, t2], . . . , [tK−1, tK ], where t0 = 0 and tK = T , such that on each interval
[tk, tk+1] the derivative of (p, p) is constant. Suppose that we have already computed
p(tk) and p(tk). For each agent i we compute the set αi(tk) of objects that are still pos-
sible for i, and we determine her ≻i-favorite element eki . Let θk ∈ ZI×O be the matrix
such that θkio = 1 if o = eki , and otherwise θkio = 0.

There are now two possibilities. The first is that there is some t′ > tk such that
p(tk) + θk(t− tk) ∈ R for all t ∈ [tk, t

′]. In this case we will find a θ ∈ ZI×O such that
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for some t′ > tk and all t ∈ [tk, t
′], p(tk) + θ(t− tk) ∈ Q and

p(tk) + θk(t− tk) ≤ p(tk) + θ(t− tk). (∗)

Now tk+1 is the first time after tk such that one of the following holds: a) tk+1 = ri

for some i; b) pieki (tk+1) = gieki for some i; c) p(tk) + θ(t − tk) /∈ Q for t > tk+1;
d) (∗) does not hold for t > tk+1. For t ∈ [tk, tk+1] we have determined that p(t) =

p(tk) + θk(t− tk), and we set p(t) = p(tk) + θ(t− tk). Having determined p(tk+1) and
p(tk+1), we repeat the process.

The second possibility is that it is not possible to continue p, as described above,
without leaving R, because p(tk) satisfies the GMC equality of some pair (J, P ). In this
case we will find such a pair, then descend recursively to the computation of the GCPS
allocations of (E− p(tk))(J,P ) and (E− p(tk))

(J,P ). We now describe an algorithm that
determines which of these possibilities holds, finding a satisfactory θ in the first case
and a critical (J, P ) in the second case.

Suppose that there is a θ ∈ ZI×O such that for there exists a t′ > tk such that for all
t ∈ [tk, t

′], (∗) holds and p(tk) + θ(t − tk) ∈ Q. Together these conditions imply that
p(tk) + θk(t − tk) ∈ R, so the first possibility above holds, and we can use θ to define
the continuation of p. The algorithm may be thought of as a search for such a θ.

For a given θ, a t′ > 0 as above exists if and only if θ satisfies the following condi-
tions:

(a) For each i and o:

(i) If o /∈ αi(tk), then θio = 0.

(ii) If pio(tk) = pio(tk), then θio ≥ 0, and if, in addition, o = eki , then θio ≥ 1.

(iii) If pio(tk) = gio, then θio ≤ 0.

(b) For each i,
∑

o θio = 0.

(c) For each o, if
∑

i pio(tk) = qo, then
∑

i θio ≤ 0.

Our search for a suitable θ begins by defining an initial θ ∈ ZI×O as follows. For
each i, if pieki (tk) > pieki (tk), then we set θio = 0 for all o. If pieki = pieki (tk), then we
set θieki = 1, we set θioi = −1 for some oi ̸= eki such that pioi(tk) > pioi(tk), and we set
θio = 0 for all other o. Evidently θ satisfies (a) and (b).

Let
P̃ = { o :

∑
i

pio(tk) = qo and
∑
i

θio > 0 }.
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If
∑

o∈P̃
∑

i θio = 0, then (c) holds. Suppose that this is not the case. We now describe
a construction that may or may not be possible. When it is possible, it passes from θ to a
θ′ ∈ ZI×O satisfying (a) and (b) such that if P̃ ′ = { o :

∑
i pio(tk) = qoh and

∑
i θ

′
io > 0 },

then
∑

o∈P̃ ′
∑

i θ
′
io =

∑
o∈P̃

∑
i θio − 1. Repeating this construction will eventually

produce an element of ZI×O satisfying (a)–(c) unless, at some point, the construction
becomes impossible.

Choose o0 ∈ P̃ , and let P0 = {o0}. We define sets J1, P1, J2, P2, . . . inductively. If
Ph−1 is given, let Jh =

⋃
o∈Ph−1

Jh(o) where

Jh(o) = { i : o ∈ αi and if pio(tk) = pio(tk), then θio > 0 and θio > 1 if o = e≻i }.

If Jh is given, let Ph =
⋃

i∈Jh Ph(i) where

Ph(i) = { o ∈ αi : θio < 0 if pio(tk) = gio }.

Suppose that for some h there is an oh ∈ Ph \ Ph−1 such that either
∑

i pioh < qoh
or

∑
i θioh < 0. We can find a ih ∈ Jh such that oh ∈ Jh(ih), then find an oh−1 ∈ Ph−1

such that ih ∈ Jh(oh−1), and so forth. Define θ′ by setting

θ′igog−1
= θigog−1 − 1 and θ′igog = θigog + 1

for g = 1, . . . , h and θ′io = θio for all other (i, o).
It is easy to see that θ′ satisfies (a), because θ′io differs from θio only when the

difference is permitted, according to (i)–(iii). For each i,
∑

o θ
′
io =

∑
o θio, either by

construction if i = ig for some g, or because θ′io = θio for all o. Since θ satisfies (b), θ′

also satisfies (b).
For o /∈ {o0, . . . , oh} we have θ′io = θio for all i and thus

∑
i θ

′
io =

∑
i θio. For

each g = 1, . . . , h − 1 we have
∑

i θ
′
iog =

∑
i θiog by construction. Clearly

∑
i θ

′
io0

=∑
i θio0 − 1 and

∑
i θ

′
ioh

=
∑

i θioh + 1. Since either
∑

i pioh < qoh or
∑

i θ
′
ioh

≤ 0, θ′

has all desired properties.
It is impossible to construct θ′ in this manner if there is no h and oh ∈ Ph \ Ph−1

such that
∑

i pioh < qoh or
∑

i θioh < 0. Supposing that this is the case, let J =
⋃

h Jh

and P =
⋃

h Ph. We have
∑

i pio(tk) = qo for all o ∈ P . If o ∈ P and i /∈ J ,
then pio(tk) = pio(tk). If i ∈ J and o /∈ P , then pio(tk) = gio if o ∈ αi \ P , and
pio(tk) = gio = 0 if o /∈ αi. Thus p(tk) − p(tk) is a feasible allocation for E − p(tk)

that gives all of the resources in P to agents in J , and it gives gio − pio(tk) to i ∈ J

whenever o ∈ O \ P , so, by Lemma 1, (J, P ) is a critical pair for E − p(tk).
Summarizing, the algorithm repeatedly extends p and p to intervals such as [tk, tk+1]
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until p(tk) satisfies the GMC equality for a pair (J, P ), at which point it descends recur-
sively to computation of the GCPS allocations of (E− p(tk))(J,P ) and (E− p(tk))

(J,P ).
If p(tk) does not satisfy such a GMC inequality, it finds a θ satisfying (a)–(c) by repeat-
edly adjusting a θ that satisfies (a) and (b) until it also satisfies (c).

The theoretical and practical complexity of the algorithm depends on the following
factors:

(a) How many linear segments can the piecewise linear function (p, p) have, and how
many does it typically have?

(b) How many adjustments θ → θ′ can be required to achieve a θ satisfying (a)–(c),
and how many are typically required?

(c) How long can the paths oo, i1, o1, . . . , ih, oh be, and how long are they typically?

The algorithm has been implemented for school choice problems in the software pack-
age GCPS Schools, as described in Appendix B. A computational experiment described
there illuminates these issues.

It seems to be quite difficult to get a theoretical upper bound on the number of linear
segments of (p, p), and even to prove that the algorithm has polynomial time worst case
complexity. Empirically, the number of linear segments is roughly proportional to the
number of students.

The construction of the initial θ implies that the number of students is an upper
bound on the number of adjustments of θ. In practice the number of adjustments seems
to vary between 5% and 20% of this number.

The number of schools is a crude upper bound on the length of a path arising in
the adjustment of θ, and it is not obvious how one might develop a tighter theoretical
bound. In practice paths are quite short, with an average length between one and two.

Overall the implementation of the algorithm seems to work quite well. Extrapolat-
ing from currently available data, it seems reasonable to hope that it will be applicable
to the largest school choice problems, with running times measured in hours or at worst
days.

5 Nondichotomous Priorities

We take as given a school choice CEE E = (I, O, 1, q, g) and a profile ≻ = (≻i) of
preferences over O. The most basic application of the procedure described in the last
section computes the GCPS allocation for dichotomous priorities, so that each gio is
either 0 or 1.
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Many schools systems use more complex priorities that assign points based on
grades, test scores, minority status, the student’s proximity to the school, and perhaps
other factors. DA typically refines these priorities by replacing them with (perhaps ran-
domly generated) strict refinements, and it then implicitly computes an approximate
priority cutoff for each school. In this section we consider how the GCPS mechanism
might be used to achieve a similar effect.

Azevedo and Leshno (2016) study a model with a continuum of students in which
the schools’ cutoffs are analogous to prices. Our framework is similar, insofar as our
students are, in effect, infinitely divisible. The discussion below, and the proof of Theo-
rem 2 in Appendix C, follows the corresponding material in Appendix A of their paper.
Similar ideas appear in Abdulkadiroğlu et al. (2015).

We assume that for each student i and school o, the student’s priority at o is a positive
integer eio, where the school “prefers” higher priority students. We take advantage of
our framework’s ability to allocate fractional quantities of seats by having cutoffs that
are not integral. For a positive integer e and a real number c ≥ 0 let

ρ(e, c) =


1, c ≤ e− 1,

e− c, c ∈ (e− 1, e),

0, c ≥ e.

If school o has cutoff co, min{gio, ρ(eio, co)} is the maximum allowed consumption of
o by i.

Individual demand of student i, as a function of a vector of cutoffs c ∈ RO
+, is

generated by having the student consume as much of the favorite school as allowed,
then as much of the second favorite school as allowed, and so forth, until either she has
one unit of probability or she has consumed as much of each school as she is allowed
to consume. For each i the demands Dio(c) of i for the various schools o can be defined
implicitly by requiring that:

(a) 0 ≤ Dio(c) ≤ min{gio, ρ(eio, co)};

(b)
∑

o Dio(c) ≤ 1;

(c) Dio(c) = min{gio, ρ(eio, co)} if either
∑

o Dio(c) < 1 or there is an o′ such that
o′ ≺i o and Dio′(c) > 0.

