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Abstract.

This paper studies the manipulation of prices by using a dynamic version of the Glosten and Mil-

grom (1985) model with a long-lived informed trader. We make a fundamental contribution by clari-

fying the conditions under which a unique equilibrium exists, and in what situations this equilibrium

involves manipulation of prices by the informed trader. Furthermore, within the unique equilibrium,

we characterize bid–ask spreads and show that bid and ask prices are monotonically increasing in

the market maker’s prior belief. Finally, we propose a computational method to find equilibria in the

model. Our simulation results confirm our theoretical findings and find multiple equilibria in some

cases.
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1 Introduction

This paper studies a dynamic version of the Glosten and Milgrom (1985) model with a long-lived

informed trader. We make two fundamental contributions: i.e., clarifying the conditions under which

a unique equilibrium exists, and showing in what situations the dynamic informed trader trades against

their information, which is defined as a manipulative strategy in the literature (see Chakraborty and

Yilmaz (2004a)).1

When the same individual with private information can buy an asset and sell the same asset in the

future, it may not be optimal to always trade according to their information. In other words, it may

be profitable for the informed trader who knows that in the terminal period, the value of the asset is

high, to assign some positive probability to a sell order in some period. In this paper, we first show

the conditions under which an equilibrium is unique, or there are multiple equilibria, and then we

also show that a manipulative strategy is taken in equilibrium only when the positive change of the

informed trader’s future profit by a manipulative strategy is high.

The model in this paper works as follows. We adopt a sequential trade framework with trading of

a risky asset over finitely many periods between the market maker, the strategic informed trader, and

liquidity traders. At the beginning of the game, nature chooses the liquidation value of a risky asset to

be high or low and informs the informed trader, who then trades dynamically. In each period, there is

a random determination of whether the informed trader or a liquidity trader trades. Liquidity trade is

determined by an exogenous probability. The “market maker” represents a continuum of competitive

dealers, and sets bid and ask prices that satisfy the zero-profit condition.

The paper consists of two parts: i.e., theoretical and computational analyses. In the theoretical

part, we study the Markov equilibrium such that the market maker’s belief and the number of remain-

1 Huberman and Stanzl (2004) define price manipulation as a round-trip trade. In this paper, it happens as a round-

trip trade in equilibrium. Kyle and Viswanathan (2008) define “illegal price manipulation” as a strategy such that the

violator intends to pursue a scheme that undermines economic efficiency both by making prices less accurate as signals

for efficient resource allocation and by making markets less liquid for risk transfer. In this sense, the manipulative strategy

that is studied in this paper is not classified as an illegal price manipulation (although insider trading based on nonpublic

information is illegal because the Securities Exchange Commission defines insider trading as “any securities transaction

made when the person behind the trade is aware of nonpublic material information” under Rule 10b5-1). Simultaneously,

Kyle and Viswanathan (2008) explain that the finance and economics literature describes a trader’s optimal strategy as

manipulating the beliefs of other traders. In this sense, this paper uses the terminology of manipulation following the

literature after Jarrow (1992); Chakraborty and Yilmaz (2004a,b); Huberman and Stanzl (2004). We say that a strategy is

manipulative if with a strictly positive probability, it involves the informed trader undertaking a trade in any period that

yields a strictly negative short-term profit.
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ing trading periods determine the equilibrium strategy. By using the Markov equilibrium property,

we truncate a multi-period serial problem into that of two-period decision-making and study the na-

ture of equilibrium recursively. We provide a sufficient condition for the unique existence of the

Markov equilibrium and show that a manipulative strategy exists in equilibrium only when the value

functions are steep. A sufficient condition is provided as a set of properties that each period’s value

function satisfies. A Markov equilibrium that satisfies the sufficient condition for the uniqueness of

an equilibrium is called a tame equilibrium.

In our attempt to obtain the conditions for the existence of the unique equilibrium, the key element

is the probability of informed trading. Our approach is to split a unit time interval into subintervals,

where the length of each subinterval is a function of the informed trading probability, and to consider

the situation where the probability of informed trading is small and the number of trading periods is

large. In this way, we study the informed trader’s relative opportunity to re-trade and the possibility of

manipulation, and provide a particular cut-off of the number of trading periods such that a unique or

multiple equilibria arise. A tame equilibrium is a characterization of the unique Markov equilibrium

in this setting. In other words, we also characterize the unique equilibrium when it exists uniquely.

Our results show that when there are relatively few trading periods, the equilibrium is unique,

whereas when there are many trading periods, there are multiple equilibria. As there are two types of

informed trader, there are four possible regimes, depending on whether each type manipulates. By a

single crossing property of the payoff difference between buy and sell orders, we can prove that there

is one equilibrium strategy within each regime when only one type manipulates. However, when

there are too many chances to re-trade, both types simultaneously manipulate, and this gives more

“freedom” for multiple regimes to coexist. This analysis explicitly derives bounds for the number of

trading periods for which these different situations arise.

In our computational analysis, we show that in the interval of prior beliefs, there are two regions

depending on how steep the value functions are. As the number of trading periods grows, the value

functions start to become steep at the edges of the interval. In other words, there are two separate

intervals in which the value functions can be steep, which we call cases (a) and (b). In case (a) when

the market maker assigns a very low probability to the true state, the value function is very steep, and

the informed trader can exploit this opportunity to fool the market. In case (b) when the market maker

assigns a very high probability to the true state, the cost of manipulation is very low and it is easier

for the informed trader to recoup the loss caused by manipulation.

In our theoretical analysis, we show that when the number of trading periods is small, then neither

case arises. When the number of trading periods becomes large enough, case (a) starts to arise, and

finally as the number of trading periods becomes even larger, cases (a) and (b) arise simultaneously
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for some prior beliefs, because there can be the interval of market maker’s belief at which both types’

value functions are steep, and multiple different regimes arise. Then multiple equilibria coexist.

Otherwise, the equilibrium is unique. We explicitly derive a cut-off of the number of trading periods

for which these different situations arise.

The theoretical literature begins with manipulation by uninformed traders.2 Allen and Gale (1992)

provide a model of strategic trading in which some equilibria involve manipulation. Allen and Gorton

(1992) consider a model of pure trade-based uninformed manipulation in which asymmetry in buys

and sells by liquidity traders creates the possibility of manipulation. The first paper to consider ma-

nipulation by an informed agent within the discrete-time Glosten–Milgrom framework is Chakraborty

and Yilmaz (2004a), who show that when the market faces uncertainty about the existence of informed

traders, and when there are many trading periods, long-lived informed traders will manipulate in ev-

ery equilibrium. Takayama (2010) furthers this analysis by providing a lower bound for the number

of trading periods necessary for the existence of manipulation in equilibrium and shows that if the

number of trading periods exceeds this lower bound, every equilibrium involves manipulation. The

model in Chakraborty and Yilmaz (2004a) and Takayama (2010) is different from our model. In their

model, at the beginning of the entire game, an informed or uninformed trader is chosen. Once the

informed trader is chosen, he trades in every period. In our model, in every period, there is a random

determination on the trader’s type. Still, we obtain a similar result such that when the number of

trading periods is large, an equilibrium involves manipulation.

The literature has investigated conditions based on the relations between prices and trades that

rule out manipulation (Jarrow, 1992; Huberman and Stanzl, 2004). This paper also relates to that

issue: i.e., our computational method provides a way to study these relations. We then respond to the

questions of when manipulation arises and when the equilibrium with manipulation is unique.3

Another line of literature that this paper contributes to is the one that studies a problem about the

uniqueness of equilibrium in canonical market microstructure models. In addition to the Glosten–

Milgrom framework, another reference framework is proposed by Kyle (1985). Back (1992) extends

the analysis in Kyle (1985) to a continuous-time version. While the uniqueness of the optimal in-

formed trader’s strategy either in the original Kyle model or Back (1992) remains unknown, McLen-

nan et al. (2017), Boulatov and Taub (2013), and Boulatov et al. (2005) prove the uniqueness under

2Although our main concern in this paper is the dynamic strategic informed trader, there are works that study the

dynamic informed market maker. For example, see Calcagno and Lovo (2006).
3Our focus in this paper is trade-based manipulation and its effect on prices. Goldstein and Guembel (2008) study

manipulation and its effect on a firm’s investment problem. Then, they show that the informed trader can profit from

manipulation, and then identify a fundamental limitation inherent in the allocational role of stock prices.
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some technical assumptions. Back and Baruch (2004) study the equivalence of the Glosten–Milgrom

model and the Kyle model in a continuous-time setting and show that the equilibrium in the Glosten–

Milgrom model is approximately the same as that in the Kyle model when the trade size is small

and uninformed trades occur frequently. Given these two closely related frameworks as a proxy for a

continuous-time model, our analysis shows the possibility of multiple equilibria and provides insights

concerning uniqueness within these frameworks. Finally, Back and Baruch (2004) conclude that the

continuous-time Kyle model is more tractable than the Glosten–Milgrom model, although most mar-

kets follow a sequential trade model. The model in this paper is a discrete-time version of Back and

Baruch (2004)’s Glosten–Milgrom model.

Furthermore, the Glosten–Milgrom framework in Back and Baruch (2004) is a continuous-time

stationary case and their program attempts to find the value functions as a fixed point. To do this, they

use an extrapolation method that requires calculation of the slopes of the value functions. Because

of this problem, Back and Baruch (2004) wrote that even though all the equilibrium conditions hold

with a high degree of accuracy, the strategies were not estimated very accurately when manipulation

arises. Our computational method proposes an alternative approach to study manipulation.

The remainder of the paper is organized as follows. Section 2 details the model. Section 3 presents

the theoretical results. Section 4 describes the computational procedure and illustrates the results from

the numerical simulations. Section 5 concludes by discussing further research directions.

2 The Model

In this section, we present our model, which is a discrete-time version of the Back and Baruch (2004)’s

Glosten–Milgrom model. There is a single risky asset and a numeraire. The terminal value of the risky

asset, denoted θ̃, is a random variable that can take a low or high value, i.e., L or H , where L = 0 and

H = 1. We assume that Pr(θ̃ = H) = δ0 for some δ0 ∈ (0, 1). There is a single long-lived informed

trader who learns θ̃ prior to the beginning of trading.

Trade occurs in finitely many periods t. We use the number of remaining trading periods to

identify a period; thus, in period t, there are t trading periods remaining. Thus, period 1 is the last

trading round. In each period, a single trader comes to the market, the market maker quotes bid and

ask prices for the risky asset, and the trader either buys one unit or sells one unit. The agent who

goes to the market in period t is a random variable unobserved by the market maker, such that with

probability µ the informed trader is selected. If the informed trader is not selected, the agent selected

is a “noise” or “liquidity” trader who (regardless of the quoted prices) buys with probability γ and

sells with probability 1 − γ. The identities of the selected traders, and the values of the liquidity
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trader’s trades, in the various periods are independent random variables.

