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1.  INTRODUCTION 
 

An index number is a measure of change in a variable, or group of variables, over time or space.  The DPIN 

computer program uses the aggregate-quantity framework developed by O'Donnell (2008) to compute and 

decompose productivity index numbers.  The O'Donnell (2008) methodology does not rely on the availability of 

price data and does not require any assumptions concerning either the degree of competition in product markets 

or the optimizing behaviour of firms.  Thus, DPIN can be used to analyse the drivers of productivity change 

even when prices are unavailable and/or industries are non-competitive.  The program uses data envelopment 

analysis (DEA) linear programs (LPs) to estimate the production technology and levels of productivity and 

efficiency. The program then decomposes changes in productivity into measures of   

 

(a) technical change (measuring movements in the production frontier); 

(b) technical efficiency change (movements towards or away from the frontier); 

(c) scale efficiency change (movements around the frontier surface to capture economies of scale); and 

(d) mix efficiency change (movements around the frontier surface to capture economies of scope). 

 

This Guide outlines the methodological framework and provides a guide to installing and running the program.   
 
 

2.  TOTAL FACTOR PRODUCTIVITY INDEXES 
 

The productivity of a single-output single-input firm is almost always defined as the output-input ratio.  

O'Donnell (2008) generalizes this idea to the multiple-output multiple-input case by formally defining the total 

factor productivity (TFP) of a firm to be the ratio of an aggregate output to an aggregate input.   Let 

1( ,..., )it it Kitx x x   and 1( ,..., )it it Jitq q q   denote the input and output quantity vectors of firm i in period t.  Then 

the TFP of the firm is 
 

(1) 
  

it
it

it

Q
TFP

X
       (total factor productivity) 

 

where ( )it itQ Q q  is an aggregate output, ( )it itX X x  is an aggregate input, and (.)Q  and (.)X are non-

negative, non-decreasing and linearly homogeneous aggregator functions.  The associated index number that 

measures the TFP of firm i in period t relative to the TFP of firm h in period s is 
 

(2)   
,

,
,

/

/
   hs itit it it

hs it
hs hs hs hs it

QTFP Q X
TFP

TFP Q X X
  (TFP index) 

 

where , /hs it it hsQ Q Q  is an is an output quantity index and , /hs it it hsX X X  is an input quantity index.  Thus, 

TFP growth can be expressed as a measure of output growth divided by a measure of input growth.    

 

Different aggregator functions give rise to different TFP indexes.  The class of non-negative, non-decreasing 

and linearly homogeneous aggregator functions includes 
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(3)   ( ) hsQ q p q        (Laspeyres) 

(4)   ( ) itQ q p q        (Paasche) 

(5)   
1/ 2( ) ( )it hsQ q p qq p        (Fisher) 

(6)   0( )Q q p q        (Lowe) 

(7)   ( ) ( , , )O hsQ q D x q s       (Malmquist-hs) 

(8)   ( ) ( , , )O itQ q D x q t       (Malmquist-it) 

(9)   
1/ 2( ) [ ( , , ) ( , , )]O hs O itQ q D x q s D x q t    (Hicks-Moorsteen) 

(10)  0 0( ) ( , , )OQ q D x q t       (Färe-Primont) 
 

(11)  ( ) hsX x w x        (Laspeyres) 

(12)  ( ) itX x w x        (Paasche) 

(13)  
1/ 2( ) ( )hs itX x w xx w        (Fisher) 

(14)  0( )X x w x        (Lowe) 

(15)  ( ) ( , , )I hsX x D x q s       (Malmquist-hs) 

(16)  ( ) ( , , )I itX x D x q t       (Malmquist-it)  

(17)  
1/ 2( ) [ ( , , ) ( , , )]I hs I itX x D x q s D x q t    (Hicks-Moorsteen)   and 

(18)  0 0( ) ( , , )IX x D x q t       (Färe-Primont) 
 

where 1( ,..., )it it Kitw w w   and 1( ,..., )it it Jitp p p   are vectors of input and output prices; 0 ,p  0 ,w  0q  and 0x  are 

vectors of representative prices and quantities; t0 denotes a representative time period; and (.)OD  and (.)ID  are 

Shephard (1953) output and input distance functions.   The aggregator functions (3) to (18) are so-named 

because when they are substituted into (1) and (2) they give rise to the following TFP indexes: 
 

(19)  ,
hs it hs hs

hs it
hs hs hs it

p q w x
TFP

p q w x

 


 
     (Laspeyres) 

(20)  ,
it it it hs

hs it
it hs it it

p q w x
TFP

p q w x

 


 
     (Paasche) 

(21)  

1/ 2

,
it it hs it hs hs it hs

hs it
it hs hs hs hs it it it

p q p q w x w x
TFP

p q p q w x w x

    
      

  (Fisher) 

(22)  
0 0

,
0 0

it hs
hs it

hs it

p q w x
TFP

p q w x

 


 
      (Lowe) 

(23)  ,

( , , ) ( , , )

( , , ) ( , , )
O hs it I hs hs

hs it
O hs hs I it hs

D x q s D x q s
TFP

D x q s D x q s
    (Malmquist-hs) 

(24)  ,

( , , ) ( , , )

( , , ) ( , , )
O it it I hs it

hs it
O it hs I it it

D x q t D x q t
TFP

D x q t D x q t
    (Malmquist-it) 

(25)  

1/ 2

,

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )
O hs it I hs hs O it it I hs it

hs it
O hs hs I it hs O it hs I it it

D x q s D x q s D x q t D x q t
TFP

D x q s D x q s D x q t D x q t

 
  
 

 (Hicks-Moorsteen)   and 

(26)  
0 0 0 0

,
0 0 0 0

( , , ) ( , , )

( , , ) ( , , )
O it I hs

hs it
O hs I it

D x q t D x q t
TFP

D x q t D x q t
    (Färe-Primont). 



