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Abstract

The statistical framework for the Malmquist productivity index (MPI) is now well-
developed and emphasizes the importance of developing such a framework for its al-
ternatives. We try to fill this gap in the literature for another popular measure, known
as Hicks—Moorsteen Productivity Index (HMPI). Unlike MPI, the HMPI has a total
factor productivity interpretation in the sense of measuring productivity as the ra-
tio of aggregated outputs to aggregated inputs and has other useful advantages over
MPI. In this work, we develop a novel framework for statistical inference for HMPI in
various contexts: when its components are known or when they are replaced with non-
parametric envelopment estimators. This will be done for a particular firm’s HMPI as
well as for the simple mean (unweighted) HMPI and the aggregate (weighted) HMPI.
Our results further enrich the recent theoretical developments of nonparametric envel-
opment estimators for the various efficiency and productivity measures. We examine
the performance of these theoretical results for the unweighted and weighted mean of
HMPI using Monte-Carlo simulations and also provide an empirical illustration.
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1 Introduction

Two widely applied methods of measuring productivity changes over time in the empir-
ical research are the Malmquist productivity index (MPI) (Caves et al., 1982) and the
Hicks—Moorsteen productivity index (HMPI) (Diewert, 1992, Bjurek, 1996). Both MPI and
HMPI are commonly estimated using Data Envelopment Analysis (DEA) and Stochastic
Frontier Analysis (SFA) estimators, as well as possess equivalences or approximation rela-
tionships with various empirical indices (Fisher, Térnqvist, etc.) under certain conditions.

HMPT has several appealing properties compared to MPI. For example, HMPI has a total
factor productivity (TFP) interpretation (Bjurek, 1996, Grifell-Tatjé and Lovell, 1999) in the
sense of measuring productivity as the ratio of aggregated outputs over aggregated inputs,
while MPT has TFP properties only under the assumptions of constant returns to scale (CRS)
for the technology, but not under variable returns to scale (VRS) (Grifell-Tatjé and Lovell,
1995). It is known that, theoretically, MPI and HMPI coincide under the assumptions of
CRS and homotheticity, yet can produce different results otherwise.! Another limitation of
MPT is that some efficiency components of MPI may not be well defined under VRS-type and
FDH-type technologies, making MPI infeasible for some observations (Fére et al., 1994).2
See Briec and Kerstens (2009, 2011) for more discussion and Kerstens et al. (2010), Fare
et al. (2021) for some empirical examples.

Recently, Kneip et al. (2015) derived the central limit theorems (CLT) for the simple
mean of technical efficiency that were estimated via nonparametric envelopment estimators,
such as DEA and Free Disposal Hull (FDH) approaches. This enabled many further theo-
retical developments in efficiency and productivity analysis estimated using non-parametric
frontier efficiency methods. Based on Kneip et al. (2015), the statistical inference for DEA
estimated MPI measured with respect to the conical hull of a VRS production frontier, has
been rigorously developed by Kneip et al. (2021). Specifically, they developed the statisti-
cal inference for the DEA estimates of a particular firm’s MPI as well as the simple mean

(unweighted) of DEA estimates of MPI. More recently, Pham et al. (2023) developed anal-

1 E.g., see Fire et al. (1996) and more recent results in Fére et al. (2021).

2 We present one example in Subsection A.1 of the separate Appendix A to illustrate this point: when
MPI has an infeasible problem but HMPI does not. Moreover, it is also possible that both MPI and HMPI
are not well-defined for some points in the technology sets, as illustrated in Subsection A.2 of the separate
Appendix A, which appears to be a new insight on HMPI.



ogous framework for the aggregate (weighted harmonic-type mean) of DEA-estimated MPI.
However, the framework for statistical inference for HMPI estimates has remained absent.

In this paper, leveraging on the previous theoretical work, including Kneip et al. (2015,
2021) and Pham et al. (2023), we fill the gap in the literature by establishing the statistical
properties of DEA estimators for the simple mean HMPI as well as the aggregate HMPI
(Mayer and Zelenyuk, 2019) and thus develop the framework for statistical inference for
HMPI. We also conduct many Monte-Carlo (MC) experiments to evaluate the performance
of the developed statistical results for the simple mean and aggregate HMPI in a wide range
of finite samples. Finally, using the most recent Penn World Table data, we examine the
productivity changes for countries/regions from 1990 to 2019 to illustrate the usefulness of
the developed theoretical results for HMPI in the empirical analyses.

The rest of our study is structured in the following way. In Section 2, we provide the
theoretical background on Debreu-Farrell distances, individual HMPI, the simple mean and
the aggregate HMPI. The estimators are also introduced in this section. Sections 3 and
4 establish the statistical results for the simple mean and aggregate HMPI, respectively.
Section 5 performs extensive MC experiments to examine the finite-sample performance of
the developed statistical results in Sections 3 and 4. In Section 6, we use one real data set to
illustrate the above developed theoretical results. Additional results, including the regularity
assumptions for the model, the lemmas used in the main text, all the proofs of the theorems

and additional simulation results, are provided in the Supplementary Document.

2 The Theoretical Background

2.1 The Production Economics Model

Denote x € R’ as p-dimensional input vector and y € R% as ¢g-dimensional output vector.

The standard production or technology set can be expressed as
V' = {(x,y) | x can produce y at time ¢}. (2.1)

The typical regularity assumptions provided in the separate Appendix B are imposed on W¢.

The upper boundary of the production set ¥' is given as

U= {(z,y) | (z,y) € V', (z,\y) ¢ ¥, VA€ (1,00)}, (2.2)
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which is typically called the technology frontier.?

The widely used Debreu-Farrell output-oriented distance measure is given by
Az, y | ') == sup{A > 0 | (z,\y) € ¥'}, (2.3)

which provides the maximal feasible proportional increase of all outputs, while keeping the

technology and inputs unchanged. The Debreu-Farrell input-oriented distance measure is
O(x,y | ¥') :=inf {0 > 0] (bz,y) € ¥'}, (2.4)

which provides the maximal feasible proportional decrease of all inputs, while keeping the
technology and outputs unchanged. These measures are reciprocal to the Shephard’s output
and input distance functions, and hence are primal characterizations of technology, and dual

to revenue and cost functions, respectively.*

2.2 The Hicks—Moorsteen Productivity Indices

Let S, = {(X}, V), (X?,Y?)}", be a random sample of the input-output pairs for n firms

)

observed in two periods. Further, let 8¢ = {(X},Y})}™, be the subsample of S,, observed
only in period t. Each firm ¢ in period ¢ is assumed to potentially have access to the frontier
U9 The productivity change for the ith firm from period 1 to period 2 measured by HMPI

(Diewert, 1992, Bjurek, 1996) can be defined as

—1/2
o (ACELYE WMLV WY N MY e
CT ey e YT e e e p v e )

where, H; < 1, = 1l,or > 1, indicates that the productivity for firm ¢ has decreased,
remained unchanged or increased over time. In empirical studies, researchers often focus on
the productivity change for the sample over time, which can be measured using the equally

weighted geometric means of the individual HMPI, given by

n 1/n
H, = (HH) , (2.6)

3 Analogous results can be developed when the true technology is replaced with its conical closures, which
we leave to the readers.

4 All the theories in this paper can be developed in terms of Shephard’s distances. Our choice of Debreu-
Farrell distances is due to convenience.




where H, < 1, = 1,or > 1, indicates that the productivity for the sample of n firms has
decreased, remained unchanged or increased over time.

Now consider the log versions of HMPI. Denote

1
My o= log Hi = — [log \(X), Y7 | W) ~ log \(XL, Y1 | )
—log (X2, | W)+ logO(X], Y] | W)

(2.7)
Flog A(XZ, Y2 | 02) — log A(X2, Y, | 02)
- IOgQ(XE, }/i2 | qu) + IOgQ(Xi17 )/12 | \II2> )
for the ith firm, and
o L 1 n 1 n
og - ; og H; = — ; (2.8)
for the sample of n firms. Clearly H,, is a point estimate of
py = E(H,;). (2.9)

Note that in the above aggregation in (2.8), each observation is treated equally, with
weight 1/n, and so whether it is a very small DMU (firm or country) or a very large one that
dominates the economy of the whole group, their productivity score (say 1.1 representing
10% growth) will have exactly the same weight in the aggregate. Thus, such a simple
aggregate measure, as an equally-weighted mean of productivity scores, may mis-represent
the aggregate productivity of the group due to ignoring the heterogeneity and the economic
importance of each DMU being aggregated.

The alternative will be to take the economic importance (e.g., the revenues and/or costs)
of each individual into account and consider the aggregate HMPI for the whole sample

(Mayer and Zelenyuk, 2019), defined as

Ao [ 2o SEAXE Y [ W)/ 3 SIAX Y | W)
O\ WO YUY/ L WX Y [ )

2.10)
n n —1/2 (
XL SRV | W)/ T, SIAXE Y | 9)
Do WRO(XE Y2 | 02)/ 57, WX, Y2 | 02) ’
where o
%
St= Pl oy, (2.11)

’ Z?:l Yy
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and
. tXt
are the revenue and cost (respectively) Welghts for firm ¢ at time ¢, and p* € RY, and
w' € RY, is the row vector of output and input prices (respectively), assumed to be the
same for different firms at the same time ¢.
To simplify, we will adapt the notation from Pham et al. (2023), and let
LYZ [ UpPYE, Uy = ANXGL Y [ Wp'Y

A )p
(XY | U X7, Uy = 0(X;, Y] | Ohw' X,
(Xi )p
(X; Jw

2 Y2 | UpPYE, Usi = MXE Y | U2)p'YE (2.13)
2X2 UB,i = G(X’L 7}/;2 ‘ \IIQ)leilv
U9,i = sz; ) UlO,i =P Y; ) Un,z‘ = ”LU2Xi2, U12,i = leil,

0(X
A
0

2 Y2 | 02

and denote
ps = E(Us;), (2.14)
and
1 n
== Uy, s=12,...,12 (2.15)
n
i=1

Now consider the log version of }NIn, defined as ¢, = log ];NIn Similar to Pham et al. (2023),

we can show that

1 _ _ _ _
Cn = _5( lOg Ul,n - log U2,n - lOg U3,n + IOg U4,n
+1logUs,, — logUsg,, —log Uy, +logUsg.,) (2.16)
+ log U9,n —log UlO,n —log Ull,n + log U12,n7

which is a point estimate of

1

¢ = —5(log 1 —log iz —log 13 + log pus
+ log 5 — log pg — log pu7 + log ps) (2.17)
+ log pig — log p1o — log pa1 + log fi12.

It is worth noting here that, compared to Pham et al. (2023), we have 12 terms instead of
6 terms, and most of these terms did not appear in Pham et al. (2023). The increased num-

ber of terms is due to considering both input orientation and output orientation together.

5



The additional layer of complexity that is also novel, however, is the need to consider “coun-
terfactual coupling” of inputs observed in one period with outputs observed in a different
period, and in particular, reflecting this in the regularity assumptions that make such “coun-
terfactual coupling” well-defined.

All the above quantities of A\(X}, Y2 | O1), M( X1 Vi | UH), M(XZ Y2 | U2), AN(X2, Y| ©2),
O(XZE YUY, 0(X} Y| W), 0(X2, Y| ¥?), and (X}, Y2 | U?) are the true (or theoretical)
quantities, which are unobserved in empirical analysis and must be estimated from the sample
data. In the separate Appendix C, we establish the CLT results for the case when the various
Farrell-Debreu quantities are known. These results will be the benchmark case that will be
useful more generally, e.g., when various estimators (e.g., DEA, etc.) are used for estimating
the Farrell-Debreu quantities. Also, these results are the baseline results that we rely on to

develop the CLT results for DEA estimators discussed in Sections 3—4.

2.3 DEA Estimators of Individual and Aggregate Indices

Given a random sample S, the output-oriented Farrell-Debreu distance A(z,y | ¥*) and
the input-oriented Farrell-Debreu distance 6(x,y | ¥*) can be estimated by the VRS-DEA

estimator as,

:\\(:E,y|57';): max {)\|)\y<ZsYt :1:>2th Zsizl,)\ZO,VsiZO},

A,815004,8n
=1

(2.18)

and

é\(x,y|87';):0m1n {0|y<ZsYt 9:13>2th Zsizl,QZO,VsiZO},
1=1
(2.19)

respectively. The corresponding CRS-DEA estimators for A(x,y | ¥*) and §(z,y | U*) can be
obtained by deleting > | s; = 1 in (2.18) and (2.19), respectively. However, we will focus
on VRS-DEA estimators in this study because this is where HMPI has an advantage over
MPIL.?

® The origins of various DEA estimators go back to the works of Farrell (1957), Charnes et al. (1978),
Banker et al. (1984), to mention a few. It is one of the most popular approaches, with well-developed
statistical properties (as we describe in the next section). We acknowledge that there are also other alternative
good estimators in the literature, e.g., see Aigner et al. (1977), Schmidt and Sickles (1984), Daouia and
Simar (2007), Amsler et al. (2017), Parmeter and Zelenyuk (2019), Olesen and Ruggiero (2022), Tsionas




Plugging the various estimates of Debreu-Farrell distances into the components of H;

defined in (2.7), we can obtain the individual HMPI estimate as
N 1 - -
Ho =~ [log XX Y7 | 81) — log A(X], ¥ | 8))

—log (X2, Y} | 1) +log (X}, V! | SY)
+log MX2, Y2 | 82) —log A(X2, V! | 82)

—log DX,V | 82) + logB(X), V2 | 82)].

The simple mean HMPI, 4, can then be estimated by
W n = n o i

Similarly, the aggregate HMPI, (, can be estimated by

o~

1 . R . R
Cn = _5( log MHin — log Hon — log U3n + log Han
+ log fisn, — 10g fig,n — 10g [z, + 10g [is )
+ log fig., — log ft10,, — 10g [i11,5 + 1Og 12,1,

where .
1 .
Asn:_ Usia :1727"'787
and
T = Upp, 7=9,10,11,12,
and where

U = MXLY? | S))p°Y7, Uny =
= 0(X2, Y] | SHwX?, Uy =
= X( j uYiZ | Sg)p2}/1'27 (76,1' =
=0(X2,Y? | SHw’X?, Us,

Ug,n = %inYf, UlO,n = %iply?, Ull,n = E Zw2Xi2, UlQ,n = %ile}-
i=1 i= i

i=1

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

et al. (2023), to mention just a few. See Ch.8-16 in Sickles and Zelenyuk (2019) and Kumbhakar et al.

(2022a; 2022b) for more detailed discussion about the various approaches and references.

Developing the

analogous frameworks for these estimators would take separate papers, though what we present here serves

as an important stepping stone for such works.



3 Asymptotic Theory for the Simple Mean HMPI

In principle, the theorems we develop here and in the following section, and the strategy of
their proofs, are analogous to those in Kneip et al. (2021) and Pham et al. (2023). How-
ever, they require fairly tedious adaptations of the derivations, especially for the aggregation
HMPI, and so we leave these to the separate Appendix E. Meanwhile, here we will present
the essence of the most important results, the spelling out of which is important for practi-
tioners who want to understand the essence of the results and the building blocks needed for
the actual computations of the estimates, the bias, the standard errors and the confidence
intervals.

Our first novel result establishes the asymptotic theory for the individual HMPI, which
is summarized in the Lemma D.3 of the separate Appendix D (the analog of Theorem 3.3
in Kneip et al., 2021). The results established in Lemma D.2 of the separate Appendix D
provide essential tools to derive the statistical properties for the simple mean HMPI, which

is provided in Theorem 1 (the analog of Theorem 3.5 in Kneip et al., 2021).

Theorem 1. Under Assumptions in Appendix B, as n — oo,
~ e _3, 3,
E(fiyn) = p + Cun™" + O(n”2"(log n)2"), (3.1)

ﬁ?—l,n - E(ﬁ?—[,n) - ﬂn — U + Op(n_1/2)7 (32)

o I -
0'72_1 = E Z(HZ — HH,n)Z L> 0'72_1, (33)

i=1
where k = 2/(p+q+1) if the technology W' exhibits VRS and k = 2/(p+q) if the technology
Ut exhibits CRS.

In turn, the results above can be used to establish the CLT for the simple mean HMPI

(the analog of Theorem 3.6 in Kneip et al., 2021), which we summarize below.

Theorem 2. Under Assumptions in Appendiz B, as n — oo,
V(s — i — Cun ™ = O(n~#*(logn) %)) == N(0,03,), (34)

where recall that O(n=2%(logn)2%) = o(n™") and Cy is a constant.



From (3.1), we can see that jiz, is a biased estimator of iz, with the bias term in the
order of O(n™"). The impact of this bias term on the asymptotic behavior of the DEA
estimator, fiz ., can be evaluated by Cy+y/nn™" in (3.4). When s > 1/2, Cy\/nn™" goes
to zero asymptotically, implying that Theorem 2 can be used directly to make an inference
by ignoring the bias term Cyn~"; When k = 1/2, Cy+/nn™" goes to an unknown constant,
indicating that Theorem 2 cannot be used directly; When k < 1/2, Cyy/nn™" goes to infinity
asymptotically, implying that Theorem 2 cannot be used directly.

