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Abstract

We adapt a range of mainstream spatial econometric models to the four-component error

term panel stochastic frontier framework to estimate the inefficiency of public hospitals in

Queensland, Australia, and to investigate different channels of spatial effects in hospital per-

formance. Our results demonstrate a statistically significant presence of the spatial dependence

from the autoregressive dependent variable and the autocorrelated error term. Additionally, we

observe a positive spillover effect of input factors, as well as some impacts from accounting for

the spatial dependence on the inefficiency estimation. Specifically, the resulting inefficiency

estimates from the spatial models turned out to be higher than those from the non-spatial

model, yet the magnitude of difference is relatively modest, confirming the approximate valid-

ity of the non-spatial stochastic frontier approach for this data set.
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1 Introduction

The performance of healthcare facilities, especially hospitals, has been an important aspect of

public concern in many nations worldwide. Thus, improving efficiency in health systems is among

the natural means to address the cost inflation and the unmet needs in delivering health services.

As such, there has been a vast and growing body of literature on the productivity and efficiency

of healthcare facilities, aiming at providing healthcare policymakers and managers with a clear

picture of the state of (in)efficiency within their system. Such an insight may serve as an important

prerequisite for any evidence-based policies to promote efficiency.

Besides examining the efficiency level of healthcare facilities, studies in this body of literature

also focus on investigating possible sources of their efficiency differentials. Among these, there

has been an increasing interest in studying the interaction between spatial contexts and hospital

performance. This follows the recent tendency of decentralizing the governance of hospitals to

a regional level. For example, after the National Health Reform Agreement in 2012 (Council of

Australian Governments, 2011), public hospitals in Queensland, Australia, have been operated

by 16 different Local Hospital Networks (also known as Hospital and Health Services), who are

responsible for providing healthcare services to their local communities.

It is conjectured that operating in the same administrative context would cause a given hospital

to be affected by the neighbor hospitals with regard to many aspects such as inputs, outputs, as

well as the performance (Mobley et al., 2009; Brekke et al., 2011; Herwartz and Strumann, 2012;

Gravelle et al., 2014; Cavalieri et al., 2020). More importantly, going beyond the effect of a

common institutional setting, the performance of hospitals might be spatially dependent due to peer

effects and spillover effects (Herwartz and Strumann, 2014; Cavalieri et al., 2020). For instance,

peer effects may arise if hospitals engage in local competition for attracting patients, or recruiting

doctors and nurses, or if hospitals act collectively in determining the level of output quality to

provide to a local community. Moreover, the advances in medical diagnostics and treatments

are more likely to spillover faster among hospitals that are closer in a network. Thus, besides

controlling for institutional settings, it might be important to account for the spatial dependence
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structure in the efficiency analysis of hospitals.

Econometric modeling for spatial dependence has long been developed thanks to the semi-

nal contributions of Cliff and Ord (1973, 1981) and the further generalizations and extensions of

many others, including Kelejian and Prucha (1998, 1999); Lee (2003, 2004, 2007); Kelejian and

Prucha (2004, 2007, 2010); Elhorst (2005); Fingleton (2008); Piras (2013); Baltagi et al. (2014),

to mention a few. The strategies to incorporate spatial dependence center around the inclusion

of a spatially lagged dependent variable, spatially lagged exogenous covariates, or a spatially au-

tocorrelated error term (or their combinations) to an econometric model. These strategies have

been recently adapted to the field of productivity and efficiency analysis to account for the spa-

tial dependence in analyzing the performance of production units. For example, the spatial error

stochastic frontier model developed by Druska and Horrace (2004) is an adaption of the spatial

error dependence structure to the time-invariant fixed effects estimator of inefficiency of Schmidt

and Sickles (1984). Meanwhile, for the spatial autoregressive stochastic frontier model and the

spatial Durbin model developed in Glass et al. (2013, 2014, 2016), the spatial dependence is in-

corporated to efficiency analysis via the spatial weights on the dependent variable and exogenous

regressors. In addition to the traditional approach, the spatial dependence structure can also be im-

posed via the inefficiency term as in Areal et al. (2012); Herwartz and Strumann (2014); Tsionas

and Michaelides (2016); Orea and Álvarez (2019).

The utilization of spatial econometric models in hospital efficiency analysis, however, is rela-

tively sparse. To the best of our knowledge, until recently, there have been only Herwartz and Stru-

mann (2014) and Cavalieri et al. (2020), who attempted to account for the spatial effects in their

studies of hospital efficiency in Italy and Germany, respectively. Herwartz and Strumann (2014)

followed a two-stage data envelopment analysis approach, meanwhile Cavalieri et al. (2020) uti-

lized a spatial stochastic frontier model. Both of these studies imposed the spatially dependent

structure on the inefficiency term. Our study aims to complement these early attempts in the lit-

erature by employing a wide range of spatial stochastic frontier models, including spatial error

stochastic frontier (SESF), spatial autoregressive stochastic frontier (SARSF), and spatial Durbin
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stochastic frontier (SDSF) to empirically investigate different channels of spatial effects in the

performance of public hospitals.

In particular, utilizing the data on 104 public hospitals in Queensland, Australia, in the period

from the financial year (FY) 2012/13 to FY 2016/17, we found significant spatial dependence, es-

pecially from the spatially autoregressive output and the spatially autocorrelated error term among

the studied hospitals. Among the regressors, the principal inputs, involving the capital, medical

labor, and expenditure of consumable supplies, exhibit statistically significant positive marginal

effects on the hospital itself as well as positive spillover effects on the neighbor hospitals under

a variety of spatial weighting schemes. The inefficiency levels estimated with our spatial models

are slightly higher (and should be more accurate) than the estimates of the analogous non-spatial

model.