4 
 

 

The Laspeyres, Paasche and Fisher indexes defined by (19) to (21) are well-known in the productivity literature.  

O'Donnell (2010b) refers to the index (22) as a Lowe TFP index because the component output quantity and 

input quantity indexes have been traced back to Lowe (1823).  This Guide refers to the indexes (23) and (24) as 

Malmquist-hs and Malmquist-it indexes because the component output quantity and input quantity indexes are 

the firm-specific Malmquist indexes defined by Caves, Christensen and Diewert (1982, p. 1396,1400).  The 

index defined by (25) was first proposed by Bjurek (1996) but is commonly known as a Hicks-Moorsteen index 

because it is the geometric average of two indexes that Diewert (1992, p. 240) attributed to Hicks (1961) and 

Moorsteen (1961).   Finally, the index defined by (26) was first proposed by O'Donnell (2011a) but is referred to 

in this Guide as a Färe-Primont index because it can be written as the ratio of two indexes defined by Färe and 

Primont (1995). 
 

Lowe and Färe-Primont indexes are economically-ideal in the sense that they satisfy all economically-relevant 

axioms and tests from index number theory, including an identity axiom and a transitivity test.   This means they 

can be used to make reliable multi-temporal (i.e., many period) and/or multi-lateral (i.e., many firm) compari-

sons of TFP and efficiency.  Laspeyres, Paasche, Fisher, Malmquist-hs, Malmquist-it and Hicks-Moorsteen 

indexes all fail the transitivity test and can generally only be used to make a single binary comparison (i.e., to 

compare two observations only).   For more details on the importance of index number axioms and tests, see 

O'Donnell (2011b). 

 
 

3.  MEASURES OF EFFICIENCY 
 

Most, if not all, economic measures of efficiency can be defined as ratios of measures of TFP.   Examples 

include (O'Donnell (2008)) 
 

(27)  *
1it

it
t

TFP
TFPE

TFP
        (TFP efficiency) 

(28)  
/

( , , ) 1
/

it it it
it O it it

it it it

Q X Q
OTE D x q t

Q X Q
      (output-oriented technical efficiency) 

(29)  
/

1
/

  
it it

it

it it

Q X
OSE

Q X
      (output-oriented scale efficiency) 

(30)  
/

1
ˆ ˆ/

it it it
it

it it it

Q X Q
OME

Q X Q
        (output-oriented mix efficiency) 

(31)  *

ˆ /
1it it

it
t

Q X
ROSE

TFP
        (residual output-oriented scale efficiency) 

(32)  
1/

( , , ) 1
/

it it it
it I it it

it it it

Q X X
ITE D x q t

Q X X
      (input-oriented technical efficiency) 

(33)  
/

1
/

  
it it

it

it it

Q X
ISE

Q X
      (input-oriented scale efficiency)  
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(34)  

ˆ/
1

ˆ/
  it it it

it
itit it

Q X X
IME

XQ X
     (input-oriented mix efficiency) 

(35)  *

ˆ/
1it it

it
t

Q X
RISE

TFP
        (residual input-oriented scale efficiency)   and 

(36)  *

/
1it it

it
t

Q X
RME

TFP
 
 

      (residual mix efficiency) 

 

where *
tTFP  denotes the maximum TFP that is possible using the technology available in period t; 

1( , , )it it O it itQ Q D x q t   is the maximum aggregate output possible when using itx  to produce a scalar multiple of 

;itq  
1( , , )it it I it itX X D x q t   is the minimum aggregate input possible when using a scalar multiple of itx  to 

produce ;itq  
ˆ

itQ  is the maximum aggregate output possible when using itx  to produce any output vector;  ˆ
itX  is 

the minimum aggregate input possible when using any input vector to produce ;itq  and itQ  and itX  are the 

aggregate output and input obtained when TFP is maximized subject to the constraint that the output and input 

vectors are scalar multiples of itq  and itx  respectively.    

 

The technical efficiency measures given by (28) and (32) are usually attributed to Farrell (1957).  The scale 

efficiency measures given by (29) and (33) are the conventional measures defined by, for example, Balk (1998, 

p. 20, 23).   The remaining measures of efficiency were first defined by O'Donnell (2008) – TFP efficiency is a 

measure of overall productive performance, while measures of residual scale and mix efficiency are measures of 

productive performance associated with economies of scale and scope.    Other important measures of efficiency 

include (O'Donnell (2010b)) 

 
(37)  1it it it it itOSME OME ROSE OSE RME       (output-oriented scale-mix efficiency)   and 

(38)  1it it it it itISME IME RISE ISE RME        (input-oriented scale-mix efficiency). 

 

To illustrate the relationship between measures of productivity and efficiency, several of the measures defined 

by (27) to (38) are depicted in Figures 1 and 2.  In these figures, the curve passing through point D is what 

O'Donnell (2008) refers to as a mix-restricted frontier – it is the boundary of the set of all technically-feasible 

aggregate input-output combinations that have the same input and output mix as the firm operating at point A.  