It is not difficult to show that each Dio is a continuous function. For o ∈ O let Do(c) =∑
i Dio(c). An obvious but important property of demand, which Azevedo and Leshno
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call gross substitutes, is that when o ̸= o′, Dio(c) and Do(c) are nondecreasing functions
of co′ .

For o ∈ O and c−o ∈ RO\{o}
+ let

Io(c−o) = { co ≥ 0 : Do(co, c−o) ≤ qo and Do(co, c−o) = qo if co > 0 }.

Let e be an integer that is larger than any eio. For each i, Dio(·, c−o) is continuous and
nonincreasing, and Dio(e, c−o) = 0. Therefore Do(·, c−o) is continuous and nonincreas-
ing, and Do(e, c−o) = 0. Thus Io(c−o) is a nonempty closed subinterval of [0, e], either
by the intermediate value theorem or because Do(0, c−o) < qo and Io(c−o) = {0}.

Let T : [0, e]O → [0, e]O be the function with component functions

To(c) = argmin
c′o∈Io(c−o)

|c′o − co|.

The set

F = { c ∈ [0, e]O : for each o, Do(c) ≤ qo and Do(c) = qo if co > 0 }

of fixed points of T is the set of market clearing cutoffs.

Theorem 2. F is a complete lattice9, and Dio(c) = Dio(c
′) for all i, o, and c, c′ ∈ F .

For each i and o let d∗io be the common value of Dio(c) for c ∈ F , and let d∗ be the
matrix with these entries.

In general d∗ need not be a feasible allocation. For example, if student i’s accept-
able schools all have high demand, it can happen that for each of them the only possible
values of the cutoff are above the student’s priority at the school, in which case d∗io = 0

for all o. As we mentioned at the outset, this happens also with DA. Possible responses
to this are to use either DA or GCPS in a multiround system, or to assign such students
administratively. However, the priorities are, in principle, expressions of society’s val-
ues that are intended to influence the outcome in a socially desirable direction. A failure
to provide a seat to a student may be regarded as a failure of the priorities to correctly
express society’s values, which suggests that they should be reconsidered.

If it is feasible, d∗ is indeed an ideal fulfillment of the priorities, providing each
school only to those for whom it has the greatest social value, and avoiding the in-
efficiencies that can arise when DA is applied to strict priorities that refine the coarse

9For x, y ∈ RO, x ∨ y and x ∧ y are the vectors with components (x ∨ y)o = max{xo, yo} and
(x ∧ y)o = min{xo, yo}. A set L ⊂ RO is a lattice if, for all x, y ∈ L, x ∨ y and x ∧ y are elements of
L, and it is a complete lattice if, in addition, for every S ⊂ L, L contains a least upper bound

∨
S and a

greatest lower bound
∧
S. Since

∨
∅ and

∧
∅ are elements of L, a complete lattice is nonempty.
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priorities that actually express social values. For example, if the coarse priorities of Ann
and Bob for o1 and o2 are the schools’ cutoff priorities, Ann prefers o1, and Bob prefers
o2, DA may nevertheless assign Ann to o2 and Bob to o1. If c is a vector of cutoffs such
that Dio(c) = d∗io for all i and o, then, by Theorem 3, d∗ is sd-efficient for the school
choice CEE E ′ = (I, O, 1, q, g′) where g′io = min{gio, ρ(eio, co)}, so it cannot happen
that both d∗Ann,o2 > 0 and d∗Bob,o1 > 0.

We now describe a computational procedure that attempts to compute d∗. To begin
with we define and characterize a useful function. For a positive integer e, a number
c ∈ [e− 1, e], a student i, and pi ∈ [0, 1]O such that

∑
o pio ≤ 1 let

τio(e, c, pi) =



0, eio < e,

e− c, eio = e and pio ≥ e− c,

min{e− c,
∑

o′⪯io
pio′}, eio = e and pio ≤ e− c,∑

o′⪯io
pio′ , eio > e.

The main idea will be to choose e and c such that
∑

i τio(e, c, pi) = qo.
We claim that τio(e, e − 1, pi) = τio(e − 1, e − 1, pi). This is obviously the case

when eio > e and when eio < e − 1, and it is easy to see that this holds when eio =

e− 1. When eio = e we have τio(e− 1, e− 1, pi) =
∑

o′⪯io
pio′ and τio(e, e− 1, pi) =

min{1,
∑

o′⪯io
pio′} =

∑
o′⪯io

pio′ . Thus we may regard τio as a function of c ≥ 0 and
pi. Clearly τio(·, pi) is continuous on each interval [e − 1, e], so it is continuous, and it
is obviously nonincreasing.

We begin with a school choice CEE E0 = (I, O, 1, q, g0) that has g0io ∈ [0, 1] for
all i and o. We assume that it satisfies the GMC, and that all the derived CEE’s below
also satisfy the GMC. Let p1 be the partial allocation resulting from applying the GCPS
algorithm to E0. For each o, since

∑
i τio(0, p

1
i ) =

∑
i

∑
o′⪯io

p1io′ and
∑

i τio(e, p
1
i ) =

0, we may define c1o to be either 0 if
∑

i

∑
o′⪯io

p1io′ < qo or the smallest number such
that

∑
i τio(c

1
o, p

1
i ) = qo. For each i and o let g1io = min{g0io, ρ(eio, c1o)}. Let E1 =

(I, O, 1, q, g1).
We continue this construction inductively. Suppose that Ek = (I, O, 1, q, gk) is

given. Let pk+1 be the partial allocation resulting from applying the GCPS algorithm to
Ek. For each o define ck+1

o to be either 0 if
∑

i

∑
o′⪯io

pk+1
io′ < qo or the smallest number

such that
∑

i τio(c
k+1
o , pk+1

i ) = 0. For each i and o let gk+1
io = min{gio, ρ(eio, ck+1

o )}.
Let Ek+1 = (I, O, 1, q, gk+1).

Due to the complexity of the GCPS mechanism, proving that pk → d∗ would cer-
tainly be hard, at best. At the same time it is hard to imagine that the direct effect of
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setting co to equilibrate supply and demand of o can be overwhelmed by the indirect
effects coming from adjusting the co′ for o′ ̸= o. (The analysis in the first part of Online
Appendix D gives a detailed picture of these indirect effects.) We are optimistic that this
method will be a practically reliable scheme for computing d∗, but this remains to be
seen. The issue of whether there is an efficient algorithm for computing d∗ is currently
unresolved.

Policy issues related to priorities are extremely complex. On the one hand it seems
desirable to provide the best resources to those who can extract the greatest benefit,
so it makes sense to give high priority to students with good grades or test scores, but
doing so could exacerbate inherited inequality. Giving students points for proximity to
a school may facilitate allowing each student to attend a nearby school, but preventing
a student from attending a distant school if she is willing to incur the travel costs has
a paternalistic aspect. The literature on peer effects in education (Epple and Romano,
2011, Sacerdote, 2011) is extensive, finding significant effects with causal pathways
that are not yet well understood. In particular, Burke and Sass (2013) find that low
achieving students derive substantial benefits from having high achieving peers, and
Vigdor and Nechyba (2007) find that classroom heterogeneity can lead to higher test
scores. One could easily list additional issues.

Balancing various concerns in practice requires information concerning what would
actually happen under various policies. Because our mechanism allows priorities to be
coarse rather than strict, we widen the range of alternatives that can be considered, and
we more clearly distinguish between priorities that reflect actual societal values and
those that merely fulfill the requirements of a mechanism. Our computational methods
potentially allow easy computation of counterfactual outcomes resulting from applying
various alternatives to historical data.

6 Efficiency
In this section we work with a CEE E = (I, O, r, q, g) that satisfies the GMC and a
fixed profile of preferences ≻. Our objective is to show that the GCPS mechanism
applied to E and ≻ yields an allocation that is efficient in strong senses. However,
we should first of all mention that mechanisms that are ordinal (that is, based on the
agents’ reports of ordinal preferences) and nondictatorial often allow allocations that are
inefficient relative to cardinal utility functions consistent with the ordinal preferences
(Featherstone and Niederle, 2008, Miralles, 2009, Abdulkadiroğlu et al., 2011, Troyan,
2012, Abdulkadiroğlu et al., 2015).

For i ∈ I , an allocation for i is a vector mi ∈ RO
+ such that mi ≤ gi and∑

o mio = ri. The stochastic dominance relation sd(≻i) on allocations for i derived
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from ≻i is defined by m′
i sd(≻i)mi if

∑
p⪰io

m′
ip ≥

∑
p⪰io

mip for all o ∈ O. Usually in
applications of this concept mi is a probability distribution on O, but the concept makes
perfect sense in our more general context, and standard arguments generalize straight-
forwardly to show that m′

i sd(≻i)mi if and only if
∑

o m
′
ioui(o) ≥

∑
o mioui(o) for any

cardinal utility function ui : O → R such that for all o, o′ ∈ O, ui(o) ≥ ui(o
′) if and

only if o ⪰i o
′.

Two other well-studied extensions of a given preference to preferences over lotteries
relate to lexicographic preferences (Cho, 2016; Schulman and Vazirani, 2015; Cho and
Doğan, 2016; Saban and Sethuraman, 2014; Cho, 2018). The first extension, which is
called the downward lexicographic extension (dl-extension) compares two i-allocations
as follows. One of the i-allocations is preferred if it assigns a higher amount of the most
preferred object than the other. If the two i-allocations assign the same amount of the
most preferred object, then the one that is preferred is the one that assigns the greater
amount of the second most preferred object. If the two amounts are equal again, then the
i-allocation that assigns a greater amount of the third most preferred object is preferred,
and so on. The second extension, which is called the upward lexicographic extension
(ul-extension) is a dual of the dl-extension. It lexicographically minimizes amounts
of less preferred objects, starting from the least preferred object10. The dl- and ul-
extensions yield preferences that represent the limits of standard vNM utility functions
with extreme risk loving and extreme risk aversion, respectively.