To conduct statistical inference using Theorem 2 for the case k < 1/2, we adjust the
sample size using the similar method as Kneip et al. (2021). Let ji3,, be a random subsample

version, with size n, = [n**], of [i,.° Formally,

1 A
Firtn, = — > Hi, 3.5
HH n,. n ( )

K .
{’Ll(X'lvyilvxzzvy?)E‘S’ﬂn}

k3

where S, is a random subsample, with the sample size n,, from S,,.” The statistical prop-
erties of [iy ,,. are established by the following theorem, which is the analog of Theorem B.1
in Kneip et al. (2021).

Theorem 3. Under Assumptions in Appendiz B, when k < 1/2, as n — oo,
Vs (Brn, = 1z = Con™ = O(n™ 2" (log n) %)) == N(0, 0%,), (3.6)
where Cy is the same constant as in Theorem 2.

When k£ < 1/2, the bias term in (3.6), Cy+/n.n"", is stabilized as n — oo. However,
to make an inference, we still need to estimate the bias term Cyn™" for the case k < 1/2.
Similar to the context of the simple mean MPI in Kneip et al. (2021), the estimate of the
bias term for iy, can be consistently estimated using the generalized jackknife method.
The procedures described by Kneip et al. (2021) are as follows.

For each m = 1,2,..., M, where M < (Ln7/12j)’ randomly split the sample S,, into

two subsamples S, /21,m and S,/22,, with equal sizes,® so that S,/21.m N Sp22m = 0 and

6 |n2*| denotes the largest integer that is no larger than n?*. Further n, < n as x < 1/2.

7 Note that here, H, as defined in (2.20) is computed for each 4 in the sub-sample, but relative to all the
data points in S,, rather than S, , and then averaged over all ¢ in that subsample (of size n,) to obtain
ZZ’H,n,i .

8 We assume n is even for simplicity.



Sn/2,1,mUSn/22.m = Sy Further, for each [ = 1,2, let 8711/2,l,m and 52/2,l,m be the observations
in 8,/21,m, split by periods 1 and 2, respectively. For each [ = 1,2 and m = 1,2,..., M,

compute
~ 2 1 ~ ~
HHm/2,0m = ﬁ Z _5 |:10g>\(X117 Y? | S%/Q,l,m) - logA(X;?}/il | S%/Zl,m)
(XY XE Y E)
6$n/2,l,m}
- lOg (/g\(X227 }/;'1 | Si/?,l,m) + lOg 5(X117 Y;l ’ STlL/Q,l,m)
+10g AXE Y2 | 87 1,n) — Log MXE Y] [ S0
- log é\(XE? Y? | SZ/Q,l,m) + log é\(X;? Y? ’ 82/2,l,m)] ’
(3.7)
and
. L. —~
My nm = §(uH7n/2,l7m + :uH,n/ZQ,m)' (38)
The estimate of the bias term for iy, is provided by
M
Bynwar = 57 D@ = 1) ([ — Hrn)- (3.9)
m=1

The asymptotic behavior of the estimate of the bias term, E}Ln,{ M, is given by the
following theorem (the analog of Equation (B.6) in Kneip et al., 2021), which can be used

to make inferences on the true unobserved simple mean of HMPI.
Theorem 4. Under Assumptions in Appendixz B, as n — oo,

]§H7n7,i7M =Cyn " + O(n_%”(log n)%“) + 0,(n71?), (3.10)
where Cy 1s the same constant as in Theorem 2 and Theorem 3.

Combining Theorems 2, 3 and 4, we have the following theorem that can be used to make

inferences on the simple mean of HMPIL.
Theorem 5. Under Assumptions in Appendiz B, for k > 2/5,
NG (ﬁ%n — Byt — i — RHW) 4 N(0,02), (3.11)
and if k < 1/2, we have
Ve (e = Brtnser = 10 = Raunn) = N1(0,03), (3.12)
“(logn)2*) = o(n™").

10

where Ry .0 = O(n~



Note that ¢, is not observed, but we can use its empirical version 73, as (3.3) shows
that 63, is a consistent estimate of ¢7,. The asymptotic 100(1 — «)% confidence intervals for

[y are then given by

|::a'H,n - B\H,n,n,M + (Dl__la/g a\-’y'-[/\/ﬁ:| 5 (313)
if kK > 2/5 and
|://Z”H,,n,< - é7—[,11,N,M + (I)l_,la/g 6—\7-15/\/ n:‘i:| ) (314)

if kK < 1/2.2 Similar to Kneip et al. (2021), both (3.13) and (3.14) are applicable when
k = 2/5, but (3.14) is suggested due to a smaller remainder term, as /n, Ry, converges

to zero more quickly than \/nRy -

4 Asymptotic Theory for the Aggregate HMPI

4.1 Basic Results

Our first novel result for the aggregate (or weighted mean) HMPI is to derive the statistical
properties for the first and second centered moments of [/J\Sﬂ- for s € {1,2,...,8} and i =
1,2,...,n, which are provided in the Theorem 6 (the analog of Theorem 1 in Pham et al.,
2023).

Theorem 6. Under Assumptions in Appendiz B, for all s € {1,2,...,8}, as n — oo, there
exists constants 0 < Cy < 00 so that for alli € {1,2,...,n},

E(U,; — U,;) = Csn™™ + O(n"3%(log n) "), (4.1)

and

E([Usi - Us,z‘]2) =o(n™"), (4.2)
and for j #1, s* € {1,2,...,8,},

|E([Us; — E(U,)] X [Us; — E(Us )| = o(n™). (4.3)

9 The MC results in Section 5 show that the coverage of the estimated confidence intervals for the simple
mean HMPI under-covers the true values in small sample sizes and large dimensions, which is similar to the
cases of the unweighted and weighted technical efficiency (Kneip et al., 2015, Simar and Zelenyuk, 2018)
and the unweighted and weighted MPI (Kneip et al., 2021, Pham et al., 2023). It is possible to adapt the
data sharpening method (following Nguyen et al., 2022 and Zelenyuk and Zhao, 2023) and the method of
the alternative estimator for the variance (following Simar et al., 2023a and Simar et al., 2023b) to further
improve the inference of the developed CLT in small sample sizes and large dimensions. The same idea can
also be applied to the aggregate HMPI presented in Section 4.
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In turn, from Theorem 6, we can derive the following theorem, which is the analog of

Theorem 2 in Pham et al. (2023).

Theorem 7. Under Assumptions in Appendiz B, for all 1 € {1,2,...,n}, s,s
{1,2,...,8}, and r € {9,10,11,12}, as n — oo,

3k
2

E(Uss) = pis + Cin™" + O(n~*(log n) "), (4.4)

C’ov(ﬁsﬂ-, (781) = Oge + o(n_“/z), (4.5)
Cov(Us3,Uyi) = 0gr + 0(n™"/?). (4.6)

Based on Theorem 7, we can derive the statistical properties for ji,, and consistency of
Oss, Ogr and 0,,+. We summarize this in the next theorem, which is the analog of Theorem

3 in Pham et al. (2023).

Theorem 8. Under Assumptions in Appendiz B, for all s,s* € {1,2,...,8}, r,r* €
{9,10,11,12}, as n — oo,

m\w

E(fis) = s + Can ™™ + O(n" ¥ (log n) %), (4.7)

ﬁs,n - E(ﬁs,n) = Us,n — MUs + Op(n_l/Q)a (48)
~ ~ d
V(fisn — E(fisn)) — N(0,04), (4.9)
055* . Z ,usn Ugsi — ﬂs*,n) L> Oss*, (410)
~ 1~ - ~ ~
Tsr = ﬁ Z(U57i - H’S,n)(UT,i - ,ur,n) L> Osry <411)
i=1
~ 1 < ~ ~ P
rpx — — Uri_ rn Ur*i_ r* n rr¥e. 412
Frre =y Ui = B (Ures = ) =00 (112)

The results obtained from Theorem 8 yield the following CLT, which allows researchers

to permit inference for the aggregate HMPI.

Theorem 9. Under Assumptions in Appendix B, as n — 00,

3
2

V(G — ¢ = Cen™ — O(n~2%(logn) ")) —2 N(0,02), (4.13)

where recall that O(n~2%(logn)2") = o(n™*) and C¢ is a constant.
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From (9), we can see that (, is a biased estimator of ¢ with the bias in the order of O(n™").
The impact of this bias term on the asymptotic behavior of the DEA estimator, Zn, can be
evaluated by Cey/nn™ in (4.13). When & > 1/2, Cey/nn™" goes to zero asymptotically,
implying that Theorem 9 can be used directly to make an inference by ignoring the bias term
Cen™". When k = 1/2, C¢ey/nn™" goes to an unknown constant, indicating that Theorem 9
cannot be used directly; When x < 1/2, C¢y/nn™" goes to infinity asymptotically, implying
that Theorem 9 cannot be used directly.

To make an inference using Theorem 9 for the case k < 1/2; we adjust the sample size
using a similar method as Pham et al. (2023). Let EM be a random subsample version, with

size n, = [n%| < n, of (,. Formally,

—~ 1 . . R N
G = —5( log 11 1, — log fia n, — lOg [i3 ., + 10g [ig .

+ log [i5,,, — 10g [l n,, — 108 fi7n, + 10g fig n,,) (4.14)
+ log [y n,, — log 11105, — 10g 1111, + 10g 12,1,
where
~ 1 -~
o = - > Usi, s=1,2,...,8, (4.15)
{l(x} Y X7, Y2)ESn, }
and
1
no— U, r=910,11,12, 416
Fran, = > i T (4.16)

"X XY )ESn )
and where S, is a random subsample, with the sample size n,, from S,.!1° The statistical

properties of Enn are then established by the theorem below, which is the analog of Theorem

6 in Pham et al. (2023).

Theorem 10. Under Assumptions in Appendiz B, when k < 1/2, as n — oo,
Vit(G, = ¢ = Cen™ = O(n™2"(log n) %)) == N(0,07), (4.17)

where C¢ is the same constant as in Theorem 9.

10 Note that here, ﬁs,% s€{1,2,...,8}, as defined in (2.25) is computed for each ¢ in the sub-sample, but
relative to all the data points in S, rather than S, , and then averaged over all ¢ in that subsample (of size
ny) to obtain fis ..
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4.2 Estimating the Bias

Adapting the idea from Pham et al. (2023), the bias of Zn can be consistently estimated
using the generalized jackknife method. The procedures are as follows.

For each m = 1,2,..., M, where M < (WT/L%)’ randomly split the sample S,, into
two subsamples S, /21, and S22, with equal sizes,'! so that S,/2.1,m N Sny22m = 0 and
Sn/21,mUISn)2,2m = Sp. Further, for each I = 1,2, let Sfl/mm and 5721/27l,m be the observations
in &,/21,m, split by periods 1 and 2, respectively. For each [ = 1,2 and m = 1,2,..., M,

compute

M1, m = " Z XY 8711/2,l,m>p2y;27
{7:‘(XilvyilaXZZinQ)eSn/Zl,m}

- 2 ~

H21m = E Z )‘(Xz'17 Y;l | S?i/2,l,m)ply;17
{Z“(Xilvyil’XZ{YiQ)GSn/Zl,m}

- 2 ~

H3,1m = E Z H(X'LQ’ }/;’1 | S?i/&l,m)szin
{Z“(Xi17Yi17Xi27}/1;2)€Sn/2,l,m}

- 2 ~

Haim = n Z H(Xil’y;l | S;/27l7m>w1X7,17
il(XE YL X2 Y2)ES, 00m

, {al( /2.0 }A (4.18)

M5 1m = " Z ANXE Y2 | SZ/Q,l,m>p2Y;27
{Z“(XilVYil7Xi2a}/i2)€Sn/2,l,7n}

- 2 ~

Aoim =~ 2. N2 Y] 82,00 Y
{7;‘(Xilvyi%XiQ’YviQ)eSn/Q,l,m}

~ 2 ~

Wrim = n Z O(X7, Y7 | SZ/Q,l,m)wQXz?’
{i‘(Xz‘lvyi17Xi27YviQ)€Sn/2,l,m}

- 2 ~

H8lm = Z 0(X;, Y} | 52/2,z,m)w1Xi1a
{i‘(Xz‘lvyil7Xi27YL'2)€Sn/2,l,m}

and define
—~ 1 . . . R
Cn/2,0m = —5( 1og Ji1,1,m — 10g [i2,1,m — 10g i3,1,m + 108 [14,1.m
+ 10g fis,1,m — 108 1i6,1,m — 108 fi7,1,m + 108 I8 1,m) (4.19)

+ log jig — log fiyg — log fi11 + log fi12,

11 We again assume n is even for simplicity.
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and

~ 1 ~ .
Cn/2,m = §<<n/2,1,m + Cn/Q,Q,m)- (420)

The estimate of the bias term for En is provided by

~ 1 ~ ~

(2" = )7 (Goyzam = Gn)- (4.21)
The asymptotic behavior of the estimate of the bias term, B\Qn,,{,M, is given by the
following theorem.
Theorem 11. Under Assumptions in Appendix B, as n — oo,
Ec,n,n,M =Cen ™"+ O(n_%”(log n)%”) +o(n"1/?) (4.22)

where C¢ is the same constant as in Theorem 9 and Theorem 10.

4.3 Making Inferences

Combining Theorems 9, 10 and 11, we have the following theorem that can be used to make

inferences on the aggregate HMPI.
Theorem 12. Under Assumptions in Appendiz B, for k > 2/5,

\/ﬁ (Zn - EC,n,n,M - C - RC,n,n) L) N(O7 U?)? (423>
and if k < 1/2, we have

VAL (Enn - B\C,n,n,M - C - R{,n,/@) L) N<0, O_E), (424)

(NI

where R p, . = O(n=3%(logn)2~) = o(n=").

However, the true variance ag expressed in (C.5) is unobserved, but can be estimated

using its empirical version, which is denoted as 32. More specifically,

5% = [V VG, (4.25)
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where an is the column vector of the gradient of Zn with respect to fis., i.e., vZn =

[aaﬁ?n]ls:h..,lb and where
O _ 190G 1 9 109G 1
a[/Zl,n B _Qﬂl,n, 8//22@ B QﬂQ,n, 8//23,71 B 2[73@’ a,1/24,71 B _2,224,71’
O _ 19 1 9G 19 1 (4.26)
Olts n 205, Ofley  2M6n Oz, 27, Ofsn 20’
0 1 3, 1, L9, _ 1

821\/9,71 B ﬁg,n7 aﬁlo,n B ﬁlO,n’ a,L/Ill,n B ,Zzll,n7 821\/12,71 B ,ZZ127TL.
And, S} is the covariance matrix with the (s,s*)th element as i\]s,s* = 04+, Where s,s* €
{1,2,...,12}.
Based on Theorem 8, we have the following theorem which establishes the consistency of

the empirical version of the variance of the aggregate HMPI.
Theorem 13. Under Assumptions in Appendiz B, as n — oo,

5: = o, (4.27)
where ag s the true variance of ¢ and Eg is its empirical version given by (4.25).

Upon obtaining Eg from (4.25), based on Theorem 12, the asymptotically 100(1 — «)%

confidence intervals for ¢ are provided by

|:Cn - B\C,n,n,M + @;EQ/Q Z7'\(/\/ﬁ:| ) (428)
if K > 2/5 and
|:/<\n,< - B\C,n,m,M + (1)1__1&/2 8@“/\/ n/{| ) (429)

if kK < 1/2.'2 Similar to Pham et al. (2023), if & = 2/5, both (4.28) and (4.29) are applicable,
but (4.29) is suggested due to a smaller remainder term, as \/n, R, converges to zero more

quickly than \/nR, .

12 Similar to the simple mean HMPI, we also find from the MC results in Section 5 that the coverage
of the estimated confidence intervals for the aggregate HMPI under-covers the true values in small sample
sizes and large dimensions. It is possible to adapt the data sharpening method (following Nguyen et al.,
2022 and Zelenyuk and Zhao, 2023) and the method of the alternative estimator for the variance (following
Simar et al., 2023a and Simar et al., 2023b) to further improve the inference of the developed CLT for the
aggregate HMPI in small sample sizes and large dimensions.
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5 Monte-Carlo Evidence

5.1 Details on MC Simulations

The data generation process in our MC simulations is the same as that in Pham et al. (2023).

The true technology is specified as

ﬁ (x1 — 1 (5.1)

J=1
for the first period and
p
y=1(x) = (1+06) [[(z; — )P, (5.2)
7j=1

for the second period. Note that the parameter o > 0 is used to control the magnitude of
the productivity change. Specifically, the case with 6 = 0 indicates no productivity change.
The higher the value of 9, the larger increase of the productivity change.

We use the same method as Pham et al. (2023) to first generate the time correlated inputs
of these two periods, denoted as x} = (zf;, 2}, ...,2}), for t = 1,2, and i = 1,...,n, and
then generate the time correlated true Debreu-Farrell output-oriented distances, denoted as
At yt | W) for ¢ = 1,2. For more details about how to generate the correlated random
variables, see Appendix EC.3 in Pham et al. (2023). The observed outputs for ¢t = 1,2 can

be obtained as

yi =0 (@) /Mzi,yi |2, (5-3)
and

yi = (@) /M= i | PP, (5.4)
respectively. Thus, a simulated sample can be obtained as S,, = {(z}, y}, 22, y?)}7,. More-
over, as the dimension of outputs is 1, we have A(z},y? | ¥') = Xz}, vy} | ! )yl /y? and
A,y | 2) = Aa?,vf | 92)yi/y;-

To obtain the true values of the simple mean and aggregate HMPI, we need to know
the true Debreu-Farrell input-oriented distances, which can be computed using the following
methods. Suppose we want to compute the true Debreu-Farrell input-oriented distance of the
observation (x,y) toward W', i.e., 8(x,y | ¥'). Fixing (z,y), 6(z,y | ¥') must be the solution

to f(a) = y — ¢¥'(ax) = 0 with the domain a > @, = maszl,gwp(%). It can be shown
J
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that f(a) is a decreasing function, f(ami,) =y > 0, and lim, 1~ f(a) = —oo. Hence there
must be a unique solution to f(a) = 0, which can be obtained using the uniroot command
in R. Thus, 6(z,y | ¥') is unique. The true values of the simple mean and aggregate HMPI
are obtained by randomly simulating 10,000,000 observations and computing it according
to (2.8) and (2.16), respectively.