The curve passing through point E is an unrestricted production frontier – it is the boundary of the production 

possibilities set that is available to firms when all mix restrictions are relaxed.  O'Donnell (2008) shows how 

measures of TFP and efficiency can be expressed in terms of slopes of rays in aggregate quantity space.  For 

example, the TFP of the firm operating at point A in Figure 1 is / slope 0A,it it itTFP Q X   the measure of 

TFP efficiency defined by (27) is */ slope 0A / slope 0E,it it tTFP TFP TFP   and the measure of residual 

output-oriented scale efficiency defined by (31) is *ˆ( / ) / slope 0V / slope 0E.it it it tROSE Q X TFP 
  

For more 

details see O'Donnell (2008).    
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Figure 1.  Output-Oriented Measures of Efficiency for a  
Multiple-Input Multiple-Output Firm 

 
 

 
 
 

 
 

Figure 2.  Input-Oriented Measures of Efficiency for a  
Multiple-Input Multiple-Output Firm 
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Associated with the aggregate output and input quantities itQ  and itX  are (implicit) aggregate output and input 

prices /it it it itP p q Q  and / .it it it itW w x X   If prices are available then DPIN can also be used to compute the 

following measures of efficiency: 

 

(39)  1
( , , )

it it
it

it it

P Q
RE

r x p t
      (revenue efficiency) 

(40)  1
( , , )

it it
it

it it

P Q
RAE

r x p t
     (revenue-allocative efficiency) 

(41)  
( , , )

1it it
it

it it

c w q t
CE

W X
      (cost efficiency)  and 

(42)  
( , , )

1it it
it

it it

c w q t
CAE

W X
     (cost-allocative efficiency) 

 
where ( , , )it itr x p t  is the maximum revenue that can be obtained in period t when the input vector is itx  and the 

output price vector is ,itp  and ( , , )it itc w q t  is the minimum cost of producing itq  in period t when the input price 

vector is .itw    

 
 

4.  THE COMPONENTS OF TFP CHANGE 

 

O'Donnell (2008) refers to TFP indexes that can be expressed in terms of aggregate quantities as in equation (2) 

as being multiplicatively-complete.  All such TFP indexes can be decomposed into a measure of technical 

change and various measures of efficiency change.   The simplest way to see this is to rewrite equation (27) as
* .it t itTFP TFP TFPE 

  
A similar equation holds for firm h in period s: * .hs s hsTFP TFP TFPE     It follows that 

the TFP index (2) can be decomposed as 

 

(43)  

*

, *
.t it

hs it
hss

TFP TFPE
TFP

TFPETFP

   
    

  
   

 

The first term in parentheses on the right-hand side of (43) measures the change in the maximum TFP over time 

– this is a natural measure of technical change.  The second term is a measure of overall efficiency change.   

Equations (28) to (42) can be used to effect an even finer decomposition of TFP change than the simple decom-

position given by equation (43).  For example, three finer output-oriented decompositions are 

 

(44)  

*

, *
t it it

hs it
hs hss

TFP OTE OSME
TFP

OTE OSMETFP

     
      

    
  

(45)  

*

, *
t it it it

hs it
hs hs hss

TFP OTE OSE RME
TFP

OTE OSE RMETFP

       
        

      
  and 

(46)  

*

, *
.t it it it

hs it
hs hs hss

TFP OTE OME ROSE
TFP

OTE OME ROSETFP

       
        

      
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5.  ESTIMATION USING DEA 

 

If prices are available then computing Laspeyres, Paasche, Fisher and Lowe indexes is straightforward using 

equations (19) to (22).  However, decomposing these indexes into measures of technical change and efficiency 

change involves estimating the production technology.  Whether or not prices are available, estimating (and 

decomposing) Malmquist-hs, Malmquist-it, Hicks-Moorsteen and Färe-Primont indexes also involves estimating 

the technology.  DPIN estimates the production technology (and associated measures of productivity and 

efficiency) using DEA LPs.   DEA is underpinned by the assumption that the (local) output and input distance 

functions representing the technology available in period t take the form (e.g., O'Donnell (2011b)) 

 
(47)  ( , , ) ( ) /( )O it it it itD x q t q x        and 

(48)  ( , , ) ( ) /( ).I it it it itD x q t x q         

The standard output-oriented DEA problem involves selecting values of the unknown parameters in (47) in 

order to minimize 1 1( , , ) .it O it itOTE D x q t    The input-oriented problem involves selecting values of the 

unknown parameters in (48) in order to maximise 1( , , ) .it I it itITE D x q t     The resulting linear programs are  

(e.g., O'Donnell (2011b)) 

 

(49)   1 1

, ,
( , , ) min : ; 1; 0; 0O it it it it itD x q t OTE x X Q q

  
                      and  

(50)   1

, ,
( , , ) max : ; 1; 0; 0I it it it it itD x q t ITE q Q X x

  
                       

where Q is a tJ M matrix of observed outputs,  X is a tK M  matrix of observed inputs, ι  is an 1tM   unit 

vector, and tM  denotes the number of observations used to estimate the frontier in period t.   DPIN uses 

variants of these two LPs to compute productivity indexes and measures of efficiency (change). 