The structure of our study is as follows. We first discuss the proposed spatial stochastic frontier

models in Section 2. The data and variables used are described in Section 3. Section 4 discusses

the results from the various fitted models and the corresponding inefficiency estimates. Finally,

our concluding remarks are summarized in Section 5.

2 Spatial Stochastic Frontier Models

2.1 Non-spatial specifications

The canonical frameworks of stochastic frontier analysis (SFA) were independently proposed by

Aigner et al. (1977) and Meeusen and van den Broeck (1977). In the subsequent decades, a variety

of stochastic frontier models (SFMs) have been developed for efficiency analysis in various fields

of study. One prominent avenue for the development of SFA lies in panel data modeling. Among

others, the pioneer models proposed by Pitt and Lee (1981) and Schmidt and Sickles (1984) are

dedicated to estimating individual inefficiency based on standard panel regressions. In further

extensions, Cornwell et al. (1990), Kumbhakar (1990), and Battese and Coelli (1992) demonstrated
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a diverse array of approaches incorporating time-variant inefficiency in the panel data framework.1

Meanwhile, more advanced variants of panel data SFMs have been introduced in this vein.

More recently, Greene (2005a,b) proposed the ‘true fixed effect’ and ‘true random effect’ models

to disentangle the individual heterogeneity from the estimation of the time-variant inefficiency.

Additionally, the four-component model proposed by Kumbhakar et al. (2014) (hereafter KLH14)

and Colombi et al. (2014) further distinguished the transitory inefficiency and individual persistent

inefficiency, which can be denoted as

yit = β0 + x′itβ + si −ηi + vit −uit , i = 1, . . . ,n; t = 1, . . . ,T,

si ∼ iidN(0,σ2
s ),

ηi ∼ iidN+(0,σ2
η),

vit ∼ iidN(0,σ2
v ),

uit ∼ iidN+(0,σ2
u ),

(1)

where xit ∈ ℜ
p
+ and yit ∈ ℜ+ represent the p inputs and the output of decision making unit (DMU)

i at period t, respectively, β0 is the constant term, and β is the vector of corresponding parameters

for xit . The time-variant inefficiency term and the idiosyncratic random error are represented by

uit and vit , respectively. Other than the transitory terms, the persistent inefficiency of individual

DMU is denoted as ηi, while the unobserved individual heterogeneity is considered as si. Besides,

the heterogeneity and random error terms are assumed to be normally distributed, and the two

inefficiency terms are assumed to follow half-normal distributions.

As suggested by Colombi et al. (2014), the above model (1) can be estimated with a single-

stage maximum likelihood estimator. In contrast, the two-stage procedure introduced in KLH14,

although less efficient, is easier in implementation and computation. Following KLH14, (1) can be

transformed into
1For a comprehensive discussion in SFA, see Sickles and Zelenyuk (2019, Chapter 11-16) in a textbook style and

more recent reviews by Kumbhakar et al. (2021a,b).
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yit = β
∗
0 + x′itβ +ai + εit , i = 1, . . . ,n; t = 1, . . . ,T, (2)

where
β
∗
0 = β0 −E(ηi)−E(uit),

ai = si −ηi +E(ηi),

εit = vit −uit +E(uit),

(3)

and where E(ηi) =
√

2/πση and E(uit) =
√

2/πσu are the population means of the persistent and

transitory inefficiency, respectively.

Accordingly, the transformed model (2) adheres to a standard panel data model, and hence

can be first estimated with standard panel data estimators. In this study, we utilize the random

effects regression. Subsequently, the predicted values of individual effect (âi) and noise term (ε̂it)

can be deployed into the second-stage estimation in (3), utilizing a standard SFA containing the

persistent and transitory inefficiency and random error, respectively. Consequently, the persistent

and transitory inefficiency can be estimated following the Jondrow et al. (1982) method as η̂i =

Ê(ηi|ei) and ûit = Ê(uit |eit), where ei = si −ηi and eit = vit − uit . Moreover, the persistent and

transitory efficiency levels then can be approximated as φ̂i = 1− Ê(ηi|ei) and φ̂it = 1− Ê(uit |eit),

respectively.2

In this paper, to explore the possible influence of spatial dependence on efficiency estimation,

following the spatial stochastic frontier studies in the literature, e.g., Glass et al. (2012, 2016);

Fuller and Sickles (2023), we deploy a set of spatial SFMs based on the KLH14 frameworks as

discussed in the following subsection.

2Alternatively, the efficiency levels can be estimated in percentage terms as φ̂i = Ê[exp(−ηi)|ei] and φ̂it =
Ê[exp(−uit)|eit ], respectively (Battese and Coelli, 1988).
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2.2 Spatial stochastic frontier

To account for the spatial dependence between the DMUs, the spatial error model (SEM) can be

adapted to the four-component error term framework (Kumbhakar et al., 2014) as

yit = β
∗
0 + x′itβ +ai +ψit , i = 1, . . . ,n; t = 1, . . . ,T,

ψit = λ

n

∑
j=1

ωi jψ jt + εit ,
(4)

where yit , xit , β , ai, and εit are defined as above. The disturbance is assumed to be i.i.d. and

normally distributed, i.e, εit ∼ iidN(0,σ2
ε ). Meanwhile, the spatial autocorrelation disturbance ψ it

reflects the cross-sectional spatial dependence weighted by the matrix Ω, with a parameter λ . The

(n×n) matrix Ω is the spatial weight between each pair of neighbor units, i.e.,

Ω =



ω11 ω12 · · · ω1n

ω21 ω22 · · · ω2n

...
... . . . ...