We consider various values of p € {1,2,3,4,5,7} and 6 = {0.00,0.02,0.04}. For each
value of p, the corresponding values of 3; and input prices w; for j = 1,2,...,p, and the
value of the output price p; are presented in Table F.1 of the separate Appendix F, where the
input and output prices are assumed to be the same for these two periods. More specifically,
we let w! = w? = (w1, ..., w,) and p' = p? = p;. For each set of simulations measured using
(n,d,p), we conduct 1,000 replications. Moreover, we present the rejection rates and the
coverages to evaluate the power and significance of the tests developed in Sections 3 and 4.

Before presenting our MC results, to simplify the notation, for the simple mean HMPI,

we denote,

e (i): Using the standard CLTs, i.e., using /n consistency and without the bias correc-

tion.

e (ii): Using our developed statistical results, i.e., using (3.13) and (3.14) for p + ¢ < 4
and p + g > 4, respectively.

e (iii): Using (3.14) for p + ¢ > 4, but with the recentered version, i.e., using
//J’H,n - BH,n,H,M + (I);_la/g 87-[/\/ Nk |- (55)

For the aggregate HMPI, we denote,

e (i): Using the standard CLTs, i.e., using y/n consistency and without the bias correc-

tion.

e (ii): Using our developed statistical results, i.e., using (4.28) and (4.29) for p+ ¢ < 4
and p + g > 4, respectively.

e (iii): Using (4.29) for p + ¢ > 4, but with the recentered version, i.e., using
Cn - BC,nﬂ%M + (I);ja/Z b\'c/\/nﬁ . (56)
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5.2 Main Results from MC Simulations

We present the main MC results for the case 6 = 0.04, while the results for 6 = 0.00 and
0 = 0.02 are reported in the separate Appendix F. The results presented in Tables 1-4 for the
rejection rates and coverages for the simple mean and aggregate HMPI, generally support
the developed statistical results in Sections 3 and 4.

We first check the power of our developed hypothesis test. For the simple mean HMPI
with results presented in Table 1, we find that when 6 = 0.04, i.e., when the productivity
indeed increases from period 1 to period 2, the rejection rates using our developed statistical
results (i.e., using (ii)) increase toward 100% when the sample size n increases, regardless
of the dimension p. This result also holds for the aggregate HMPI presented in Table
2. Consequently, the results of the rejection rates presented in Tables 1-2 indicate that
our developed hypothesis tests in Sections 3 and 4 are very good at detecting a false null
hypothesis.

We then check the significance of our developed hypothesis test. We see that the coverages
for the simple mean HMPI presented in Table 3 and the aggregate HMPI presented in
Table 4 increase toward the corresponding nominal coverage (1 — «) when the sample size
n increases.!®> Moreover, when the sample size n increases, the coverages of the recentered
method (iii) are larger than (ii) and increase toward 100% rather than the nominal coverage,
although the width of the estimated confidence intervals using (ii) is equal to that using
(iii). This result is consistent with the MC results in Kneip et al. (2015) for the simple mean
technical efficiency, and Pham et al. (2023) for the aggregate MPI. Furthermore, similar to
Pham et al. (2023), we see that the developed statistical results perform quite well even in
small sample sizes for both the simple mean and aggregate HMPI. For example, when p = 2,
the nominal coverage is 95% and the sample size n = 20, the coverage of the estimated
confidence interval is 0.908 for the simple mean HMPI and 0.821 for the aggregate HMPI.

It is worth noting that for both the simple mean and aggregate HMPI, (i) (the standard
CLT) has the similar coverage as (ii) for low dimensions (such as p < 4), but for high

13 When p = 3 and q = 1 such that x = 2/5, for both the simple mean and aggregate HMPI, we also find
that the sub-sampling method (using (3.14) or (4.29)) is better than the full sample method (using (3.13) or
(4.28))(this MC result is not presented in the main text), confirming our discussion in Sections 3 and 4 that
the sub-sampling method is better than the full sample method when k = 2/5. This result is consistent with
Kneip et al. (2015) for the simple mean technical efficiency, Simar and Zelenyuk (2018) for the aggregate
technical efficiency, and Pham et al. (2023) for the aggregate MPI.
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dimensions p > 5, we see that the coverage using (ii) is larger than those using (i) when the
sample size n > 300. This result is consistent with Pham et al. (2023) that the bias of the
simple mean and aggregate HMPI might be too small or even canceling out in some special

cases, leading to the similar performance of (i) and (ii).

6 Empirical Illustrations

To conduct a direct comparison with the productivity change measured using MPI as in
Zelenyuk and Zhao (2023), in the following we use the same data and conduct the same
analyses for HMPI. The widely used Penn World Table data (PWT 10.0) are employed to
estimate the simple mean and aggregate HMPI. Similar to Pham et al. (2023) and Zelenyuk
and Zhao (2023), we assume that countries/regions produce GDP using labor and capital
stock and we estimate separately for the whole 84 countries (27 developed countries and 57
developing countries) for the period 1990-2019. Similar to Zelenyuk and Zhao (2023), we
conduct the analyses for pairs of years at 5—year intervals and the overall period 1990-2019 to
examine the evolution of the simple mean and aggregate HMPI. Moreover, when computing
aggregate HMPI, we let the revenues on the outputs and expenses on the inputs be equal to
the real GDP. Tables 5 and 6 present the estimation results.

First, we can see that for most of the rows, the estimates before the bias correction are
largely different from those after the bias correction, illustrating the practical importance in
the empirical analyses to correct the bias for the simple mean and aggregate HMPI estimates.
If the bias is not corrected, the productivity change might be over- or under-estimated or
even the direction of the productivity change is flipped, leading to biased conclusions. For
example, Table 5 shows that productivity for the whole sample decreased by 5.51% from 2005
to 2010 before the bias correction, which is substantially smaller than 8.65% after the bias
correction. One example that shows the flipped direction for the productivity change is that
Table 6 shows that the productivity for the whole sample increased by 2.34% between 2000
and 2005 before the bias correction, while it decreased by 2.69% after the bias correction.

Second, similar to Pham et al. (2023), we also see fairly significant distinctions between
the simple mean and the weighted aggregate approaches of HMPI. For example, for the whole
sample, Table 5 shows that the productivity decreased significantly in the periods 1990-1995
and 2005-2010, while it increased significantly from 2000-2005. However, Table 6 shows that
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productivity continued decreasing significantly from 2005 to 2019, illustrating that the evo-
lution of the productivity changes over the sample period is different between the unweighted
and weighted approaches. Moreover, although both tables show that productivity for the
entire sample decreased from 2005 to 2010, Table 5 indicates that the productivity decreased
by about 8.65%, while Table 6 indicates it decreased much more, by about 19.25%, when
taking the weight of each individual country into account. This result suggests the impor-
tance to examine both unweighted and weighed HMPI to better understand the productivity
change for a group.

Third, the productivity changes for the developed and developing countries are generally
different. For example, both Tables 5 and 6 indicate that the productivity for the developed
countries significantly increased in the periods 1995-2000, 2000-2005 and 2015-2019, and
decreased from 2005 to 2010. However, for developing countries, Tables 5 and 6 do not reach
a consensus on the significance of the productivity change for all the periods we considered.

Finally, we compare the differences and similarities among the productivity changes mea-
sured using HMPI versus those measured using MPI with the results presented in Tables
2-3 of Zelenyuk and Zhao (2023). It is worth reminding that the MPI in Zelenyuk and Zhao
(2023) is computed relative to the conical hull of the production set (i.e., using the conical
technical efficiency) while assuming the technology may still exhibit VRS. Meanwhile, the
HMPI here is measured relative to the production set while assuming the technology exhibits
VRS. To simplify our discussions below, we only focus on the entire sample.

In terms of similarities for the unweighted approach, both Table 5 in our paper and Ta-
ble 2 in Zelenyuk and Zhao (2023) find that productivity significantly decreased from 1990
to 1995 and increased from 2000 to 2005. In terms of differences for the unweighted ap-
proach, Table 5 in our paper also finds that productivity measured using HMPI significantly
decreased from 2005 to 2010 while Table 2 in Zelenyuk and Zhao (2023) finds that productiv-
ity measured using MPI significantly increased from 1995 to 2000. In terms of similarities for
the weighted approach, both Table 6 in our paper and Table 3 in Zelenyuk and Zhao (2023)
find that productivity significantly decreased from 2005 to 2010. In terms of differences for
the weighted approach, Table 6 in our paper also finds that productivity measured using
HMPI significantly decreased in the periods 2010-2015, 2015-2019 and 1990-2019, while
Table 3 in Zelenyuk and Zhao (2023) finds that productivity change measured using MPI
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was not significant for all the remaining periods except 2005-2010.

The differences and similarities between the HMPI and MPI vividly illustrate that exam-
ining the productivity change measured using HMPI might provide a different picture from
that using MPI, potentially implying different policy implications. Whether it is the HMPI
or the MPI that should be used, or perhaps both, is another interesting question (related
to economic theory, index numbers theory, context, etc.). What is important, however, is
that both are developed on par with each other, in terms of the asymptotic theory for the

estimation and inference, and this is what we aimed to achieve in this paper.

7 Conclusions

In this paper, we fill the gap in the literature by developing the statistical inference for
the DEA estimators for a particular firm’s HMPI, the simple mean (unweighted) HMPI as
well as the aggregate (weighted) HMPI. These results further enrich the recent development
of the theoretical results for the various efficiency and productivity estimators obtained
via non-parametric frontier methods, including Kneip et al. (2015) for the simple mean
efficiency, Simar and Zelenyuk (2018) for the aggregate efficiency, Simar and Wilson (2019)
for the decompositions of the MPI, Simar and Wilson (2020) for the overall and allocative
efficiency, Kneip et al. (2021) for the simple mean MPI, Kneip et al. (2022) for the conical
FDH estimators, and Pham et al. (2023) for the aggregate MPI, among others.

We further conduct the Monte-Carlo (MC) simulations to evaluate the performance of
the developed central limit theorems for the simple mean and aggregate HMPI in the finite
samples. The MC results generally support our developed statistical results. We also use
one real data set to illustrate the developed statistical results for the productivity change
measured using HMPI by comparing with those measured using MPI.

Future research could focus on deriving asymptotic properties for the decompositions
of the HMPI, similar to Simar and Wilson (2019) for the decompositions of the MPI. An-
other interesting strand of future work will be to develop a similar theory for the profitabil-
ity /allocative Hicks-Moorsteen productivity index proposed by Mayer and Zelenyuk (2019).
Another potential avenue will be to adapt the recently proposed methods in Nguyen et al.
(2022), Simar et al. (2023a), Simar et al. (2023b) and Zelenyuk and Zhao (2023) to further
improve the performance of the developed CLT for the simple mean and aggregate HMPI in
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small sample sizes and large dimensions.
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Table 1: Rejection Rates for Test for the Simple Mean Productivity Change using py; When
0 =0.04

—010—  —005— 001 —
p.g n () () @ G G ()

20  0.544 0.544 0437 0437 0.247 0.247
50  0.809 0.809 0.728 0.728 0.534 0.534
100  0.936 0.936 0.903 0.903 0.796 0.796
200 0.997 0.997 0.992 0.992 0.976 0.976
300 1.000 1.000 1.000 1.000 0.996 0.996
500 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

—_ = = = = =
—_ = = = = =

1 20 0782 0.766 0.704 0.691 0.558 0.541
1 50 0968 0965 0.944 0.943 0.864 0.860
1 100 1.000 1.000 0.999 0.998 0.992 0.991
1 200 1.000 1.000 1.000 1.000 1.000 1.000
1 300 1.000 1.000 1.000 1.000 1.000 1.000
1 500 1.000 1.000 1.000 1.000 1.000 1.000
1 1000 1.000 1.000 1.000 1.000 1.000 1.000

NN DNDDNDNDDND
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Table 1: Rejection Rates for Test for the Simple Mean Productivity Change using p13; When
d = 0.04 (continued)

——0.10 — 0.05 0.01
pog n (1) () (@) G G @) G 0 G) (i)

20 0919 0.752 0.798 0.890 0.675 0.721 0.792 0.504 0.515

50 0.999 0.966 0.987 0.997 0.940 0.969 0.984 0.858 0.912
100 1.000 0.998 1.000 1.000 0.995 1.000 1.000 0.980 0.997
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

W W W W w w w
= e e

20 0983 0.839 0.850 0.962 0.757 0.781 0.915 0.583 0.578

50  1.000 0974 0.997 1.000 0.957 0.982 1.000 0.851 0.927
100 1.000 0.996 1.000 1.000 0.993 1.000 1.000 0.974 0.999
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

N N L
el e e

20 0.998 0.850 0.901 0.995 0.786 0.834 0.981 0.623 0.642
o0  1.000 0.980 0.999 1.000 0.963 0.990 1.000 0.891 0.963
100 1.000 0.996 1.000 1.000 0.992 1.000 1.000 0.975 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Ot Ot Ot Ot Ot Ot Ot
e e e

20 1.000 0.872 0.949 1.000 0.826 0.890 1.000 0.677 0.699
50  1.000 0.972 1.000 1.000 0.956 1.000 1.000 0.899 0.977
100 1.000 0.999 1.000 1.000 0.995 1.000 1.000 0.981 1.000
200 1.000 0.999 1.000 1.000 0.999 1.000 1.000 0.999 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

N N BN B A N
— = = = = =
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Table 2: Rejection Rates for Test for the Aggregate Productivity Change using ¢ When
0 =0.04

—010—  —005— 001 —
p.g n () () @ G G ()

20 0.746 0.746 0.630 0.630 0.420 0.420
50  0.975 0.975 0951 0.951 0.853 0.853
100  1.000 1.000 1.000 1.000 0.990 0.990
200 1.000 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

—_ = = = = =
—_ = = = = =

120 0923 0879 0.883 0.823 0.755 0.719
150 0997 0995 0.997 0.995 0.988 0.975
1 100 1.000 1.000 1.000 1.000 1.000 1.000
1 200 1.000 1.000 1.000 1.000 1.000 1.000
1 300 1.000 1.000 1.000 1.000 1.000 1.000
1 500 1.000 1.000 1.000 1.000 1.000 1.000
1 1000 1.000 1.000 1.000 1.000 1.000 1.000

NN DNDDNDNDDND

29



Table 2: Rejection Rates for Test for the Aggregate Productivity Change using ¢ When
d = 0.04 (continued)

——0.10 — 0.05 0.01
pog n (1) () (@) G G @) G 0 G) (i)

20 0969 0.787 0.812 0.940 0.721 0.740 0.865 0.572 0.591
50 0.999 0974 0.982 0.999 0.950 0.973 0.993 0.877 0.923
100 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.988 0.999
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

W W W W w w w
= e e

20 0998 0.864 0.882 0.993 0.812 0.824 0.974 0.681 0.712

50  1.000 0.978 0.993 1.000 0.959 0.983 1.000 0.911 0.944
100 1.000 0.998 1.000 1.000 0.996 1.000 1.000 0.988 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

N N L
el e e

20 1.000 0.868 0.891 0.999 0.816 0.859 0.994 0.691 0.722
50  1.000 0.984 0.997 1.000 0.970 0.993 1.000 0.929 0.965
100 1.000 1.000 1.000 1.000 0.997 1.000 1.000 0.990 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Ot Ot Ot Ot Ot Ot Ot
e e e

20 1.000 0.896 0.938 1.000 0.842 0.897 1.000 0.705 0.762
50  1.000 0.987 0.998 1.000 0.979 0.997 1.000 0.937 0.982
100 1.000 0.998 1.000 1.000 0.998 1.000 1.000 0.990 0.999
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

N N BN B A N
— = = = = =
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Table 3: Coverages of Estimated Confidence Intervals for the Simple Mean Hicks—-Moorsteen
Productivity Indices When 6 = 0.04

— 090 — 09— 099
p.g n () () @ G G ()

20 0.898 0.898 0.947 0.947 0.988 0.988
50  0.883 0.883 0.939 0.939 0.996 0.996
100 0.890 0.890 0.952 0.952 0.990 0.990
200 0.883 0.883 0.931 0.931 0.984 0.984
300 0.897 0.897 0.952 0.952 0.995 0.995
500 0.897 0.897 0.943 0.943 0.991 0.991
1000 0.879 0.879 0.936 0.936 0.983 0.983

—_ = = = = =
—_ = = = = =

1 20 0876 0838 0.944 0.908 0.982 0.968
1 50 0890 0.878 0.950 0.944 0.988 0.984
1 100 0.902 0.899 0.953 0.962 0.993 0.991
1 200 0.900 0901 0949 0.957 0.993 0.991
1 300 0910 0.899 0.953 0.954 0.994 0.990
1 500 0.898 0.888 0.956 0.947 0.987 0.989
1 1000 0.915 0911 0.959 0.953 0.994 0.993