We focus on equilibria where the market maker’s belief and the number of remaining time periods

determine an equilibrium strategy. The set of possible actions for the informed trader is denoted by

{+1,−1}, in which +1 is a buy order and −1 is a sell order. Here, the market maker’s belief b is

the probability, from the market maker’s point of view, that the state is high, going into period t. The

market maker’s ask and bid prices are functions of the market maker’s belief and are given by the

functions αt : [0, 1]→ [0, 1] and βt : [0, 1]→ [0, 1], respectively. For each type θ of informed trader,

a trading strategy σθt : [0, 1] → [0, 1] for θ ∈ {H,L} specifies a probability distribution over trades

in period t with respect to the bid and ask prices posted in period t. In period t, the type-H informed

trader buys the security with probability σHt(b) and sells with probability 1− σHt(b), and the type-L

trader buys and sells with probabilities 1− σLt(b) and σLt(b), respectively.

The market maker’s posterior belief after observing an order is updated using Bayes’ rule on the

posterior probability that θ̃ = H . As the value of the asset is either 0 or 1, the market maker’s prior

belief b is equal to the expected value of the risky asset conditional on his information going into

period t. Define the bid and ask functions A,B : [0, 1]3 → [0, 1] by the formulas:

A(b, x, y) = [(1−µ)γ+µx]b
(1−µ)γ+µbx+µ(1−b)(1−y)

and B(b, x, y) = [(1−µ)(1−γ)+µ(1−x)]b
(1−µ)(1−γ)+µb(1−x)+µ(1−b)y ,

where x is the probability that the type-H informed trader buys, while y is the probability that the

type-L trader sells.

Now, the market maker is really to be thought of as a competitive market of risk-neutral market

makers, e.g., a pair of market makers in Bertrand competition or a continuum of identical market

makers. The equilibrium condition for the market maker is zero expected profits, which amounts to

setting ask and bid prices equal to the posterior expected values of the asset.4

Now, we define the Markov equilibrium as follows.5

Definition 1. A Markov equilibrium is a collection of functions {αt, βt, σHt, σLt}t with αt, βt :

[0, 1] → [0, 1], σHt, σLt : [0, 1] → ∆({+1,−1}) and Jt, Vt : [0, 1] → IR such that for each t

and b ∈ [0, 1],

(E1) αt(b) = A(b, σHt(b), σLt(b)) and βt(b) = B(b, σHt(b), σLt(b)).

4Biais et al. (2000) justify this assumption by showing that when there are infinitely many market makers, their

expected profit converges to zero. More recently, Calcagno and Lovo (2006) show that a market maker’s equilibrium

expected payoff is zero if he is uninformed.
5Imagine that the market maker observes the sequence of realized trades for up until period t and updates his belief.

Observing the history of realized trades, the informed trader can also find out what the market maker’s belief b is. In this

sense, this is a reduced form of equilibrium.
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(E2) αt(b) ≥ βt(b).

(E3)

σHt(b) =





0, 1− αt(b) + Jt−1(αt(b)) < βt(b)− 1 + Jt−1(βt(b)),

1, 1− αt(b) + Jt−1(αt(b)) > βt(b)− 1 + Jt−1(βt(b)),

and

σLt(b) =





0, −αt(b) + Vt−1(αt(b)) > βt(b) + Vt−1(βt(b)),

1, −αt(b) + Vt−1(αt(b)) < βt(b) + Vt−1(βt(b)).

(E4)

Jt(b) = µ [σHt(b)(1− αt(b) + Jt−1(αt(b))) + (1− σHt(b))(βt(b)− 1 + Jt−1(βt(b)))]

+(1− µ) [γJt−1(αt(b)) + (1− γ)Jt−1(βt(b))] ,

and

Vt(b) = µ [(1− σLt(b))(−αt(b) + Vt−1(αt(b))) + σLt(b)(βt(b) + Vt−1(βt(b)))]

+(1− µ) [γVt−1(αt(b)) + (1− γ)Vt−1(βt(b))] .

We see that (E1) states that the ask and bid prices are Bayesian updates of b conditional on the

type of order received; (E2) states that there is no arbitrage opportunity; (E3) states that both types of

informed seller optimize their order, considering the effect on the expected profits from future trades;

and (E4) specifies the recursive computation of value functions. Implicitly we are assuming that the

functions J0 and V0 are identically zero.

3 Theoretical Analyses

This section consists of three parts. In the first subsection, we provide the set of conditions for the

unique existence of an equilibrium. In the second subsection, we state our main theorems. The

first theorem proves the existence of equilibrium under the monotonicity and continuity of the value

functions with respect to the market maker’s belief. The second theorem shows that there is a µ̄ such

that for every µ ≤ µ̄, a unique tame equilibrium, which satisfies the set of desired conditions for the

unique equilibrium, exists. In the last subsection, Proposition 2 provides a condition for the existence

of multiple equilibria.
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As we see from the following analysis, solving analytically for an equilibrium strategy in the

general model is not tractable. Our idea of finding equilibria in this model is backward induction. We

will use some properties of value functions to identify the conditions under which there is a unique

equilibrium. In period 1, the informed trader does not have a chance to re-trade and therefore does

not manipulate. Thus, we know the period 1 value functions of prior beliefs. As we explain further

in Section 4, given the next period value functions, we solve for the current period value functions.

In this way, we focus on the decision-making problem of the informed trader in period t, given the

period-(t−1) value functions. As Theorem 1 states, we will obtain the set of conditions for the period-

(t−1) value functions, and given these conditions, we will have a desired equilibrium in period t. We

first provide the set of conditions for the existence of a unique equilibrium.

As we show in Proposition 1, manipulation arises only when the value functions are steep. In

general, when the number of trading periods becomes large, there are two separate intervals in which

the value functions are steep, which we call cases (a) and (b). In case (a) when the market maker

assigns a very low probability to the true state, the value function is very steep and the informed trader

can exploit this opportunity to fool the market. In case (b) when the market maker assigns a very high

probability to the true state, the cost of manipulation is very low and it is easier for the informed trader

to recoup the loss caused by manipulation. When cases (a) and (b) arise simultaneously, there can be

an interval of market maker’s beliefs over which both types’ value functions are steep and both types

can manipulate. Then multiple equilibria exist. Otherwise, the equilibrium is unique.

In Theorem 2, a key element is the number of remaining trading periods. Because t is the number

of trades that the informed trader could possibly make, we segment the time interval [0, 1] into time

periods of length ∆t, i.e., the time between two trades. When µ goes to 0 in this setting, it is natural

to ask whether the equilibrium prices in our discrete time setting converge to Brownian motion in a

continuous time setting. Bearing in mind this question, in Proposition 2, we consider the case such

that µ is small. Let r > 0 and ∆t = µr. As we show at the end of this subsection, the setting when

r = 2 fits the situation where the belief process has increments, which has mean zero and variance

∆t. This setting at the limit corresponds to Brownian motion. In Proposition 2, we show that indeed

r = 2 is the boundary case between the unique and multiple equilibria in the symmetric case where

the likelihood of the liquidity buy order γ is equal to 1
2
.

3.1 Manipulative Strategy and Tame Equilibrium

We start by defining two important concepts: i.e., a manipulative strategy and a tame equilibrium. We

say that a strategy is manipulative if with a strictly positive probability, it involves the informed trader
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undertaking a trade in any period that yields a strictly negative short-term profit.

Definition 2. For θ ∈ {H,L} we say that the type-θ trader takes a manipulative strategy at b in period

t if σθt(b) < 1.6

Define the symbol ∂+ such that for each b ∈ [0, 1] and a function f : [0, 1]→ IR,

∂+f(b) = lim
ε→0+

f(b+ ε)− f(b)

ε
. (1)

Then we define the following four conditions:

Cs Js and Vs are continuous and piecewise differentiable;

Ms Js is strictly decreasing and Vs is strictly increasing;

SHs if bH satisfies ∂+Js(bH) ≤ −1− δH(µ), then ∂+Js(b) ≤ −1− δH(µ) for every b ∈ [0, bH);

SLs if bL satisfies ∂+Vs(bL) ≥ 1 + δL(µ), then ∂+Vs(b) ≥ 1 + δL(µ) for every b ∈ (bL, 1].

Definition 3. We say that a period-t Markov equilibrium is tame if the value functions in period t

satisfy conditions Ct, Mt, SHt and SLt. We say that a Markov equilibrium is tame if for every s, a

period-s Markov equilibrium is tame.

Cs states that the value functions are continuous and Ms states that the value function is mono-

tone with respect to the market maker’s belief. Theorem 1 of the next subsection will show that an

equilibrium exists under these two conditions. SHs and SLs state that the value functions can be split

into two regions where in one region, the slope is steep, while in the other regions, it is not.

Fix b ∈ (0, 1) and σ = (σH , σL) ∈ Et(b), and let α = A(b, σH , σL) and β = B(b, σH , σL) be the

pair of equilibrium ask and bid prices associated with b and σ in period t.

Lemma 1. In equilibrium, α > b > β and σH + σL > 1 in period t.

Proof. When t = 1, nobody manipulates in equilibrium and we obtain the first statement by Bayes’

rule. Now, suppose that t > 1. By (E2), we must have α ≥ β. To show the inequality is strict,

suppose that α = β. Then by Bayes’ rule, σH = 1− σL, which leads to α = β = b. Then the payoffs

(3) are:
1− b+ Jt−1(b) > β − 1 + Jt−1(b);

−b+ Vt−1(b) < β + Vt−1(b).

Then (E3) implies that σH = 1 and σL = 1, which contradicts σH = 1− σL.
6This is the same definition used by Chakraborty and Yilmaz (2004a). Back and Baruch (2004) use the term “bluffing”

instead, while Huberman and Stanzl (2004) define “price manipulation” as a round-trip trade. Also see Footnote 1.
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In equilibrium, the type-H trader does not sell with probability one and the type-L trader does

not buy with probability one. This means that the informed trader either trades on his information

or assigns a positive probability to both buy and sell orders. In the latter case, the informed trader is

indifferent between buy and sell orders.

Lemma 1 indicates that even when the informed trader manipulates, a strictly positive amount of

information comes into the market in each period, which leads to a strictly positive bid and ask spread.

This motivates consideration of the slopes of the value functions in the interval between these prices.

By Lemma 1, the bid–ask spread α− β is strictly positive.

The next proposition provides a condition for manipulation by SHt−1 and SLt−1, and Lemma 1.

Because β < α by Lemma 1, when the type-H manipulates, β must be in the region where the slope

of the type-H’s value function is smaller than −1− δH(µ). Therefore, if there are two bid prices for

which the type-H manipulates, the slope between the two points must be steeper than −1. This is

formally summarized into the next proposition.