 
 
Productivity Indexes 

 

DPIN estimates Malmquist-hs, Malmquist-it, Hicks-Moorsteen and Färe-Primont aggregates by first solving the 

following variants of LPs (49) and (50) (O'Donnell (2011b)): 

 
(51)   1

, ,
( , , ) min : ; 1; 0; 0O hs it hs itD x q s x X Q q

  
                     (Malmquist-hs) 

(52)   1

, ,
( , , ) max : ; 1; 0; 0I it hs hs itD x q s q Q X x

  
                    (Malmquist-hs) 

(53) 
 

 1

, ,
( , , ) min : ; 1; 0; 0O it hs it hsD x q t x X Q q

  
                    (Malmquist-it) 

(54)   1

, ,
( , , ) max : ; 1; 0; 0I hs it it hsD x q t q Q X x

  
                     (Malmquist-it) 

(55)   1
0 0 0 0 0

, ,
( , , ) min : ; 1; 0; 0OD x q t x X Q q

  
                    (Färe-Primont) 

(56) 
 

 1
0 0 0 0 0

, ,
( , , ) max : ; 1; 0; 0ID x q t q Q X x

  
                 

  
(Färe-Primont) 
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Aggregate outputs and inputs are then estimated as (O'Donnell (2011b)) 

 
(57)  ( ) /( )it it hs hs hs hsQ q x         (Malmquist-hs) 

(58)  ( ) /( )it it hs hs hs hsX x q         (Malmquist-hs) 

(59) 
 

( ) /( )hs hs it it it itQ q x    
    

(Malmquist-it) 

(60)  ( ) /( )hs hs it it it itX x q          (Malmquist-it) 

(61)  0 0 0 0( ) /( )it itQ q x    
    

(Färe-Primont)   and 

(62) 
 

0 0 0 0( ) /( )it itX x q    
    

(Färe-Primont) 

 

where ,hs   ,hs  ,hs  ,hs  hs  and hs   solve (51) and (52),  ,it   ,it  ,it  ,it  it  and it  solve (53) and (54), 

and  0 ,   0 ,  0 ,  0 ,  0  and 0  solve (55) and (56).   DPIN uses sample mean vectors as representative 

output and input vectors in LPs (55) and (56).  The representative technology in these two LPs is the technology 

obtained under the assumption of no technical change (i.e., tM  is the sample size).  Each of the LPs (51) to (56) 

allows the technology to exhibit variable returns to scale (VRS).  If the technology is assumed to exhibit 

constant returns to scale (CRS) then DPIN sets 0.      

 
 

Technical and Scale Efficiency 
 

DPIN obtains measures of technical efficiency by solving the following dual LPs: 

 

(63) 
 

 1

,
/ ( , , ) min : ; ; 1; 0it it it O it it it itOTE Q Q D x q t q Q X x

 
                and 

(64) 
 

 1

,
/ ( , , ) min : ; ; ; 0it it it I it it it itITE X X D x q t Q q x X

 
               

 

where   is an 1tM   vector.  To estimate measures of technical efficiency under a CRS assumption, DPIN 

removes the constraint 1    and solves 

 

(65) 
 

 1

,
( , , ) min : ; ; 0CRS

it O it it it itOTE H x q t q Q X x
 

          and 

(66) 
 

 
,

( , , ) min : ; ; 0 .CRS
it I it it it itITE H x q t Q q x X

 
           

 

Measures of scale efficiency are then computed as 

 

(67) 
  

/CRS
it it itOSE OTE OTE  and 

(68) 
  

/ .CRS
it it itISE ITE ITE   

 
 

Mix Efficiency 
 

Measures of mix efficiency are defined by equations (30) and (34).   Estimates of ˆ ,itQ  ˆ ,itX  ˆ
hsQ  and ˆ

hsX  are 

obtained by solving the following LPs: 
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(69) 
 

 
,

ˆ max ( ) : ; ; 1; 0it it
q

Q Q q q Q X x


          and 

(70) 
 

 
,

ˆ min ( ) : ; ; 1; 0 .it itx
X X x Q q x X


           

 

For any aggregator function, LP (69) gives the maximum aggregate output that can be produced using itx  (i.e., 

the maximum aggregate output that firm i in period t could produce using its input vector), while LP (70) gives 

the minimum aggregate input that can produce itq  (i.e., the minimum aggregate input that could be used by firm 

i in period t to produce its output vector).  Paasche, Laspeyres and Lowe estimates of ˆ ,itQ  ˆ ,itX  ˆ
hsQ  and ˆ

hsX  are 

obtained by replacing ( )Q q  and ( )X x  in (69) and (70) with the aggregator functions (3), (4), (6), (11), (12) and 

(14).  Fisher estimates are obtained by taking the geometric average of the Paasche and Laspeyres estimates.  

Malmquist-hs, Malmquist-it and Färe-Primont estimates are obtained by replacing ( )Q q  and ( )X x  with 

functions (57) to (62).   Hicks-Moorsteen estimates are obtained by taking the geometric average of the Malm-

quist-hs and Malmquist-it estimates. 

 
 

Other Efficiency and Productivity Measures 

 

DPIN computes the maximum TFP in period t as 
 

(71) 
 

* max / .t it it
i

TFP Q X    

 

Other efficiency and productivity measures are computed residually: 

 

(72)  /it it itTFP Q X  

(73)  
*/it it tTFPE TFP TFP  

(74)  
*ˆ( / ) /it it it tROSE Q X TFP   

(75)  
*ˆ( / ) /it it it tRISE Q X TFP   

(76)  it it itOSME OME ROSE    

(77)  it it itISME IME RISE   and 

(78)  .it
it

it it

TFPE
RME

OTE OSE
   

 

Again, results for Fisher and Hicks-Moorsteen indexes are computed as geometric averages of the Laspeyres, 

Paasche, Malmquist-hs and Malmquist-it indexes as appropriate.  If the Paasche aggregator function is used to 

measure efficiency and TFP then output- and input-oriented measures of mix efficiency for firm i in period t 

will be measures of revenue-allocative efficiency ( )itRAE  and cost-allocative efficiency ( )itCAE  respectively 

(O'Donnell (2010b)).   EXCEL commands can then be used to compute 

 
(79)  it it itRE OTE RAE      (revenue efficiency)  and 

(80)  .it it itCE ITE CAE      (cost efficiency) 
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If prices are available then DPIN also computes 

 
(81)  /it it itP REV Q        (aggregate output price) 

(82)  /it it itW COST X     (aggregate input price) 

(83)  /it it itTT P W      (terms of trade)   and 

(84)  /it it itPROF REV COST    (profitability) 

 

where it it itREV p q  denotes the total revenue of firm i in period t and it it itCOST w x  denotes total cost.  