NN DNDDNDNDDND
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Table 3: Coverages of Estimated Confidence Intervals for the Simple Mean Hicks-Moorsteen
Productivity Indices When ¢ = 0.04 (continued)

——0.90 — 0.95 0.99
pog n (1) () (@) G G @) G 0 G) (i)

20  0.855 0.806 0.894 0915 0.884 0.936 0.975 0.961 0.981
50  0.879 0.865 0.950 0.933 0.922 0.976 0.981 0.978 0.998
100 0.878 0.901 0.985 0.939 0.956 0.993 0.989 0.986 1.000
200 0.880 0.909 0.990 0.945 0.956 0.998 0.990 0.990 1.000
300  0.901 0.902 0.998 0.958 0.956 1.000 0.990 0.994 1.000
500  0.904 0.911 0.999 0.952 0.956 1.000 0.989 0.993 1.000
1000 0.888 0.893 0.999 0.941 0.946 1.000 0.986 0.991 1.000

W W W W w w w
= e e

20 0.896 0.843 0.925 0.940 0.899 0.960 0.976 0.965 0.987
50  0.881 0.865 0.987 0.931 0.929 0.996 0.993 0.989 1.000
100  0.886 0.882 0.994 0.941 0.932 1.000 0.985 0.984 1.000
200  0.885 0.890 1.000 0.943 0.927 1.000 0.993 0.980 1.000
300  0.910 0.899 1.000 0.950 0.948 1.000 0.992 0.994 1.000
500 0.877 0.916 1.000 0.932 0.958 1.000 0.983 0.990 1.000
1000 0.906 0.893 1.000 0.952 0.940 1.000 0.995 0.988 1.000

N N L
el e e

20  0.881 0.815 0.939 0.941 0.890 0.968 0.984 0.961 0.991
50  0.872 0.870 0.990 0.937 0.933 0.994 0.988 0.986 0.999
100 0.910 0.893 0.999 0.956 0.945 1.000 0.992 0.987 1.000
200 0.906 0.889 1.000 0.950 0.945 1.000 0.988 0.984 1.000
300 0.874 0.903 1.000 0.934 0.958 1.000 0.986 0.992 1.000
500 0.894 0.906 1.000 0.949 0.948 1.000 0.987 0.990 1.000
1000 0.891 0.900 1.000 0.943 0.960 1.000 0.990 0.991 1.000

Ot Ot Ot Ot Ot Ot Ot
e e e

20  0.867 0.795 0941 0916 0.873 0.967 0.972 0.958 0.989
50  0.890 0.867 0.998 0.948 0.935 1.000 0.987 0.982 1.000
100 0.907 0.890 1.000 0.956 0.946 1.000 0.995 0.990 1.000
200 0.900 0.885 1.000 0.950 0.927 1.000 0.992 0.984 1.000
300  0.856 0.900 1.000 0.917 0.939 1.000 0.988 0.983 1.000
500 0.884 0.901 1.000 0.948 0.949 1.000 0.987 0.990 1.000
1000 0.885 0.896 1.000 0.931 0.940 1.000 0.991 0.984 1.000

N N BN B A N
— = = = = =
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Table 4: Coverages of Estimated Confidence Intervals for the Aggregate Hicks—Moorsteen
Productivity Indices When 6 = 0.04

— 090 — 09— 099
p.g n () () @ G G ()

20 0.890 0.890 0.940 0.940 0.980 0.980
50  0.872 0.872 0.929 0.929 0.988 0.988
100 0.905 0.905 0.947 0.947 0.987 0.987
200 0.889 0.889 0.935 0.935 0.988 0.988
300 0913 0913 0.952 0.952 0.993 0.993
500 0.888 0.888 0.943 0.943 0.984 0.984
1000 0.906 0.906 0.940 0.940 0.988 0.988

—_ = = = = =
—_ = = = = =

1 20 0856 0.747 0.922 0.821 0.976 0.915
1 50 0869 0824 0926 0.884 0.985 0.957
1 100 0.889 0.865 0.942 0.917 0.982 0.978
1 200 0.859 0.847 0.921 0.915 0.980 0.980
1 300 0.888 0.88 0.943 0.935 0.991 0.985
1 500 0.883 0872 0.937 0.925 0.987 0.988
1 1000 0.892 0.881 0.949 0.941 0.990 0.992

NN DNDDNDNDDND
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Table 4: Coverages of Estimated Confidence Intervals for the Aggregate Hicks—Moorsteen
Productivity Indices When ¢ = 0.04 (continued)

——0.90 — 0.95 0.99
pog n (1) () (@) G G @) G 0 G) (i)

20 0.825 0.733 0.781 0.884 0.817 0.873 0.953 0.919 0.949
50  0.859 0.813 0.900 0.920 0.893 0.951 0.985 0.967 0.986
100  0.851 0.862 0.955 0.913 0.909 0.983 0.984 0.978 1.000
200 0.872 0.883 0.977 0.936 0.937 0991 0.982 0.983 0.999
300  0.873 0.875 0.989 0.940 0.931 0.999 0.981 0.991 1.000
500 0.886 0.887 0.989 0.933 0.948 0.999 0.982 0.988 1.000
1000 0.862 0.891 0.994 0.921 0.939 1.000 0.981 0.982 1.000

W W W W w w w
= e e

20 0.838 0.731 0.801 0.905 0.814 0.867 0.965 0.921 0.950
50  0.825 0.798 0.917 0.908 0.880 0.959 0.973 0.954 0.991
100 0.848 0.851 0.973 0910 0.920 0.991 0.974 0.974 0.999
200 0.868 0.858 0.991 0.928 0.922 0.997 0.983 0.986 1.000
300  0.899 0.877 0.999 0.946 0.934 1.000 0.987 0.991 1.000
500 0.863 0.907 0.997 0.927 0.951 1.000 0.971 0.987 1.000
1000 0.865 0.881 1.000 0.926 0.949 1.000 0.985 0.986 1.000

N N L
el e e

20 0.839 0.726 0.827 0.908 0.813 0.891 0.969 0.912 0.956
50  0.872 0.837 0.951 0.934 0.895 0.980 0.975 0.963 0.994
100 0.866 0.860 0.988 0.931 0.921 0.998 0.986 0.980 1.000
200 0.873 0.874 0.999 0.934 0.915 1.000 0.987 0.980 1.000
300 0.867 0.895 1.000 0.922 0.948 1.000 0.975 0.990 1.000
500 0.852 0.901 1.000 0.922 0.940 1.000 0.980 0.988 1.000
1000 0.878 0.908 1.000 0.928 0.953 1.000 0.979 0.993 1.000

Ot Ot Ot Ot Ot Ot Ot
e e e

20 0.840 0.742 0.853 0.910 0.813 0.899 0.968 0.927 0.962
50  0.878 0.836 0974 0.924 0.899 0.990 0.980 0.967 0.999
100 0.873 0.865 0.993 0.945 0.924 0.999 0.982 0.981 1.000
200 0.862 0.883 1.000 0.920 0.930 1.000 0.981 0.984 1.000
300  0.839 0.896 1.000 0.902 0.939 1.000 0.959 0.979 1.000
500 0.856 0.897 1.000 0.910 0.935 1.000 0.978 0.984 1.000
1000 0.862 0.900 1.000 0.923 0.937 1.000 0.973 0.981 1.000

N N BN B A N
— = = = = =
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Table 5: Estimation Results for the Simple Mean HMPI of Countries/Regions

~

Year 1 Year 2 exp (7:[\,1) exp (H, — EH,R,H,J\J) —90% CI — —95% CI — —99% CI —

— Entire Sample —

1990 1995 0.8814 0.8829*** 0.8323 0.9366 0.8230 0.9473 0.8050 0.9685
1995 2000 1.0296 1.0182 0.9828 1.0549 0.9761 1.0621 0.9633 1.0763
2000 2005 1.0888 1.0720*** 1.0336 1.1118 1.0265 1.1196 1.0125 1.1350
2005 2010 0.9449 0.9135*** 0.8752 0.9535 0.8681 0.9614 0.8543 0.9769
2010 2015 0.9827 0.9692 0.9362 1.0034 0.9300 1.0101 0.9180 1.0233
2015 2019 1.0105 1.0045 0.9701 1.0402 0.9636 1.0472 0.9511 1.0610
1990 2019 0.9883 0.9569 0.8792 1.0415 0.8651 1.0585 0.8381 1.0926
— Developed Countries —
1990 1995 1.0256 1.0412 0.9997 1.0844 0.9920 1.0929 0.9770 1.1097
1995 2000 1.1723 1.1679*** 1.1397 1.1967 1.1344 1.2023 1.1241 1.2134
2000 2005 1.0675 1.0488*** 1.0192 1.0794 1.0136 1.0853 1.0027 1.0971
2005 2010 0.8757 0.7932*** 0.7612 0.8266 0.7552 0.8332 0.7436 0.8461
2010 2015 0.9476 0.9136*** 0.8809 0.9474 0.8748 0.9540 0.8630 0.9671
2015 2019 1.0415 1.0476*** 1.0353 1.0601 1.0330 1.0625 1.0284 1.0672
1990 2019 1.1282 1.0513 0.9816 1.1258 0.9688 1.1407 0.9443 1.1703
— Developing Countries —
1990 1995 0.8523 0.8676*** 0.7983 0.9430 0.7857 0.9581 0.7615 0.9885
1995 2000 0.9742 0.9581 0.9175 1.0005 0.9099 1.0088 0.8953 1.0253
2000 2005 1.1210 1.1155*** 1.0602 1.1737 1.0500 1.1852 1.0302 1.2080
2005 2010 1.0638 1.0855** 1.0282 1.1460 1.0176 1.1580 0.9972 1.1817
2010 2015 1.0369 1.0497* 1.0009 1.1010 0.9918 1.1111 0.9743 1.1311
2015 2019 1.0114 1.0069 0.9552 1.0613 0.9456 1.0720 0.9272 1.0934
1990 2019 1.0686 1.0973 0.9673 1.2447 0.9442 1.2751 0.9007 1.3367

NOTE: Statistical significance (difference from 1) for the bias-corrected estimate (i.e.,

exp (H, — BHnKM)) of the true simple mean HMPI is denoted as *~ p < 0.01, ~p < 0.05,
"p < 0.1.
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Table 6: Estimation Results for the Aggregate HMPI of Countries/Regions

~

Year 1 Year 2 exp((y) exp (G — Benwnr) — 90% CI—  —95% CI—  — 99% CI —

— Entire Sample —

1990 1995 0.9918  0.9789 0.9344 1.0254 0.9261 1.0346 0.9101 1.0528
1995 2000 1.0483  1.0294 0.9734 1.0887 0.9630 1.1005 0.9430 1.1238
2000 2005 1.0234  0.9731 0.9468 1.0001 0.9419 1.0053 0.9323 1.0157
2005 2010  0.9039  0.8075*** 0.7577 0.8606 0.7485 0.8711 0.7309 0.8921
2010 2015 0.9714  0.9207*** 0.8795 0.9637 0.8719 0.9722 0.8571 0.9890
2015 2019  0.9927  0.9478* 0.9006 0.9975 0.8918 1.0073 0.8749 1.0268
1990 2019  0.9441  0.8031* 0.6515 0.9900 0.6259 1.0304 0.5788 1.1144
— Developed Countries —
1990 1995 1.0100  0.9982 0.9458 1.0536 0.9361 1.0645 0.9174 1.0862
1995 2000 1.1295 1.1158*** 1.0925 1.1395 1.0881 1.1442 1.0796 1.1532
2000 2005 1.0388  1.0259** 1.0081 1.0440 1.0047 1.0475 0.9981 1.0544
2005 2010  0.9250  0.8974** 0.8356 0.9638 0.8242 0.9771 0.8025 1.0036
2010 2015 1.0073  1.0325 0.9881 1.0788 0.9798 1.0879 0.9639 1.1060
2015 2019 1.0348  1.0444* 1.0363 1.0525 1.0348 1.0540 1.0318 1.0571
1990 2019 1.1559  1.1808** 1.0344 1.3480 1.0085 1.3827 0.9597 1.4529
— Developing Countries —
1990 1995 0.9758  0.9989 0.8892 1.1222 0.8696 1.1475 0.8325 1.1986
1995 2000 0.9557  0.9190*** 0.8828 0.9567 0.8761 0.9641 0.8630 0.9787
2000 2005 1.0891  1.0618 0.9741 1.1575 0.9581 1.1768 0.9277 1.2154
2005 2010 1.0450  1.0150 0.9506 1.0837 0.9388 1.0974 0.9161 1.1246
2010 2015 1.0204  1.0037 0.9688 1.0399 0.9623 1.0469 0.9496 1.0609
2015 2019 1.0076  0.9687* 0.9419 0.9963 0.9368 1.0016 0.9271 1.0122
1990 2019 1.1350  1.1052 0.9481 1.2882 0.9207 1.3266 0.8693 1.4050

NOTE: Statistical significance (difference from 1) for the bias-corrected estimate (i.e.,
exp ((n — Benwar)) of the true aggregate HMPI is denoted as = p < 0.01, "p < 0.05,
"p < 0.1.
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Appendix A Illustration of Infeasible Problems

The goal of this Appendix is to first (in part A.1) remind that taking the basic historical
definition of Caves et al. (1982) may lead to non-feasibility problems in some cases, which
are avoided by the HMPI (see our Figure A.1). We acknowledge that other definitions of
the MPI have also been suggested in the literature to avoid these problem, e.g., defining
the reference sets in the MPI as the cones spanned by W' (i.e., the conical closures of W
that coincide with the W' if they exhibit CRS). Then (in part A.2), we show that HMPI
also may have sub-sets within the technology sets where it is not well-defined (same as MPI
and potentially many other indices), which need to be assumed away for developing further

theories based on such indices.

A.1 TIllustration of Infeasible Problem for Malmquist Productivity
Index

Figure A.1 illustrates the infeasible problem of MPI where the MPI is defined relative to the
production set W' rather than the conical hull of ¥' as defined in Kneip et al. (2021) and
Pham et al. (2023). We assume one random observation in the period t = 1 and ¢ = 2 is
located at (X', Y') and (X?2,Y?), respectively. Further, the technology in both periods is
assumed to exhibit VRS. For this observation, the output-oriented MPI measured relative

to the true VRS technology is given by

~1/2
CAXR YUY X2 YR |0
M= ()\(Xl,Yl o) AXL YT [ w2 (A1)

From Figure A.1, we can see that all components of M except A(X!, Y| ¥2) are well defined,
because there is no finite radial projection from (X', Y') to the frontier of ¥2. Consequently,
the MPI for this observation is infeasible.

Moreover, note that the HMPI for this observation is given by

L (ALY U)AY e A Y? ey e -
Sl A2 Y| UL /A(XL Y| W) T OA(X2 Y2 | U2)/0(X1, Y2 | U2) )

It can be seen that all the eight components of HMPI for this observation are well defined,
making the HMPI feasible.



Figure A.1: Illustration of Infeasible Problem for Malmquist Productivity Index

Output

Input

NOTE: Solid line shows the frontier for ¢ = 1; dashed line shows the frontier for ¢t = 2.



A.2 Illustration of Infeasible Problem for Hicks—Moorsteen Pro-
ductivity Index

In this subsection, we provide an example where neither HMPI nor MPI is feasible. To our
knowledge, this example seems novel and important to present in the literature, in order to
warn about possible issues in measurements of productivity with both MPI and HMPI or
similar indexes. Note that the production set W' can be equivalently characterized by the

input requirement set at period t, L' : RY — R” | where

L'(y) = {z | (z,y) € '} (A.3)
Further, we define
Ly) = {z | (z,y) € ¥}, (A4)

For this illustration, we assume that the technology in the first period is given by

Y = %(xl +a2), (A5)

while in the second period it is given by
y = 2Py’ (A.6)

Note that the technologies in both periods exhibit CRS and these are the types of technologies
often considered in textbook examples.

Figure A.2 illustrates the infeasible problem of both HMPI and MPI, where we consider

LY = 1) = (X0, X) | (X0 + X2) = 1) (A7)
LP(Y? =2) = {(X1, Xs) | X{°X3° = 2}, (A.8)

and
LY =1) = {(X},Xy) | XPPXI5 =1}, (A.9)

Clearly both L?(Y? = 2) and L?(Y! = 1) never actually touch either the x-axis or y-axis.
Moreover, in Figure A.2, consider an observation in the period t = 1 and t = 2 has the
input-output pair as (X}, X3, Y!) and (X?, X2,Y?), respectively.

It can be seen that 0(X], X3, Y? | U?) is not defined for such a point, because there
is no finite radial projection from (X}, XJ) to L*(Y?). Consequently, the HMPI for this

observation is infeasible.



Note that the input-oriented MPI is given by

(A.10)

1/2
o (e Xy ey e xg v e
RGP R SR DGR SRR D

Clearly, (X}, X5,Y! | ¥?) is also not defined even though the technology exhibits CRS,
because there is no finite radial projection from (X}, X3) to L*(Y'!). Consequently, the input-
oriented MPT for this observation is also infeasible, as (X}, X5, Y"! | ¥?) is one component
of its MPI measure. Finally, because both technologies are CRS, the output-oriented MPI
must be the reciprocal of the input-oriented MPI and hence is also not defined for such a

point.