For e ∈ {sd, dl, ul}, a feasible allocation m′ e-dominates another feasible allocation
m if m′

i e(≻i)mi for all i and there is some i such that m′
i ̸= mi. A feasible allocation

m is e-efficient if there is no feasible allocation that e-dominates it.

Theorem 3. For e ∈ {sd, dl, ul}, the GCPS allocation for E and ≻ is e-efficient.

7 Fairness for School Choice
We now briefly consider fairness properties of the GCPS mechanism applied to a school
choice CEE E = (I, O, 1, q, g) that satisfies the GMC and a profile of preferences ≻.
It is obvious from the definition that the mechanism satisfies anonymity (the outcomes
do not depend on the ordering of the agents, or their “names”) and equal treatment of
equals (the GCPS gives the same allocations to i and j if ri = rj , gi = gj , and ≻i = ≻j).

The other fairness property considered by BM is envy-freeness. They show that the
PS mechanism is envy-free in the strong sense that if mi and mj are the allocations of

10Formally, the downward lexicographic relation dl(≻i) on allocations for i derived from ≻i is defined
by specifying that m′

i dl(≻i)mi if either m′
i = mi or there is an o ∈ O such that

∑
p⪰io′

m′
ip =∑

p⪰io′
mip for all o′ ∈ O such that o′ ≻i o and

∑
p⪰io

m′
ip >

∑
p⪰io

mip. The upward lexicographic
relation ul(≻i) is defined by specifying that m′

i ul(≻i)mi if either m′
i = mi or there is an o ∈ O such

that
∑

o′⪰ip
m′

ip =
∑

o′⪰ip
mip for all o′ ∈ O such that o ≻i o

′ and
∑

o⪰ip
m′

ip <
∑

o⪰ip
mip.
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the PS mechanism for ≻, then mi sd(≻i)mj . It is not reasonable to expect this if the
two agents have different opportunities, and in recognition of this Abdulkadiroğlu and
Sönmez (2003) introduced a notion of no justified envy. This concept takes on different
meanings depending on the setting. (For a recent discussion see Romm et al. (2020).)
We follow Yilmaz (2010) in the context of school choice. If E is a school choice CEE
with g ∈ {0, 1}I×O, we say that m ∈ Q has no justified envy if, for all i, j ∈ I , if
αi ⊂ αj and oi ≻i oj for all oi ∈ αi and oj ∈ αj \ αi, then mi sd(≻i)mj . Intuitively,
i’s envy of j is not justified if i is not eligible to attend a desirable element of αj , or if
j can demand a seat in a desirable element of αi because less desirable elements of αi

are not in αj .

Proposition 3. If E is a school choice CEE with g ∈ {0, 1}I×O, then GCPS(≻) has
no justified envy.

8 Strategy Proofness for School Choice

With the exception of some of the material towards the end of Section 4, and the result
in the last section, up to this point our results have concerned the general GCPS mech-
anism. In this section we examine the extent to which the GCPS mechanism, applied
specifically to school choice with safe schools, is resistant to manipulation. We fix an
integral school choice CEE E = (I, O, 1, q, g) that satisfies the GMC and a profile ≻ of
preferences over O. For each student j the safe school is the ≻j-worst element of αj .
We also fix a particular student i ∈ I whose possible deviations from truthful reporting
we will study.

BM (p. 310) show that there is no probabilistic allocation mechanism for object
allocation that is ex post efficient, strategy proof, and envy free. Theorem 4 of Yil-
maz (2010) states that for house allocation problems with existing tenants, there is no
mechanism that is individually rational, strategy proof, and has no justified envy. Their
settings are special cases of ours, so we cannot hope that the GCPS mechanism is fully
strategy proof: there necessarily exist situations in which, for some vNM utility func-
tion consistent with the true ordinal preferences, expected utility can be increased by
reporting a false preference. Nevertheless we will argue that for school choice the fail-
ures of strategy proofness of the GCPS mechanism are minor when each school has
many students, and do not significantly impair its usefulness.

There are three different ways a student might try to manipulate: a) reporting that
some of the schools that are actually worse than the safe school are better than it; b)
reporting that some of the schools that are actually better than the safe school are worse;
c) reordering of the schools that are better than the safe school. A manipulation attempt
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of type a) will be called an augmentation; following Roth and Rothblum (1999), a
manipulation attempt of type b) will be called a truncation; a manipulation attempt of
type c) will be called a reordering. We discuss these in turn.

Manipulation by augmentation is unambiguously unsuccessful:

Theorem 4. Let α′
i = αi ∪ {o∗}, where o∗ is an element of O \ αi, and let ≻′

i be a
preference over O that has α′

i as the set of schools weakly preferred to the safe school,
and that agrees with ≻i on αi. Let ≻′ = (≻′

i,≻−i). Then

GCPSi(≻) sd(≻i)GCPSi(≻′).

As a matter of logic, this result does not rule out the possibility that other forms of
manipulation might become successful, or more successful, if supplemented with an
augmentation, but this possibility seems to have slight practical importance.

Yilmaz (2010) (Example 5) presents the following example of an unambiguously
successful truncation manipulation for a house allocation problem with existing ten-
ants11. There are three homeowners and three houses, with 1 endowed with a, 2 en-
dowed with b, and 3 endowed with c, and preferences b ≻1 c ≻1 a, a ≻2 b, and
b ≻3 a ≻3 c. In the GCPS process b is exhausted at time 1

2
, which results in P = {a}

becoming critical, with JP = {2}, so the GCPS allocation gives 1
2
b+ 1

2
c to 1, a to 2, and

1
2
b + 1

2
c to 3. If 1 reports the preference b ≻′

1 a (i.e., b ≻′
1 a ≻′

1 c) then P = {a, b} is
critical at time 0, and the allocation gives b to 1, a to 2, and c to 3. As Yilmaz points out,
this manipulation continues to be possible in any of the problems obtained by replacing
each homeowner-current house pair with any number of copies. For example, if there
are five copies of agent 1, three copies of agent 2, and two copies of agent 3, and one
of the copies of agent 1 reports b ≻′

1 a, then P = {a, b} is critical at time 2
3
, and the

allocation gives b to the deviator, a to the agents of type 2, and 2
3
b + 1

3
c to nondeviant

agents of type 1 and agents of type 3.
Azevedo and Budish (2019) introduce a notion of asymptotic strategy proofness in

large economies: a mechanism is strategy proof in the large if, along any sequence of
increasingly large economies in which each agent’s belief concerning the types of the
other agents is given by i.i.d. draws from a fixed distribution over the set of possible
types, the maximal gains from manipulation vanish in the limit. They show that if a
mechanism is envy-free, then it is strategy proof in the large. The intuition is that the
gain from reporting an incorrect type is the sum of the gain from getting that type’s al-

11Theorem 3 of Cho (2018) asserts that the PS mechanism is dl-strategy proof, which means that
manipulation never results in a dl-better allocation. This example shows that Cho’s result does not extend
to house allocation problems with existing tenants.
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location, which is nonpositive by envy-freeness, plus the gain from changing the overall
allocation, which diminishes as the agent’s importance in the economy shrinks. Because
the example above is robust with respect to the numbers of the three types, it shows that
the GCPS mechanism is not strategy proof in the large, but neverthless the intuition still
has at least an informal applicability, which is reflected in Theorem 5 below.

In general, in order for a truncation manipulation to succeed, the manipulation must
induce a critical set of schools P at some time during the allocation process that includes
the manipulating student’s safe school and a school or schools that that student wishes to
consume, and that does not include the school or schools that the student falsely reports
to be worse than her safe school, so that students who can consume those schools are
outside of JP and thus prevented from consuming the schools the manipulator desires.
The manipulator’s safe school must be in high enough demand that the manipulator does
not end up simply consuming more of that school, and the schools that the manipulator
desires must also be in high demand, since otherwise the manipulator can get what
she wants simply by ranking her favorite of those schools at the top of her reported
preference, in which case the manipulation does not gain anything.

This set of requirements is rather lengthy and specific, but this type of manipula-
tion does not seem to have a knife-edge quality, and one can easily imagine successful
truncation manipulations in quite complex settings. In addition, it does not seem that
the student needs highly specific information in order to know that the manipulation is
likely to succeed or at least do no harm. In particular, if the student believes that her
safe school is so popular that there is no chance that a truncation manipulation attempt
will result in her consuming more of her safe school, then such an attempt can (roughly)
weakly dominate truthful revelation.

To what extent does this type of manipulation impair the usefulness of the GCPS
mechanism for school choice? As we explain below, reordering manipulations are quite
difficult, so a student whose safe school is not highly popular is (with minor excep-
tions) incentivized to reveal truthfully, independent of the extent to which others are
attempting truncation manipulations. Thus the Nash equilibria of the mechanism are
not drastically different from the naive understanding of it obtained by assuming truth-
ful revelation. The outcome of the mechanism when there are successful truncation
manipulations is sd-efficient for the true preferences. Indeed, truncation manipulations
seem to be mainly an annoyance from the point of view of fairness: a student with a
highly desired safe school may have an opportunity (possibly at some risk) to amplify
her good fortune at others’ expense.