Proposition 1. Suppose that Ct−1, Mt−1, SHt−1 and SLt−1 hold in period t− 1. In equilibrium, the

following hold.

H. If the type-H trader manipulates at b, then Jt−1(β0)−Jt−1(β1)
β0−β1 < −1 for any β0, β1 ≤ β.

L. If the type-L trader manipulates at b, then Vt−1(α0)−Vt−1(α1)
α0−α1

> 1 for any α0, α1 ≥ α.

Proposition 1 indicates that manipulation could arise only in a region where the value function is

steep. This is intuitive: i.e., the informed trader manipulates when the change in the future payoff

from manipulating is large. In other words, the informed trader knowingly makes a loss when the

value function is steep because the manipulation makes a difference to the future payoff, which is

represented by the slope of the value function.

As discussed in Back and Baruch (2004), the informed trader trades gradually in the Kyle (1985)

model as well as their model, because the informed trader may otherwise lose his informational ad-

vantage. In our model, manipulation arises in a similar way. It is not optimal for the informed trader to

trade with probability one according to their information. Furthermore, manipulation or bluffing may

be possible in the Kyle (1985) model. In the Kyle (1985) model, the market maker cannot distinguish

between buy and sell orders, but can only see aggregate orders. Back and Baruch (2004) show that

as the trade size decreases, the trade rate of each informed trader in the Kyle (1985) model converges

to the net trade rate of each informed trader in a dynamic version of the Glosten and Milgrom (1985)

model, which is given by the difference between buy and sell strategies, σH − (1− σH) in our model.
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3.2 Main Results

Here, we state our two main theorems. For b ∈ [0, 1] and t < +∞, let

Et(b) = {(σHt(b), σLt(b)) : for the αt(b) and βt(b) given by (E1), (E2) and (E3) hold}.

Theorem 1. Suppose that a period-(t−1) Markov equilibrium exists, and Ct−1 and Mt−1 are satisfied

in period t− 1. Then Et(b) is nonempty.

The proof of Theorem 1 uses Kakutani’s fixed point theorem. The proofs appear in Appendix I,

unless stated immediately after each result.

We now classify equilibria according to the types of trader that sometimes trade against their

information. As there are two types of informed trader, there are four possible scenarios in terms of

who manipulates. In every t, an equilibrium σt is in Regime ∅ if σt = (1, 1). It is in Regime L if

σLt < 1 and σHt = 1; it is in Regime H if σLt = 1 and σHt < 1; and it is in Regime HL if σLt < 1

and σHt < 1. We say that a regime arises at a belief b in period t if Et(b) contains an equilibrium in

that regime.

Theorem 2. Fix r > 0. Let t ∈ {1, · · · , b 1
µr
c}. There is µ̄ such that for every µ ≤ µ̄, a tame Markov

equilibrium exists, and satisfies the following description.

• If r < 2, the Markov equilibrium exists uniquely and is tame. Furthermore, the equilibrium bid

and ask prices are monotonically increasing with respect to prior beliefs in every period.

• If r ∈ (0, 1], manipulation does not arise;

• If r ∈ (1, 2), manipulation arises at some period t ∈ {b 1
µ
c + 1, · · · , b 1

µr
c}, while Regime HL

never arises.

A key insight of our main result in this section is as follows. When µ is small, the slope of the

value function becomes similar in magnitude across beliefs. When r is smaller than 1, the number of

trading periods is not large enough for manipulation to arise. When r is between 1 and 2, the number

of trading periods is large enough that one type of informed trader manipulates, and manipulation

could arise in some period when the cost of manipulation is not large. This is case (b) manipulation

that we have described in the previous section. Now, when r is greater than 2, the number of trading

periods is large enough for both types to manipulate in some period t. This is the situation where case

(a) and case (b) manipulations arise simultaneously.
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Another interesting part of Theorem 2 is the condition for the unique equilibrium. When the num-

ber of trading periods is too small, manipulation itself does not arise. The second theorem specifies

the intervals of µr for which the unique equilibrium with market manipulation arises.

In general, SHt and SLt do not hold when the number of remaining trading periods t is large

compared with µ, i.e., µt is large. When b is equal to zero there will be no manipulation. By using

Bayes’ rule, it is not difficult to calculate7 that for all t,

∂+Vt(0) =
tµ(1− µ)(1− γ)

µ+ (1− µ)(1− γ)
and ∂+Jt(1) =

−tµ(1− µ)γ

µ+ (1− µ)γ
. (2)

By (2), even when the market maker knows the true state, the slopes of the value functions increase

geometrically. This is useful in understanding how SHs and SLs fail. By Proposition 1, the type-H

or the type-L trader manipulates when the slopes of the value functions are steep. When SHs and

SLs hold, manipulation arises only when the market maker is very wrong. However, when t is large

compared with µ, then as in (2), the value functions can be steep near the points where the market

maker is almost correct. Then there are two separate regions in which manipulation arises. One is

when the market maker is almost correct, while the other is when the market maker is very wrong.

Thus, these two types of manipulation can co-exist when this happens and there are multiple equilibria

as a result.

In the proof of Theorem 2, we use the following two conditions instead of SHs and SLs. The

idea is that when µ is small, the value functions become close to linear. Then we can analyze when

the slopes become steep enough for manipulation to arise. By showing that when DHs and DLs hold

(see Lemma I-7 in Appendix I), SHs and SLs also hold, we can gain the tractability of the situation

where manipulation may arise.

Formally, we say that conditions DHs and DLs are satisfied if for every εH and εL,

DHs for every b ∈ (0, 1), |∂+Js(b) + µs| < εH ;

DLs for every b ∈ (0, 1), |∂+Vs(b)− µs| < εL.

The proof of Theorem 2 is in Appendix I, and works in the following way. As discussed earlier,

in period 1, the informed trader does not manipulate and we know what the period 1 value functions

are. By using these period 1 value functions, we can show that the period 1 value functions satisfy

the conditions for a tame equilibrium. Thus, mathematical induction is applicable. Fix r > 0. Let the

total number of trading periods be b 1
µr
c and t > 1. By mathematical induction, assume that there is µ̄

such that for every µ < µ̄, Ct−1, Mt−1, DHt−1 and DLt−1 hold in period t−1. Fix µ < µ̄ arbitrarily.
7The detailed calculations are available from the author.
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We will show that Ct, Mt, DHt and DLt hold in period t. In this way, we can truncate the decision

problem of the informed trader into two periods: i.e., the next period (period t − 1) and the current

period (period t). Let r < 2. Then we can show that the equilibrium strategy is unique in period t.

Then we will show that the value functions {Jt, Vt} also satisfy Ct, Mt, DHt and DLt.

3.3 Multiple Equilibria

Fix r > 0. As our approach is to split a unit interval into 1
∆t

segments, it is natural to question what

the equilibrium prices converge to, when µ converges to 0, and whether the equilibrium prices in our

discrete time setting converge to Brownian motion in a continuous time setting. To see the connection,

let µ =
√

∆t (which is r = 2) and from (11) and (12), when µ is sufficiently small,

αt(b)− b ≈
∆

γ

√
∆t

and

b− βt(b) ≈
∆

1− γ
√

∆t

where

∆ = ∆(b, σH , σL) = µb(1− b)(σH − 1 + σL).

Notice that when the belief in period t is b, the belief in period t − 1 is either αt(b) or βt(b). When

the belief process is Brownian motion, the belief process has increments, which has mean zero and

variance ∆t. Because r = 2 fits this setting, it is worth exploring this case. When r = 2 and µ is

small, by some calculation (see the proof of Proposition I-6 in Appendix II for the details), we obtain:

(αt(b)− βt(b))
µr−1

≈ b(1− b)(σH − 1 + σL)

(
1

γ
+

1

1− γ

)
.

By substituting the above into (30), we can see that whether a pair of bid and ask prices to satisfy (29)

exists depends on γ. Still, the following result holds.

When r > 2, the number of trading periods is large enough relative to the informed trading

probability and then Regime HL can arise. We prove this result when γ = 1
2
. Indeed, Proposition 2

shows that r = 2 is the boundary case between the unique and multiple equilibria in the symmetric

case of γ = 1
2
.

Proposition 2. Fix r > 0 and µ ≤ µ̄. Let γ = 1
2
. Consider period t ≤ T .

• When r = 2 and t < b 1
µr
c, the unique equilibrium is tame. Moreover, in equilibrium, one type

of trader manipulates in period t while Regime HL never arises.

13



• When r > 2 and t > b 1
µr
c+ 1 is sufficiently large, Regime H , Regime L, and Regime HL arise

at b = 1
2

in period t.

When γ = 1
2
, it is not difficult to prove that there is a symmetric equilibrium in the sense that

when σ ∈ Et(b), σ̃t(1 − b) where σ̃L = 1 − σH . Then, when b = 1
2
, if the type-H manipulates, the

type-L also manipulates. In our proof given in Appendix I, we show that within each regime, there

is at most one equilibrium, and in equilibrium either only one regime exists, or three regimes coexist.

Thus, when regimes H and L coexist, there are indeed three equilibria. Intuitively, when the number

of trading periods becomes large, the value functions become steep so that Regime HL arises and

three regimes coexist when b = 1
2
. However, until this happens, there is only one equilibrium.

4 The Computation Procedure and Simulation Results

In this section, we lay out the procedure to compute the equilibrium in our model. The following

summarizes our procedure. First, we segment [0, 1] into a grid with N cells of equal sizes.

1. We start with the terminal period 1. In period 1, nobody manipulates; thus, we can compute the

period 1 value functions using Bayes’ rule. We linearly interpolate the period 1 value functions

into N grid points.

2. Given linearly interpolated J1 and V1 for each grid point, we solve a system of equations such

that each type of trader is indifferent between buying and selling by using Bayes’ rule. We

further check if the strategy we compute for each trader satisfies optimality. In this way, we

check which regime arises in each grid point belief.

3. We find a pair of equilibrium prices for each grid point belief.

4. We compute the period 2 value functions. Then, we repeat the same procedure from Step 2.

In Appendix III, we describe the computation procedure in more detail including equations that in

each regime, the equilibrium strategy must satisfy in the simulation.

Characteristics of Equilibrium

We first consider γ = 1
2
, so that the equilibrium is symmetric. Figure 1 exhibits the equilibrium

bid and ask prices with respect to the market maker’s prior belief for periods 1 and 400. The solid

curves that present the highest and lowest points represent the ask and bid prices for the case where

14



there is no manipulation. In the bid and ask price figures, there is a region of beliefs in which the

bid or ask prices differ between the periods. It is in this region of beliefs that manipulation arises in

equilibrium. As the informed trader’s strategy differs between periods because the manipulation rate

is time-dependent, the bid and ask prices also differ between periods. Although it is obvious from

Bayes’ rule, from this figure we can also see that manipulation indeed decreases the bid–ask spread

for every belief in (0, 1).
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ց
Ask Prices

տ
Bid Prices

Prior Belief
Figure 1: Bid and ask prices when µ = 0.5, γ = 0.5, t ∈ {1, 400}

Note: The figures show bid and ask prices in two periods t = 1 and 400. The outer lines are for t = 1 and the inner lines

are for t = 400.