Figure A.2: Tllustration of Infeasible Problem for Hicks—Moorsteen Productivity Index and
Malmquist Productivity Index
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Appendix B Regularity Assumptions

The regularity assumptions for establishing the statistical results for the HMPI are outlined
in this appendix, and are adapted from Kneip et al. (2021) and Pham et al. (2023) to our

context.
Assumption B.1. The production set W' is closed at any time t.
Assumption B.2. No free lunch. That is, if x =0, y 2 0, and y # 0, then (x,y) ¢ V' .

Assumption B.3. Inputs and outputs are strongly disposable. That is, ¥ (xz,y) € W', if
T2z, (T,y) eV andif <y, (z,7) € V"

We need now more assumptions on the data generation process and on the model to

derive the asymptotic properties of the DEA estimators.

Assumption B.4. The random variables p'Y;', p?Y?, w' X}, and w?>X? have finite first and

17

second moments for allt=1,2,...,n

Assumption B.5. The random vector (X!,Y}') has a joint continuously differentiable den-

177

sity ft on its support Dt C W,

Assumption B.6. (i) Define Di* = {(0(x,y | ¥')z,y) | (z,y) € D'} and Dy = {(z, A(z,y |
Uh)y) | (z,y) € D'}, then D C D' and Dy C D'; (i) Both DY and DY are compact; (iii)
for all (z,y) € D, f{(0(z,y | ¥)z,y) >0 and f'(z,A(z,y | ¥*)y) > 0.

The next assumption imposes regularity conditions to obtain results on the moments of

the DEA estimators.

Assumption B.7. Both 0(z,y | U') and \(x,y | V') are three times continuously differen-

tiable in DY and DL, respectively.

Assumption B.8. D' is stm’ctly convez. Thatis, ¥V (z,y) € D', (Z,y) € D' with (x,y/||y||) #
@, g/l|vll), the set {(z*,y*) | z* = (1 —a)z + aZ,y" = (1 —a)y +ay,0 < a < 1} is a subset
of the interior of Dt.

The next assumption is to avoid potential problems when computing log(6(x,y | ¥*)) or

log(A(x,y | U')) later.



Assumption B.9. There exist constants 0 < M < oo such that ||z|| < M and a constant
e > 0 such that ||y|| > ¢ for all (z,y) € D"

Before presenting Assumption B.10, let us first define the set of attainable rays at time

D, = {(W EOICOL: Dt}. (B.1)

The next assumption makes the link between the two periods of time in defining the HMPI.

Assumption B.10. (i) Fort € {1,2}, the observations (X!, Y}), i =1,2,...,n,, are i.i.d,
such that the assumptions B.1-B.9 are satisfied with respect to the underlying density f' on
support D' C W'; (i) D} . = D2 . . (i) For some n = min{ny,ny}, the observations
{(XLYHY, (X2 YAHY, 0 =1,2,...,n, are i.i.d and their joint distribution has a continuous
density fia on support D' x D?; (iv) For any i = 1,2,...,n, (X},Y:!) is independent of

(X2,Y?) for all j =1,2,...,n with j # i.

As pointed out in Kneip et al. (2021), condition (i) only guarantees that the contem-
poraneous DEA estimators follow the usual known properties (as described in Kneip et al.
(2015)). Condition (ii) and (iii) ensure that the cross-efficiency estimators are asymptotically
well-defined with the same rates of convergence as the contemporaneous estimators. Con-
ditions (iv) and (v) permit dependence of a given firm between the two periods but require
independence from other firms in other time periods, both for actual observations and their

counterfactual analogues.

Remark B.1. In a finite sample, despite the above Assumption B.10, it may be the case
that the DEA estimators of some elements of HMPI are not defined as illustrated in Subsec-
tion A.2 of Appendiz A. We will use the convention in this case that the DEA estimators
are defined as equal to 1, although this is seldom needed in practice. Asymptotically, this

convention does not pose any problem due to Assumption B.10 (ii).



Appendix C The Statistical Results When Quantities
of Interests are Known

When assuming Debreu-Farrell quantities of A\(X}!, Y2 | U1), X(X}, Vi1 | @), AM(X2 Y2 | U2),
A Y 02), 0(X2, Y | W), 0(XE Y | ), 0(X2, Y2 | 92), and (X}, Y72 | W2) are
known, we develop the standard CLT for #,, and (,,. These results are useful to develop the
CLT for the corresponding DEA estimators obtained by replacing these above quantities by
their corresponding DEA estimators. This result is also useful more generally, when other
estimators (SFA, etc.) are used for replacing the unknown quantities.

For the simple mean HMPI H,, = % > ¢ | Hi, by the standard CLT and delta-method, it

can be shown that

Vi(Hy = i) == N(0,03,), (C.1)

where 03, = Var(H,;).
For the aggregate HMPI, from (2.16), we see that ¢, is a function of U, ,,, s = 1,2,...,12.
Before establishing the CLT results for ¢,, we first establish the CLT results for U, =

77777

quantities are observed and known. By the standard CLT, we have
ViU, — 1) = N(0,5), (C2)
where ¥ is the covariance matrix with the (s, s*)th element given by
Yoo = Cov(Us;, Ug ;) = 056+, 5,8 € {1,2,...,12}. (C.3)

Next, recall that ¢, is a function of Us,n7 s=1,2,...,12, and is also an estimate of (. Using
the delta method, we have
V(G = ¢) == N(0,02). (C4)
where
o2 = VIV, (C5)
and V( is the column vector of the gradient of { with respect to p. Formally, V( =

[ L ]/3:1 129 where

OpsIs=1,...,

o tooc 1o Lo 1o 1o 1

a,ul 2#1, 8,&2 2#27 6,u3 2#37 8u4 2[&47 0,u5 2;1157 8,&6 2,“67 (C 6)
¢ 1 a¢ 1 a1t oa 1o 19 1 '

Our  2u7 Ops 245’ Ope  po’ O puo Opn g Omie  fhz
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Appendix D Asymptotic Theory for the Individual
HMPI

To further simplify the notation, we define
Tig = MXG Y2 | W), Ty = AXG, Y| 0,
3 = 0(XF, Y} | UY), Ty = 0(X;, Y, [ 0),
Ts; = AX2 Y2 | 02), T, = A(X2, Y} | 02), D
Tz =0(X7, Y7 | U%), Ts; = 0(X}, Y72 | ¥%),

and their corresponding estimators are

XL Y2 SY), Toy = AX], Y| SY),
OX2 Y| S, 41—0<X1Y1|s>,
= NXZ Y| 8%, Tos = MX2 Y| 82,
= 0(X2,Y? | 8?), Ts; =0(X}, Y| 8.

F k)
T

(D.2)

Our first novel result for the individual HMPI is to derive the statistical properties for
the limiting distribution, the first and second centered moments of T, for s € {1,2,...,8}
and ¢ = 1,2,...,n, which are summarized in the following lemma (the analogue of Theorem

3.1 in Kneip et al., 2021).

Lemma D.1. Under Assumptions in Appendiz B, for each (x,y) € D and each s €
{1,2,...,8}, as n — oo,
n®(T, —T,) N

.y (D.3)
where Fiy is an appropriate nondegenerate and continuous distribution function. Further-
more, for all s € {1,2,...,8}, as n — oo, there exist constants, 0 < C'y < 00, such that for

alli € {1,2,...,n},

E(T,; —Ty;) = Con ™" + O(n~#"(logn) %), (D.4)
and
E([Ty; = To?) = o(n™™), (D.5)
and for j #1, s* € {1,2,...,8},
|BE([Ts; — E(Ts0)] x [Taej — BTy 5)])| = o(n™?), (D.6)



where k = 2/(p+q+1) if the technology W' exhibits VRS and k = 2/(p+q) if the technology
Ut exhibits CRS.

These results come from Kneip et al. (2015) and Kneip et al. (2021), with the slight dif-
ference that we need stronger assumptions (stated in Appendix B) that make all components
of HMPI well-defined. The above results can then be used for deriving the statistical results
for DEA-based estimators of HMPI for individual firms, their geometric mean (unweighted)
and aggregate (weighted) mean.

From Lemma D.1 and the delta method, we have the following lemma (the analogue of

Theorem 3.2 in Kneip et al., 2021).

Lemma D.2. Under Assumptions in Appendiz B, for each (x,y) € D and each s €
{1,2,...,8}, as n — oo,
n"(log T, — log['y) L F2

x?y’

(D.7)

where ]::f’y is an appropriate nondegenerate and continuous distribution function. Further-
more, for all s € {1,2,...,8}, as n — oo, there exists constants, 0 < 55 < 00, such that for

alli € {1,2,...,n},
E(logT,; —logT,;) = Cyn™* + O(n~2"(log n)2"), (D.8)

and

E([logT,; —logI'y ) = o(n™"), (D.9)

and for j #1, s* € {1,2,...,8},
|E(logT,; — E(logT,,)] x [logTse ; — E(log Ty ;)])| = o(n™), (D.10)

where k = 2/(p+q+1) if the technology W' exhibits VRS and k = 2/(p+q) if the technology
Ut ezhibits CRS.

This lemma comes from the fact that log transformation is monotonic and differentiable
with nonzero derivatives.

Using (D.3) in Lemma D.1 and the delta method, we have the following lemma (the
analogue of Theorem 3.3 in Kneip et al., 2021).

10



Lemma D.3. Under Assumptions in Appendiz B, as n — oo,

where F™ is an appropriate nondegenerate and continuous distribution function, and Kk =
2/(p+q-+1) if the technology W' exhibits VRS and k = 2/(p+q) if the technology V* exhibits
CRS.

This result follows from Kneip et al. (2021) (see their Theorem 3.3 and Lemma D.1 and
Lemma D.2 in our appendix), with the slight difference that we need stronger assumptions
(stated in Appendix B) that make all the components of HMPI well-defined. This lemma
allows the researchers to make inferences about the true individual HMPI using the sub-

sample methods from Simar and Wilson (2011).

11



Appendix E Proofs of Theorems

E.1 Proof of Theorem 1

As noted in the main text of the paper, the proofs of the theorems follow the same strategy
as for MPI in Kneip et al. (2021) and Pham et al. (2023), with careful adaptation to the
HMPI context.

Proof. We denote Alog fsﬂ' = log fs,i —log L'y ;. To prove (3.1), we note that

1
n

=l (E.1)

=Cyn "+ O(n’%’*(log n)%“),

where the last equality follows directly from (D.8) in Lemma D.2 and
1 ~  ~ o~~~ o~~~
CH:—5(01—02—03+O4+C5—06—C7+08>. (E.2)

In other words, we have

Efingn — pn) = B(H; — H;) = Cyn™™ + O(n~2"(log n) %) (E.3)
To prove (3.2), note that
~ —_— 1 - - ]. “ - 2 = 2

Further, we have
. 2
n 2 T = p—
EH; —H,)* = E( —~ 5( > AlogTy;— > Alog Ft,i)) =o(n™"), (E.5)
s=1,4,5,8 t=2,3,6,7

where the last equality comes from (D.9) and (D.10) in Lemma D.2. From (E.3), we have

A~

(B(H; —H,))® = (Cyn " + O(n"2"(log n)

Nlw

") = o(n™"), (E.6)

12



where we recall O(n~2%(logn)2*) = o(n™*). Thus, we have
— ] — ~
Var(fiy, — Ha) = 3 > (E(Hz —Hi)* = (BE(H; - Hi))z) =n""o(n™"), (E.7)
i=1
By Chebyshev’s inequality, we have that for any ¢ > 0,

Hy)| > 5) <

P(\/ﬁ|ﬁ7-{,,n - ﬂn - E(ﬁ?—l,n -
nVar(fign —Hn) _ o(n™")

g2 g2

Thereforea \/ﬁ(ﬁ”ﬂ,n _gn - E(ﬁ?—l,n _ﬂn) = Op(l) or eqUivalentIY7 ﬁ?—l,n _ﬁn - E(ﬁ?—[,n _Hn) =
0,(n"1/?). Consequently,

frm — E(figgn) = Ho — E(Hy) + 0p(n™ V%) = H,y — pigg + 0,(n71?), (E.9)

implying (3.2).
To prove (3.3), we have

n

o I\~ - T H Z
05 =~ (Hi—finp)* = B(Hi = finn)* = B(Hi = i+ Hi — finn)” (E.10)
=1 .

= B(H: = H:)* + 2E((Hs — M) (Hs — Tirn)) + E(Hi = firn)”.
The first term E(H; — H;)? = o(n™") as indicated from (E.5). Using (3.1), the third term
E(M; — finn)® = E(Hi — po + pio — firen)’
= E(H; — pn)” + QE((Hi — piag) (g — ﬁ%,n)) + E(us — fwn)’
=02 + 2E((Hz — piae) (pa — ﬁ%n)) + (Cyn™" + O(n_%”(log n)%“))

= o3 + 2B ((Hi — pa) (bt — fizn)) + o(n™").

(E.11)

Using Cauchy-Schwartz inequality, we have the following upper bound for 2 ((H;— pa) (13—

frn)),
<2E((Hz’ = pae) (e — ﬁ%,n)))Q <A(B(Hi — pn)?) (B(pw — firn)?) = o3,0(n™") = o(n™).
(E.12)
Thus,
E(Hi — [inn)® = 03+ 2E((Hi — i) (o — Fiag)) +0(n™")
=02, +o(n") +o(n") (E.13)

p 2
H O-H.

13



Using Cauchy-Schwartz inequality, we have the following upper bound for the second term

in (E.10),

~

(2E((7:ZZ - /Hz)(/Hz - ﬁq.[’n))>2 < 4(E(/Hl - 7—[2)2) (E'(’;’-[Z — ZZH’”)2> — 0<n_'€)0'

Thus,

~2 p 2

E.2 Proof of Theorem 2

Proof. By the standard CLT results for #,, established in Appendix C,
ﬁ(ﬂn - M"H) L) N<0> 0—3%[)7

combined with (3.2), yields

Vi(firn = E(finn)) = Vi(Ha — g + 0p(n %)) == N(0,05).

Combining this with (3.1), completes the proof of Theorem 2.

E.3 Proof of Theorem 3

Proof. We note that

By, — Ha) = E(i i(ﬂi - Hz‘))

N, 4
=1
1 &~
=— > E(H:—H,)
T i=1

= E(H; — H)
=Cyn " + O(n‘g“(log n)

o

H)7

where the last equality follows directly from (E.3), Consequently, we have

E(fiyin,) = iz + Con™" + O(n~3%(log n)3").

14

o(n™").

(E.14)

(E.15)

(E.16)

(E.17)

(E.18)

(E.19)



Next, we prove the following statement: fig n, — E(l3.n,.) = Hn, — iy + op(n,zl/ 2), which

is analogous to (3.2). Note that

‘/(J/’“(//J?-L,n,i - ﬂnﬁ) = TL_12 Z VCLT(,}/‘ZZ' — H@) = - Z (E((ﬁz - HZ)Q) — (E(HZ - Hz))2>

(E.20)
Further in the proof of (3.2), we have shown that E(H; — ;)% = o(n™*) and (E(’;‘%—’Hz))2 =
o(n™"). Thus, we have Var(fn, — Hn.) = n; o(n™").

By Chebyshev’s inequality, we have that for any € > 0,

2 (A, — Ho, — ElGinn, — Ha))’)

P(\/ nm|//i’i’-£,nN - ,Hnn - E(ﬁ?—l,nm - Hnn)

>5><

nnvar(ﬁ%m - ﬂm) O(H_H)
g2 g2

Therefore, /Ty (fsn, — Hn, — E(fan, — Hn,)) = 0,(1) or equivalently, fyn, — Hn, —
E(fiygn, — Hn,) = op(n,zl/ %). Consequently, we have

Further, by the standard CLT, we have

\/n_/i(ﬂnﬁ - M’H) L> N(Ov 0-’?-[)7 (E23)
Thus,
Vitw(in, = E(@irn,)) = Vit(Ha, = i+ 0,(ng %)) = N (0,0%). (E.24)

Combining this with (E.19), implies Theorem 3.

E.4 Proof of Theorem 4

Proof. Here we use the same arguments as (3.1). Using (3.1), for | € {1,2}, we have

E(fipnjogm) = i + Cr(n/2)™ + O((n/2) 2" (log(n/2)) ")

) i (E.25)
= py + Cx2"n " 4+ O(n"2"(logn)2").