In the remainder of this section we consider reordering manipulations. Proposition
1 of BM asserts (among other things) that the PS mechanism is weakly strategy proof:
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if reporting a false preference gives an allocation that is weakly sd-preferred to the allo-
cation resulting from truthful revelation, then the two allocations are the same. Kojima
(2009) shows, by means of the following example, that weak strategy proofness does
not extend to the allocation of r ≥ 2 objects per agent. Let there by two agents 1 and 2

and four objects a, b, c, and d, so r = 2. Let the true preferences be a ≻1 b ≻1 c ≻1 d

and b ≻2 c ≻2 a ≻2 d. If the agents report these preferences, then the PS mechanism
gives (1, 0, 1

2
, 1
2
) to agent 1 and (0, 1, 1

2
, 1
2
) to agent 2. On the other hand, if agent 1

reports ≻′
1, where b ≻′

1 a ≻′
1 c ≻′

1 d, and agent 2 reports ≻2, then the PS mechanism
gives (1, 1

2
, 0, 1

2
) to agent 1 and (0, 1

2
, 1, 1

2
) to agent 2. Thus, when agent 1 reports the

truth she receives the probability distribution over pairs 1
2
(a, c)+ 1

2
(a, d), while misrep-

resenting yields 1
2
(a, b) + 1

2
(a, d), which stochastically dominates (in an obvious sense)

the allocation resulting from truthful reporting.
A key idea of BM’s proof of their Proposition 1 is that once other agents begin

eating an object, they continue until that object is exhausted. Consequently, in order to
obtain the same amount of her favorite object as in the allocation resulting from truthful
revelation, an agent must report that it is her favorite. In order to get the maximal
amount of her best among the objects that are still available after her favorite has been
fully allocated, she cannot report a preference that ranks it below some other object
that is still available, and so forth inductively. In the example above, consumption of
a school by other students can cease before the school is fully allocated, which allows
student 1 to advantageously defer its consumption.

Since students do not consume multiple seats, one might hope that the GCPS mech-
anism is weakly strategy proof for school choice, but the following example shows that
this is not the case. There are five schools with qa = qb = qc = qd = 1 and qe ≥ 4.
There are eight students, with preferences a ≻1 b ≻1 c ≻1 d, a ≻2 e, a ≻3 e, b ≻4 e,
b ≻5 e, c ≻6 e, d ≻7 e, and c ≻8 d. (For each student the lowest ranked school is
the safe school.) Up until time 1

3
each student consumes her favorite school. At time 1

3

school a is exhausted, and the set {b, c, d} also becomes critical, with remaining capac-
ity 1

3
b+ 1

3
c+ 2

3
d that is just sufficient to serve the needs of students 1 and 8, who cannot

attend e. If student 1 reports truthfully she receives 1
3
a + 1

3
b + 1

3
d because student 8

consumes what remains of school c between time 1
3

and time 2
3
. If instead she reports

that her preference is a ≻′
1 c ≻′

1 b ≻′
1 d, then she and student 8 divide what is left of

school c between time 1
3

and time 1
2
, so she receives 1

3
a+ 1

3
b+ 1

6
c+ 1

6
d. In this example

consumption of school b by other students ceases before the school is fully allocated,
which allows student 1 to defer its consumption.

We now consider a different example illustrating how strategy proofness can fail.
Suppose that a and b are the agent’s first and second favorite object, with qa = qb = 1,
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and there are A − 1 other people who have a as their favorite and B − 1 other people
who have b as their favorite, where 1 < A < B. Further, assume that no one outside the
set of agents who have a as their favorite will ever consume any a and no one outside
the set of agents who have b as their favorite will ever consume any b. If the agent
reports the truth she will receive 1

A
units of a and none of b. If she reports that b is

her favorite and a is her second favorite, then she will consume b between time 0 and
time 1

B
while A−1

B
units of A are being consumed by others, and then she will receive

1
A
(1 − A−1

B
) units of a, so her total consumption of a and b will be 1

A
(1 + 1

B
). This

can be an improvement if the utility difference between a and the agent’s third favorite
object is more than A times the utility difference between a and b.

This example suggests that, in general, the benefit of manipulatively consuming an
inferior object (to change the later availability schedule of other objects) will be small
in comparison with the amount of manipulation if there are many agents competing for
the objects. In the special case of our general model in which E is integral and gio = ri

(in effect) for all i and o, Kojima and Manea (2010) (henceforth KM) establish an exact
result along these lines: for a given utility function ui consistent with a preference ≻i,
if mino qo/ri is sufficiently large, then agent i will not be able to increase the expected
utility from the probabilistic serial mechanism by reporting a different preference ≻′

i.
Following KM we present a result that shows that for a given vNM utility function,

if, for each student, the number of students with the same preferences and opportuni-
ties is large, relative to the ratio of the largest utility difference to the smallest utility
difference, then truthful reporting is a weakly dominant strategy.

Theorem 5. Let E be an integral school choice CEE that satisfies the GMC, and let
≻ = (≻i)i∈I be a preference profile. Let ≻′

i be an alternative preferences for some
i ∈ I , and let ≻′= (≻′

i,≻−i). Let N0 = |{ j ∈ I : αj = αi and ≻j = ≻i }|. Let
ui : A → R be a cardinal utility function consistent with ≻i, and let

di = min
o≻i p

ui(o)− ui(p) and Di = max
o≻i p

ui(o)− ui(p).

If di/Di ≥
(
N0+1
N0

)|O| − 1, then ui(GCPS(≻)) ≥ ui(GCPS(≻′)).

The proof of this result has two phases. In the first it is shown that the effect of the
manipulation by a student i on the overall allocation is bounded by the amount that i’s
own consumption differs between the eating schedule induced by the true preference
and eating schedule induced by the reported preference.

The second phase bounds the benefits of the periods of time during which the stu-
dent can eat from a school that would not be available if the student reported her true
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preference. The additional amount of the school that the student consumes during such
a period is the amount that is available at the beginning of the period divided by the
number of students eating from this school. In the KM setting the set of agents eating
an object type is weakly increasing while the object type is available, so having a large
number of objects of each type implies that if an object type is fully consumed, then
the final rate of consumption is high. In our setting the number of agents eating from
a school can decrease when sets of schools become critical, so we need an additional
assumption to insure that the number of agents competing for each school is high. The
simplest way to insure this is to assume that there are many students with the same
opportunities and preferences as the manipulator.

We regard Theorem 5, and especially its proof, as illustrative of the difficulties of
reordering manipulation, rather than as a complete explanation of them. For one thing,
a key point is that in order to manipulate successfully, the manipulator must believe that
during the time when a school is available due to the manipulation, there will be scant
competition. While this is certainly not the case under our assumption, there are many
other reasons that competition for the school might be expected. It will be evident that
noticing an opportunity to manipulate typically requires much more information than a
student is likely to possess.

We have seen that manipulation by augmentation is impossible. Manipulation by
truncation is sometimes possible, and less frequently entails little risk, but it does little
to change the incentives of other students, so (in contrast with the Boston mechanism)
it does not lead to Nash equilibria that are drastically different from truthful revelation.
Manipulation by reordering has large costs and low rewards when there are many agents
for each object, which is typically the case for school choice. On the whole, failures
of strategy proofness are minor and do little to impair the practical applicability of the
GCPS mechanism to school choice.

9 Concluding Remarks
We have provided a school choice mechanism that is a specialization of the GCPS
mechanism of Balbuzanov (2022), which is in turn a generalization of the PS mecha-
nism of BM. This mechanism guarantees each student a seat in a school that is at least
as desirable as any of the schools she is legally entitled to attend. When there are many
students for each school, it is effectively strategy proof. It is sd-efficient, which (as
BM stress) is a stronger condition than ex post efficiency. In contrast, DA based on
randomly generated priorities for the schools is (at least in its most basic form) not even
ex post efficient. The GCPS mechanism is implementable: the assignment probabilities
it generates can be obtained from a randomization over pure assignments. It satisfies
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anonymity, equal treatment of equals, and a natural generalization of the envy-freeness
condition satisfied by the PS mechanism. Using a novel generalization of Hall’s mar-
riage theorem, we have described a computational implementation of this mechanism
that seems to be tractable even for quite large school choice problems.

A possibility we intend to explore in subsequent research is that instead of consum-
ing probability of desirable objects, the agents may discard probability of undesirable
objects. In the case of n agents and n objects, each agent is endowed with one unit of
each object, and at each time during the interval [0, n − 1] she discards probability of
the least desirable object that she has not fully discarded for which discarding is still
allowed. Discarding of an object is disallowed when the agents’ total remaining en-
dowment of it is one, but it may also be disallowed for some agents in the event that the
process reaches a facet of R. The characterization of the PS mechanism given by Bo-
gomolnaia and Heo (2012) implies that the discarding mechanism is certainly different
from the probabilistic serial mechanism, but otherwise its properties await investiga-
tion. It seems appropriate for problems, perhaps such as chore assignment, in which the
agents’ main concern is to avoid the objects that are most noxious for them.

A possibility stressed by BM, Cho (2018), and Balbuzanov (2022) (perhaps among
others) is that the PS mechanism can be varied by making the eating speeds depend on
various things. This seems unmotivated in school choice, but in other domains it may
be quite interesting. In particular, in chore assignment some agents may be unqualified
to receive certain objects, and one may recognize this by taking away their endowments
of such objects at the outset, but this seems unfair insofar it amounts to giving them a
head start. Giving such agents slower discarding speeds is one way this issue could be
addressed.

Although we have emphasized the school choice application, we expect that the
underlying idea of our procedure, the application of the GCPS mechanism to a CEE, is
potentially of interest in many other domains, with many variations.
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For Online Publication

A Implementability
In this Appendix we consider the problem of passing from a matrix of assignment prob-
abilities to a random deterministic assignment whose distribution realizes the given
probabilities, showing that this is possible, and describing an algorithm for this task.

Let E = (I, O, 1, q, g) be an integral school choice CEE that satisfies the GMC, let
Q be its set of feasible allocations, and let m be an element of Q. Budish et al. (2013)
say that such an m is implementable if the assignment probabilities are those resulting
from some probability distribution over deterministic assignments12. Recalling that the
vertices of Q are its extreme points, we see that in order for every element of Q to
be implementable, each of its vertices must be a deterministic assignment, which is to
say that its entries are elements of {0, 1}. Conversely, since Q is the set of convex
combinations of its vertices, if each vertex is a deterministic assignment, then every
element of Q is implementable.

As we explain in detail below, Theorem 1 of Budish et el. has the following result
as a special case.

Theorem 6. Each vertex of Q is integral.