There is rich empirical evidence that shows that the adverse selection component in the bid–ask

spread increases as the announcement date gets close. Krinsky and Lee (1996) use the sample of

quarterly earnings announcements taken from the PR Newswire database and find that the adverse

selection cost increases as earnings announcements approach. By using the data on New York Stock

Exchange-listed companies, Koski and Michaely (2000) find that information asymmetry as mani-

fested in trade size and the information environment of the trade has an impact on both prices and liq-

uidity, and the price impact of trades is largest in magnitude during announcement periods. Venkatesh

and Chiang (1986) studies three groups of announcements: i.e., (a) joint announcements, (b) initial

announcements, and (c) second announcements by using a random sample of 75 stocks in the New
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York Stock Exchange, and find a significant increase in information asymmetry before second an-

nouncements. Their interpretation is that market participants suspect an unusual announcement and

increase in information asymmetry when the second announcement is separated from the first one.

Our simulation results have a similar feature in that bid–ask spreads for a given belief are the

largest in period 1 just before a public announcement. This is also similar to the theoretical finding in

Calcagno and Lovo (2006). In Calcagno and Lovo (2006), we observe this because the winner’s curse

increases when the terminal period gets closer. In our analysis, this is a direct consequence of the

fact that there is no manipulation in period 1. Although our mechanisms differ, we observe a similar

result here as well. Furthermore, because of our setting, b− βt(b) or αt(b)− b can be thought of as a

price impact, and the price impacts for a given belief are also the largest in period 1. This is a similar

feature to the empirical finding in Koski and Michaely (2000).

In equilibrium, the type-H trader does not sell with probability one and the type-L trader does

not buy with probability one. This means that the informed trader either trades on his information

or assigns a positive probability to both buy and sell orders. In the latter case, the informed trader

is indifferent between buy and sell orders. This motivates consideration of the slopes of the value

functions.

Manipulation

The results of the simulation also show that both cases (a) and (b), which we have discussed in

Subsection 3.1, arise. By symmetry, we focus on the type-H trader. In case (a), the type-H trader

manipulates in a region of beliefs close to 0. This result may sound somewhat counterintuitive be-

cause, e.g., if the type-H trader manipulates in a region of beliefs close to 0, the bid price will be

very low and the trader can only obtain a little money. However, to affect the future payoffs through

the updating of the market maker’s beliefs, they manipulate when the bid–ask spread is small and the

slope of the next-period value function is steep. From the lower panels of Figure 2, we can see that

when the market maker assigns a very low probability to the true state, the value functions are very

steep.

To take a more careful look at a manipulative strategy, the second figure of the lower panel in Fig-

ure 2 shows the equilibrium strategy for the type-H in the [0, 1] interval of prior beliefs. Interestingly,

we can see that when the prior belief is close to 1, the type-H trader also manipulates. This is case

(b) manipulation and consistent with our following calculation in 2. When the belief is very close to

0, the market maker almost knows the value of the asset. As shown in Proposition 2, the slopes of

the value functions increase geometrically. As a result, the type-H starts to manipulate as the number
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(a) Value functions when t ∈ {200, 300, 400}
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(b) Value functions when t ∈ {1, 100, 200, 300, 400} and manipulation rates when t ∈ {200, 300, 400}
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Figure 2: Value functions and manipulation rates when µ = 0.5 and γ = 0.5

Note: The left-hand side figure of the upper panel shows value functions in three periods t = 200, 300, 400. In the
second figure, the lowest line is for t = 200 and the highest line is for t = 400. In the lower panel, the left-hand side
figure shows value functions at five periods t = 10, 100, 200, 300, 400. The lowest line is for t = 10 and the highest line
is for t = 400. The second figure of the lower panel shows informed trading strategies in three periods
t = 200, 300, 400. The lowest line is for t = 400 and the highest line is for t = 200.
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of remaining trading periods increases. From the left-hand side of the lower panel in Figure 2, we

can see that the value functions become steeper near the edges when the number of remaining periods

increases.

Table 1 describes how manipulation starts to arise when the market maker is almost correct or

very wrong. In a sense, there are two types of manipulation. Manipulation for r ∈ (1, 2) corresponds

to that which arises when the market maker is almost correct. Our simulation shows that as the slope

becomes steeper, manipulation arises only when the market maker is very wrong. In other words, the

other type of manipulation disappears and the remaining type of manipulation expands. This conveys

the intuition that the slopes of the value functions are indeed an incentive for the informed trader, and

as they increase, manipulation begins to take place over a wider range. In this way, Regime HL

b = 0.01 b = 0.02 · · · b = 0.98 b = 0.99
t = 11 L ∅ · · · ∅ H
t = 12 L H · · · L H
t = 13 H H · · · L L

Table 1: Regimes and beliefs for t = 11, 12, 13

starts to arise in our simulation as each region that each type of trader manipulates overlaps with the

other. In our simulation, in period t = 152, Regime HL starts to arise at belief 0.5, and it starts to

arise similarly at beliefs b = 0.01 or 0.99 in period t = 271.8 As the market maker is completely

wrong at b = 0 or 1, the informed trader does not manipulate because the prices are favorable for the

type-H (b = 0) trader. However, in the region close to b = 0, as the value function is steep, the type-H

trader manipulates around b = 0. Therefore, there is a spike in the rate of informed trading near the

edges. As we can see from the right-hand side figure of the lower panel in Figure 2, there appears to

be a discontinuity in the informed strategy when the market maker is very wrong. The important idea

in our theory of a tame equilibrium is to make manipulation arise near the other edge (i.e., when the

market maker is almost correct) and not near this edge (i.e., when the market maker is very wrong).

As we can see in Figure 2, the value functions are not globally convex. Near b = 0, some parts

appear to be concave. Thus, manipulation arises as the slope near b = 0 becomes sufficiently steep.

This manipulation remains in the unique equilibrium when µ becomes sufficiently small and t is

8From Figure 1, it may be difficult to see that at b = 0.5, the bid and ask prices in Regime ∅ differ from the simulated

prices for t = 201, · · · , 400, because the manipulation rates at b = 0.5 are quite small. Indeed, the bid price without

manipulation is 0.25 and the ask price without manipulation is 0.75, while the simulated equilibrium bid prices for these

periods range from 0.2511 to 0.2528 and the ask prices for these periods range from 0.7489 to 0.7472.
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sufficiently large. In other words, when the value functions become sufficiently “linear,” the moment

when the market maker begins to make a mistake is the only opportunity to manipulate.

Multiple Equilibria

In our simulation results, we also observe multiple equilibria. A unique equilibrium without manipu-

lation arises in the earlier periods, then a unique equilibrium with manipulation starts to arise. Finally,

multiple equilibria arise in the later periods. For example, when µ = 0.2, a unique equilibrium with

manipulation starts to arise in period t = 22, and then multiple equilibria arise in period t = 52. When

the number of trading periods grows more rapidly than the informed trading probability, Regime HL

arises. However, if there are not enough trading periods, manipulation itself does not arise.

Effects of an Asymmetric Liquidity Distribution

To this point, we have considered the symmetric case in the sense that the liquidity for a buy is equally

likely as the liquidity for a sell. Here we consider how an asymmetric liquidity distribution affects bid

and ask prices and who manipulates in equilibrium. The following two figures in Figure 3 show the

bid and ask prices, as well as value functions, when γ = 0.2. Note that the type-H trader at belief b

when γ = 0.2 is a mirror image of the type-L trader at belief 1 − b when γ = 0.8. We also observe

that the informed trader manipulates when the slope is steep. As we can predict from Bayes’ rule, as

γ decreases, the type-H trader’s value functions are positioned closer to 0. As such, the region where

its value functions are steep becomes smaller and the region in which the type-H trader manipulates

become more restricted.

5 Concluding Remarks

In this paper, we developed a model of dynamic informed trading from a canonical framework in

the market microstructure literature. We make a fundamental contribution to the literature by pro-

viding a theorem describing conditions under which a unique equilibrium exists. We also provided a

computational method to find equilibria.

The model in this paper is a theoretical depiction of quote-driven markets with competitive market-

making, as in Glosten and Milgrom (1985) and Ozsoylev and Takayama (2010). Quote-driven markets

are common in over-the-counter (OTC) markets. The Nasdaq and London Stock Exchange Auto-

mated Quotation system are two examples of quote-driven markets with competitive market-making,
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Figure 3: Bid and ask prices when µ = 0.5, γ = 0.2, t ∈ {1, 10, 20}

Note: The figures show bid and ask prices in three periods t = 1, 20, 400. The innermost lines are for t = 20 and the
outermost lines are for t = 1. The lowest lines correspond to t = 1 and as the number of periods increase, the lines move
upward.

although the Nasdaq has become more of an order-driven market such as the New York Stock Ex-

change. OTC markets have created renewed interest in the literature, particularly because after the

2007–2008 subprime lending crisis, OTC markets were blamed as opaque financial markets (for fur-

ther discussion, see Monnet and Quintin, 2017a,b; Glode and Opp, 2018). Pagano and Volpin (2012)

develops a model to study the impact of transparency on the market for structured debt producers

within the primary and secondary markets. Bolton et al. (2016) describes how OTC markets emerge

even in the presence of well-functioning centralized exchanges. Babus and Hu (2017) proposes a

theory of endogenous intermediation in OTC markets, while Babus and Kondor (2018) proposes a

model of trading in OTC markets and studies the effect of trade decentralization and adverse selection

on information diffusion.

Although this paper provides a framework for studying the dynamic strategy of the informed trader

and price formation within quote-driven markets with competitive market-making, one limitation of

the model is that the informed trader cannot choose to not trade. Allowing this strategy significantly

complicates the analysis. Alternatively, in our model, we can introduce the situation in which one

type of informed trader trades more frequently than the other type, i.e., in the high state, the informed

trading probability is µH and in the low state, it is µL. Our analysis still holds with this setting of
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different informed probabilities because our analysis relies mainly on the shapes of the value functions

and, as we see in the two-period case, bid and ask prices can be expressed by using the probability

of buy orders in each state. However, it simply complicates the formulation of Bayes’ rule and this

generalization does not change the results substantially. Therefore, we have kept the current setting.