ωn1 ωn2 · · · ωnn


, (5)

where the weight ωi j (i = 1, . . . ,n; j = 1, . . . ,n) is non-negative, which is predefined for the jth

neighbor unit to the ith unit. Besides, Ω is row-standardized to unity, where the diagonal elements

are zeros (by convention, meaning each area is not a neighbor to itself).

Other types of spatial models can also be considered for an adaption into an SFM framework.

In a similar formulation as SEM, the spatial autoregressive model (SAR) reflects the spatial depen-

dence by the cross-sectional effect of the spatial lag of the dependent variable instead of the spatial

autocorrelation disturbance. Additionally to the spatial lag of the dependent variable, the spatial

Durbin model (SDM) considers the effect of the spatial lag of independent variables. The SEM,

among others, is a comprehensive representation of the spatial dependence (Glass et al., 2012).

Nevertheless, if we intend to interpret the spillovers from/to the neighbors, the spatial errors are

not interpretable. Instead, the spillovers in SAR or SDM can be interpreted as they are related to
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the independent or the dependent variables or both (Glass et al., 2016).3

Accordingly, the SAR model can also be adapted to a four-component error term stochastic

frontier framework (SARSF), for example, using the specification with the spatially lagged depen-

dent variable as

yit = β
∗
0 + x′itβ + γ

n

∑
j=1

ωi jy jt +ai + εit , i = 1, . . . ,n; t = 1, . . . ,T, (6)

and a stochastic frontier specification with the SDM (SDSF) can be stated as

yit = β
∗
0 + x′itβ + γ

n

∑
j=1

ωi jy jt +θ

n

∑
j=1

ωi jx jt +ai + εit , i = 1, . . . ,n; t = 1, . . . ,T. (7)

Similar to the SEM stochastic frontier (SESF), a weight matrix Ω is also predetermined to de-

scribe the spatial effect between neighbors. Meanwhile, more corresponding parameters need to

be estimated instead of λ , i.e., the coefficient γ for the spatial lag of the dependent variable and

the variable-specific coefficient θ for the spatial lag of the independent variables. With the esti-

mated parameters, the inefficiency scores can be estimated accordingly, e.g., based on the KLH14

framework.4

In what follows, we apply the SEM, SAR, and SDM stochastic frontier models on the Queens-

land hospital data set with the weight matrix Ω constructed based on the geographical distance

between hospitals.5

3The marginal effect of the independent variables in an SAR specification can be estimated as a direct (own) effect,
an indirect (spillover) effect, and total effect (LeSage and Pace, 2009).

4As indicated in Glass et al. (2016), spatial models can be adapted to more SFMs. In the SF frameworks where
a maximum likelihood estimator is applied, the spatial SFMs can also be estimated with maximum likelihood type
estimators. Further, the individual inefficiency can be obtained through the Jondrow et al. (1982) method (e.g., Elhorst
(2009); Glass et al. (2012, 2013, 2014, 2016)).

5See more discussions about different sets of spatial weights utilized in the study in Section (3.3).
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(a) Hospital locations (b) Population density by HHS

Figure 1: Geographical distribution of public hospitals in our sample

3 Data and Variables

3.1 Data

In this study, we utilize a data set on 104 public hospitals in Queensland, Australia, in a period

starting from the financial year (FY) 2012/13 to FY 2016/17, obtained from the Queensland De-

partment of Health (Queensland Health). These hospitals are operated by 16 local Hospital and

Health Services (HHSs), who were established in 2012 as a result of the National Health Reform

Agreement.6 As illustrated in Figure 1 , being consistent with the geographical distribution of

population in Queensland, public hospitals in the state are distributed along the coastline, with a

large cluster of hospitals and beds centering around Brisbane–the capital city of Queensland.

6Among the HHSs, 15 of them are in the scope of our study, who directly manage and operate public hospitals in
defined local geographical areas. The remaining HHS is a specialist statewide HHS dedicated to caring for children
and young people from across Queensland.
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To model the production process of hospitals, we follow the common practice in the literature,

especially studies undertaken in the Australian context, and use labor (containing medical and

non-medical labor), expenditure, and the number of beds as hospital inputs, and an aggregation of

outpatient and inpatient services as a hospital output.7 In the following subsection, we provide a

brief description of variables used in our study and refer interested readers to Nguyen and Zelenyuk

(2021a) for more details.

Table 1: Descriptive statistics of Queensland public hospitals, FY 2012/13 to FY 2016/17

Variables Description Mean Std Dev Min Median Max

Input
BEDS Number of beds 99.67 196.48 3.00 21.00 1055.00
AGGMLABOR Aggregated medical labor input 0.72 1.72 0.00 0.06 10.06
MEO Salaried medical officers* 71.56 167.89 0.00 4.73 951.64
TNUR Nurses* 210.44 463.34 2.27 24.76 2651.66
DHP Diagnostic and health professionals* 50.88 137.38 0.00 2.18 914.20

AGGNMLABOR Aggregated non-medical labor input 0.77 1.67 0.01 0.12 10.54
ACS Administrative and clerical staff* 69.71 165.01 0.18 6.74 1187.09
OPCS Other personal care staff* 12.19 30.20 0.00 1.41 201.30
DOS Domestic and other staff* 63.93 127.54 0.00 14.32 900.16

SUPP Consumable input** 12.40 33.60 0.03 0.48 327.00
DSUP Drug supplies expenditure*** 3.84 11.60 0.00 0.11 94.40
MSSUP Medical and surgical supplies*** 9.06 24.30 0.01 0.33 252.00

Output
AGGOUT Aggregated output 0.68 1.41 0.01 0.10 8.64
WEPISODES Case-mix weighted episodes**** 11.54 26.21 0.03 0.88 157.81
OUT Number of outpatient visits**** 100.95 191.88 1.25 20.38 1190.22

* Full-time equivalent staff.