Finally, if prices are available then DPIN decomposes profitability change into the product of an index measur-

ing the change in the terms-of-trade (i.e., ratio of output prices to input prices) and the change in TFP (i.e., ratio 

of output quantity to input quantity) (e.g., O'Donnell (2010a)): 
 

(85)  
, , ,

, , ,
, , ,

hs it hs it hs itit
hs it hs it hs it

hs hs it hs it hs it

REV P QPROF
PROF TT TFP

PROF COST W X

  
        

  
 (profitability index) 

 

where , / ,hs it it hsREV REV REV  , / ,hs it it hsCOST COST COST  , / ,hs it it hsP P P  , /hs it it hsW W W  and 

, , ,/hs it hs it hs itTT P W  are revenue, cost, output price, input price and terms-of-trade indexes respectively.    

 
 

Shadow Prices 

 

The derivatives of output and input distance functions with respect to outputs and inputs can be interpreted as 

revenue- and cost-deflated output and input shadow prices (e.g., Grosskopf, Margaritis and Valdmanis (1995)).   

For example, the first-derivatives of the (local) output and input distance functions (47) and (48) are 

 

(86)  
* ( , , ) / /( )it O it it it itp D x q t q x          and 

(87)  
* ( , , ) / /( ).it I it it it itw D x q t x q           

DPIN evaluates these derivatives (shadow prices) at the values of ,   ,  ,  ,    and   that solve LPs (49) 

and (50).  By way of further example, the derivatives of 0 0 0( , , )OD x q t  and 0 0 0( , , )ID x q t  are 

 

(88)  
*
0 0 0 0 0 0( , , ) / /( )Op D x q t q x          and 

(89)  
*
0 0 0 0 0 0( , , ) / /( ).Iw D x q t x q           

DPIN evaluates these shadow prices at the values of ,   ,  ,  ,    and   that solve LPs (55) and (56).  

Observe from equations (6), (14), (61) and (62) that Färe-Primont indexes are identical to Lowe indexes 

whenever *
0 0p p  and *

0 0 .w w   Similar relationships exist between Malmquist-hs and Laspeyres indexes, and 

between Malmquist-it and Paasche indexes (O'Donnell (2011b)). 
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6.  INSTALLING AND RUNNING THE DPIN SOFTWARE 

 

DPIN is written in C++ and is designed to run on a Windows XP or Vista platform.  The program and associated 

files can be downloaded from DPIN website at http://www.uq.edu.au/economics/cepa/dpin.htm.   DPIN is 

available two editions: the Standard edition will compute and decompose Malmquist-hs, Malmquist-it, Hicks-

Moorsteen and Färe-Primont TFP indexes and is available free-of-charge; the Professional edition will also 

compute and decompose Paasche, Laspeyres, Fisher and Lowe TFP indexes and is available on payment of an 

annual license fee.  Both editions are hard-wired to analyze up to 5000 observations.  Further details concerning 

the functionality of the two editions and the pricing of the Professional edition are available on the DPIN 

website.  Irrespective of the edition, installing DPIN involves downloading a .zip file from the DPIN website 

and extracting the contents of the file into any directory.  Installing the Professional edition also involves 

purchasing a license key by following the instructions on the DPIN website.  Running DPIN then involves 

creating an input file and running the executable file. 

 
 
Creating the DPIN Input File 

 

DPIN input files can be created within Microsoft EXCEL and must be saved in a .csv (comma-delimited) 

format.  The input file contains both commands and data.  To illustrate, Figure 3 is a screenshot of the input file 

Eg1_input.csv required for the example discussed in O'Donnell (2011b).  The rows before the end command are 

“command rows”; the row immediately after the end command is a “header row”; and the remaining rows are 

“data rows”.  DPIN will read the text and data in columns A and B of every row until it encounters an end 

command.  It will then skip the end command and the header row and start reading the data.  The DPIN program 

is case-sensitive and will only recognize certain text strings in the command rows.  The main commands are 

 

Firms to specify the number of firms 

Periods to specify the number of periods  

Outputs to specify the number of outputs  

Inputs to specify the number of inputs 

Prices included if and only if the input file contains prices as well as quantities  

 

The command rows (i.e., the rows before the end command) can be listed in any order (e.g., the number of 

outputs can be specified first, second, or last).  The program will not read the output and input variable names in 

the header row (i.e., the row immediately after the end command).  The output and input data must be stored in 

the data rows in a particular format: 

 

 the observation identifier must be stored in column A; the firm and period identifiers must be stored in 

columns B and C; all identifiers must be numeric (e.g., 1, 2, ..., not Jan, Feb ...);  

 the first output quantity variable must be stored in column D; all the output quantity variables must be 

stored first, followed by the input quantity variables (e.g., q1, q2, q3, x1, x2);  
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Figure 3.  Example Input File for Computing and Decomposing Lowe TFP Indexes 

 

 

 