From our analysis, several important research questions arise. While our model uses a discrete

setting, as the limit of our setting with sufficiently small µ could converge to a continuous-time set-

ting, our paper can add some insights into the literature on continuous-time models. One fundamental

problem in financial econometrics is to identify the stock price dynamics accurately and analyze how

a different market structure affects these dynamics. Many more studies address the relationship be-

tween prices and dynamic trading in a continuous-time setting.9 De Meyer (2010) studies an n-times

repeated zero-sum game of incomplete information and shows that the asymptotics of the equilib-

rium price process converge to a continuous martingale of maximal variation (hereafter CMMV). As

De Meyer (2010) points out, this CMMV class could provide natural dynamics that may be useful in

financial econometrics, although it remains an open question as to whether the equilibrium dynamics

in a nonzero-sum game still belong to the CMMV class.

First, given the association with De Meyer (2010), our paper provides a fundamental framework

for a nonzero-sum trading game. Adding a time discount factor to the informed trader’s profit to bring

our analysis into a continuous-time setting is an obvious extension. Extending our analysis for the

case of sufficiently small µ to see how our results are related to those works is an interesting research

agenda.

More specifically, it is not difficult to prove that when there are multiple tame Markov equilibria

in period t, and the equilibria strategies are given by (x̄HL, ȳHL) (Regime HL), (1, ȳL) (Regime L),

and (x̄H , 1) (Regime H).10 Then the following holds:

Vt(b, x̄H , 1) > Vt(b, x̄HL, ȳHL) > Vt(b, 1, ȳL); and

Jt(b, x̄H , 1) < Jt(b, x̄HL, ȳHL) < Jt(b, 1, ȳL),

9Brunnermeier and Pedersen (2005) consider the dynamic strategic behavior of large traders and show that “over-

shooting” occurs in equilibrium, while Back and Baruch (2007) analyze different market systems by allowing the informed

traders to trade continuously within the Glosten–Milgrom framework. Lastly, within an extended Kyle framework, Collin-

Dufresne and Fos (2012) study insider trading where the liquidity provided by noise traders follows a general stochastic

process and show that even though the level of noise trading volatility is observable, the measured price impact is stochas-

tic in equilibrium.
10The proof is available upon request from the author.
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where

Vt(b, x, y) = µB(b, x, y) + (1− µ)γVt+1(A(b, x, y)) + ((1− γ)(1− µ) + µ)Vt+1(B(b, x, y)));

Jt(b, x, y) = µ(1−A(b, x, y)) + ((1− µ)γ + µ)Jt+1(A(b, x, y)) + (1− γ)(1− µ)Jt+1(B(b, x, y))).

This implies that when the other type manipulates, then the first type obtains the highest payoff in

period t. We have modified the computer program to choose one particular regime whenever there

are multiple equilibria and compare the payoffs from always choosing Regime H , Regime L, and

Regime HL whenever there are multiple equilibria. Our simulation also confirms the theoretical

observation, although it remains unknown whether in the continuous time limit, the value functions

from the different sequence of choosing different regimes converge to one value function or remain

different.

Second, the existence of a unique equilibrium in the Kyle model remains an open question in the

literature. As shown in Back and Baruch (2004), the equilibrium in the Glosten–Milgrom model con-

verges to that in the Kyle model. Our analysis shows that there is a possibility of multiple equilibria.

We could use our analysis to understand how a unique equilibrium in the dynamic Glosten–Milgrom

model converges to the equilibrium in the Kyle model.

Third, one may question whether the market maker’s belief concerning the risky asset’s payoff

converges to the truth as the number of trading periods tends to infinity. Recently, there has been

renewed interest in private information and learning. Examples include Golosov et al. (2009) and

Loertscher and McLennan (2018). Although their settings are quite different from ours, both question

whether uninformed agents discover private information. In the market microstructure literature,

Glosten and Milgrom (1985) originally show that such convergence is obtained almost certainly if the

only available trade size is the unit trade size and an informed trader can trade only once. Ozsoylev

and Takayama (2010) show a similar result where the informed trader can trade only once but in

multiple sizes. We expect that this result will also hold in our framework, as an intuition similar to

the Martingale convergence theorem holds when the equilibrium is unique. However, as there is a

possibility that multiple equilibria will arise, and especially that both types of trader will manipulate

simultaneously, it would be interesting to see how this type of manipulation affects the market’s

learning.
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Appendix I. Lemmas and Proofs

In Appendix I, we fix b ∈ (0, 1) and σ = (σH , σL) ∈ Et(b), and let α = A(b, σH , σL) and β =

B(b, σH , σL).

Proof of Theorem 1. For (σH , σL) ∈ [0, 1]2 let B(σH , σL) be the pair of posterior beliefs given by

(E1). Evidently B : [0, 1]2 → [0, 1]2 is a continuous function. For (α, β) ∈ [0, 1]2 let BRb(α, β) be

the set of pairs (σH , σL) satisfying (E3). Given that Jt−1 and Vt−1 are continuous, BRb is an upper

semicontinuous correspondence. Its value is always a Cartesian product of two elements of the set

{{0}, [0, 1], {1}}, so it is convex valued. The composition BRb ◦ B is thus an upper semicontinuous

convex-valued correspondence, so Kakutani’s fixed point theorem implies that it has a fixed point.

Suppose that a fixed point (σH , σL) satisfying (E3) does not satisfy (E2) and then α < β. Then

Mt−1 gives:
1− α + Jt−1(α) > β − 1 + Jt−1(β);

−α + Vt−1(α) < β + Vt−1(β).
(3)

Now (E3) implies that σH = 1 and σL = 1, and Bayes’ rule gives α > b > β, a contradiction. Thus

(σH , σL) must satisfy (E2).

Lemma I-1. A(b, x, y) is a strictly increasing function of x and y, B(b, x, y) is a strictly decreasing

function of x and y, and A(b, x, y) > (=, <) B(x, y) if and only if x + y > (=, <) 1. If x + y > 1,

then

0 <
∂A

∂x
(b, x, y) <

∂A

∂y
(b, x, y) and 0 >

∂B

∂y
(b, x, y) >

∂B

∂x
(b, x, y).

Proof. The monotonicity claims are obvious and it is easy to see that A(b, z, 1− z) = b = B(b, z, 1−
z). If x+ y > 1, then

A(b, x, y) > A(b, x, 1− x) = b = B(b, x, 1− x) > B(b, x, y)

by monotonicity, and similarly if x + y < 1. The claims concerning the partial derivatives can be

verified easily by computing them.

Proof of Proposition 1. Suppose that t > 1. If the type-H trader manipulates, it must be the case that

1− α + Jt−1(α) = β − 1 + Jt−1(β), so we have:

Jt−1(α)− Jt−1(β)

α− β =
α + β − 2

α− β = −1− 2− 2α

α− β . (4)

Similarly, if the type-L trader manipulates, we have:

Vt−1(α)− Vt−1(β)

α− β =
α + β

α− β = 1 +
2β

α− β . (5)
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Then (4) and (5) indicate the required results.

Proposition I-1. The period 1 value functions {J1, V1} satisfy C1, M1, SH1 and SL1.

Proof. Note that in period 1, Regime ∅ arises in the whole interval [0, 1] as there is no chance to

re-trade. That σH1 and σL1 are identically one is an immediate consequence of optimization, and the

equations are derived by substituting and simplifying.

In any Markov equilibrium, σH1 and σL1 are identically one, and:

α1(b) =
b(µ+ (1− µ)γ)

µb+ (1− µ)γ
and β1(b) =

b(1− µ)(1− γ)

µ(1− b) + (1− µ)(1− γ)
;

J1(b) = µ(1− αt(b)) =
µ(1− b)(1− µ)γ

µb+ (1− µ)γ
and V1(b) = µβt(b) =

µb(1− µ)(1− γ)

µ(1− b) + (1− µ)(1− γ)
.

The four properties follow as a simple consequence of the above formulations.

Define the difference in payoffs between trading for and against the information as follows:

DH(b, x, y) = −A(b, x, y) + Jt−1(A(b, x, y))−B(b, x, y)− Jt−1(B(b, x, y)) + 2;

DL(b, x, y) = B(b, x, y) + Vt−1(B(b, x, y)) + A(b, x, y)− Vt−1(A(b, x, y)).

For each θ ∈ {H,L}, define xθ and yθ by:

xθ :=

{
min{x : Dθ(b, x, 1) = 0} if {x : Dθ(b, x, 1) = 0} 6= ∅;
1 otherwise,

and

yθ :=

{
min{y : Dθ(b, 1, y) = 0} if {y : Dθ(b, 1, y) = 0} 6= ∅;
1 otherwise.

Lemma I-2. Suppose that Ct−1, Mt−1, SHt−1 and SLt−1 hold in period t − 1. If 0 < x̄, ȳ ≤ 1,

x̄+ ȳ > 1, θ ∈ {H,L} and Dθ(b, x̄, ȳ) = 0, then

• the payoff difference Dθ(b, x, ȳ) is strictly decreasing as x increases for all x ≥ x̄;

• the payoff difference Dθ(b, x̄, y) is strictly decreasing as y increases for all y ≥ ȳ.

Proof of Lemma I-2. By symmetry it suffices to prove that DL(b, x, ȳ) and DH(b, x, ȳ) are decreasing

in x. First, consider DL(b, x, ȳ). For a notational simplicity, in this proof, let A(x) = A(b, x, ȳ) and

B(x) = B(b, x, ȳ). By Bayes’ rule, A(x̄) > B(b, x̄, ȳ). Dividing the indifference condition for the

type-L by A(x̄)−B(b, x̄, ȳ) gives

Vt−1(A(x̄))− Vt−1(B(x̄))

A(x̄)−B(x̄)
=
A(x̄) +B(x̄)

A(x̄)−B(x̄)
> 1.
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This shows that A(x̄) > bL. By Bayes’ rule, A(x) is monotonically increasing in x, so for any x ≥ x̄

and ∆ > 0 we have A(x), A(x+ ∆) > bL and consequently

(
Vt−1(A(x+ ∆))− A(x+ ∆)

)
−
(
Vt−1(A(x))− A(x)

)

= (A(x+ ∆)− A(x))

(
Vt−1(A(x+ ∆)− Vt−1(A(x))

A(x+ ∆))− A(x)
− 1

)
> 0.

That is, Vt−1(A(x))−A(x) is an increasing function of x. However, Bayes’ rule and the monotonicity

condition Mt−1 imply that B(x) + Vt−1(B(x)) is a decreasing function of x. As

DL(b, x, ȳ) = B(x) + Vt−1(B(x)) + A(x)− Vt−1(A(x)),

the result follows. Second, considerDH(b, x, ȳ). Similarly, dividing the indifference condition for the

type-H by A(x̄)−B(x̄) gives

Jt−1(A(x̄))− Jt−1(B(x̄))

A(x̄)−B(x̄)
=
A(x̄) +B(x̄)− 2

A(x̄)−B(x̄)
< −1.