The Birkhoff-von Neumann theorem asserts that if |I| = |O|, then the set of bis-
tochastic matrices with entries indexed by I × O is the convex hull of the set of bis-
tochastic matrices with entries in {0, 1}. Evidently the Birkhoff-von Neumann theorem
is a special case of Theorem 6.

12Recently Akbarpour and Nikzad (2020) expanded the scope of this concept by studying a notion of
approximate implementation that is appropriate when some constraints need not be satisfied exactly.
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We quickly review the related concepts and results of Budish et al. (2013). A con-

straint set is a nonempty subset of I × O, and a constraint structure H is a set of
constraint sets. A vector of quotas q = (qS, q

S)S∈H is integral if qS, qS ∈ Z for all S.
An allocation m is feasible under q if qS ≤

∑
io∈S mio ≤ qS for all S ∈ H. Let Mq be

the set of feasible allocations for q. If H contains all singletons, then Mq is bounded,
hence a polytope. The constraint structure H is universally implementable if, whenever
q is integral, each vertex of Mq is integral. A constraint structure is a hierarchy if, for
all S, S ′ ∈ H, we have S ⊂ S ′ or S ′ ⊂ S or S ∩ S ′ = ∅, and H is a bihierarchy if there
are hierarchies H1 and H2 such that H1∪H2 = H and H1∩H2 = ∅. Theorem 1 of Bud-
ish et al. (2013) (which is also a generalization of the Birkhoff-von Neumann theorem)
asserts that if H is a bihierarchy, then it is universally implementable. (Their Theorem 2
is a partial converse, giving conditions under which if H is universally implementable,
then it is a bihierarchy.)

Let H1 = { {i} × O : i ∈ I }, H2 = { {(i, o)} : (i, o) ∈ I × O }, and H3 =

{ I × {o} : o ∈ O }, corresponding to the constraints
∑

o mio = 1, 0 ≤ mio ≤ gio, and∑
i mio ≤ qo respectively. We can show that H = H1 ∪H2 ∪H3 is a bihierarchy either

by setting H1 = H1 ∪H2 and H2 = H3 or by setting H1 = H1 and H2 = H2 ∪H3, so
our Theorem 6 follows from their Theorem 1.

The practical implementation of a random allocation depends not only on the exis-
tence of a representation of it as a convex combination of pure allocations, but also on
an efficient algorithm for generating a random pure allocation with a probability distri-
bution that averages to the given allocation. To this end we describe the argument in
Appendix B of the Online Appendices of Budish et al., which they attribute to Tomomi
Matsui and Akihisa Tamura, as it applies to our setting.

We work with the network (NE, AE) of Section 2. If m ∈ Q, the nonintegrality

set of m is C(m) ∪ D(m) ⊂ AE where C(m) = { (i, o) ∈ I × O : mio /∈ Z } and
D(m) = { (o, t) ∈ O × {t} :

∑
i mio /∈ Z }. The next result implies that points of

Q that are not integral are not extreme points of Q, hence not vertices, so Theorem 6
follows.

Recall that the floor of a real number x is the largest integer that is not greater than
x, and the ceiling of x is the smallest integer that is not less than x. When x is an integer,
it is both the floor and ceiling of itself.

Proposition 4. If E is integral, m ∈ Q, and the nonintegrality set of m is nonempty,
then there are m0,m1 ∈ Q \ {m} such that m is a convex combination of m0 and m1,
and for both h = 0, 1:

(a) For each i and o, mh
io is between the floor and the ceiling of mio.
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(b) For each o,
∑

i m
h
io is between the floor and the ceiling of

∑
i mio.

(c) The nonintegrality set of mh is a proper subset of the nonintegrality set of m.

Proof. For each i, if there is an o ∈ O such that (i, o) ∈ C(m), then (since
∑

omio =

ri ∈ Z) there are at least two such o. For each o, if there is exactly one i such that
(i, o) ∈ C(m), then

∑
i mio /∈ Z and consequently (o, t) ∈ D(m). Since

∑
o

∑
imio =∑

i ri ∈ Z, there cannot be exactly one o such that (o, t) ∈ D(m).
An allowed cycle is a sequence n1, . . . , nh of h > 2 distinct nodes in I ∪ O ∪ {t}

such that for all g = 1, . . . , h either (ng, ng+1) ∈ C(m)∪D(m) or (ng+1, ng) ∈ C(m)∪
D(m). (The indices are integers mod h.) By hypothesis there are n1 and n2 such that
(n1, n2) ∈ C(m). If we have already chosen distinct n1, . . . , ng satisfying the required
condition, then there is ng+1 ̸= ng−1 such that either (ng, ng+1) ∈ C(m) ∪ D(m)

or (ng+1, ng) ∈ C(m) ∪ D(m). Since N is finite, continuing in this fashion leads
eventually to ng+1 ∈ {n1, . . . , ng−2}, so this process eventually constructs an allowed
cycle.

Let n1, . . . , nh be an allowed cycle. For each i and o, if (i, o) = (ng, ng+1) ((i, o) =
(ng+1, ng)) for some g, then we say that (i, o) is a forward (backward) arc. For γ ∈ R
let mγ ∈ RI×O be the matrix with components

mγ
io =


mio + γ, (i, o) is a forward arc,

mio − γ, (i, o) is a backward arc,

mio, otherwise.

Let α be the smallest positive number such that one of the following occurs:

(a) mα
io ∈ Z for some (i, o) ∈ C(m).

(b)
∑

i m
α
io ∈ Z for some (o, t) ∈ D(m).

Let β be the smallest positive number such that m−β satisfies one of these conditions.
Let m0 = mα and m1 = m−β , so that m = β

α+β
m0 + α

α+β
m1.

For each i and g such that ng = i, (i, ng−1) is a backward arc and (i, ng+1) is a
forward arc, so

∑
om

γ
io =

∑
o mio = ri for all γ. Since E is integral, it follows that

m0 and m1 satisfy all the constraints defining Q. It is now easy to see that m0 and m1

satisfy (a)–(c) of the statement.

To generate a random integral allocation whose expectation is the given m we re-
peatedly execute the computation described in this argument, passing to m0 with prob-
ability β

α+β
and passing to m1 with probability α

α+β
. The number of times this must
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be done is bounded by the number of elements of the nonintegrality set of m, and the
running time of each step is bounded by a the maximum size of a cycle, which is also
the number of elements of the nonintegrality set at that step. Thus this algorithm’s worst
case complexity is bounded by a constant times the square of the number of elements
of the nonintegrality set of m, which is at most

∑
i |αi| in our intended application.

B GCPS Schools

For the application to school choice, a version of the algorithm described in Section 4
has been encoded, using the C programming language, as an executable gcps, in the
software package GCPS Schools, which can be downloaded13. GCPS Schools

also contains two other executables, make ex and purify. The second of these is
a straightforward implementation of the algorithm of Budish et al. (2013) described in
Online Appendix A, which passes from the output of gcps to a random deterministic
allocation whose distribution induces the assignment probabilities computed by gcps.

The executable make ex generates random school choice problems of the sort that
might occur in large school districts. The schools and students are spaced evenly around
a circle. Each student’s safe school is the school that is closest to her home. Each school
has a random valence, which is normally distributed, for each student-school pair there
is a normally distributed idiosyncratic shock, and the student’s utility for a seat in the
school is the sum of these two quantities minus the distance between her home and the
school. The schools that the student is eligible for are those that provide at least as
much utility as the safe school, and the student’s preference over such schools is the
one induced by these utilities.

The computation of the GCPS allocation begins with a feasible allocation p(0) ∈ Q.
Computing such a point is equivalent to computing a maximal flow for the network
(NE, AE) with capacity cE . We use the push-relabel algorithm of Goldberg and Tarjan
(1988), specialized to (NE, AE). (Fifteen algorithms for the maximal flow problem
were already known at the time of that paper, but the literature continues to advance,
e.g., Chen et al. (2022).)

Table 1 reports the result in which gcps was applied to two series of examples
produced by make ex. In the first series the number of schools is fixed at 10 while
the number of seats per school increases from 10 to 100, while in the second series the

13Open the url https://github.com/Coup3z-pixel/SchoolOfChoice/ in a web
browser. Clicking on the file gcps schools.tar opens a page for that file. Clicking the raw button
on the line for the file downloads the file to your browser. After placing the file in a suitable directory, in a
Unix command line terminal at that directory give the command tar xvf gcps schools.tar. In
the directory gcps schools created by that command the document GCPS Schools User Guide.pdf
has further instuctions.
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number of seats per school is fixed at 10 while the number of schools increases from 10
to 100. In all examples there are nine students for every ten seats, so in both series the
number of students increases from 90 to 900.

Schools Seats/sch Segments Splits Pivots h-sum

10 10 33 7 372 542
10 20 68 7 1596 2275
10 30 77 7 3468 4888
10 40 123 7 6780 10280
10 50 129 7 10224 14651
10 60 143 7 12885 17221
10 70 209 8 19782 28272
10 80 256 8 29553 43179
10 90 230 7 35178 54779
10 100 270 7 37227 58825

10 10 33 7 372 542
20 10 58 14 1140 1689
30 10 98 20 2499 4399
40 10 159 30 5594 9128
50 10 169 34 9538 14471
60 10 188 40 11253 16371
70 10 200 45 14260 21243
80 10 260 55 19289 28084
90 10 296 61 29952 38886

100 10 286 62 27033 40506

Table 1: numbers of events during gcps computations

In order to explain Table 1 we review the main features of the algorithm. The path
p of the GCPS allocation process, and the path p of the feasible allocation such that
p(t) ≤ p(t) for all t, are both piecewise linear, so the combined function (p, p) is also
piecewise linear. Having arrived at the values of these functions at a particular point in
time, and having determined directions for p and p, the algorithm computes the amount
of time that these directions can be followed before some constraint becomes binding,
and it computes the parameters of the residual problem that results from following these
directions for that amount of time. The arithmetic burden of one of these computations
is proportional to the number of student-school pairs such that the school is possible for
the student, i.e, the number of students times the average number of schools that are
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possible for a student. In both series of examples the number of linear pieces (the vari-
able Segments in the table) is approximated, quite roughly, by the number of students
divided by three. Thus the overall burden of computing the times at which segments
end, and the new values of the parameters at the endpoints, seems to be proportional to
the square of the number of students.