** Measured in AUD 1,000,000 and in constant price of FY2012/2013.

*** Measured in AUD 1,000,000.

**** Measured in 1,000s.

7For example, see Hao and Pegels (1994); Burgess and Wilson (1996); Magnussen (1996); Harris et al. (2000);
Grosskopf et al. (2001); Berta et al. (2010); Ferrier and Trivitt (2013); Nayar et al. (2013); Chowdhury and Zelenyuk
(2016) for studies in the international context and Productivity Commission (2010); Chua et al. (2011); Nghiem et al.
(2011); O’Donnell and Nguyen (2013); Nguyen and Zelenyuk (2021a,b,c); Nguyen et al. (2022a,b); Wang and Ze-
lenyuk (2023) for studies in the Australian context.
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3.2 Variables

The labor input is measured by full-time equivalent (FTE) medical and non-medical staff hours,

each comprising three labor categories respectively.8 These two labor measures are aggregated

with the principal component analysis (PCA) based approach, proposed by Daraio and Simar

(2007), respectively. Meanwhile, the hospital consumable input is measured by the expenditure

on drug and medical supplies (in FY 2012/13 constant price), and the hospital capital input is

proxied by the number of beds.

In our data set, we have two categories of hospital outputs, which are outpatient services (mea-

sured by the number of non-admitted occasions of service) and inpatient services (measured by the

number of case-mix weighted inpatient episodes). To deal with multiple outputs in the SFA frame-

work, we also utilize the Daraio and Simar (2007) approach to construct an aggregate measure of

hospital output. The descriptive statistics of all variables are provided in Table 1.

3.3 Spatial weights

In this study, we construct the spatial weights based on geographical distances between hospitals

using their geographic coordinates. Specifically, the spatial weights attached to a hospital i can be

formulated as9

ωi j =


1

[d(i, j)]2
, if j ∈ H (i),

0, if j /∈ H (i),

(8)

where d(i, j) is the geographical distance between hospital i and the peer hospital j, and H (i)

is a set of neighbors of hospital i excluding itself, i.e., i /∈ H (i). Generally, the squared inverse

distance function (IDF) assigns a higher weight to the hospitals located in closer proximity.

Moreover, we consider four different approaches to identify the set of neighbors of hospital i,

8The medical staff contains: i.) medical officers, ii.) nurses, and iii.) diagnostic and health professionals, and the
non-medical staff contains: i.) administrative and clerical staff, ii.) other personal care staff, and iii.) domestic and
other staff.

9These weights then will be utilized to construct the spatial weight matrix Ω, where Ω is row-standardized to unity.
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and denote the corresponding spatial weight matrices as Ω1, Ω2, Ω3, and Ω4, respectively. Firstly,

we can impose no distance restrictions (without a cutoff distance) on the set of neighbors for

hospital i, i.e., any other hospital in the sample can be its neighbor. In the second approach, we

specify a cut-off distance to determine neighbors for hospital i, i.e., any hospital located within

the cut-off distance to hospital i is considered as a neighbor of hospital i. Meanwhile, the cut-off

distance in Ω2 is determined as the minimal distance that guarantees each hospital in our sample

has at least one neighbor. In the third approach, we specify H (i) with the k-nearest-neighbors

(KNN) approach (i.e., k = 5) to identify a set of k nearest hospitals to hospital i. Finally, due

to the consistency in management and fluidity of resources among the hospitals within the same

network, in the fourth approach, H (i) is designated as the hospitals that are operated in the same

HHS with hospital i. The first-order spatial links between hospitals based on these four approaches

are represented in Figure 2.

4 Results and Discussion

4.1 Frontier estimation

We deploy a linear-in-logarithms form of Cobb-Douglas production function with a time trend

variable, i.e.,

ln AGGOUT =β
∗
0 +β1ln BEDS+β2ln AGGMLABOR+β3ln AGGNMLABOR

+β4ln SUPP+ τt +ai + εit ,

(9)

based on which, the three spatial SF models (4), (6), and (7) are adapted and estimated with the

four spatial weight matrices, respectively.
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(a) Neighborhood network without a cut-off distance (b) Neighborhood network with a cut-off distance

(c) Neighborhood network with 5 nearest neighbors (d) Neighborhood network within the same HHS

Figure 2: Spatial links between hospitals using different approaches
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Spatial error stochastic frontier model (SESF)

The estimated parameters of the four SESF models with corresponding weight matrices are re-

ported in Table 2, alongside the benchmark non-spatial KLH14 model. Mild differences are ob-

served among the estimations of the benchmark model and the four SESF models, incorporating

different spatial weight methods. The estimated coefficients of all the input variables indicate pos-

itive associations with the output, which are statistically significant except that for the non-medical

labor (ln AGGNMLABOR). The coefficients of the time variable demonstrate a statistically in-

significant relationship between output and the time trend. Moreover, the coefficient of the spatial

autocorrelation disturbance is positive among the four scenarios and is statistically significant in

most cases. According to the Akaike information criterion (AIC) and Bayesian information crite-

rion (BIC), the SESF employing the IDF weight matrix without a cutoff distance appears to be a

more appropriate specification.

Spatial autoregressive stochastic frontier model (SARSF)

As illustrated in Table 3, the coefficients estimated for the production function in SARSF are akin

to those for the SESF models, with respect to the value and statistical significance. The capital

input (ln BEDS), medical labor input (ln AGGMLABOR), and the expenditure of consumable

supplies (ln SUPP) are estimated to exhibit a positive relationship with the output of the hospitals.

The spatial lag of the dependent variable is estimated to be positively correlated to the output

among the four SARSF models, with a high level of statistical significance. This may imply the

existence of the spatial dependence among the hospitals and hence the necessity of incorporating

the spatial lag in the SFM. Meanwhile, the AIC and BIC values of the third model, employing the

KNN weight matrix, are among the lowest.