 

 if prices are available then the output and input quantity variables must be stored first, followed by the 

output price variables, followed by the input price variables (e.g., q1, q2, q3, x1, x2, p1, p2, p3, w1, w2); 

 the data must be a balanced panel; if the panel is unbalanced then it can be artificially balanced by replac-

ing any missing observations with any other observations from the same time period (this will not affect 

measures of OTE, ITE, OSE or ISE, but Malmquist-hs, Malmquist-it, Hicks-Moorsteen and Färe-Primont 

estimates of mix efficiency and TFP may be sensitive to the choice of replacement observations);  

 the data must be sorted first by period and then by firm (i.e., all observations from period 1 must be 

listed first, followed by all observations from period 2, and so on);  
 

The default TFP index in the Standard edition of DPIN is the Färe-Primont index.  The default index in the 

Professional edition is the Lowe index when prices are included in the input file and the Färe-Primont index 

otherwise.   The default TFP index can be changed using one of the following commands: 

 

Laspeyres  for Laspeyres indexes (available in Professional edition only) 

Paasche  for Paasche indexes (available in Professional edition only) 

Fisher  for Fisher indexes (available in Professional edition only) 

Lowe  for Lowe indexes (available in Professional edition only) 

Malmquist-hs  for Malmquist-hs indexes  

Malmquist-it  for Malmquist-it indexes  

HicksMoorsteen  for Hicks-Moorsteen indexes  

FarePrimont  for Färe-Primont indexes  

 



14 
 

The default DPIN settings are to estimate the technology allowing for technical regress, technical progress and 

variable returns to scale.  These and other default settings can be changed using the following commands: 
 

Base to specify the reference observation when computing (transitive) Lowe or Färe-Primont 

indexes; the reference observation number must be provided as a numeric value in col-

umn B of the same row as the Base command (the default value of Base is 1).  

CRS to impose constant returns to scale (the default is variable returns to scale)  

NoTechChange to prohibit technical change.  

NoTechRegress to prohibit technical regress.  

UnitMeans to rescale the data (i.e., change units of measurement) so that all output and input quan-

tity variables have unit means.  This option can be used to avoid numerical problems 

when quantity variables are of very different orders of magnitude. Some LP software 

packages recommend that LP variables should always be measured in units such that no 

value is greater than 1E+5 or less than 1E-4 (Winston, 2004, p.167).  Malmquist-hs, 

Malmquist-it, Hicks-Moorsteen and Färe-Primont indexes (i.e., indexes that involve 

solving LPs) may be sensitive to rescaling. 

Window   (available in Professional edition only) to estimate the production technology using all 

observations in a moving window of time periods; the window length must be provided 

as a numeric value in column B of the same row as the Window command. 

 

Figures 4 and 5 illustrate the use of some of these options.  Figure 4 shows how the command rows in the input 

file in Figure 3 should be modified to compute and decompose Paasche TFP indexes under the assumption of 

CRS.  Observe that it is possible to add text to cells in columns D and E of any command row (i.e., any row 

before the end command).  Figure 5 is a partial screenshot of the file NE_input.csv used for analysing a subset 

of the US agricultural data compiled by Ball, Hallahan and Nehring (2004).   

 
 
 

Running the Executable File 
 

The DPIN executable file is DPIN.exe.  Double-clicking this file will open windows similar to those depicted in 

Figures 6 to 8.  Figure 6 is a command window that reports program and run-time information; Figure 7 is a 

window used to browse and select the input file; and Figure 8 is the command window as it appears shortly after 

the input file NE_input.csv has been selected.  DPIN performs six sets of computations in the decomposition of 

TFP indexes, and the command window reports how the program is progressing through each of these sets.  

Warnings and common runtime errors are also reported in the command window. 
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Figure 4.  Example Input File for Computing and Decomposing Paasche TFP Indexes 
 

 
 
 
 
 
 

 
 

 
Figure 5.  Input File for Analysing Productivity in the Northeast (NE) Farm Production Region of the United States 
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Figure 6.  Initial Command Window 
 
 

 

 
 

Figure 7.  Input File Selection Window 
 
 
 

 

 
 

Figure 8.  Command Window After Data Processing 
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7.  DPIN OUTPUT FILES 

 

DPIN computes and reports estimated levels of TFP and various types efficiency for every firm in every time 

period in the sample.  It also computes and reports indexes of TFP change and efficiency change.  DPIN results 

are written to EXCEL output files having the following extensions (and contents): 

_output_indexes.csv This file reports indexes measuring changes in aggregate output (labelled dQ) , 

aggregate input (dX), total factor productivity (dTFP), the technology (dTech 

= dTFP*) and various types of efficiency (dTFPE, dOTE, dOSE, dOME, 

dROSE, dOSME, dITE, dIME, dRISE, dISME and dRME).  If prices are 

available then the Professional Edition of DPIN also reports indexes measur-

ing changes in revenue (dRev), cost (dCost), profitability (dProf), the aggre-

gate output price (dP), the aggregate input price (dW) and the terms of trade 

(dTT).  If an intransitive index (e.g., Hicks-Moorsteen) is used then DPIN re-

ports comparisons between firm i in period t and firm i in period t-1 (these are 

the only comparisons that are meaningful – see Section 2).  If a transitive in-

dex (e.g., Färe-Primont) is used then the default comparison is between firm i 

in period t and firm 1 in period 1 (this reference observation can be easily 

changed using the Base command). 