After following the trajectories of p and p to the end of a segment at time t, the algo-
rithm either computes a new trajectory for p that allows the trajectory of p to continue,
or it finds a critical pair (P, J), and it descends recursively to the derived problems for
(E − p(t))(J,P ) and for (E − p(t))(J,P ). If it finds such a pair, and P , J , P c, and J c are
all nonempty, then we say that the process splits. The combined complexity of the two
subproblems is less than the complexity of the problem from which they are derived,
so such events do not give rise to complexity concerns. The number of such events
(throughout the recursive descent) is not greater than the number of schools minus one.
From Table 1 we see that the actual number of such events is roughly two thirds of the
number of schools.

In the computation of a critical pair (P, J) or a new direction for p that allows p to
continue in the same direction, the computation starts with an |I|×|O| matrix of integers
θ. This matrix is modified repeatedly until it reaches a satisfactory state, and we say
that each individual modification is a pivot. In Section 4 we explained that each pivot
decreases a certain quantity by one, the matrix is satisfactory when this quantity is zero,
and the initial value of this quantity cannot be greater than the number of students, so
the number of pivots cannot exceed the number of students. The fifth column of Table
1 reports the total number of pivots. In the first sequence of experiments the number
of pivots per segment increases from roughly 10 to roughly 160, and in the second
sequence of experiment this number increases from roughly 10 to roughly 64. If the
number of pivots per segment does not grow more rapidly that the number of students,
and the number of segments is roughly proportional to the number of students, then the
computational burden of computing pivots is roughly proportional to the square of the
number of students times the average cost of a pivot.

A pivot that does not result in a critical pair decreases θi1o0 , θi2o1 , . . . , θihoh−1
by one

and increases θi1o1 , θi2o2 , . . . , θihoh by one, for some sequences o0, o1, . . . , oh of schools
and i1, . . . , ih of students. The quantity h-sum is the sum, across all pivots, of the integer
h. In all cases it is between one and two times the number of pivots, so the average cost
of a pivot does not seem to grow with the size of the problem.

Thus both the cost of computing endpoints of segments, and the cost of pivoting,
seem to be at worst proportional to the square of the number of students. The example
with 100 schools and 10 seats and 9 students per school has a running time of 0.7
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seconds, which suggests that even for the world’s largest school choice problem (New
York City, with over 500 schools and 100,000 students) the algorithm should run to
completion within a few hours.

As we mentioned at the end of Appendix A, the running time of the BCKM algo-
rithm described there is bounded by a constant times the square of

∑
i |αi|, and thus by

a constant times |I|2 for any given bound on |αi|. We have not done systematic experi-
ments on purify, but in our experience it runs very quickly, as one would expect if the
cycles that it finds in the graph of nonintegral entries of the matrix m are typically short.
This intuition, and our experience, strongly suggest that the running time of purify
will not be a factor that limits the applicability of the GCPS mechanism.

C Proofs of Results in Sections 5–7

This appendix collects relatively short proofs.

Proof of Theorem 2. Gross substitutes implies that the lower and upper bounds of Io(c−o)

are nondecreasing functions of each component of c−o, so To(c) is a nondecreasing
function of each of these components, and it is also obviously a nondecreasing function
of co. Thus T is an increasing function: if c ≤ c′, then T (c) ≤ T (c′). Tarski’s fixed
point theorem implies that F is a complete sublattice of [0, e]O.

Fixing c, c′ ∈ F , let c+ = c ∨ c′. For an arbitrary o ∈ O assume without loss that
co ≤ c′o. By gross substitutes we have Do(c

+) ≥ Do(c
′). If c′o > 0, then Do(c

′) =

qo ≥ Do(c), and if c′o = 0, then co = c′o and (by symmetry) Do(c
+) ≥ Do(c). Thus

Do(c
+) ≥ max{Do(c), Do(c

′)}. This holds for all o, so∑
o

Do(c
+) ≥

∑
o

max{Do(c), Do(c
′)} ≥ max

{∑
o

Do(c),
∑
o

Do(c
′)
}
.

Since c+ ≥ c we have 1 −
∑

o Dio(c
+) ≥ 1 −

∑
oDio(c) for each i, and thus

|I|−
∑

o Do(c
+) ≥ |I|−

∑
o Do(c

′). By symmetry |I|−
∑

o Do(c
+) ≥ |I|−

∑
o Do(c),

so
|I| −

∑
o

Do(c
+) ≥ |I| −max

{∑
o

Do(c),
∑
o

Do(c
′)
}
.

We now conclude that all the weak inequalities above are in fact equalities, and in
particular Do(c) = Do(c

+) = Do(c
′) for all o.

Gross substitutes and the definition of demand give Dio(c
+) ≤ Dio(c

+
o , c−o) ≤

Dio(c) for each i and o. For each o, since Do(c) = Do(c
+), it follows that Dio(c) =

Dio(c
+) for all i. By symmetry Dio(c

′) = Dio(c
+) = Dio(c).
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The following result is essentially due to Cho and Doğan (2016). (Lemma 3 of BM
is a precursor.) We provide no proof because it is easy to see that their proof works,
essentially without any modification, in our more general setting.

Lemma 4. sd-efficiency, dl-efficiency, and ul-efficiency are equivalent.

The following is a special case of the proof of Proposition 3 of Balbuzanov (2022).

Proof of Theorem 3. By the last result it suffices to show that the GCPS allocation m =

p(1) is sd-efficient. Aiming at a contradiction, suppose that m′ ∈ Q, m′ ̸= m, and
m′

i sd(≻i)mi for all i. Since m′ sd(≻i)m and m′ ̸= m there is an agent i and objects
o, o′ such that o′ ≻i o0 and m′

io′ > mio′ , and there must have been a time at which o′

became unavailable to i.
Since the set of possible critical pairs is finite, we may assume that t0 is the first

time such that there is a J ⊂ I and P ⊂ O such that p(t0) satisfies (1) for J and P with
equality and there is i0 ∈ J c and o0 ∈ P such that m′

i0o0
̸= mi0o0 . Since m′ satisfies (1)

for J and P we have ∑
i∈Jc

∑
o∈P

m′
io ≤

∑
i∈Jc

∑
o∈P

mio.

Consequently there are i1 ∈ J c and o1 ∈ P such that m′
i1o1

< mi1o1 . Since m′ sd(≻i)m

and m′ ̸= m there is an object o2 such that o2 ≻i1 o1 and m′
i1o2

> mi1o2 . Since
pi1o1(t0) = mi1o1 > m′

i1o1
≥ 0, there must have been a time prior to t0 at which o2

became unavailable to i1, but this contradicts the definition of t0.

Proof of Proposition 3. Suppose that i, j ∈ I , αi ⊂ αj , and oi ≻i oj for all oi ∈ αi

and oj ∈ αj \ αi. At each time during the allocation process, if there is a critical set
of schools P such that the only remaining schools that i can consume are contained in
P , but j has some remaining school outside of P , then j is consuming some element of
αj \ αi. On the other hand, if at that time, for every critical P , either all the remaining
schools for j are contained in P or there is some remaining school for i that is outside
P , then the set of remaining schools for j that are contained in αi is the set of remaining
schools for i. In either case i is consuming a school that she weakly prefers to the
school that j is consuming. Since this is true at all times during the allocation process,
GCPSi(E,≻) sd(≻i)GCPSj(E,≻).

D Eating Function Analysis

In this appendix we prove Theorems 4 and 5. Both proofs are based on a detailed
analysis of the consequences of manipulation in terms of its effect on the continuous
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time eating process of BM, as generalized in KM and here. At this point we prepare
both of the proofs by studying general aspects of this analysis.

We fix a school choice CEE E = (I, O, 1, q, g) that satisfies the GMC and a profile
≻ = (≻j)j∈I of strict preferences over O. Let Θ denote an artificial object (intuitively,
eating nothing) that is not an element of O, and is available in infinite supply, and let
Õ = O∪{Θ}. For each j we extend ≻j to a strict preference over Õ by specifying that
o ≻j Θ for all o ∈ O.

For j ∈ I and t ∈ [0, 1], an eating schedule on [0, t) is a function ej : [0, t) → Õ that
is piecewise constant (i.e., changes objects finitely many times) and right continuous:
for any t′ ∈ [0, t) there is an ε > 0 such that ej(t′′) = ej(t

′) for all t′′ ∈ [t′, t′ + ε). For
such an ej , o ∈ Õ, and t′ ∈ [0, t] let

pjo(ej, t
′) =

∫ t′

0

1ej(s)=o ds.

An eating function on [0, t) is a vector e = (ej)j∈I of eating schedules on [0, t). For
t′ ∈ [0, t] let p(e, t′) ∈ RI×O

+ be the allocation with components pjo(ej, t′).
For J ⊂ I , P ⊂ O, and t′ ∈ [0, t] let

s(J,P )(e, t
′) =

∑
o∈P

qo +
∑
i∈J

∑
o∈P c

gio −
∑
i∈J

ri −
∑
i∈Jc

∑
o∈P

pio(e, t
′).

For j ∈ I , o ∈ O, J ⊂ I , and P ⊂ O let

τjo(ej) = sup{ t′ : pjo(ej, t′) < gjo } and τ(J,P )(e) = sup{ t′ : s(J,P )(e, t
′) > 0 }.

For j ∈ I and t′ ∈ [0, t] let

αj(e, t
′) = {Θ} ∪ αj \

(
{ o : pjo(ej, t′) ≥ gio } ∪

⋃
J⊂I,P⊂O : s(J,P )(e, t

′) ≤ 0 and j ∈ Jc

P
)
.

Note that αj(e, ·) is right continuous. Let e≻j (e, t
′) be the ≻j-best element of αj(e, t).

We say that ej is myopic for e if, for all t′ ∈ [0, t), ej(t′) = e≻j (e, t
′).