15



Therefore,

E (Mg m) =

H,n,m

(E(ﬁH,n/Q,l,m) + E(ﬁH,n/Z,Q,m)) = Uy + C’H2H7L_R + O(n_%”(log TL)%H) (E26)

| —

Subtracting (3.1) from the above equation yields
() = Blfinn) = (27 = 1)Cyn™" + O(n™ 2" (logn)*"). (B.27)

On the other hand, using (3.2), for [ € {1,2}, we have

n/2
firn/oam = Efinny2) = Hupr—in+0,(n/2)7%) = 2070y (Hi— ) +op(n™'7%). (E28)

i=1
Therefore,

n

ﬂ;—[,mm - E(//I'H,n/Q) = n_l Z(Hz - MH) + Op(n_l/Q) = Hn — U + Op(n_l/z)' (E29)

i=1
Moreover, (3.2) states that

Orn — E(fign) = Hy — pn + op(n_1/2). (E.30)
Subtracting (E.30) from (E.29) yields
ﬁ;{,n,m - ﬁ%,n = E(ﬁ'H,n/Q) - E(ﬁ%,n) + Op(n71/2>- (Egl)

Substituting (E.27) into (E.31) yields,

Bitmm — n = (27 = D)COyn ™ + O(n~2%(log n)2*) + 0,(n~"/?). (E.32)
Consequently,
K —1 /% ~ _ —K —25 2 —1/2
(2" = 1) (W mm — Hrn) = Cun™" + O(n"2"%(log n)2") + 0p(n=""7), (£.33)
is an estimator of the bias of jiz ,. Taking the average of (E.33) over m =1,2,..., M, gives

the bias estimator (3.9) on the Lh.s. with the rate given by (E.33) on the r.h.s, thus proving
the Theorem 4.
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E.5 Proof of Theorem 6

Proof. First, we have

Upy — Ui = (T — To)p?Y2. (E.34)

7

As p*Y? has the finite first and second moments, the order of the first two moments of
(71714 — Uy; will inherit those from fl,i —I'y; presented in (D.4) and (D.5). This is also true
for Uy; — Usz, s € {2,3,...,8)}.

Moreover, for s, s* € {1,2,...,8} and i # j, E([ﬁ“ — B(U,)] x [Ug; — E(ﬁsj)]) has
the same order as E([fsZ - E(ﬁ”)] X [fsw- — E(fsj)]) These results imply that Theorem
6 holds. m

E.6 Proof of Theorem 7

Proof. As E(Us;) = us, applying (4.1) yields (4.4).
To prove (4.5), note that

Cov(Uss, Uses) = B((Uai = E0s)) (U~ ETie)) )
((US, Usi + Usi — E(U2)) (U s — Upe s + Use s — E(Use i)))
E((0, Ui — Uss)) + E((Uw — E(0.,)) Uy, — E ﬁ ))
( i — )(ﬁsz —Usy)) + E((ﬁsz — Usi) (Ui — )
(E.35)

We then check the four terms of Cov([/]\w-, (75@) in (E.35) one by one.
Using the Cauchy-Schwartz inequality, we have the following results for the first term in
(E.35),

(B((Os — U (O~ Uie)) < (B~ Vo) (BT s~ Ue?). (E36)

According to (4.2), we have E(ﬁ“ —Usi)* = o(n™") and E(U — Us;)? = o(n™"). Thus
E((Usi = Usi) (U = Uses)) = o(n ™).
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Next, the second term in (E.35) is
E<(US¢ — E(0.,)) (Usr; — E((?Sm.)))
= B([Usi = BUss) + E(Us) = By [Use = E(Uses) + E(Uses) = E(Uye)] )
= B([Usi = B0 [Us i = EU)]) + B([Uss = BU)][EUse) — E(Dse)])
+ E({E(USJ) — B(T.)] [Ues — E(US*J-)D n E([E(Us,i) — B(0..)] [E(U.-) E(}ﬁD
= 0 + 04+ 0+ E(Uy; — Uy )E(Use; — Uy )
= 0w+ (Can™ + O(n” " (log n)#))”

=04 +o(n7").
(E.37)
Further, by letting s* = s, we have E(Us; —E(ﬁs,i)y = o0gst+o(n "), forall s € {1,2,...,8}.
Using the Cauchy-Schwartz inequality, we have the following results for the third term
n (E.35),

~

(E((Us,i - E([/js,i»((/js*,i - Us*,i)))2 S (E(Usz Ea/js l)) )(E(Us*,i - Us*,i)z) (E38)
= (05 +0(n""))(0o(n"")) = o(n™").
Thus,
E((Us; = B(Usa)(Us i = Use ) = o(n™2). (E.39)

Using the Cauchy-Schwartz inequality, we have the following results for the fourth term

n (E.35),
(B(Us ~ B ) Us s~ B 1)) < (B~ BG0)) (EUse i — BT )

= (o(n™")) (o5 +0(n7")) = 0o(n™").
(E.40)
Thus,
E((Usﬂ- — B(0,.))(Us s — E(Us-)) = o(n™"/?). (E.41)
Combining the above results for the four terms of C’ov(ﬁ U,- i) in (E.35), (4.5) is proved.

To prove (4.6), we note that

Cov(Us,Uys) = E((T, i) (Uni = o))
:E((U — Usi+ Ui — s + e — B(U))(U, -—ur)) (E42)
:E((USZ—USZ )(Uri = 1)) + 0 + B (s (Ui = )
= B((Us; — Uy ) (Ui — 1)) + 0

18



Using the Cauchy-Schwartz inequality, we have

(B0~ Ue) Ui = 1)) < (Bas — Ua)?) (B — 1))

(E.43)
=o(n ")o., =o(n™"),
as E((/]\“ — Us,)? = o(n™") according to (4.2). Thus,
E((Ug; — Uy ) (Ui — 1)) = o(n™?). (E.44)

Consequently, Cov(ﬁs,i, Uy i) =05 + o(n™"/?), which implies (4.6) holds.

E.7 Proof of Theorem 8

Proof. (4.7) can be directly obtained from (4.4).
To prove (4.8), we note that i, — U,, =n"" Zle((/]\s,i — Us,i). Thus,

> (B0~ Us)? = (B0, ~ U,)").
. (E.45)

Further, from (4.2), we have E([7572-—US7Z-)2 = o(n™"). From (4.1), we have (E(ﬁs7i—U57i))2 =

(Con™ + O(n~27(log n)2%))2 = o(n"), where we recall O(n=2%(logn)2*) = o(n*). Thus,

we have Var(jis, — Us,) =n " to(n™").

1

n2

— 1 & ~
Var(fisn —Usn) = — > Var(Us; = Us) =
=1

By Chebyshev’s inequality, we have that for any ¢ > 0,

U )‘ = 8) < nE((ﬁs,n - Us,n - E(ﬁs,n - Us,n))2)

P(\/ﬁ‘ﬁs,n - Us,n - E(ﬁs,n -

nVar(jisn — Usn)  o(n™")
g2 g2
Therefore, \/n (ﬁsn — Us,n — E(jtsn — Us,n)) = 0,(1) or equivalently, 1, — U&n — E(fisn —
U,.,) = 0,(n"/2). Consequently,

ﬁs,n - E(//zsm) = Us,n - E<Us,n) + 0p(n71/2) =Usn — s + 0p(n71/2): (E.47)

implying (4.8) holds.
To prove (4.9), recall that by the standard CLT results for Usm, s=1,2,...,8, established
in Appendix C, we have

ViaUsp — 1s) =25 N(0,0,,). (E.48)
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Combining this with (4.8) yields,

\/ﬁ(ﬁs,n - E(ﬁs,n)) = \/E(Us,n — s + Op<n_1/2)) - \/E(Us,n - /fls) L N((), 088)7

implying (4.9) holds.
To prove (4.10), as n — oo, note that we have

~

N 1~ A ~ N\ ~ 77
o = 3 3o o) B = ) = Conl T Do)
On the other hand, from (4.5) we know that
Cov(Uss, U ;) = 0as + 0(n™"?),
implying that
Gogr —— Ogar.

To prove (4.11), as n — oo, note that we have

n

1 ~ ~
G == (Usi = fls) (Ung = firn) == Cov(Us, Usy).
n

i=1

On the other hand, note that from (4.6) we have
C’ov([?s,i, U,i) = 04 4 o(n"?),

implying that

~ p
Osr > Ogp.

Equation (4.12) does not involve DEA estimates and hence is a standard result.

E.8 Proof of Theorem 9

(E.49)

(E.50)

(E.51)

(E.52)

(E.53)

(E.54)

(E.55)

Similar to Pham et al. (2023), we also use the uniform delta method proposed in Theorem

3.8 of Van der Vaart (2000). We restate here for coherence.

Theorem E.1. Denote 1 as a continuously differentiable function mapping from R™ to R"

around a neighborhood of z € R™. Further, denote Z, as a random vector in the domain

of ¥, for a vector z, — z and numbers h, — 00, if h,(Z, — z) SN Z, where Z is some

known distribution, then ¥(Z,) — ¥(2,) = VU (2)(Z, — zn) + 0,(h ).
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Proof. From (4.9), for s € {1,2,...,8}, we have

\/ﬁ(ﬁs,n - E(ﬁs,n)) L> N(O, Uss>7 (E56)

Using Theorem E.1 yields

. N L . . _
log fis,n = 1og(E(fis,n)) + —(Hsn — E(Hisn)) + 0p(n 1/2)- (E.57)

S

Using (4.7), we have

Ep
2

log(E(jisn)) = log(us + Csn™" 4+ O(n~ 2 *(logn)z"
1 3
= log pis + —(Csn™" + O(n"2"(log n)2")) —

s 2[/%
C 5,
— log sts + —n " + O(n"2"(log n)2"),
e
(E.58)
where the second equality uses the Taylor expansion.
Using (4.8), we have
ﬁs,n - E(//I/s,n) - Us,n — Ms + 0p<n_1/2). (E59)

Consequently, we have

- - 1 . _
log fisn = log(E(MS,n» + _(NS,n - E(Ms,n) + Op(n 1/2)

s

C 1
= log js + — M "+O0(n” 2 "(logn)2") + ;(Us,n — s 4+ 0p(nVH) + 0,(n71?)

S S

N\CO

C Usn_ s —
= log s + —n"" + O(n"2 (logn)%”)—l—’—ﬂ%—op(n 12y,

Ns Hs
(E.60)

We can also apply Theorem E.1 to /n(U,, — i) SN N(0,04) for s € {1,2,...,12},

and obtain

Usn - Ms _
om0 (nY2), (E.61)

s

log Us,n = log s

Consequently, we have

Co = C+ Cen ™™+ O(n~2"(logn)2") + 0, (n~"?) + A¢., (E.62)
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and

¢, =C+ op(n_l/Q) + A\C,m (E.63)
where
1/,C C. C! C C C C C
CC—__<_1__2__3 A s e =T _8>7 (E.64)
2\p1 pe o p3 o s M5 fle M7 s
and
1 __1<U1,n—/il_UQ,n—M2_U3n—ll3 Usp — Ha
o [11 12 i3 i
Us,, — Ugn — Uz, — Usgp —
i 5, M5  Us, He U, 7 n 8, Hs) (E.65)
U5 He M s
Uy, — Uipn — Uiy — Ui, —
n 9, Ho Yo, Hio Ui, H11 n 12, M12‘
o9 H10 Hi1 H12
Subtracting (E.63) from (E.62) yields
s —K -3k 3k —1/2
G —C, =Cen™ "+ 0(n 2"(logn)2") + op(n ). (E.66)

Combining this with v/n(C, — ¢) —— N(0, 0?) yields Theorem 9.

E.9 Proof of Theorem 10

Proof. Without loss of generality, we assume that S, consists of the first n,, observations of
the randomly sorted sample S,,. Before proving Theorem 10, we first establish the following

asymptotic results for fis,,., s € {1,2,...,8}.

E(fisn,) = pts + Csn™™ + O(n"2"(log n)2"), (E.67)

lsn. — E(fisn,) = Usn, — pis + 0p(n;'?), (E.68)
~ ~ d

V nri(:usmm - E(M&nn)) — N(O7 Tss), (E.69)

which are similar to those for fis, in Theorem 8. The proofs here generally follow those in
Subsection E.7.

From (4.4), we can obtain

E(fisn,) = s + Csn™" + O(n”" 3 (log n) "), (E.70)
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To prove (E.68), we note that

Nk

ﬁs,nn - USJLK - n;l ((7571' - Us,i)- (E?l)

=1

Thus,

Var(isn, — Ton.) = %; Var(Ds: — Usy) = %; (B0~ V.0 = (B - U.0)°).

(E.72)
Further, from (4.2), we have E((AJS’Z‘—USJ)2 = o(n~"). From (4.1), we have (E((?SJ»—USJ))Z =
(Cen™ + O(n~2%(logn)2"))? = o(n™"), where we recall O(n~2%(logn)2*) = o(n~*). Thus,
we have Var(lisn, — Usp,) = n.to(n™").

By Markov’s inequality, we have that for any € > 0,

-~ 77 _ -~ _ 2
P(\/n—m(ﬁ&n,€ B U&nm B E(ﬁsmm B Us,nn)) S 8) < nnE«MS,nK Us,nn E(Ms,nn Us,nn)) )

52
n.Var(isn, — U&m) _ o(n™")

g2 g2

Therefore, \/fn(fisn, — Usne — E(lsm, — Usine)) = 0,(1) or equivalently, fisn, — Usn, —
E(lisn, —Usn,) = op(n,zl/g). Consequently,

//zs,nn - E(ﬁs,nn) = US,TLK - E(Us,nn) + Op(nle/Q) = Usynn - /’1’5 + Op(n;1/2)7 (E74>

implying (E.68) holds.
To prove (E.69), recall that by the standard CLT, for s = 1,2,...,8, we have

V(U g — t15) — N0, 0,5). (E.75)

Combining this with (E.68) yields,

~ ~ - _ d
\/n—fﬁ(/ls,nn - E(ﬂ&m)) = \/n_n(Us,nn — s+ Op(nn 1/2>) = \/n_n(Us,nﬂ — ) — N<Oa Oss).

(E.76)
Thus, (E.69) is proved.
Next, using the above asymptotic results for i, , we are going to show that
Cor — Cp, = Cen™ + O(n™ 2% (log n)2%) + 0, (n;/?). (E.77)
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The proofs here are similar to the proof of Theorem 9 presented in Subsection E.S8.

Applying Theorem E.1 to (E.69) yields

~ - 1 . -
log fism, = log(E(Us,nn)) + _<ILLS,TLH - E(NS,nﬂ)) + Op( 1/2> (E.78)

S

Using (E.67), we have

log(E(ﬁs,nn)) - log(,us + Csn + O(n 2 (IOg n)%,{))

L (0 1 O (log n) I%)?

1
= log s + ATS(CSn +O(n~ 2 "(logn) 2

") -

Cs 3,
—log s + 207 + O(n~ 5 (logn) i),

s

(E.79)
where the second equality uses the Taylor expansion.
Using (E.68), we have
Hsn, — E(sn,) = Us,nm fis + 0p(n 1/2)- (E.80)

Consequently, for s € {1,2,...,8}, we have

N ~ 1 -
log fis,n, = IOg(E(ﬂS,nn)) + _(”S,nm - E(/Lsmn)) + Op( 1/2)

s

1
")+ M_(Usmn s + Op( 1/2)) + Op( 1/2)

N\C»J

C
= log pts + — M "4+ 0(n” 2 *(logn)

C Usn - S
= log i, + - "4+ O(n~3*(logn)*") + - e 1 op(n72).

(E.81)

We could also apply Theorem E.1 to /7, (Us n, — is) 2, N(0,04) for s € {1,2,...,12},

and obtain

TT US n
logUs,,, = log s + Zome M op(n;1?). (E.82)
Consequently, we have
o = C+ Cen ™™+ 0(n~ 2 (logn)g ) 4 0p(n1?) + AC s (E.83)
and
Co=CHo0p(n V) + A, (E.84)
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where C; is the same as that in Theorem 9 and

~ 1 Uip, — 1 U, — 2 Uszpp — 13 Uspy — 4
e =5 - - +
H1 H2 H3 Ha

1 U5,nK —Hs U6,nﬁ —He U?,nﬁ — M7 4 U8,nn - Ms) (E.85)
2453 He Hr Hs

i U9,nn —Ho UlO,nﬁ e U Ull,nﬂ — HM11 + U12,nn — H12
Mo H10 H11 H12 '

Subtracting (E.84) from (E.83) yields
Znﬂ — Znn =Cn ™"+ O(n_%”(log n)%") + op(n,.g_lﬂ). (E.86)

Combining this with \/n,.(¢,, — () SN N(0, %) yields Theorem 10.

E.10 Proof of Theorem 11

Proof. Using the similar arguments in the proof of (E.62), forl € {1,2} andm =1,2,..., M,
we can obtain,

Goj2am = G+ Ce(nf2) ™ + O((n/2) 2" (log(n/2))2) + 0,((n/2) /) + Acujzim: (E.87)
=(+2°Cen ™" + O(n*%"‘(log n)%"‘) + op(nfl/Q) + A\Qn/z’l’m,

where fAlC,n/m,m is analogous to gc,n in (E.62), but defined for the subsample S,, /2. More

specifically,
~ 1 Ul,n/2,l,m — M UZ,n/Q,l,m — H2 U3,n/2,l,m — 3 U4,n/2,l,m — [
AC,n/Q,l,m = 3 - - +
2 U1 o J2%! 2!
+ U5,n/2,l,m — M5 . U6,n/2,l,m — He . U7,n/2,l,m — M7 + UB,n/Z,l,m - MS)
s Me 7 Mg
i U9,n/2,l,m —Ho UlO,n/2,l,m — Hio U11,n/2,l,m — M1l I U12,n/2,l,m — K12
J22e) 10 H11 H12 ’
(E.88)

where Us,n/%m is analogous to U&n for s € {1,2,...,12}, but defined for the subsample
Sn/Z,l,m-
Further, note that

1

“Usnpam+Usppom) =Usp, for s=1,2,...,12, m=1,2,..., M, (E.89)

Y

(\V]

25



and therefore, we have

1 ~ —~ —~
§(AC,n/2,1,m + Ac,n/2,2,m) = AC,na (EQO)

where A\Cﬂl is the same as that in (E.62).
Thus,

~ 1 ~ R
Cn/2,m = §(Cn/2,1,m + Cn/2,2,m)

N|w

1 ~ ~
=(+ QHCCTL—"“ + O(n_%”(log n) n) + Op(n—l/Q) + §<A4,n/2,1 + Ac,n/2,2)> (E.Ql)
=(+2"Cen™" + O(n_%”(log n)%”) +0,(n M%) + gg,n.