 _output_levels.csv  This file reports estimated levels of aggregate output (Q), aggregate input (X), 

total factor productivity (TFP), the maximum TFP possible in each period 

(TFP*)  and various types of efficiency (TFPE, OTE, OSE, OME, ROSE, 

OSME, ITE, IME, RISE, ISME and RME).  Again, if prices are available then 

the Professional Edition of DPIN also reports revenue (Rev), cost (Cost), prof-

itability (Prof), the aggregate output price (P), the aggregate input price (W) 

and the terms of trade (TT).   Note that if an intransitive index (e.g., Hicks-

Moorsteen) is used then it is not generally possible to use the reported esti-

mates of Q, X, TFP, TFP*, OME, ROSE, OSME, IME, ISME or RME to ob-

tain the corresponding index values reported in the _output_indexes.csv file 

(see the example below). 
 
 

_output_shadowprices.csv   (Professional edition only) This file reports the estimated shadow prices given 

by equations (86) and (87) (labelled pstar1, ..., pstarJ and wstar1, ..., wstarK). 
 

_output_xtras.csv  (Professional edition only) This file reports selected computations that may be 

useful for diagnostic purposes.  Specifically, it reports estimates of the aggre-

gate quantities ˆ ,itQ ,itQ ,itQ ˆ ,itX ,itX ,itX ˆ ,hsQ ,hsQ ,hsQ ˆ ,hsX hsX  and hsX  (la-

belled QHATt, QBARt, Qt, XHATt, XBARt, Xt, QHATs, QBARs, Qs, 

XHATs, XBARs and Xt respectively) as well as estimates of ( , , ),I it hsD x q s  

( , , ),I hs itD x q t  ( , , ),I it itD x q t  ( , , ),I it itH x q t  ( , , ),O hs itD x q s  ( , , ),O it hsD x q t
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( , , )O it itD x q t  and ( , , )o it itH x q t  (labelled DItss, DIstt, DIttt, HIttt, DOsts, 

DOtst, DOttt and HOttt respectively).  If Malmquist-hs, Malmquist-it or 

Hicks-Moorsteen indexes are used then the file reports the values of   and   

that solve LPs (51) to (54).  If Färe-Primont indexes are used then the file re-

ports estimates of 0 0 0( , , )OD x q t  and 0 0 0( , , )ID x q t  (labelled DO000 and 

DI000 respectively), the values of 0 ,   0 ,  0 ,  0 ,  0  and 0  that solve 

(55) and (56), and the vectors of output and input shadow prices given by 

equations (88) and (89) (labelled pstar0 and wstar0). 

 

 
8.  EXAMPLES 

 

To illustrate the decomposition of intransitive TFP indexes, Figures 9 to 12 present partial screenshots of the 

output files obtained after running DPIN on the input file Eg1_input.csv presented in Figure 4.  This input file 

instructs DPIN to compute and decompose a Paasche TFP index.  Caution must be exercised when interpreting 

reported levels of productivity and efficiency associated with intransitive indexes like the Paasche.  Consider the 

Paasche TFP index 41,42TFP  that compares firm 4 in period 2 with firm 4 in period 1.  The computations 

involved in computing this index are as follows: 

 

 42 42 42 (2)(10) 20Q p q       (cell F11 in Fig. 9 and cell J10 in Fig. 10) 

 42 42 42 (2)(40) (6)(20) 200X w x      (cell I11 in Fig. 9 and cell K10 in Fig. 10) 

 41 42 41 (2)(10) 20Q p q       (cell L11 in Fig. 9) 

 41 42 41 (2)(50) (6)(20) 220X w x      (cell O11 in Fig. 9) 

 41,42 42 41/ 20 / 20 1Q Q Q       (cell J10 in Fig. 11) 

 41,42 42 41/ 200 / 220 0.9091X X X     (cell K10 in Fig. 11) 

 41,42 41,42 41,42/ 1/ 0.9091 1.1TFP Q X     (cell L10 in Fig. 11) 

 

Note that the base period aggregate output 41 20Q   and the base period aggregate input 41 220X   are not 

reported in Fig. 9 (we might expect to see them in row 6, but these entries are aggregates computed using 

different aggregator functions that use period 1 prices as weights).  This illustrates that reported levels of output, 

input and productivity associated with (intransitive) Paasche, Laspeyres, Fisher, Malmquist-hs, Malmquist-it 

and Hicks-Moorsteen indexes cannot be blindly used to construct measures of output, input and productivity 

change – if an intransitive index is used then it is generally only meaningful to compare values that are 

reported in the same row of the DPIN output files.  For example, it is meaningful to use the entries in row 8 

of Figure 10 as follows: 

 

 42 42 42 (1)(20) 20REV P Q         

 42 42 42 (1)(200) 200COST W X         

 42 42 42/ 1/1 1TT P W          

 42 42 42/ 20 / 200 0.1TFP Q X        
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*

42 42 2/ 0.1/ 0.1333 0.75TFPE TFP TFP        

 42 42 42 0.75 1 0.75TFPE OTE OSME         

 42 42 42 1 1 1OSME RAE ROSE          

 

The finding that 42 0.75TFPE   tells us that the productivity of firm 4 is 25% less than the maximum productiv-

ity that is possible using the technology available in period 2.  The finding that 42 0.75OTE   and 42 1OSME 

tells us that the entire productivity shortfall is due to technical inefficiency.  In terms of productivity change, it is 

meaningful to use the entries in Row 8 of Figure 9 as follows: 

 

 41,42 41,42 41,42/ 2 / 0.6897 2.9PROF REV COST      

 41,42 41,42 41,42 2.6364 1.1 2.9PROF TT TFP       

41,42 41,42 41,42/ 2 / 0.7586 2.6364TT P W      

 41,42 41,42 41,42/ 1/ 0.9091 1.1TFP Q X      

 
* *

41,42 2 1 41,42 41,42( / ) 1 1.1 1.1TFP TFP TFP TFPE dTech TFPE          

 41,42 41,42 41,42 1 1.1 1.1TFPE OTE OSME        

 41,42 41,42 41,42 1 1.1 1.1OSME RAE ROSE        

 