Spatial Durbin stochastic frontier model (SDSF)

The estimation results of the SDSF models are summarized in Table 4, where the estimated co-

efficients of the independent variables are analogous to those in the above spatial SFMs. Mean-

14



Table 2: Coefficient estimates of benchmark and SESF models

Model KLH14 SESF

Weight matrix SESF1 SESF2 SESF3 SESF4

Main function
ln BEDS β1 0.465*** 0.462*** 0.460*** 0.460*** 0.461***

(0.078) (0.079) (0.080) (0.080) (0.080)
ln AGGMLABOR β2 0.294*** 0.285*** 0.290*** 0.285*** 0.280***

(0.053) (0.056) (0.056) (0.056) (0.057)
ln AGGNMLABOR β3 0.008 0.008 0.008 0.009 0.011

(0.035) (0.035) (0.035) (0.035) (0.034)
ln SUPP β4 0.187*** 0.186*** 0.183*** 0.187*** 0.190***

(0.037) (0.043) (0.043) (0.044) (0.045)
t τ -0.008 -0.008 -0.008 -0.008 -0.008

(0.008) (0.010) (0.009) (0.009) (0.009)
Constant β ∗

0 -5.468*** -5.472*** -5.413*** -5.482*** -5.523***
(0.544) (0.604) (0.593) (0.601) (0.618)

Spatial function
AC disturbance λ 0.232*** 0.075 0.122* 0.135**

(0.075) (0.067) (0.065) (0.060)

R2 0.95 0.95 0.95 0.95 0.95
AIC -25.56 -20.36 -23.14 -24.52
BIC 12.72 17.93 15.15 13.77

Notes: Standard errors clustered at individual hospital level are reported beneath corresponding coefficients.

* p < 0.10; ** p < 0.05; *** p < 0.01.

AC: autocorrelated.
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Table 3: Coefficient estimates of benchmark and SARSF models

Model KLH14 SARSF

Weight matrix SARSF1 SARSF2 SARSF3 SARSF4

Main function
ln BEDS β1 0.465*** 0.426*** 0.432*** 0.432*** 0.441***

(0.078) (0.077) (0.077) (0.076) (0.077)
ln AGGMLABOR β2 0.294*** 0.272*** 0.275*** 0.273*** 0.275***

(0.053) (0.055) (0.055) (0.055) (0.055)
ln AGGNMLABOR β3 0.008 0.005 0.006 0.005 0.007

(0.035) (0.033) (0.034) (0.034) (0.034)
ln SUPP β4 0.187*** 0.161*** 0.168*** 0.166*** 0.169***

(0.037) (0.042) (0.041) (0.041) (0.041)
t τ -0.008 -0.008 -0.007 -0.007 -0.007

(0.008) (0.008) (0.008) (0.008) (0.008)
Constant β ∗

0 -5.468*** -4.761*** -4.923*** -4.899*** -5.006***
(0.544) (0.667) (0.616) (0.620) (0.615)

Spatial function
AR dependent variables γ 0.155*** 0.118*** 0.114*** 0.095***

(0.056) (0.037) (0.034) (0.034)

R2 0.95 0.95 0.95 0.95 0.95
AIC -13.4 -13.51 -15.38 -9.92
BIC 67.42 67.31 65.44 70.90

Notes: Standard errors clustered at individual hospital level are reported beneath corresponding coefficients.

* p < 0.10; ** p < 0.05; *** p < 0.01.

AR: autoregressive.
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while, the coefficient of the autoregressive dependent variable (γ) is also statistically significant in

a high confidence level when utilizing different weight matrices, which is aligned with the results

observed in the SARSF models. Besides, all the coefficient estimates of the autoregressive inde-

pendent variables (θ ), are statistically insignificant among the four SDSF models. Analogously,

the SDSF utilizing the KNN weight matrix is preferable according to the AIC and BIC criteria,

aligning with the findings of the SARSF models. Nevertheless, it is worth noting that the AIC and

BIC values of the models utilizing the same spatial model with different spatial weight matrices

exhibit close proximity to one another.

Marginal effects of inputs

Following the evaluation approaches by LeSage and Pace (2009); Glass et al. (2016), the marginal

effects of the input variables are reported in Table 5. Across the SARSF and SDSF models utilizing

the four weight matrices, the capital (ln BEDS), medical labor (ln AGGMLABOR), and the expen-

diture (ln SUPP) mostly exhibit statistically significant positive effects on all the hospitals (total

effect), primarily through the direct effect (to the respective hospitals themselves). The magnitude

of the direct and total effects closely resemble each other across the models.

Besides, regarding the indirect effect, when utilizing the SARSF models, the capital, medical

labor, and expenditure inputs also demonstrate a positive spillover effect on the neighbor hospi-

tals, which are statistically significant at a 95 percent or higher confidence level. Meanwhile, in

the SDSF models, all the inputs demonstrate statistically insignificant indirect effects with all the

weight matrices.