We now fix a particular i ∈ I . We first show that any eating function for i with
ei(0) ∈ αi induces a well defined profile of myopic eating functions for the other agents,
up to some time.

Lemma 5. For any t ∈ [0, 1] and any eating schedule ei on [0, t) for i, if ei(0) ∈ αi,
then there is a unique t ∈ (0, t] and unique eating schedules ej on [0, t) for j ̸= i such
that if e−i = (ej)j ̸=i and e = (ei|[0,t), e−i), then:
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(a) for all t′ ∈ [0, t), ei(t′) ∈ αi(e, t
′);

(b) for each j ̸= i, ej is myopic for e;

(c) either t = t or ei(t) /∈ αi(e, t).

Proof. For sufficiently small ε > 0, if, for each j ̸= i, ej is the constant function on
[0, ε) with value e≻j (0), e−i = (ej)j ̸=i and e = (e|[0,t), e−i), then for all t′ ∈ [0, ε),
ei(t

′) ∈ αi(e, t
′), and for each j ̸= i, ej is myopic for e. Therefore there is a t ∈ (0, t]

and a vector of eating schedules e−i on [0, t) for j ̸= i such that if e = (ei|[0,t), e−i),
then for each j ̸= i, ej is myopic for e.

Suppose that e′−i is also a vector of eating schedules on [0, t) for j ̸= i such that if
e′ = (ei|[0,t), e′−i), then for each j ̸= i, e′j is myopic for e′. For each j ̸= i we have
ej(0) = e≻j (e, 0) = e≻j (e

′, 0) = e′j(0), so e−i and e′−i agree on the degenerate interval
[0, 0]. If t̂ ∈ [0, t) and e−i and e′−i agree on [0, t̂], then α(e, t̂) = αj(e

′, t̂) for all j ∈ I ,
so for some ε > 0 they agree on [0, t̂ + ε). Therefore, for the given t, the vector e−i is
unique.

If t < t and ei(t) ∈ αi(e, t), then for some ε > 0 we can extend e−i to [0, t + ε) by
setting ej(t

′) = e
≻j

j (e, t) for all t′ ∈ [t, t+ ε), and each extended ej will be myopic for
the extended e. It follows that there is a unique maximal t, which satisfies (c).

In the circumstance described in the last result we say that the profile e−i of eating
schedules on [0, t) is induced by ei. An eating schedule ei : [0, t) → Õ for i is feasible

if the time t of the last result is t.
Arguments similar to those used to prove Lemma 5 imply the next two results, so

we do not provide proofs.

Lemma 6. There is a unique eating function e on [0, 1) such that each ej is myopic for
e on [0, 1).

Lemma 7. Suppose that ei : [0, 1) → Õ and ei : [0, 1) → Õ are eating schedules for i
such that { t : ei(t) ̸= ei(t) } ⊂ { t : ei(t) = Θ }. If ei is feasible, then ei is feasible.

We now fix particular objects o∗, o∗∗ ∈ Õ. We begin with an eating schedule eρ0i on
[0, 1) and an open interval I(ρ0, ε) = (ρ0 − ε, ρ0 + ε) ⊂ (0, 1) such that eρ0i (t) = o∗

for t ∈ (ρ0 − ε, ρ0) and eρ0i (t) = o∗∗ for t ∈ [ρ0, ρ0 + ε). For each ρ ∈ I(ρ0, ε) let eρi
be an eating schedule on [0, t) such that eρi agrees with eρ0i on [0, ρ0 − ε], eρi (t) = o∗

for t ∈ (ρ0 − ε, ρ), and eρi (t) = o∗∗ for t ∈ [ρ, ρ0 + ε). We assume that eρi is feasible
for all ρ, we let eρ−i be the profile of eating schedules given by Lemma 5, and we set
eρ = (eρi , e

ρ
−i).
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We study two cases, which are relevant to Theorems 4 and 5 respectively. In the
first eρ is the eating function given by Lemma 6 for Eρ = (I, O, 1, q, gρ) and ≻ where
gρ differs from g in the component for i and o∗ in such a way that pio∗(e

ρ
i , ρ) = gρio∗ . We

call this the myopic case.
In the second case o∗∗ = Θ and each eρi agrees with eρ0i everywhere outside of

I(ρ0, ε). We call this the constant case. Note that in both cases, after consumption
of a school o by j ̸= i ceases, it does not resume later, and in the myopic case, after
consumption of a school o by i ceases, it does not resume later.

If the times at which j begins and finishes consuming o are piecewise linear func-
tions of ρ, then τjo(e

ρ) is a piecewise linear function of ρ. Similarly, if the times at
which elements of J c start consuming elements of P , and the times prior to τ(J,P )(e

ρ)

at which they stop consuming them, are piecewise linear functions of ρ, then τ(J,P )(e
ρ)

is a piecewise linear function. By induction over increasing start and stop times, these
are all piecewise linear functions.

We say that ρ0 ∈ (0, 1) is generic if (possibly after replacing ε with a smaller
number) there are affine functions

t0, t1, . . . , tK : I(ρ0, ε) → [0, 1]

such that 0 ≡ t0 < t1 < · · · < tK ≡ 1 and for each j and k = 1, . . . , K there is an
ojk ∈ Õ such that eρj (t) = ojk for all ρ ∈ I(ρ0, ε) and t ∈ [tk−1(ρ), tk(ρ)). An interval
of possible values of ρ under consideration is partitioned into finitely many nongeneric
values and finitely many open intervals whose elements are generic.

From now to the beginning of Subsection D.1 we assume that ρ0 is generic. For
each k let σk be the number such that

tk(ρ) = tk(ρ0) + σk(ρ− ρ0)

for all ρ ∈ I(ρ0, ε). For each j and k = 1, . . . , K there is a number κj,k−1 such that

pjojk(e
ρ, t) = pjojk(e

ρ0 , t) + κj,k−1(ρ− ρ0)

for all ρ ∈ I(ρ0, ε) and t ∈ [tk−1(ρ), tk(ρ)) ∩ [tk−1(ρ0), tk(ρ0)).
Let k0 be the integer such that tk0 is the identity function of I(ρ0, ε). If k < k0,

then σk = 0 and κjk = 0 for all j. Clearly σk0 = 1, κik0 = −1, and κjk0 = 0

for all j ̸= i. If oj,k+1 ̸= ojk and either j ̸= i, or j = i and we are in the myopic
case, then (since consumption of an object does not resume after ceasing) we have
pjoj,k+1

(eρj , tk(ρ)) = 0, so that κjk = −σk. In the constant case, if oi,k+1 ̸= oik and
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k ̸= k0, then κjk = 0 = −σk.
The definition of genericity implies that:

(a) for each j and o, if τjo(e
ρ
j ) < 1 for some ρ ∈ I(ρ0, ε), then there is a k such that

tk(ρ) = τjo(e
ρ
j ) for all ρ ∈ I(ρ0, ε);

(b) for each J ⊂ I and P ⊂ O, if τ(J,P )(e
ρ) < 1 for some ρ ∈ I(ρ0, ε), then there is

a k such that tk(ρ) = τ(J,P )(e
ρ) for all ρ ∈ I(ρ0, ε).

If tk(ρ) = τjo(e
ρ
j ) for ρ ∈ I(ρ0, ε), then σk = −κj,k−1, so that κjk = κj,k−1. Clearly

κjk = κj,k−1 when oj,k+1 = ojk.
For each k = 1, . . . , K let

Pk = { (J, P ) : tk(ρ) = τ(J,P )(e
ρ) for all ρ ∈ I(ρ0, ε) }.

For (J, P ) ∈ Pk let Lk,(J,P ) = { j ∈ J c : ojk ∈ P }. Let k∗ be the integer such that
there is a (J, P ) ∈ Pk∗ such that i ∈ J c and o∗ ∈ P , if such an integer exists. Let
k∗∗ be the integer such that there is a (J, P ) ∈ Pk∗∗ such that i ∈ J c and o∗∗ ∈ P , if
such an integer exists. In what follows, the condition k < k∗ is to be understood as
encompassing also the possibility that k∗ does not exist, and similarly for k∗∗.

Lemma 8. If (J, P ) ∈ Pk, then

σk =
−1−

∑
j∈Lk,(J,P )

κj,k−1

|Lk,(J,P )|
, σk =

1−
∑

j∈Lk,(J,P )
κj,k−1

|Lk,(J,P )|
, or

σk =
−
∑

j∈Lk,(J,P )
κj,k−1

|Lk,(J,P )|
,

according to whether i ∈ J c and o∗ ∈ P , i ∈ J c and o∗∗ ∈ P , or otherwise.

Proof. The proofs in the three cases are similar, and we give only the proof for the
second case. The claim follows from the fact that the quantity∑
j∈Jc

∑
o∈P

pjo(e
ρ, tk(ρ)) =

∑
j∈Jc

∑
o∈P

pjo(e
ρ0 , tk(ρ0)) + pio∗(e

ρ, tk(ρ))− pio∗(e
ρ0 , tk(ρ0))

+
∑

j∈Lk,(J,P )\{i}

(κj,k−1(ρ− ρ0) + tk(ρ)− tk(ρ0))

=
∑
j∈Jc

∑
o∈P

pjo(e
ρ0 , tk(ρ0)) + (−1 + σk +

∑
j∈Lk,(J,P )

κj,k−1 + |Lk,(J,P ) \ {i}|σk) · (ρ− ρ0)

does not depend on ρ.
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Lemma 9.
∑

j κjk∗ =
∑

j κj,k∗−1 − 1,
∑

j κjk∗∗ =
∑

j κj,k∗∗−1 + 1, and if k ̸= k∗, k∗∗,
then

∑
j κjk =

∑
j κj,k−1, .