This shows that B(x̄) < bH . Therefore, by using Proposition 1 and the same logic as the first case,

we obtain the desired result.

For each θ ∈ {H,L}, define ỹθ : [0, 1]→ [0, 1] by Dθ(b, x, ỹθ(x)) = 0 if Dθ(b, 1, 1) ≤ 0.

Lemma I-3. For each θ ∈ {H,L}, ỹθ is continuous and is strictly decreasing in x.

Proof of Lemma I-3. Suppose that ỹθ is well defined. The continuity of Dθ indicates that ỹθ is also

continuous for each θ ∈ {H,L}. Suppose that x1 > x2 and ỹL(x1) ≥ ỹL(x2). By Lemma I-2:

0 = DL(b, x1, ỹL(x1)) < DL(b, x2, ỹL(x1)) ≤ DL(b, x2, ỹL(x2)),

which is a contradiction to 0 = DL(b, x2, ỹL(x2)). By symmetry, the same holds for ỹH .

Proposition I-2. Suppose that Ct−1, Mt−1, SHt−1 and SLt−1 hold in period t − 1. The following

holds:

(a) if Regime HL arises at b, then DL(b, 1, 1) < 0 and DH(b, 1, 1) < 0;

(b) if DL(b, 1, 1) ≥ 0 and DH(b, 1, 1) ≥ 0, then Et(b) = {(1, 1)}, so that only Regime ∅ arises at b;

(c) if DL(b, 1, 1) < 0 and DH(b, 1, 1) ≥ 0, then Et(b) is a singleton whose unique element is in

Regime L;
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(d) if DH(b, 1, 1) < 0 and DL(b, 1, 1) ≥ 0, then Et(b) is a singleton whose unique element is in

Regime H;

(e) if DH(b, 1, 1) < 0 and DL(b, 1, 1) < 0, then at most one element within Regime H is in Et(b) and

at most one element within Regime L is in Et(b).

Proof of Proposition I-2.

Proof of (a). Suppose that Regime HL arises at b. Then, there must exist (x̄, ȳ) ∈ E(b) with x̄ < 1

and ȳ < 1, such that DH(b, x̄, ȳ) = 0 and DL(b, x̄, ȳ) = 0. By Lemma I-2, we have:

0 = DL(b, x̄, ȳ) > DL(b, x̄, 1) > DL(b, 1, 1). (6)

By symmetry, we can also prove 0 > DL(b, 1, 1). �

Proof of (b). By (a) of this proposition, RegimeHL does not arise. Aiming at a contradiction, suppose

that Regime H arises. Then there exists an x̄ < 1 to satisfy DH(b, x̄, 1) = 0. Then, by Lemma I-2,

we must have DH(b, 1, 1) < 0, which contradicts our assumption. By symmetry, we can prove that

Regime L does not arise. �

Proof of (c). First, as DL(b, 1, 1) < 0 and DH(b, 1, 1) ≥ 0, Regime ∅ does not arise because taking an

honest strategy is not optimal for the low type. Furthermore, by (a) of this proposition, Regime HL

does not arise. Now suppose that RegimeH arises. Then there exists an x̄ < 1 to satisfyDH(b, x̄, 1) =

0. Then, by Lemma I-2, we must have DH(b, 1, 1) < 0, which contradicts our assumption.

Lemma I-3 indicates that there is no y < 1 to satisfy DH(b, 1, y) = 0. As DH is continuous in

y, DH(b, 1, y) ≥ 0 must hold for all y ∈ [0, 1]. Notice that for any σ ∈ [0, 1] and prior b ∈ [0, 1], by

Bayes’ rule, both the bid and ask prices are equal to b. Thus, we have:

DL(b, σ, 1− σ) > 0 and DH(b, σ, 1− σ) > 0. (7)

Now, as DL(b, 1, 1) < 0 and DH(b, 1, 1) ≥ 0, (7) and Lemma I-3 imply that there exists a ȳ < 1

to satisfy

DL(b, 1, ȳ) = 0 and DH(b, 1, ȳ) ≥ 0.

Therefore, we can see that Regime L arises. In addition, by Lemma I-2, there is only one ȳ to satisfy

DL(b, 1, ȳ) = 0. � Proof of (d). Done symmetrically with (c) of this proposition. �

Proof of (e). Suppose that there is one element in Et(b) that belongs to Regime H . Then, by Lemma

I-2, there is no other element in Et(b) that also belongs to Regime H . Symmetrically the same holds

for Regime L. �
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Lemma I-4. Suppose that Ct−1, Mt−1, SHt−1 and SLt−1 hold in period t−1. Furthermore, suppose

thatDH(b, 1, 1) < 0, andDL(b, 1, 1) < 0, whileDH(b, x, y) = 0 andDL(b, x, y) = 0 do not intersect.

Then

• either Regime H or Regime L arises, uniquely;

• if xL > xH , then (σH , σL) = (xH , 1), and if xL < xH , then (σH , σL) = (1, yL);

• bid and ask prices are monotonically increasing in b in period t.

Proof of Lemma I-4. Suppose that the two curves do not intersect. By symmetry and continuity, we

can assume that

xL > xH and yL > yH . (8)

Then, by setting x̄ = 1 and ȳ = 1 in Lemma I-2, we obtain:

DL(b, xH , 1) > 0 and DH(b, xH , 1) = 0

DL(b, 1, yL) = 0 and DH(b, 1, yL) < 0.
(9)

Therefore, we conclude that Regime H arises. Notice that Regime L does not arise because of

the second line of (9), and Regime does not arise as the honest strategy is not optimal. Moreover, by

Lemma I-2, there is no other x except for xH to satisfy DH(b, x, 1) = 0. This completes the proof

and we can prove the result for the second case symmetrically.

Now, we will prove the last statement. When nobody manipulates, by the Bayes’ rule we can show

that bid and ask prices decrease as b decreases. Therefore, it remains to show that the result holds in

Regime H and L. As the argument is symmetric, we only prove the result for Regime L. In Regime

L, type-L’s indifference condition for σ is:

−αt(b) + Vt−1(αt(b)) = βt(b) + Vt−1(βt(b)).

Then

∂+αt(b)(−1 + ∂+Vt−1(αt(b))) = ∂+βt(b)(1 + ∂+Vt−1(βt(b))). (10)

By Proposition 1, −1 + ∂+Vt−1(αt(b)) > 0. By condition Mt−1, (1 + ∂+Vt−1(βt(b))) > 0.
Therefore (10) indicates that: ∂+αt(b) > 0 if and only if ∂+βt(b) > 0. Let ∆ = (1 − µ)γ + µ(1 −
σLt(b)) + ∂+σLt(b)b(1− b). Then, we have:

∂+αt(b) =
((1− µ)γ + µ) ·∆

(1− µ)γ + µb+ µ(1− b)(1− σLt(b))
and ∂+βt(b) =

(1− µ)(1− γ) · (1−∆)

(1− µ)(1− γ) + µ(1− b)σLt(b)
.

Thus, if ∂+αt(b) ≤ 0, we must have ∆ < 0, which implies ∂+βt(b) > 0. We obtain a contradiction

because (10) would not hold.
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Define

Aµ̃(b, x, y) =
[(1− µ̃)γ + µ̃x]b

(1− µ̃)γ + µ̃bx+ µ̃(1− b)(1− y)

Bµ̃(b, x, y) =
[(1− µ̃)(1− γ) + µ̃(1− x)]b

(1− µ̃)(1− γ) + µ̃b(1− x) + µ̃(1− b)y .

Then compute that

Aµ̃(b, x, y)− b =
µ̃b(1− b)(x− 1 + y)

µ̃[bx+ (1− b)(1− y)] + (1− µ̃)γ
; (11)

b−Bµ̃(b, x, y) =
µ̃b(1− b)(x− 1 + y)

µ̃[b(1− x) + (1− b)y] + (1− µ̃)(1− γ)
. (12)

Lemma I-5. Take x ∈ (0, 1] and y ∈ (0, 1] and suppose that x > 1 − y. Suppose that ∂+x and ∂+y

are bounded (see (1) for the definition of ∂+).

(a) For every εA and εB, there is a µ̄0 such that every µ̃ < µ̄0 satisfies Aµ̃(b, x, y) − b < εA and

b−Bµ̃(b, x, y) < εB for all b ∈ [0, 1];

(b) For every εA and εB, there is a µ̄1 such that every µ̃ < µ̄1 satisfies |∂+Aµ̃(b, x, y) − 1| < εA and

|∂+Bµ̃(b, x, y)− 1| < εB for all b ∈ [0, 1].

Proof of Lemma I-5. As x > 1− y, for every µ̃ ∈ (0, 1),

b(1−b)(x−1+y)
max{bx+(1−b)(1−y),γ} < b(1−b)(x−1+y)

µ̃[bx+(1−b)(1−y)]+(1−µ̃)γ
< b(1−b)(x−1+y)

min{bx+(1−b)(1−y),γ} ,
b(1−b)(x−1+y)

max{bx+(1−b)(1−y),1−γ} < b(1−b)(x−1+y)
µ̃[b(1−x)+(1−b)y]+(1−µ̃)(1−γ)

< b(1−b)(x−1+y)
min{bx+(1−b)(1−y),1−γ} .

(13)

By (11) and (12), we can see that Aµ̃(b, x, y) − b and b − Bµ̃(b, x, y) are smaller and greater than µ̃

multiplied by the term, which is unaffected by µ̃. Because Aµ̃(b, x, y) − b and b − Bµ̃(b, x, y) are

continuous with respect to µ̃ ∈ (0, 1), we obtain the first statement.

Second, note that:

∂+Aµ̃(b, x, y) = [(1−µ̃)γ+µ̃(x+∂+x)]
(1−µ̃)γ+µ̃(bx+(1−b)(1−y))

− µ̃b[(1−µ̃)γ+µ̃x][x+y−1+b∂+x−(1−b)∂+y]
[(1−µ̃)γ+µ̃(bx+(1−b)(1−y))]2

;

∂+Bµ̃(b, x, y) = [(1−µ̃)(1−γ)+µ̃(1−x−∂+x)]
(1−µ̃)(1−γ)+µ̃(b(1−x)+(1−b)y)

− µ̃b[(1−µ̃)(1−γ)+µ̃(1−x)][1−x−y−b∂+x+(1−b)∂+y]
[(1−µ̃)(1−γ)+µ̃(b(1−x)+(1−b)y)]2

.
(14)

By symmetry, we only prove the result for ∂+Aµ̃(b, x, y). By (14) we have:

∂+Aµ̃(b, x, y) = [(1−µ̃)γ]
(1−µ̃)γ+µ̃(bx+(1−b)(1−y))

+µ̃ ·
(

[(x+∂+x)]
(1−µ̃)γ+µ̃(bx+(1−b)(1−y))

− b[(1−µ̃)γ+µ̃x][x+y−1+b∂+x−(1−b)∂+y]
[(1−µ̃)γ+µ̃(bx+(1−b)(1−y))]2

)
.