Overall, the results indicate that the capital, medical labor, and expenditure inputs all play a

vital role in shaping the output of the public hospital system in Queensland. More importantly,

when incorporating the spatial autoregressive output, the inputs also provide positive spillover

effects to the neighbor hospitals, although to a lower magnitude than the direct effect.
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Table 4: Coefficient estimates of benchmark and SDSF models

Model KLH14 SDSF

Weight matrix SDSF1 SDSF2 SDSF3 SDSF4

Main function
ln BEDS β1 0.465*** 0.437*** 0.427*** 0.433*** 0.448***

(0.078) (0.077) (0.077) (0.076) (0.078)
ln AGGMLABOR β2 0.294*** 0.259*** 0.269*** 0.264*** 0.247***

(0.053) (0.057) (0.059) (0.059) (0.059)
ln AGGNMLABOR β3 0.008 0.004 0.007 0.004 0.009

(0.035) (0.033) (0.033) (0.034) (0.033)
ln SUPP β4 0.187*** 0.187*** 0.181*** 0.191*** 0.210***

(0.037) (0.048) (0.048) (0.049) (0.052)
t τ -0.008 -0.003 -0.003 -0.003 -0.004

(0.008) (0.009) (0.009) (0.008) (0.009)
Constant β ∗

0 -5.468*** -3.069*** -4.378*** -4.188*** -4.069***
(0.544) (1.022) (0.817) (0.771) (0.741)

Spatial function
AR dependent variables γ 0.255*** 0.133** 0.159*** 0.156***

(0.069) (0.061) (0.057) (0.051)
AR independent variables
ln BEDS θ1 -0.019 0.088 0.041 -0.020

(0.120) (0.112) (0.093) (0.089)
ln AGGMLABOR θ2 0.073 0.012 0.047 0.086

(0.109) (0.062) (0.074) (0.075)
ln AGGNMLABOR θ3 -0.043 -0.018 -0.051 -0.055

(0.094) (0.065) (0.066) (0.061)
ln SUPP θ4 -0.129 -0.073 -0.082 -0.095*

(0.078) (0.064) (0.058) (0.055)

R2 0.95 0.95 0.95 0.95 0.95
AIC -11.19 -9.84 -13.21 -11.91
BIC 86.64 88.00 84.63 85.93

Notes: Standard errors clustered at individual hospital level are reported beneath corresponding coefficients.

* p < 0.10; ** p < 0.05; *** p < 0.01.

AR: autoregressive.
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Table 5: Marginal effects of spatial frontier models

Model
SARSF SDSF

Direct Indirect Total Direct Indirect Total

Weight matrix Without a cutoff

ln BEDS 0.430*** 0.078** 0.508*** 0.443*** 0.111 0.553***
(0.080) (0.033) (0.095) (0.079) (0.150) (0.177)

ln AGGMLABOR 0.270*** 0.048** 0.319*** 0.261*** 0.183 0.445***
(0.055) (0.020) (0.063) (0.057) (0.146) (0.160)

ln AGGNMLABOR 0.008 0.001 0.010 0.006 -0.049 -0.043
(0.032) (0.007) (0.038) (0.032) (0.121) (0.125)

ln SUPP 0.160*** 0.028*** 0.188*** 0.182*** -0.105 0.077
(0.042) (0.011) (0.044) (0.046) (0.092) (0.095)

Weight matrix With a cutoff

ln BEDS 0.437*** 0.057*** 0.494*** 0.434*** 0.157 0.591***
(0.079) (0.022) (0.091) (0.079) (0.114) (0.150)

ln AGGMLABOR 0.274*** 0.036*** 0.309*** 0.268*** 0.054 0.321***
(0.054) (0.013) (0.062) (0.059) (0.072) (0.093)

ln AGGNMLABOR 0.009 0.001 0.010 0.009 -0.013 -0.004
(0.033) (0.005) (0.037) (0.032) (0.071) (0.080)

ln SUPP 0.167*** 0.021*** 0.188*** 0.177*** -0.055 0.122
(0.040) (0.007) (0.043) (0.046) (0.068) (0.078)

Weight matrix KNN

ln BEDS 0.437*** 0.055*** 0.492*** 0.441*** 0.118 0.559***
(0.079) (0.020) (0.090) (0.078) (0.098) (0.136)

ln AGGMLABOR 0.272*** 0.034*** 0.305*** 0.266*** 0.100 0.366***
(0.055) (0.012) (0.061) (0.058) (0.083) (0.103)

ln AGGNMLABOR 0.008 0.001 0.008 0.004 -0.052 -0.047
(0.033) (0.004) (0.037) (0.033) (0.074) (0.083)

ln SUPP 0.165*** 0.020*** 0.184*** 0.186*** -0.059 0.127*
(0.040) (0.006) (0.042) (0.047) (0.060) (0.069)

Weight matrix HHS

ln BEDS 0.446*** 0.046** 0.492*** 0.453*** 0.051 0.504***
(0.080) (0.019) (0.089) (0.080) (0.095) (0.133)

ln AGGMLABOR 0.273*** 0.028** 0.301*** 0.251*** 0.140* 0.391***
(0.054) (0.011) (0.060) (0.058) (0.084) (0.102)

ln AGGNMLABOR 0.010 0.001 0.012 0.009 -0.055 -0.046
(0.033) (0.004) (0.036) (0.032) (0.067) (0.076)

ln SUPP 0.167*** 0.017*** 0.184*** 0.204*** -0.070 0.134**
(0.040) (0.006) (0.042) (0.049) (0.054) (0.063)

Notes: Standard errors clustered at individual hospital level are reported beneath corresponding coefficients.

* p < 0.10; ** p < 0.05; *** p < 0.01.

19



Model selection

To incorporate appropriate spatially lagged effects, a range of diagnostic tests can be conducted

to facilitate the selection process among the spatial SFMs. One stream is based on the modified

Lagrange multiplier (LM) test for spatial error and spatial lag of the dependent variable by Bera and

Yoon (1993). Following the simplified but robust procedures proposed by Anselin et al. (1996) and

Elhorst (2014), we first conduct a series of LM tests, and the results are reported in Table 6. Across

the four spatial weight matrices in a random effects model (aligning with the KLH14 model), the

null hypotheses of the LM and robust LM tests of the spatial lag of error (i.e., λ = 0) are all

rejected at a significance level of lower than 1%. Meanwhile, the robust LM tests of the spatial

lag of the dependent variable indicate that the null hypotheses of γ = 0 cannot be rejected at a 1%

significance level in most cases. Therefore, these tests suggest that the SESF model is preferable

in this context compared to the SARSF model.