Proof. We prove only the third assertion, since this clearly displays the ideas of the
proofs of the other two assertions. Since the set of critical pairs is a lattice (Propo-
sition 2) the set of Lk,(J,P ) such that (J, P ) is a minimal element of Pk is a partition
of

⋃
(J,P )∈Pk

Lk,(J,P ). For j outside this union we have κjk = κj,k−1, either because
ojk = oj,k−1 or because tk(ρ) = τjo(e

ρ
j ) for ρ ∈ I(ρ0, ε). If (J, P ) is a minimal element

of Pk, then ∑
j∈Lk,(J,P )

κjk = −|Lk,(J,P )|σk =
∑

j∈Lk,(J,P )

κj,k−1.

Lemma 10. If k∗ ≤ k < k∗∗, then κjk ≤ 0 for all j, and
∑

j κjk = −1. If k∗∗ ≤ k < k∗,
then κjk ≥ 0 for all j, and

∑
j κjk = 1. If k∗ ≤ k and k∗∗ ≤ k, then

∑
j κjk = 0, and

if I−k = { j : κjk < 0 } and I+k = { j : κjk > 0 }, then
∑

j∈I−k
κjk ≥ −1 and∑

j∈I+k
κjk ≤ 1.

Proof. The assertions concerning
∑

j κjk follow from the last result by induction. The
claims concerning the sign of κjk, and its bounds, also follow from induction on k, since
if (for example) k∗ < k < k∗∗, then for each j we have either κjk = κj,k−1 (if ojk =

oj,k−1 or tk(ρ) = τjo(e
ρ
j ) for ρ ∈ I(ρ0, ε)) or κjk = −σk =

∑
j′∈Lk,(J,P )

κj′,k−1/|Lk,(J,P )|
where (J, P ) is an element of Pk such that j ∈ Lk,(J,P ). When k > k∗ and k > k∗∗ this
averaging cannot increase −

∑
j∈I−k

κjk or
∑

j∈I+k
κjk, but it will decrease them if there

is a minimal (J, P ) ∈ Pk such that κj,k−1 is positive for some j ∈ Lk,(J,P ) and negative
for others.

In preparation for the proof of Theorem 5 we mention that if k < k∗∗ and (J, P ) ∈
Pk, then

∂
∂ρ
τ(J,P )(e

ρ) = σk ∈ [0, 1] and ∂
∂ρ
s(J,P )(e

ρ) = −
∑

j∈Lk,(J,P )

κj,k−1 ∈ [0, 1]. (2)

D.1 The Proof of Theorem 4

For the given i, let o∗ be an element of O \ αi, let α′
i = αi ∪ {o∗}, and let ≻′

i be a
preference over O that has α′

i as the set of schools weakly preferred to the safe school,
and that agrees with ≻i on αi. We wish to show that the augmentation manipulation of
reporting ≻′

i rather than ≻i results in an allocation for i that is weakly sd(≻i) worse.
Our method of analysis is to study how i’s allocation changes as the parameter ρ = gio∗

varies continuously between 0 and 1. For ρ ∈ [0, 1] let eρ be the eating function of the
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GCPS mechanism when gio∗ = ρ. As we saw above, for each o ∈ αi, the probability
that i receives a seat in a school that is at least as good as o is a piecewise linear function
of ρ. Let I(ρ0, ε) = (ρ0 − ε, ρ0 + ε) be an interval of generic values of ρ.

If o ≻′ o∗, then i’s total consumption of schools preferred to o is unaffected by
gio∗ . For ρ ∈ I(ρ0, ε) it may be the case that i is excluded from consuming o∗ before
i has finished consuming gio∗ units, and it is possible that i does not finish consuming
all gio∗ units at time 1. In both these cases small variations of gio∗ do not change the
allocation. Finally, if o∗ ≻′

i o, then Lemma 10 implies that the total consumption of
schools that are ≻′

i-weakly preferred to o does not increase more rapidly than gio∗ as
this variable increases, so the total consumption of schools that are ≻i-weakly preferred
to o does not increase as gio∗ increases. Since this is the case for each of the finitely
many generic intervals, it holds also for large increases, including the increase from
gio∗ = 0 to gio∗ = 1.

D.2 The Proof of Theorem 5
We now assume that E is integral, so gio ∈ {0, 1} for all i and o. Following KM, we
will compare the eating schedule for i resulting from truthful revelation with the eating
schedule resulting from a manipulation by comparing both with the eating schedule that
agrees with them at times when they agree with each other and consumes Θ during the
times when they differ.

Let ≻ be a preference profile ≻ over O, let ≻′
i be a deviant preference for i, and let

≻′= (≻′
i,≻−i). Lemma 6 gives unique eating functions e≻ and e≻

′ that are generated
by the GCPS procedure when agents report these preferences. Since E satisfies the
GMC, these eating functions are feasible. Let ei be the eating schedule

ei(t) =

e≻i (t), if e≻i (t) = e≻
′

i (t),

Θ, otherwise.

Lemma 7 implies that e is feasible. Let e−i be the profile of eating schedules induced
by ei, and let e = (ei, e−i). For t ∈ [0, 1] let

δ(t) =

∫ t

0

1ei(s)̸=ei(s)ds.

Lemma 11. For all (J, P ) and t ∈ [0, 1],

0 ≤ τ(J,P )(e)− τ(J,P )(e) ≤ δ(τ(J,P )(e)) and 0 ≤ s(J,P )(e, t)− s(J,P )(e, t) ≤ δ(t).

Proof. In the obvious way we can create a path ρ 7→ eρi from [0, δ(1)] to the space of

50



eating schedules, with e0i = ei and e
δ(1)
i = ei, that traverses each of the finitely many

intervals in [0, 1] along which the value of ei is some o∗ ∈ O and the value of ei is Θ.
Due to the piecewise linear nature of the problem, each of these intervals is a union
of finitely many points and finitely many open “generic” intervals to which our earlier
discussion in the case k < k∗∗ is applicable. The asserted inequalities are attained by
integrating the inequalities (2) over these intervals.

Let

β(t) =

∫ t

0

1
e≻

′
i (s)≻i e

≻
i (s)

ds and γ(t) =

∫ t

0

1
e≻i (s)≻i e

≻′
i (s)

ds

be the sums of the lengths of time intervals, before time t, on which agent i’s consump-
tion in the eating algorithm is ≻i-better and ≻i-worse, respectively, when the reported
preferences change from ≻ to ≻′. Note that δ(t) = β(t) + γ(t).

Let O′ = {o1, o2, . . . , oℓ} be the set of objects o such that for some time t, o = e≻
′

i (t)

and o ≻i e
≻
i (t), indexed so that o1 ≻′

i o2 ≻′
i · · · ≻′

i oℓ. For l = 1, . . . , ℓ let

Tl = inf{ t : e≻′

i (t) = ol and ol ≻i e
≻
i (t) }

be the first time t when ol = e≻
′

i (t) is ≻i-preferred to e≻i (t). For each l let

T ′
l = sup{ t : e≻′

i (t) = ol }

Clearly, 0 < T1 < T ′
1 ≤ T2 < · · · < T ′

ℓ−1 ≤ Tℓ < T ′
ℓ ≤ 1. Let T0 = 0 and Tℓ+1 = 1.

Lemma 12. For each l = 1, . . . , ℓ, T ′
l − Tl ≤ δ(Tl)/N0.

Proof. After time Tl the object ol is not available to i under the eating function e≻, so
(because E is integral) there is a pair (Jl, Pl) such that ol ∈ Pl, i ∈ J c

l , and τ(Jl,Pl)(e
≻) =

Tl. Since s(Jl,Pl)(Tl, e
≻) = 0, Lemma 11 gives

s(Jl,Pl)(Tl, e
≻′
) = s(Jl,Pl)(Tl, e

≻′
)− s(Jl,Pl)(Tl, e

≻)

= (s(Jl,Pl)(Tl, e
≻′
)− s(Jl,Pl)(Tl, e))− (s(Jl,Pl)(Tl, e

≻)− s(Jl,Pl)(Tl, e))

≤ s(Jl,Pl)(Tl, e)− s(Jl,Pl)(Tl, e
≻) ≤ δ(Tl).

By assumption i is one of at least N0 students j ∈ J c
l such that e≻

′

j (t) = ol for all
t ∈ [Tl, T

′
l ), so T ′

l − Tl ≤ s(Jl,Pl)(Tl, e
≻′
)/N0 ≤ δ(Tl)/N0.

Let λ = 1 + 1/N0.

Lemma 13. For all l = 1, . . . , ℓ, T ′
l − Tl ≤ γ(1)(λ− 1)λl−1.
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Proof. We prove the lemma by induction on l. We have δ(T1) = γ(T1) ≤ γ(1), so
Lemma 12 implies that T ′

1 − T1 ≤ δ(T1)/N0 ≤ γ(1)(λ − 1). Suppose that l ≥ 2 and
the induction hypothesis holds for 1, . . . , l − 1. Then

δ(Tl) = γ(Tl) + β(Tl) ≤ γ(1) +
l−1∑
g=1

β(Tg+1)− β(Tg) = γ(1) +
l−1∑
g=1

T ′
g − Tg

≤ γ(1)
(
1 + (λ− 1)

l−2∑
g=0

λg
)
= γ(1)λl−1.

Applying Lemma 12 again gives

T ′
l − Tl ≤ δ(Tl)/N0 ≤ γ(1)(λ− 1)λl−1.

Proof of Theorem 5. We have

ui(GCPS(≻))−ui(GCPS(≻′)) =

∫ 1

0

ui(e
≻
i (s))−ui(e

≻′

i (s)) ds ≥ diγ(1)−Diβ(1).

Since β(T1) = 0, adding up the inequalities from Lemma 13 for gives

β(1) =
ℓ∑

g=1

β(Tg+1)− β(Tg) =
ℓ∑

g=1

T ′
g − Tg ≤ γ(1)(λ− 1)

ℓ∑
g=1

λg−1 = γ(1)(λℓ − 1).

Therefore

ui(GCPS(≻))− ui(GCPS(≻′)) ≥ γ(1)
(
di −Di(λ

ℓ − 1)
)
,

and since ℓ ≤ |O|, this is nonnegative if di/Di ≥ λ|O| − 1 = (1 + 1/N0)
|O| − 1.
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