(15)

Note that the second term in (15) is greater than:

[(x+∂+x)]
max{γ,bx+(1−b)(1−y)} −

b[max{γ,x}][x+y−1+b∂+x−(1−b)∂+y]

(min{γ,bx+(1−b)(1−y)})2 , (16)

28



and smaller than
[(x+∂+x)]

min{γ,bx+(1−b)(1−y)} −
b[min{γ,x}][x+y−1+b∂+x−(1−b)∂+y]

(max{γ,bx+(1−b)(1−y)})2 , (17)

For a sufficiently small µ, the first term in (15) is arbitrarily close to 1 and by applying a similar logic

as that in the proof of the first statement to (16) and (17) which are unaffected by µ̃, the second term

in (15) is arbitrarily close to 0. Because ∂+Aµ̃(b, x, y) is continuous with respect to µ̃ ∈ (0, 1), we

obtain the second statement.

Lemma I-6. Take x ∈ (0, 1] and y ∈ (0, 1] and suppose that x > 1− y.

• If r < 1, for every ε, there is a µ̄2 such that every µ̃ < µ̄2 satisfies Aµ̃(b,x,y)−Bµ̃(b,x,y)

µ̃r
< ε.

• If r > 1, for every M , there is a µ̄3 such that every µ̃ < µ̄3 satisfies Aµ̃(b,x,y)−Bµ̃(b,x,y)

µ̃r
> M .

Proof of Lemma I-6. By using (11) and (12), for every µ̃ ∈ (0, 1), we can compute Aµ̃(b,x,y)−Bµ̃(b,x,y)

µ̃r
,

which equals

µ̃1−r ×
(

b(1− b)(x− 1 + y)

µ̃[bx+ (1− b)(1− y)] + (1− µ̃)γ
+

b(1− b)(x− 1 + y)

µ̃[b(1− x) + (1− b)y] + (1− µ̃)(1− γ)

)
. (18)

By (18) and (13), we can see that Aµ̃(b,x,y)−Bµ̃(b,x,y)

µ̃r
is smaller and greater than µ̃1−r multiplied by the

sum of the two terms, which are unrelated to µ̃. When µ̃ is sufficiently small, µ̃1−r is sufficiently

large for r > 1, while it is sufficiently small for r < 1. Note that Aµ̃(b,x,y)−Bµ̃(b,x,y)

µ̃r
is continuous with

respect to µ̃ ∈ (0, 1). Thus, we obtain the desired results.

Proposition I-3. Suppose that there exists a pair of (x̂, ŷ) to satisfy both of the indifference conditions.

If for every x ∈ [xH , 1] ∩ [xL, 1],

−(1 + ∂−Vt−1(B(b, x, ỹL(x))))

(1− ∂+Vt−1(A(b, x, ỹL(x))))
> −(1 + ∂−Jt−1(B(b, x, ỹH(x))))

(1− ∂+Jt−1(A(b, x, ỹH(x))))
,

then xL > xH and yL < yH , (σHt(b), σLt(b)) ∈ {(xH , 1), (1, yL), (x̂, ŷ)}, and Regime H , Regime L,

and Regime HL arise in period t at b.

Proof of Proposition I-3. For each θ ∈ {H,L},
Dθ(b,x̄+ε,ỹθ(x̄+ε))−Dθ(b,x̄,ỹθ(x̄))

ε
=

Dθ(b,x̄+ε,ỹθ(x̄+ε))−Dθ(b,x̄,ỹθ(x̄+ε))
ε

+ Dθ(b,x̄,ỹθ(x̄+ε))−Dθ(b,x̄,ỹθ(x̄))
ỹθ(x̄+ε)−ỹθ(x̄)

· ỹθ(x̄+ε)−ỹθ(x̄)
ε

= 0

Thus, we obtain:
ỹθ(x̄+ ε)− ỹθ(x̄)

ε
= −

Dθ(b,x̄+ε,ỹθ(x̄+ε))−Dθ(b,x̄,ỹθ(x̄+ε))
ε

Dθ(b,x̄,ỹθ(x̄+ε))−Dθ(b,x̄,ỹθ(x̄))
ỹθ(x̄+ε)−ỹθ(x̄)

. (19)
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where monotonicity of Dθ guarantees Dθ(b,x̄,ỹθ(x̄+ε))−Dθ(b,x̄,ỹθ(x̄))
ỹθ(x̄+ε)−ỹθ(x̄)

is nonzero.

Therefore, by (19) we have:

∂+ỹH(x̄) = −

[
−dA(b,x̄,ȳ)

dx̄
(1− ∂+Jt−1(A(b, x̄, ȳ)))− dB(b,x̄,ȳ)

dx̄
(1 + ∂−Jt−1(B(b, x̄, ȳ)))

]

[
−dA(b,x̄,ȳ)

dȳ
(1− ∂+Jt−1(A(b, x̄, ȳ)))− dB(b,x̄,ȳ)

dȳ
(1 + ∂−Jt−1(B(b, x̄, ȳ)))

] (20)

and

∂+ỹL(x̄) = −

[
dB(b,x̄,ȳ)

dx̄
(1 + ∂−Vt−1(B(b, x̄, ȳ))) + dA(b,x̄,ȳ)

dx̄
(1− ∂+Vt−1(A(b, x̄, ȳ)))

]

[
dB(b,x̄,ȳ)

dȳ
(1 + ∂−Vt−1(B(b, x̄, ȳ))) + dA(b,x̄,ȳ)

dȳ
(1− ∂+Vt−1(A(b, x̄, ȳ)))

] . (21)

Now,

dA(b,x,y)
dx

=
[
(1−µ)
µ

γ+(1−y)]b(1−b)

[
(1−µ)
µ

γ+bx+(1−b)(1−y)]2
and dB(b,x,y)

dx
= − [

(1−µ)
µ

(1−γ)+y]b(1−b)

[
(1−µ)
µ

(1−γ)+b(1−x)+(1−b)y]2
;

dA(b,x,y)
dy

=
[
(1−µ)
µ

γ+x]b(1−b)

[
(1−µ)
µ

γ+bx+(1−b)(1−y)]2
and dB(b,x,y)

dy
= − [

(1−µ)
µ

(1−γ)+(1−x)]b(1−b)

[
(1−µ)
µ

(1−γ)+b(1−x)+(1−b)y]2
.

Notice that as x > 1− y in equilibrium, we have:

dA(b,x,y)
dy

=
[
(1−µ)
µ

γ+x]

[
(1−µ)
µ

γ+bx+(1−b)(1−y)]2
>

[
(1−µ)
µ

γ+(1−y)]

[
(1−µ)
µ

γ+bx+(1−b)(1−y)]2
= dA(b,x,y)

dx
;

−dB(b,x,y)
dy

=
[
(1−µ)
µ

(1−γ)+(1−x)]

[
(1−µ)
µ

(1−γ)+bx+(1−b)y]2
<

[
(1−µ)
µ

(1−γ)+y]

[
(1−µ)
µ

(1−γ)+bx+(1−b)y]2
= −dB(b,x,y)

dx
.

(22)

Substituting the derivatives forA andB into (20) and (21), and using (22), we obtain−∂+ỹH(x̄) <

−∂+ỹL(x̄) for any x̄ in the region, which implies −yH−ŷ
1−x̂ < −yL−ŷ

1−x̂ . Thus, we obtain yL < yH and

similarly we can obtain xL > xH . When RegimeHLmay arise,DH(b, 1, yL) > 0 andDL(b, xH , 1) >

0. So, Regime H and Regime L arise.

Lemma I-7. Suppose that Ct−1, Mt−1, DHt−1 and DLt−1 hold in period t − 1. Then there are εH
and εL such that the value functions {Jt, Vt} satisfy Ct, Mt, DHt, DLt, SHt and SLt in period t.

Proof.

Part Ct. To show that the value functions satisfy Ct, we will show

(a) a period-t strategy σt is continuous and piecewise differentiable in b on (0, 1);

(b) ask and bid prices αt and βt are continuous and piecewise differentiable in b for all b ∈ [0, 1];

(c) the value functions {Jt, Vt} satisfy Ct in period t.
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First, we prove the continuity of the equilibrium strategies, the bid and ask prices and the value

functions. Proposition I-2 ensures that the equilibrium strategy is unique within each regime in period

t. Now, Et is a function of prior belief b. By the proof of Theorem 1, the equilibrium correspondence

Et is upper semicontinuous. Therefore, we conclude that it is continuous within each regime. Now

take a sequence {bk} that converges to b. Suppose that for a sufficiently small ε, Regime L arises at

bk − ε and Regime ∅ arises at b. Take a sequence of the equilibrium strategy at each bk in Regime L,

which we denote by {σ̂k}. We assert that σ̂k converges to the equilibrium strategy in Regime ∅ as bk

goes to b. Suppose not, and then there is a distinct strategy σ̂ with σ̂L 6= 1 and σ̂H = 1 at b. Then,

DL(b, σ̂L, 1) = 0 and DL(b, 1, 1) ≥ 0.

This is a contradiction, given Lemma I-2, as σ̂L < 1. By symmetry, we can prove that at the

boundary belief where Regime H shifts to Regime ∅ as b changes, the equilibrium strategy is con-

tinuous. Therefore, by Bayes’ rule, the bid and ask prices are also continuous. As such, both value

functions are a sum of the continuous functions in b; i.e., the bid and ask prices, next-period value

functions, and current-period value functions are continuous.

To prove that piecewise differentiability for the equilibrium strategies, the bid and ask prices and

the value functions holds, note that by continuity, each function σHt or σLt does not have a jump.

Therefore, for some interval, if they are not equal to one, the period-t equilibrium strategy σH or σL
solves each of the indifference conditions.

Obviously, if they are constant at one, they are differentiable. By applying the implicit function

theorem to the indifference conditions, σH or σL are piecewise differentiable in terms of b. Bid and

ask prices are continuous and piecewise differentiable in terms of b or σH or σL. Therefore, we

conclude that the bid and ask prices are piecewise differentiable. For the same reason as the proof for

the continuity in (c), the result follows.

Part Mt. As the argument is symmetric, we only prove the case of the low type. Note that by

Lemma I-4 and our induction hypothesis, the next-period value function and bid and ask prices are

all monotonically increasing, starting at the origin. Thus, the summation of these functions is also

monotonic. The case for Jt is proved similarly.
Part DHt and DLt. Note that

∂+Vt(b) = µ∂+βt(b) + +µ∂+βt(b)∂+Vt−1(βt(b))

(1− µ) (γ∂+αt(b)∂+Vt−1(αt(b)) + (1− γ)∂+βt(b)∂+Vt−1(βt(b))) .