It is also worth noting that the selection between the two types of spatial dependence is limited

in practice (Kelejian and Prucha, 1998). Besides, due to the unbiased coefficient estimates with

the spatial lag of the dependent variable or the error term, SDM is also recommended in most

cases by LeSage and Pace (2009). Consequently, in subsequent analysis, we will encompass all

three spatial models, which also serves as an exploration into the adaption of the mainstream spatial

models in the SFA paradigm. Nevertheless, the different influences illustrated later in the efficiency

estimates still emphasize the necessity of the selection of spatial dependence prior to formulating

policy implications.

4.2 Inefficiency estimation

The persistent and transitory inefficiency are estimated under the four-component error term frame-

work as discussed in Section (2.1). The descriptive statistics of the inefficiency levels (in percent-

age) of the three spatial SFMs are summarized in Tables 7 and 8, where, as a benchmark, the

inefficiency of the non-spatial KLH14 is also reported alongside.

When utilizing identical spatial SFM with different weight matrices, the persistent and tran-
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Table 6: Test results for model selection

Spatial lag of error Spatial lag of dependent variable

LM Robust LM LM Robust LM

LM p-value LM p-value LM p-value LM p-value
Weight matrix
Without a cut-off distance 17.3 0.0000 13.9 0.0002 6.0 0.0141 2.6 0.1046
With a cut-off distance 38.1 0.0000 28.9 0.0000 15.4 0.0000 6.2 0.0130
KNN 32.6 0.0000 25.0 0.0000 12.9 0.0003 5.4 0.0203
HHS 39.1 0.0000 34.4 0.0000 5.5 0.0187 0.8 0.3833

sitory inefficiency estimates are close to one another. More significant differences are observed

among different spatial models. Generally, the total inefficiency levels estimated by SESF (i.e.,

with a mean level of about 29%) are slightly higher than the estimates of the original non-spatial

model (i.e., mean level at around 27% vs. 29-31% for the spatial models). Furthermore, the

estimates of inefficiency yielded by SARSF and SDSF are comparatively higher than the SESF

estimates. Such a shift of the inefficiency levels demonstrates some importance of incorporating

the spatial effects during the estimation, while also suggesting that the studies that have not done

so for this data with the basic SFMs still reached fairly similar estimates. Meanwhile, the selection

of the spatial effects may also introduce varying influences on the outcomes.

In our sample, the persistent inefficiency is the predominant contributor to the overall ineffi-

ciency across all the scenarios. This implies that the long-term performance of public hospitals in

Queensland maintains an inherent and sustainable inefficiency level, even accounting for tempo-

rary shocks or random fluctuations.

As shown in Table 9, the correlations between the estimates of different spatial SFMs or be-

tween the same spatial model with different weight matrices are extremely high, which are mostly

higher than 95%. The correlations between the estimates of the non-spatial KLH14 model and

those of the spatial models are also notably high, which indicates the relatively higher inefficiency

estimated by the spatial models may be due to an approximately ‘parallel’ shift of the inefficiency

estimates of all the hospitals.

For a more intuitive illustration, the distribution and the tendency of the correlations of the
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Table 7: Descriptive statistics for the estimated inefficiency levels

Models Mean Std Dev Min Q1 Median Q3 Max

Persistent inefficiency

KLH14 26.77% 12.72% 6.26% 18.17% 23.01% 33.60% 61.35%

SESF1 28.47% 14.04% 6.10% 18.19% 23.77% 37.28% 64.93%
SESF2 28.44% 14.01% 6.11% 18.21% 23.74% 37.19% 64.85%
SESF3 28.32% 13.93% 6.11% 18.21% 23.63% 36.92% 64.60%
SESF4 28.27% 13.90% 6.10% 18.22% 23.59% 36.81% 64.49%

SARSF1 30.74% 14.73% 7.58% 18.81% 27.10% 39.43% 68.93%
SARSF2 29.06% 13.98% 7.02% 18.03% 25.58% 36.73% 67.19%
SARSF3 29.34% 14.11% 7.16% 18.00% 25.39% 37.98% 67.78%
SARSF4 30.18% 14.99% 6.53% 17.86% 27.00% 39.88% 68.92%

SDSF1 29.65% 14.71% 6.50% 17.56% 26.84% 38.83% 68.55%
SDSF2 28.47% 13.61% 6.79% 18.06% 25.61% 36.36% 65.88%
SDSF3 28.32% 14.00% 6.33% 17.01% 24.93% 37.66% 66.86%
SDSF4 28.25% 14.34% 5.75% 16.77% 25.56% 37.57% 66.93%

Transitory inefficiency

KLH14 0.20% 0.00% 0.19% 0.20% 0.20% 0.20% 0.20%

SESF1 0.16% 0.00% 0.16% 0.16% 0.16% 0.16% 0.16%
SESF2 0.19% 0.00% 0.19% 0.19% 0.19% 0.19% 0.20%
SESF3 0.20% 0.00% 0.19% 0.20% 0.20% 0.20% 0.20%
SESF4 0.17% 0.00% 0.16% 0.17% 0.17% 0.17% 0.17%

SARSF1 0.18% 0.00% 0.17% 0.18% 0.18% 0.18% 0.18%
SARSF2 0.20% 0.00% 0.20% 0.20% 0.20% 0.20% 0.21%
SARSF3 0.18% 0.00% 0.18% 0.18% 0.18% 0.18% 0.19%
SARSF4 0.18% 0.00% 0.18% 0.18% 0.18% 0.18% 0.19%