Thus, we find that the profitability of firm 4 has increased almost three-fold 41,42( 2.9)PROF   as a result of a 

significant improvement in the terms of trade 41,42( 2.6364)TT   and a 10% increase in productivity 

41,42( 1.1).TFP     The improvement in the terms of trade is due to a doubling of output prices 41,42( 2)P   and a 

25% fall in input prices 41,42( 0.7586).W    Finally, all of the increase in productivity is due to an increase in 

residual output-oriented scale efficiency 41,42( 1.1)ROSE   (a residual measure that captures productivity changes 

associated with changes in both inputs and outputs). 

 

To illustrate the decomposition of transitive TFP indexes, Figures 13 to 16 present partial screenshots of the 

output files obtained after running DPIN on the input file NE_input.csv presented in Figure 5.  The Färe-

Primont index is transitive, so it is meaningful to compare cells in any columns or rows of these tables.  For 

example, the TFP of state 6 in 1960 is 0.5891 (cell L3 in Fig. 13) and the TFP of state 19 in 1960 is 0.5499 (cell 

L7 in Fig. 13).  Thus, the TFP index that compares state 6 with state 19 is 0.5891/0.5499 = 1.0714 (cell L3 in 

Fig. 14).   Observe from row 24 in Figure 13 that state 44 achieved the maximum TFP possible in 1961 (indeed, 

because there is no technical change in the first three years, state 44 achieved the maximum TFP possible in any 

of the years 1960-1962).  Thus, the efficiency scores reported in Table 1 can all be viewed as indexes that 

compare efficiency in each state in each year with the efficiency of state 44 in 1961.   When it comes to an 

examination of the components of productivity change, it is convenient to use the Data Sort facility in EXCEL 

to sort the results first by state and then by year, and to then use the Insert Line (graph) option to plot different 

measures of interest.  For example, Figures 17 and 18 present decompositions of profitability change and TFP 

change in state 6 over the period 1960 to 1989.   For further examples of the computation and interpretation of 

transitive TFP indexes, see O'Donnell, Fallah-Fini and Triantis (2011) (US interstate highway maintenance), 

O'Donnell (2010b) (US agriculture) and O'Donnell (2011b) (US manufacturing sectors). 
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9.  RUNTIME ERRORS 

 

Error diagnostics are written to text files having extensions _output_xxerrors.txt.  Common error codes reported 

in these files (and the command window) are: 
 

-1 this error code indicates that a linear program cannot be solved.  Some program may fail to solve 

because of numerical errors that occur when input and output variables are of very different orders 

of magnitude (e.g., some variables are measured in thousands of units and others are measured in 

tenths of a unit).  Numerical errors often lead to values of 1.#IND or 1.#INF in the DPIN output 

file and can generally be avoided by scaling all input and output quantity variables to have unit 

means (use the UnitMeans command).  Other linear programs may fail to solve simply because 

they are infeasible – see O'Donnell (2010a). 

5 this error code indicates that the maximum number of simplex iterations has been exceeded.  The 

maximum number of iterations may be reached if the linear program is degenerate.  For details on 

degeneracy and cycling in linear programs see Winston (2004, p. 168-171).    
 

Note that the Hicks-Moorsteen index sometimes takes the value zero.  This is not an error – the Hicks-

Moorsteen index that compares the TFP of firm i in period t with the TFP of firm i in period s will always take 

the value zero when, for example, firm i uses less of one input in period t than any other firm in the sample, and 

if it fails to produce an output in period t that it had produced in period s.  Finally, values of 1.#IND or 1.#INF 

mean that DPIN has either exceeded the finite limits of floating point arithmetic (e.g., generated a number that is 

infinitely large) or attempted to obtain a result that is simply undefined (e.g. division by zero).  In such cases it 

is often worthwhile checking for outlier observations (e.g., observations where all inputs are zero or where one 

or more variables are extremely large). 
 

 



 
 

Figure 9.  Paasche Example: Selected Computations (Eg1_output_xtras.csv) 

 
 
 
 
 
 
 

 
 

Figure 10.  Paasche Example: Levels of Productivity and Efficiency (Eg1_output_levels.csv) 
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Figure 11.  Paasche Example: Indexes of Productivity and Efficiency Change Under CRS (Eg1_output_indexes.csv) 

 
 
 
 
 
 
 

 
 

Figure 12.  Paasche Example: Revenue-deflated Output Shadow Prices and Cost-deflated Input Shadow Prices (Eg1_output_shadowprices.csv) 
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Figure 13.  NE Farm Production Example: Levels of Productivity and Efficiency (NE_output_levels.csv) 
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Figure 14.  NE Farm Production Example: Indexes of Productivity and Efficiency Change Relative to State 19 in 1960 (NE_output_indexes.csv) 

 
 
 

 
 
 

Figure 15.  NE Farm Production Example: Revenue-deflated Output Shadow Prices and Cost-deflated Input Shadow Prices (NE_output_shadow prices.csv) 
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Figure 16.  NE Farm Production Example: Selected Computations (NE_output_xtras.csv) 

 

 



 

 
 
 

Figure 17.  NE Farm Production Example: The Components of Profitability Change in State 6 

 
 
 
 
 

 
 
 

Figure 18.  NE Farm Production Example: The Components of TFP Change in State 6 
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