Subtracting (E.62) from this above equation, we have

~

G o — G = (27 = 1)Cen™ + O(n™ 2" (log ) 2") + 0, (n~'/?). (E.92)

Thus,

(2% = 1) (Cyzm = G = Cen™ + O(n™#*(logm)2*) + 0, (™), (E.93)
is an estimator for the bias of En. Taking the average of (E.93) over m = 1,2,..., M, gives
the bias estimator (4.21) on the Lh.s. with the rate given by (E.93) on the r.h.s, thus proving
the Theorem 11.

E.11 Proof of Theorem 13

Proof. The empirical version of o¢ in (C.5) is 67 expressed in (4.25). From Theorem 8, we
have that fi, —— fts and g —— 044, for s,s* € {1,2,...,12}. Thus, ¢ SN .
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Appendix F Some Additional Results

F.1 The Values of the Parameters Used in the MC Experiments
Table F.1 presents the values of the parameters used in the MC experiments.

Table F.1: The Values of §; and w;

i 05 03 01 01 0.1 0.08

s 0.4 02 0.15 0.12 0.09
B 03 0.2 014 0.1
B4 0.25 0.16 0.1
Bs 0.18 0.1
B 0.11
B 0.12

w; 05 05 05 05 05 0.5

Wo 05 05 05 05 05
w3 1 1 1 1
Wy 1 1 1
ws 05 0.5
Weg 1
wy 0.5
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F.2 Simulation Results for § = 0.00

We present the simulation results for the case 6 = 0.00 here. When the sample size n
increases, the rejection rates for § = 0.00 using (ii) approximate the corresponding nominal
size a for both the simple mean HMPI presented in Table F.2 and the aggregate HMPI
presented in Table F.3. For example, when the nominal size is 0.05, the dimension p = 4,
and the sample size n = 1000, the rejection rate is 0.058 and 0.052 for the simple mean and
aggregate HMPI, respectively. Moreover, when the sample size n increases, the rejection
rates for 0 = 0.00 using (iii) converge to zero regardless of the dimension p and the nominal
size . This result is consistent with the MC results in Pham et al. (2023) for the aggregate
MPT when § = 0.00. This is because the coverages of the re-centered method (iii) converge
to 100% as the sample size increases, which implies the rejection rates converge to zero.
The results for the coverages for the simple mean HMPI presented in Table F.4 and the
aggregate HMPI presented in Table F.5 are similar to those in the main text for the case

0 = 0.04.
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Table F.2: Rejection Rates for Test for the Simple Mean Productivity Change using
When 6 = 0.00

—010—  —005— 001 —
p.g n () () @ G G ()

20 0.100 0.100 0.051 0.051 0.014 0.014
50  0.115 0.115 0.058 0.058 0.003 0.003
100  0.103 0.103 0.043 0.043 0.012 0.012
200 0.118 0.118 0.062 0.062 0.015 0.015
300 0.098 0.098 0.041 0.041 0.007 0.007
500 0.104 0.104 0.063 0.063 0.009 0.009
1000 0.117 0.117 0.059 0.059 0.017 0.017

—_ = = = = =
—_ = = = = =

1 20 0.121 0.166 0.060 0.102 0.013 0.037
1 50 0113 0.123 0.046 0.062 0.012 0.018
1 100 0.095 0.091 0.044 0.036 0.006 0.008
1 200 0.107 0.102 0.052 0.042 0.007 0.006
1 300 0.088 0.091 0.051 0.047 0.008 0.013
1 500 0.098 0.105 0.044 0.050 0.013 0.014
1 1000 0.074 0.082 0.037 0.046 0.008 0.010

NN DNDDNDNDDND
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Table F.2: Rejection Rates for Test for the Simple Mean Productivity Change using uy
When ¢ = 0.00 (continued)

0.10 0.05 0.01
p.g n () (i) (ii) (i) (i) (iif) i) (i) (iif)

20 0.160 0.204  0.127  0.088 0.128  0.070 0.030 0.048 0.018
50 0.135 0.147  0.054  0.070 0.078  0.024  0.019 0.024  0.001
100 0.122 0.121 0.021 0.070 0.056  0.006 0.013 0.018 0.000
200 0.128 0.096 0.008 0.071 0.049  0.002 0.013 0.013 0.000
300 0.095 0.088 0.002 0.042 0.048  0.000 0.013 0.007  0.000
500  0.093 0.093 0.002 0.048 0.040  0.001 0.010 0.006 0.000
1000 0.125 0.106 0.004  0.061 0.057  0.000 0.018 0.011 0.000

W W W W www
e L e e

20  0.118 0.178 0.100 0.069 0.113  0.048 0.025 0.045 0.018
50  0.122 0.140 0.024  0.071 0.079  0.007  0.019 0.020 0.001
100 0.119 0.112 0.005 0.062 0.066  0.001 0.016 0.010 0.000
200 0.115 0.115 0.000 0.059 0.073  0.000 0.009 0.024  0.000
300 0.098 0.121 0.000 0.050 0.056  0.000 0.015 0.005 0.000
500 0.131 0.087  0.001 0.071 0.047  0.000 0.017 0.009 0.000
1000 0.099 0.111 0.000 0.051 0.058  0.000 0.014 0.009 0.000

= e e e e
el e e

20  0.126 0.209 0.086 0.076 0.140  0.048 0.015 0.049 0.012
50  0.140 0.138 0.016 0.065 0.063  0.007  0.013 0.017  0.001
100 0.106 0.124  0.001 0.057 0.057  0.000 0.010 0.016 0.000
200 0.104 0.129 0.001 0.056 0.072 0.000 0.014 0.016 0.000
300 0.140 0.107  0.000 0.069 0.046  0.000 0.022 0.007  0.000
500  0.107 0.106 0.000 0.053 0.059  0.000 0.014 0.013 0.000
1000 0.107 0.093 0.000 0.055 0.043  0.000 0.013 0.004  0.000

v Ot Ot Ot Ot Ot Ot
e e e e T

20 0.131 0.212 0.086 0.088 0.148  0.057  0.033 0.059 0.013
50  0.108 0.137  0.005 0.059 0.077  0.001 0.017 0.023 0.000
100 0.107 0.130 0.001 0.053 0.064  0.001 0.012 0.011 0.000
200 0.123 0.125 0.000 0.062 0.077  0.000 0.012 0.022 0.000
300 0.152 0.105 0.000 0.088 0.055 0.000 0.023 0.012 0.000
500 0.113 0.097  0.000 0.059 0.048  0.000 0.021 0.012 0.000
1000 0.121 0.121 0.000 0.068 0.058  0.000 0.012 0.012 0.000
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Table F.3: Rejection Rates for Test for the Aggregate Productivity Change using ¢ When
0 =10.00

—010—  —005— 001 —
p.g n () () @ G G ()

20 0.108 0.108 0.067 0.067 0.014 0.014
50  0.130 0.130 0.066 0.066 0.009 0.009
100 0.097 0.097 0.048 0.048 0.014 0.014
200 0.111 0.111 0.065 0.065 0.010 0.010
300 0.095 0.095 0.042 0.042 0.006 0.006
500 0.111 0.111 0.060 0.060 0.016 0.016
1000 0.099 0.099 0.057 0.057 0.012 0.012

—_ = = = = =
—_ = = = = =

1 20 0.145 0.261 0.083 0.178 0.024 0.081
150 0127 0.170 0.074 0.109 0.017 0.036
1 100 0.112 0.131 0.055 0.075 0.017 0.018
1 200 0.134 0.141 0.085 0.092 0.016 0.020
1 300 0.113 0.117 0.059 0.060 0.008 0.012
1 500 0.117 0.122 0.064 0.072 0.012 0.013
1 1000 0.106 0.115 0.045 0.054 0.008 0.011
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Table F.3: Rejection Rates for Test for the Aggregate Productivity Change using ¢ When
9 = 0.00 (continued)

20 0.179 0.259 0.206 0.117 0.175 0.128 0.044 0.085 0.045
50  0.137 0.175 0.084  0.075 0.109  0.042 0.021 0.025 0.015
100 0.132 0.153 0.044 0.091 0.093  0.010 0.019 0.020 0.000
200  0.125 0.122 0.013 0.062 0.065 0.008 0.017 0.017  0.001
300 0.113 0.118 0.006 0.058 0.060  0.003 0.012 0.018 0.000
500 0.109 0.111 0.005 0.058 0.056  0.001 0.014 0.010 0.000
1000 0.136 0.111 0.003 0.073 0.056  0.000 0.017 0.018 0.000

W W W W www
e L e e

20 0.162 0.279 0.197  0.101 0.197  0.133 0.032 0.078 0.055
50  0.147 0.195 0.082 0.086 0.131 0.036 0.025 0.044  0.010
100 0.132 0.137  0.022 0.080 0.080  0.007  0.026 0.022 0.001
200 0.127 0.143 0.008 0.069 0.073  0.001 0.018 0.015 0.000
300 0.107 0.119 0.000 0.058 0.059  0.000 0.016 0.013 0.000
500 0.138 0.091 0.001 0.075 0.049  0.000 0.021 0.014  0.000
1000 0.126 0.110 0.000 0.071 0.052 0.000 0.017 0.011 0.000

= e e e e
el e e

20  0.145 0.259 0.172 0.096 0.179  0.107  0.035 0.095 0.049
50  0.122 0.159 0.050 0.067 0.095 0.025 0.018 0.026 0.003
100 0.118 0.129 0.010 0.070  0.075 0.002 0.022 0.015 0.000
200 0.118 0.122 0.003 0.066 0.079  0.000 0.009 0.026 0.000
300  0.128 0.092 0.000 0.068 0.039  0.000 0.018 0.006 0.000
500 0.120 0.106 0.000 0.067 0.064  0.000 0.015 0.013 0.000
1000 0.100 0.088 0.000 0.066 0.045 0.000 0.017 0.008 0.000

v Ot Ot Ot Ot Ot Ot
e e e e T

20 0.131 0.237  0.161 0.084 0.174  0.113 0.030 0.083 0.035
50 0.119 0.151 0.032 0.072  0.095 0.012 0.019 0.032 0.001
100  0.107 0.129 0.005 0.056 0.077  0.002 0.013 0.018 0.000
200 0.136 0.113 0.000 0.079 0.066  0.000 0.015 0.011 0.000
300 0.150 0.094  0.000 0.093 0.051 0.000 0.022 0.017  0.000
500 0.112 0.099 0.000 0.068 0.059  0.000 0.019 0.018 0.000
1000 0.129 0.089 0.000 0.066 0.047  0.000 0.013 0.011 0.000
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Table F.4:

Coverages

of Estimated Confidence Intervals for the
Hicks—Moorsteen Productivity Indices When § = 0.00

<

— 0.90 —

(1)

(ii)

— 0.95 —

(i)

(i)

— 0.99 —

(i)

(i)

—_ = = = = =

NN DNDDNDNDDND

—_ = = = = =

20
50
100
200
300
500
1000

20
50
100
200
300
500
1000

0.900
0.885
0.897
0.880
0.902
0.895
0.885

0.879
0.887
0.905
0.894
0.912
0.902
0.926

0.900
0.885
0.897
0.880
0.902
0.895
0.885

0.835
0.877
0.909
0.898
0.909
0.896
0.918

0.949
0.942
0.957
0.938
0.959
0.937
0.940

0.940
0.954
0.956
0.948
0.949
0.956
0.963

0.949
0.942
0.957
0.938
0.959
0.937
0.940

0.898
0.938
0.964
0.958
0.953
0.950
0.955

0.986
0.997
0.988
0.986
0.993
0.991
0.983

0.987
0.988
0.994
0.993
0.992
0.987
0.992

0.986
0.997
0.988
0.986
0.993
0.991
0.983

0.963
0.982
0.992
0.994
0.987
0.986
0.990
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Table F.4: Coverages of FEstimated Confidence Intervals for the Simple Mean
Hicks—Moorsteen Productivity Indices When § = 0.00 (continued)
0.90 0.95 0.99
p g n ) G) G () G) G () G) (i)
31 20 0.840 0.796 0.873 0912 0872  0.930 0970 0.952  0.982
3 1 50 0865 0853 0946 0930 0.922 0976  0.981 0.976  0.999
3 1 100 0.878 0.879 0979 0930 0944  0.994  0.987 0.982  1.000
3 1 200 0.872 0904 0992 0929 0951 0.998  0.987 0.987  1.000
3 1 300 0.905 0912  0.998  0.958 0.952 1.000  0.987 0.993 1.000
3 1 500 0907 0907 0998 0952 0960 0999  0.990 0.994  1.000
3 1 1000 0.875 0.894 0996 0.939 0943  1.000  0.982 0.989  1.000
4 1 20 0.882 0.822 0900 0931 0.887 0.952 0975 0.955  0.982
4 1 50 0.879 0859 0976 0929 0921  0.993  0.982 0.980  0.999
4 1 100 0.881 0.888  0.995 0938 0934 0999  0.984 0.990  1.000
4 1 200 0.88 0.885 ~ 1.000  0.942 0.927  1.000 0991 0.976  1.000
4 1 300 0.901 0.880  1.000 0.951 0.944  1.000  0.985 0.995  1.000
4 1 500 0.870 0.913 0.999  0.931 0.953 1.000  0.983 0.991 1.000
4 1 1000 0.902 0.889  1.000  0.949 0.942 1.000  0.986 0.991 1.000
5 1 20 0874 0.791 0914 0.924 0.860 0.952  0.985 0.951  0.988
5 1 50 0.859 0.862 0984 0935 0937 0.993 0987 0.983  0.999
5 1 100 0.894 0.876  0.999 0.943 0.943  1.000  0.990 0.984  1.000
5 1 200 0896 0.871 0.999 0.944 0.928 1.000 0.98 0.984  1.000
5 1 300 0.861 0.894 1.000 0.932 0.954  1.000  0.978 0.993 1.000
5 1 500 0.893 0.894  1.000  0.948 0.941 1.000  0.986 0.987  1.000
5 1 1000 0.890 0.907  1.000 0.944 0.957  1.000  0.98 0.996  1.000
7 1 20 0869 0.788 0914 0912 0.852  0.943  0.967 0.941  0.987
7 1 50 0892 0.863 0.995 0.941 0.923 0999 0.983 0.977  1.000
7 1 100 0.894 0.870 0.999 0947 0936  0.999 0988 0.989  1.000
7 1 200 0878 0.874 1.000 0.938 0.923  1.000 0.988 0.978  1.000
7 1 300 0.848 0.895 1.000  0.912 0.945 1.000  0.977 0.988  1.000
7 1 500 0.888 0.904 1.000 0.940 0.952 1.000  0.979 0.988 1.000
7 1 1000 0.877 0.879  1.000  0.933 0.942 1.000  0.989 0.988 1.000
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Table F.5: Coverages of Estimated Confidence Intervals for the Aggregate Hicks—Moorsteen
Productivity Indices When 6 = 0.00

— 090 — 09— 099
p.g n () () @ G G ()

20 0.892 0.892 0.933 0.933 0.986 0.986
50  0.870 0.870 0.934 0.934 0.991 0.991
100  0.903 0.903 0.952 0.952 0.986 0.986
200 0.889 0.889 0.935 0.935 0.990 0.990
300 0.905 0.905 0.958 0.958 0.994 0.994
500  0.889 0.889 0.940 0.940 0.984 0.984
1000 0.901 0.901 0.943 0.943 0.988 0.988

—_ = = = = =
—_ = = = = =

1 20 0854 0.738 0917 0.822 0.976 0.920
1 50 0873 0.829 0.926 0.891 0.983 0.964
1 100 0.888 0.869 0.945 0.925 0.982 0.981
1 200 0866 0.859 0.914 0.908 0.985 0.979
1 300 0.88 0.882 0.941 0.940 0.992 0.989
1 500 0883 0.878 0.936 0.928 0.989 0.987
1 1000 0.895 0.888 0.952 0.946 0.990 0.989
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Table F.5: Coverages of Estimated Confidence Intervals for the Aggregate Hicks—Moorsteen
Productivity Indices When § = 0.00 (continued)

0.90 0.95 0.99
p.g n () (i) (ii) (i) (i) (iif) i) (i) (iif)

20  0.821 0.741 0.794  0.883 0.825 0.872 0.956 0.915 0.955
50  0.863 0.825 0.916 0.925 0.891 0.958 0.979 0.975 0.985
100 0.868 0.847  0.956 0.909 0.907  0.990 0.981 0.980 1.000
200 0.875 0.878 0.987  0.938 0.935 0.992 0.983 0.983 0.999
300 0.887 0.882 0994 0942 0940  0.997  0.988 0.982 1.000
500  0.891 0.889 0.995 0.942 0.944  0.999 0.986 0.990 1.000
1000 0.864 0.889 0.997  0.927 0.944 1.000 0.983 0.982 1.000