SDSF1 0.20% 0.00% 0.20% 0.20% 0.20% 0.21% 0.21%
SDSF2 0.17% 0.00% 0.16% 0.17% 0.17% 0.17% 0.17%
SDSF3 0.20% 0.00% 0.19% 0.19% 0.20% 0.20% 0.20%
SDSF4 0.19% 0.00% 0.18% 0.19% 0.19% 0.19% 0.19%
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Table 8: Descriptive statistics for the total inefficiency level

Models Mean Std Dev Min Q1 Median Q3 Max

Total inefficiency

KLH14 26.97% 12.72% 6.46% 18.37% 23.21% 33.80% 61.55%

SESF1 28.63% 14.04% 6.26% 18.35% 23.93% 37.45% 65.09%
SESF2 28.63% 14.01% 6.30% 18.40% 23.93% 37.39% 65.04%
SESF3 28.51% 13.93% 6.30% 18.41% 23.82% 37.11% 64.80%
SESF4 28.44% 13.90% 6.27% 18.38% 23.76% 36.97% 64.66%

SARSF1 30.92% 14.73% 7.76% 18.99% 27.28% 39.61% 69.12%
SARSF2 29.26% 13.98% 7.22% 18.24% 25.78% 36.93% 67.40%
SARSF3 29.52% 14.11% 7.34% 18.19% 25.57% 38.16% 67.97%
SARSF4 30.36% 14.99% 6.71% 18.04% 27.19% 40.06% 69.11%

SDSF1 29.85% 14.71% 6.70% 17.77% 27.05% 39.04% 68.76%
SDSF2 28.64% 13.61% 6.95% 18.23% 25.77% 36.52% 66.05%
SDSF3 28.52% 14.00% 6.53% 17.21% 25.12% 37.85% 67.06%
SDSF4 28.44% 14.34% 5.94% 16.96% 25.75% 37.76% 67.12%

inefficiency estimates are as shown in the estimated kernel density plots in Figure 3,10 where the

horizontal axis is the estimated inefficiency levels. The estimated densities of the inefficiency

levels using different weight matrices but the same spatial model, as indicated by row, are mostly

akin to each other. The densities of the inefficiency estimates of SESF are in a similar shape to

that of the non-spatial KLH14, with a relatively higher inefficiency level. Meanwhile, the densities

of the inefficiency estimates of SARSF and SDSF demonstrate a further enhanced concentration

within the range of higher inefficiency levels in comparison to the non-spatial estimate.

Consequently, we conclude that there is some evidence that the spatial dependence is statisti-

cally significant among Queensland public hospitals. When ignoring the spatial dependence in an

SFM framework, the inefficiency level tends to be underestimated compared to the results when

incorporating a spatial SFM. On the other hand, the difference that we found is usually very mod-

est, and to some extent depends on the particular spatial model applied, suggesting that a careful

selection of the spatial effect is necessary from a wide range of possibilities.

10Estimated with Epanechnikov kernel and bandwidth selected with the Sheather and Jones (1991) method.
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Table 9: Correlation matrix of individual inefficiency estimated by different models

KLH14 SESF1 SESF2 SESF3 SESF4 SARSF1 SARSF2 SARSF3 SARSF4 SDSF1 SDSF2 SDSF3 SDSF4

KLH14 1.0000
SESF1 0.9984 1.0000
SESF2 0.9984 1.0000 1.0000
SESF3 0.9986 1.0000 1.0000 1.0000
SESF4 0.9987 1.0000 1.0000 1.0000 1.0000
SARSF1 0.9467 0.9492 0.9493 0.9491 0.9490 1.0000
SARSF2 0.9519 0.9537 0.9539 0.9537 0.9536 0.9962 1.0000
SARSF3 0.9440 0.9458 0.9459 0.9457 0.9457 0.9954 0.9953 1.0000
SARSF4 0.9598 0.9620 0.9621 0.9619 0.9617 0.9934 0.9925 0.9916 1.0000
SDSF1 0.9658 0.9673 0.9674 0.9673 0.9672 0.9964 0.9954 0.9929 0.9945 1.0000
SDSF2 0.9582 0.9596 0.9596 0.9595 0.9595 0.9958 0.9988 0.9941 0.9928 0.9968 1.0000
SDSF3 0.9585 0.9589 0.9590 0.9590 0.9590 0.9936 0.9945 0.9971 0.9925 0.9966 0.9957 1.0000
SDSF4 0.9778 0.9780 0.9780 0.9780 0.9780 0.9849 0.9866 0.9831 0.9936 0.9943 0.9894 0.9912 1.0000

Figure 3: Estimated kernel density of inefficiency estimation of different models
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5 Concluding Remarks

In this paper, we utilized spatial stochastic frontier analysis based on three mainstream spatial

models, SEM, SAR, and SDM, adapted into the four-component error term framework, an ad-

vanced SFM in panel data settings. In the efficiency analysis of 104 Queensland hospitals from

FY 2012/13 to FY 2016/17, the fitted models of the three spatial SFMs indicate the existence of

statistically significant spatial dependence among the studied hospitals, especially from the autore-

gressive output variable and the autocorrelated error term. The capital input, medical labor input,

and the expenditure of consumable supplies are prominent features among the regressors, exhibit-

ing statistically significant direct marginal effects on the hospital itself as well as positive spillover

effects on the neighbor hospitals under most of the spatial weighting schemes that we considered.

Moreover, the divergent inefficiency estimates of the spatial SFMs and the benchmark non-

spatial KLH14 model further illustrate the necessity of conducting an appropriate spatial SFM

in cases where the spatial dependence indeed impacts the performance of the production units.

Although the influence of the spatial effects on the inefficiency estimates is evident, the difference

observed is modest, and hence still confirming an approximate validity of the non-spatial stochastic

frontier studies for this data.
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