W W W W www
e L e e

20 0.838 0.722 0.804 0.899 0.803  0.867  0.968 0.922 0.945
50  0.854 0.804  0.918 0914 0.869  0.963 0.975 0.956 0.990
100 0.868 0.864  0.978 0.920 0.920  0.993 0.974 0.978 0.999
200 0.874 0.857  0.992 0.929 0928  0.999 0.982 0.985 1.000
300  0.894 0.881 1.000 0.942 0.941 1.000 0.983 0.987 1.000
500  0.863 0.909 0.999 0.923 0.951 1.000 0.980 0.986 1.000
1000 0.874 0.890 1.000 0.929 0.948 1.000 0.982 0.989 1.000

= e e e e
el e e

20 0.856 0.741 0.828 0.904 0.821 0.893 0.965 0.905 0.951
50  0.880 0.841 0.950 0.934 0.904  0.976 0.982 0974  0.997
100 0.881 0.871 0.990 0.930 0.925 0.998 0.978 0.985 1.000
200 0.883 0.879 0997  0.936 0.921 1.000 0.991 0.974 1.000
300  0.871 0.908 1.000 0.930 0.961 1.000 0.982 0.994 1.000
500 0.879 0.894 1.000 0.931 0.935 1.000 0.985 0.987 1.000
1000 0.900 0.912 1.000 0.935 0.955 1.000 0.984 0.992 1.000

v Ot Ot Ot Ot Ot Ot
e e e e T

20 0.869 0.763 0.839 0916 0.826  0.887  0.970 0.917  0.965
50  0.881 0.849 0.968 0.928 0.905 0.988 0.981 0.968 0.999
100 0.893 0.871 0.995 0944 0.923  0.998 0.987 0.982 1.000
200 0.865 0.887 1.000 0.921 0.934 1.000 0.985 0.989 1.000
300 0.850 0.906 1.000 0.907 0.949 1.000 0.978 0.983 1.000
500 0.888 0.901 1.000 0.933 0.941 1.000 0.981 0.982 1.000
1000 0.871 0.911 1.000 0.936 0.953 1.000 0.987 0.989 1.000
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F.3 Simulation Results for § = 0.02

We present the simulation results for the case when 6 = 0.02 here. The results here are

similar to those in the main text for the case § = 0.04.
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Table F.6: Rejection Rates for Test for the Simple Mean Productivity Change using uy
When § = 0.02

—010—  —005—  —0.01—
p.g n (H () @ @) @G (i

20 0.249 0.249 0.159 0.159 0.058 0.058
50 0.382 0.382 0.277 0.277 0.130 0.130
100 0.553 0.553 0.444 0.444 0.235 0.235
200 0.792 0.792 0.705 0.705 0.495 0.495
300 0911 0911 0.842 0.842 0.687 0.687
500  0.981 0.981 0.966 0.966 0.886 0.886
1000 1.000 1.000 1.000 1.000 0.995 0.995

— = = = = e
Gy G VG VG VG W W

20 0423 0416 0.318 0.323 0.171 0.177
50  0.677 0.670 0.587 0.581 0.387 0.385
100 0.891 0.893 0.831 0.827 0.669 0.662
200 0.994 0.995 0.983 0.980 0.941 0.933
300 1.000 1.000 1.000 1.000 0.994 0.991
500 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000

DN DN DD DD
el e e
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Table F.6: Rejection Rates for Test for the Simple Mean Productivity Change using uy
When § = 0.02 (continued)

0.10 0.05 0.01
p.g n () (i) (ii) (i) (i) (iif) i) (i) (iif)

20 0.583 0.406 0.383 0.480 0.310  0.288 0.276 0.174  0.132
50  0.890 0.646 0.685 0.831 0.537  0.563 0.677 0.357  0.294
100 0.992 0.848 0.915 0.980 0.760  0.840 0.928 0.573 0.608
200 1.000 0.974  0.999 1.000 0.961 0.987  0.999 0.882 0.944
300  1.000 0.999 1.000 1.000 0.994 1.000 1.000 0.970 0.999
500  1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

W W W W www
e L e e

20  0.753 0.470 0.429 0.669 0.359  0.289 0.472 0.192 0.154
50 0.976 0.654  0.709 0.955 0.546  0.558 0.884 0.339 0.260
100 0.999 0.825 0.943 0999 0.736  0.859 0.996 0.526 0.553
200  1.000 0.957 1.000 1.000 0.924  0.998 1.000 0.813 0.944
300  1.000 0.988 1.000 1.000 0.973 1.000 1.000 0.916 0.997
500 1.000 1.000 1.000 1.000 0.997 1.000 1.000  0.990 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

= e e e e
el e e

20 0.899 0.503 0.479 0.841 0.415 0.367  0.691 0.257  0.159
50 0.999 0.704  0.796 0.997 0.596  0.639 0.980 0.395 0.316
100  1.000 0.837  0.970 1.000 0.768  0.903 1.000 0.570 0.598
200 1.000 0.959 1.000 1.000 0.932 0.998 1.000 0.808 0.974
300 1.000 0.990 1.000 1.000 0.975 1.000 1.000 0.926 1.000
500  1.000 0.997 1.000 1.000 0.996 1.000 1.000 0.982 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

v Ot Ot Ot Ot Ot Ot
e e e e T

20 0.992 0.525 0.513 0.986 0.412 0.380 0.939 0.271 0.163
50  1.000 0.708 0.825 1.000 0.611 0.688 1.000 0.411 0.327
100 1.000 0.859 0.991 1.000 0.805 0.956 1.000 0.623 0.692
200 1.000 0.949 1.000 1.000 0.914 1.000 1.000 0.814  0.988
300  1.000 0.982 1.000 1.000 0.970 1.000 1.000 0.910 1.000
500  1.000 0.998 1.000 1.000 0.992 1.000 1.000 0.968 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000
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Table F.7: Rejection Rates for Test for the Aggregate Productivity Change using ¢ When
0 =0.02

—010—  —005— 001 —
p.g n () () @ G G ()

20 0330 0.330 0.231 0.231 0.097 0.097
50  0.550 0.550 0.460 0.460 0.238 0.238
100 0.804 0.804 0.706 0.706 0.467 0.467
200 0.969 0.969 0.946 0.946 0.830 0.830
300 0.997 0.997 0.993 0.993 0.969 0.969
500 1.000 1.000 0.999 0.999 0.998 0.998
1000 1.000 1.000 1.000 1.000 1.000 1.000

—_ = = = = =
—_ = = = = =

1 20 0519 0.518 0.409 0.431 0.241 0.272
1 50 0817 0.770 0.721 0.704 0.514 0.522
1 100 0973 0965 0.953 0.947 0.864 0.854
1 200 1.000 1.000 1.000 0.999 0.996 0.992
1 300 1.000 1.000 1.000 1.000 1.000 1.000
1 500 1.000 1.000 1.000 1.000 1.000 1.000
1 1000 1.000 1.000 1.000 1.000 1.000 1.000
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Table F.7: Rejection Rates for Test for the Aggregate Productivity Change using ¢ When
9 = 0.02 (continued)

20 0.609 0.433 0.436 0.501 0.351 0.348 0.314 0.222 0.195
50 0.892 0.635 0.659 0.823 0.546  0.537  0.654 0.359 0.314
100 0.991 0.828 0.912 0.986 0.745 0.827 0944 0.577  0.602
200 1.000 0.971 0.995 1.000 0.953  0.988 0.999 0.869 0.943
300 1.000 0.997 1.000 1.000  0.990 1.000 1.000 0.961 0.999
500  1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

W W W W www
e L e e

20 0.803 0.506 0.502 0.735 0.438  0.410 0.573 0.283 0.252

50 0.980 0.694  0.737  0.966 0.601 0.625 0913 0417  0.386
100 0.999 0.853 0.944  0.999 0.795 0.877  0.997 0.615 0.667
200 1.000 0.971 0.999 1.000 0.949  0.995 1.000 0.864  0.954
300 1.000 0.995 1.000 1.000 0.988 1.000 1.000 0.959 0.997
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

= e e e e
el e e

20 0911 0.528 0.506 0.866 0.442 0.400 0.726  0.290 0.247
50  0.997 0.715 0.758 0.993 0.618  0.635 0.978 0.408 0.359
100 1.000 0.832 0.943 1.000 0.766  0.876 1.000 0.570 0.613
200 1.000 0.963 0.998 1.000 0.931 0.993 1.000 0.831 0.964
300 1.000 0.995 1.000 1.000 0.989 1.000 1.000 0.953 0.997
500  1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000
1000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 1.000

v Ot Ot Ot Ot Ot Ot
e e e e T

20 0.988 0.523 0.536 0975 0426  0.406 0.928 0.280 0.227
50  1.000 0.699 0.790 1.000 0.601 0.656 0.999 0.406 0.390
100 1.000 0.848 0.963 1.000 0.787  0.916 1.000 0.602 0.667
200 1.000 0.962 1.000 1.000 0.937  0.994 1.000 0.832 0.970
300 1.000 0.989 1.000 1.000  0.980 1.000 1.000 0.935 0.999
500  1.000 0.995 1.000 1.000 0.993 1.000 1.000 0.976 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
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Table F.&:

Coverages

of Estimated Confidence Intervals for the
Hicks—Moorsteen Productivity Indices When § = 0.02

<

— 0.90 —

(1)

(ii)

— 0.95 —

(i)

(i)

— 0.99 —

(i)

(i)

—_ = = = = =
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20
50
100
200
300
500
1000

20
50
100
200
300
500
1000

0.896
0.882
0.894
0.884
0.900
0.894
0.879

0.878
0.887
0.904
0.897
0.912
0.901
0.918

0.896
0.882
0.894
0.884
0.900
0.894
0.879

0.833
0.878
0.904
0.893
0.905
0.887
0.915

0.950
0.938
0.958
0.933
0.957
0.941
0.935

0.936
0.951
0.958
0.949
0.951
0.956
0.957

0.950
0.938
0.958
0.933
0.957
0.941
0.935

0.907
0.939
0.964
0.956
0.951
0.947
0.959

0.988
0.996
0.989
0.985
0.995
0.991
0.983

0.987
0.988
0.994
0.994
0.992
0.989
0.993

0.988
0.996
0.989
0.985
0.995
0.991
0.983

0.968
0.985
0.991
0.993
0.990
0.988
0.991
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Table F.8:  Coverages of FEstimated Confidence Intervals for the Simple Mean
Hicks—Moorsteen Productivity Indices When § = 0.02 (continued)
0.90 0.95 0.99
p g n ) G) G () G) G () G) (i)
31 20 0.849 0.798 0.881 0909 0.884  0.927 0972 0.957  0.982
3 1 50 0.868 0.862 0948 0.934 0920 0981  0.983 0.977  0.998
3 1 100 0.878 0.895 0.982 0933 0949 0994  0.990 0.985  1.000
3 1 200 0.8380 0.904 0991  0.939 0.952  0.998  0.989 0.989 1.000
3 1 300 0910 0.909 0.998  0.958 0.951 1.000  0.989 0.995 1.000
3 1 500 0.899 0912 0998  0.952 0.956  1.000  0.988 0.991 1.000
3 1 1000 0.887 0.896  0.997  0.941 0.945 1.000  0.984 0.991 1.000
4 1 20 089 0.825 0.907 0934 0900 0953 0.976 0.957  0.983
4 1 50 0.873 0.864 0983 0932 0925 0.996  0.987 0.981  0.999
4 1 100 0.882 0.880  0.995 0938 0934 0999 0.984 0.98  1.000
4 1 200 0.882 0.889  1.000  0.941 0.927  1.000  0.994 0.978  1.000
4 1 300 0.900 0.894  1.000  0.950 0.942 1.000  0.991 0.993  1.000
4 1 500 0.865 0.905 1.000 0.931 0.957  1.000  0.982 0.993 1.000
4 1 1000 0.904 0.885  1.000  0.953 0.938 1.000  0.992 0.991 1.000
5 1 20 0872 0.802 0.923 0.932 0875 0959  0.98 0.952  0.989
5 1 50 0.868 0.878 0.988 0934 0929 0.993 0988 0.983  0.999
5 1 100 0.891 0.88  0.999 0.951 0.940 1.000  0.989 0.982  1.000
5 1 200 0.898 0.878 0.999 0943 0.936  1.000 0.988 0.982 1.000
5 1 300 0.869 0.892  1.000 0.933 0.956  1.000  0.980 0.992 1.000
5 1 500 0.904 0.900 1.000 0.942 0.947  1.000  0.990 0.988  1.000
5 1 1000 0.889 0.905  1.000  0.941 0.958  1.000  0.989 0.992  1.000
7 1 20 0.878 0.789  0.925 0918 0.855  0.955  0.967 0.946  0.983
7 1 50 0.88 0.866 0.998 0948 0.924  1.000  0.987 0.983 1.000
7 1 100 0.892 0.880  1.000  0.949 0.945 1.000  0.993 0.989  1.000
7 1 200 0.883 0.877  1.000  0.947 0.925 1.000  0.991 0.983  1.000
7 1 300 0.841 0.893 1.000 0.917 0.949  1.000  0.978 0.985  1.000
7 1 500 0.881 0.899  1.000  0.937 0.948 1.000  0.985 0.985 1.000
7 1 1000 0.885 0.885  1.000  0.928 0.937  1.000  0.991 0.981 1.000
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Table F.9: Coverages of Estimated Confidence Intervals for the Aggregate Hicks—Moorsteen
Productivity Indices When ¢ = 0.02

— 090 — 09— 099
p.g n () () @ G G ()

20 0.892 0.892 0.934 0.934 0.984 0.984
50  0.872 0.872 0934 0.934 0.988 0.988
100 0.904 0.904 0.949 0.949 0.986 0.986
200 0.890 0.890 0.935 0.935 0.990 0.990
300 0.909 0.909 0.958 0.958 0.993 0.993
500  0.888 0.888 0.943 0.943 0.985 0.985
1000 0.903 0.903 0.943 0.943 0.988 0.988

—_ = = = = =
—_ = = = = =

1 20 0858 0.745 0916 0.819 0.976 0.915
1 50 0877 0826 0923 0.891 0.982 0.961
1 100 0.884 0.864 0.938 0.918 0.983 0.979
1 200 0865 0.850 0.917 0.911 0.982 0.980
1 300 0.891 0.887 0.943 0.939 0.992 0.989
1 500 0878 0.877 0.935 0.920 0.988 0.989
1 1000 0.897 0.886 0.951 0.944 0.991 0.991

NN DNDDNDNDDND
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Table F.9: Coverages of Estimated Confidence Intervals for the Aggregate Hicks—Moorsteen
Productivity Indices When § = 0.02 (continued)

0.90 0.95 0.99
p.g n () (i) (ii) (i) (i) (iif) i) (i) (iif)

20 0.828 0.736 0.783 0.884 0.820  0.866 0.955 0.911 0.953
50  0.857 0.822 0.912 0.924 0.889  0.956 0.982 0.968 0.986
100 0.853 0.848 0.953 0.913 0.905 0.988 0.984 0.979 1.000
200 0.876 0.878 0.985 0.938 0.935 0.993 0.986 0.983 0.999
300  0.881 0.878 0.993 0.940 0.940  0.998 0.987 0.985 1.000
500  0.886 0.891 0.992 0.940 0.943  0.999 0.985 0.989 1.000
1000 0.869 0.895 0.996 0.929 0.939 1.000 0.980 0.985 1.000

W W W W www
e L e e

20  0.845 0.732 0.807  0.897 0.798  0.864 0964 0924  0.945
50 0.835 0.799 0.912 0913 0877  0.961 0.974 0.956 0.992
100 0.862 0.855 0.980 0.915 0.921 0.991 0.973 0.976 0.999
200 0.871 0.858 0.992 0.925 0926  0.999 0.985 0.985 1.000
300 0.903 0.882 0.999 0.943 0.938 1.000 0.983 0.988 1.000
500  0.867 0.904  0.998 0.926 0.949 1.000 0.979 0.985 1.000
1000 0.864 0.893 1.000 0.934 0.943 1.000 0.984 0.989 1.000

= e e e e
el e e

20 0.847 0.737  0.825 0914 0.814  0.887  0.967 0.909 0.957
50  0.879 0.840 0.949 0.935 0.900 0977  0.979 0.968 0.995
100 0.874 0.857  0.986 0.932 0.924  0.998 0.980 0.980 1.000
200 0.875 0.879 0.997  0.935 0.925 1.000 0.990 0.975 1.000
300 0.862 0.900 1.000 0.925 0.953 1.000 0.981 0.994 1.000
500  0.863 0.893 1.000 0.925 0.945 1.000 0.983 0.988 1.000
1000 0.883 0.910 1.000 0.931 0.954 1.000 0.983 0.993 1.000

v Ot Ot Ot Ot Ot Ot
e e e e T

20  0.863 0.745 0.833 0.908 0.815 0.892 0.972 0.915 0.958
50  0.877 0.842 0.971 0.930 0.902 0.987  0.984 0.969 0.999
100 0.892 0.866 0.995 0.947 0918  0.998 0.986 0.983 1.000
200  0.865 0.878 1.000 0.924 0.933 1.000 0.983 0.985 1.000
300 0.838 0.900 1.000 0.908 0.950 1.000 0.967 0.983 1.000
500 0.852 0.891 1.000 0.923 0.937 1.000 0.979 0.981 1.000
1000 0.866 0.900 1.000 0.932 0.947 1.000 0.978 0.985 1.000

ENEENEEN BEN BEN BEN BEN
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