When x = σH and y = σL, αt(b) = Aµ(b, x, y) and βt(b) = Bµ(b, x, y). By the first statement of

this lemma, σt is piecewise-differentiable. Thus ∂+σH and ∂+σL are well defined. Thus ∂+αt(b) =
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∂+Aµ(b, x, y) and ∂+βt(b) = ∂+Bµ(b, x, y). Our induction hypothesis DLt−1, together with (a) and

(b) of Lemma I-5, completes the proof for ∂+Vt(b). By symmetry, we can also prove the statement

for ∂+Jt(b).

Part SHt and SLt. If µt ≥ 1 + δL(µ), then by DLt, ∂+Vt(b) > 1 + δL(µ)− εL for every b ∈ (0, 1).

By choosing εL small enough, we obtain ∂+Vt(b) ≥ 1 + δL(µ) for every b in every period t. However,

if µt < 1 + δL(µ), then ∂+Vt(b) < 1 + δL(µ) − εL for every b ∈ (0, 1). Then we obtain ∂+Vt(b) <

1 + δL(µ) for every b ∈ (0, 1). In this way, we obtain SLt.

Proof of Theorem 2. By Lemma I-5, because J1(b) = µ(1 − A(b, 1, 1)) and V1(b) = µB(b, 1, 1), for

every εH and εL, there is a µ such that DH1 and DL1 hold. By Lemma I-7, when there is a unique

equilibrium in period t, recursively the value functions in period t satisfy the properties for tame

equilibrium and the monotonicity of prices is proved by Lemma I-4. Thus, we will show that the tame

equilibrium satisfies the three statements.

Fix r > 0 and µ. Fix t ∈ {2, · · · , b 1
µr
c}. Suppose that µ is small enough that Ct−1, Mt−1, DHt−1

and DLt−1 hold in period t− 1. We show the three claims.

Part 1: r ∈ (0, 1]. We show that Regime ∅ arises and manipulation does not arise at any belief in

period t. Proposition I-2’s (a) indicates that if Regime ∅ does not arise, then an honest strategy is not

optimal for at least one type. For notational simplicity, we write:

Ā := A(b, 1, 1) and B̄ := B(b, 1, 1).

Aiming to obtain a contradiction, by DLt−1 suppose that there exists an arbitrarily small εA and

εB for which the following holds:

µ(t− 1)
(
Ā− B̄

)
+ εLAĀ− εLBB̄ >

(
Ā+ B̄

)
. (23)

As t ∈ {2, · · · , b 1
µr
c},

µb 1
µr
c
(
Ā− B̄

)
+ εLAĀ− εLBB̄ >

(
Ā+ B̄

)
. (24)

When r ≤ 1, (24) does not hold as the left-hand side (LHS) is close to 0 by Lemma I-6 and the

right-hand side (RHS) is strictly greater than 0 for b ∈ (0, 1). This is a contradiction. By symmetry,

we can also prove that DH(b, 1, 1) ≥ 0, and (a) in Proposition I-2 completes the first claim.

Part 2: r ∈ (1, 2). We show that at some period t ∈ {b 1
µ
c + 1, · · · , b 1

µr
c}, Regime H arises at some

belief b that is close to 1, and Regime L arises at some belief b that is close to 0. By (c) of Proposition

I-2, Regime L arises if DL(b, 1, 1) < 0 and DH(b, 1, 1) ≥ 0. For an arbitrarily small εĀ, εB̄, εLA and

εLB, we can rewrite (23) as

µ(t− 1)
(
Ā− B̄

)
+ εLAb(1 + εĀ)− εLBb(1 + εB̄) > b · (2 + εĀ + εB̄) .
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Let b = µ. The above inequality can be rewritten as

µ(t− 1)
(
Ā− B̄

)
+ εLAµ(1 + εĀ)− εLBµ(1 + εB̄) > µ · (2 + εĀ + εB̄) ,

which indicates

(t− 1)
(
Ā− B̄

)
> 2 + εĀ + εB̄ − εLA(1 + εĀ) + εLB(1 + εB̄). (25)

By the second statement of Lemma I-6, for r > 1, the LHS is large for t ≥ 1
µr

+ 1, and the RHS

is close to 2. Therefore, the above holds at some t, which gives us DL(b, 1, 1) < 0. Now consider the

type-H trader and

DH(b, x, y) = 2− A(b, x, y)−B(b, x, y) + Jt−1(A(b, x, y))− Jt−1(B(b, x, y)), (26)

can be separated into Jt−1(B(b, x, y))−Jt−1(A(b, x, y)) and 2−A(b, x, y)−B(b, x, y). Then because

µ(t− 1)
(
Ā− B̄

)
approximates Jt−1(B(b, x, y))− Jt−1(A(b, x, y)), when r < 2 and t ≤ 1

µr
,

µ(t− 1)
(
Ā− B̄

)
≤ Ā− B̄

µr−1
< 2,

where the last inequality is because of r− 1 < 1 and the first statement of Lemma I-6. Thus, (26) can

be modified into the following relationship.

µ(t− 1)
(
Ā− B̄

)
+ εHBµ(1 + εB̄)− εHAµ(1 + εĀ) < 2− µ · (2 + εĀ + εB̄) . (27)

Therefore, DH(b, x, y) > 0. Thus by (c) of Proposition I-2, we obtain the desired result. However,

symmetrically we can prove that at b = 1− µ, DL(b, 1, 1) > 0 and DH(b, 1, 1) < 0.

Part 3: r < 2. We show that Regime HL never arises. Seeking a contradiction, suppose that in period

t, there exist ᾱ and β̄ satisfying the two indifference conditions. Then, by substituting DHt−1 and

DLt−1 into the indifference conditions, for sufficiently small εL’s and εH’s,

µ(t− 1)(ᾱ− β̄) + εᾱL − εβ̄L = ᾱ + β̄;

−µ(t− 1)(ᾱ− β̄) + εᾱH − εβ̄H = ᾱ + β̄ − 2.
(28)

Combining the two in (28) yields

εᾱL − εβ̄L + εᾱH − εβ̄H = 2(ᾱ + β̄)− 2.

Thus, we obtain:

µ(t− 1)(ᾱ− β̄) = 1− εᾱL − εβ̄L + εᾱH − εβ̄H
2

− (εᾱL − εβ̄L). (29)
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Note that as t ∈ {2, · · · , b 1
µr
c},

µb 1

µr
c(ᾱ− β̄) > µ(t− 1)(ᾱ− β̄) ≥ (ᾱ− β̄). (30)

By applying the squeeze theorem to (30) and Lemma I-6, the LHS of (29) is close to 0, which contra-

dicts (29), which indicates that it is close to 1.

Proof of Proposition 2.

Part 1. When r = 2 and γ = 1
2
, as µ is sufficiently small, substituting 1− r = −1 to r in (18) in the

proof of Lemma I-6, we obtain:

αt(b)− βt(b)
µr−1

= b(1− b)(σH − 1 + σL) · 4.

Applying a similar logic with (28) in the proof of Theorem 2, we show that the indifference

conditions would not hold simultaneously for both types. Proposition I-2’s (a) indicates that if Regime

HL arises, DL(b, x, y) < 0 and DH(b, x, y) < 0 hold simultaneously. When µ is small, A(b, x, y)

and B(b, x, y) are close to b. Thus by SHt−1 and SLt−1, DL(b, x, y) < 0 and DH(b, x, y) < 0 can be

modified into the following:

αt(b)−βt(b)
µr−1 = b(1− b)(σH − 1 + σL) · 4 > 2b

−αt(b)−βt(b)
µr−1 = −b(1− b)(σH − 1 + σL) · 4 < −2(1− b).

Then (1−b)(σH−1+σL) ·2 > 1 and b(σH−1+σL) ·2 > 1. Adding them, we obtain σH−1+σL >

1, which is impossible. Thus, Regime HL does not arise. By Theorem 2, manipulation arises in

equilibrium as r ∈ (1,+∞). This completes the proof.

Part 2. First, we show that if there exists a pair of (x̂, ŷ) to satisfy both of the indifference conditions,

Regime H , Regime L, and Regime HL arise in period t at b. By DHt−1 and DLt−1, for some

sufficiently small εV and εJ ,

∂+Vt−1(A(b, x, y)) = δV and ∂+Vt−1(B(b, x, y)) = δV + εV ;

∂+Jt−1(A(b, x, y)) = δJ and ∂+Jt−1(B(b, x, y)) = δJ + εJ .

By Proposition 1, DHt−1 and DLt−1, δV > 1 and δJ < −1. Then

−1 + δV + εV
1− δV > −1 + δJ + εJ

1− δJ ,

because δJ < 0 by Ct, and so

δV + εV + 1

δV − 1
> 1 >

−δJ − εJ − 1

−δJ + 1
.
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By Proposition I-3, this completes the proof of the claim.

Then it suffices to show that there exists a pair of (x̂, ŷ) for which both of the indifference condi-

tions hold. Note that it is not difficult to prove that when γ = 1
2
, Vt(b) = Jt(1−b) and Jt(b) = Vt(1−b)

hold, and there is a symmetric equilibrium in the sense that when σ ∈ Et(b), σ̃t(1 − b) where

σ̃L = 1 − σH (A formal proof is available upon request). When γ = 1
2

and b = 1
2
, by symmetry

with respect to b = 1
2
, because A(b, x̂, x̂)− 1

2
= 1

2
−B(b, x̂, x̂), for every x ∈ [1, 0], we must have:

Jt−1(B(b, x, x))− Jt−1(A(b, x, x)) = Vt−1(A(b, x, x))− Vt−1(B(b, x, x)). (31)

If there exists a pair (x̂, ŷ) = (x̂, x̂) that satisfies the indifference condition for the type-L trader,

then because A(b, x̂, x̂) − 1
2

= 1
2
− B(b, x̂, x̂), by (31), the indifference condition for the type-L

yields the indifference condition for the type-H . Thus, it suffices to show that there exists a pair

(x̂, ŷ) = (x̂, x̂) that satisfies the indifference condition for the type-L. Then at b = 1
2
, by DLt−1,

Vt−1(A(b,1,1))−Vt−1(B(b,1,1))
A(b,1,1)−B(b,1,1)

is approximated by µ(t− 1), when r > 2 and t is sufficiently large, we have

µ(t− 1) > 1
µ

, which yields:

Vt−1(A(b, 1, 1))− Vt−1(B(b, 1, 1))

A(b, 1, 1)−B(b, 1, 1)
>
A(b, 1, 1) +B(b, 1, 1)

A(b, 1, 1)−B(b, 1, 1)
=

1

µ
.

Note that

A(b, x, x) +B(b, x, x)

A(b, x, x)−B(b, x, x)
=

1

µ(2x− 1)

Note that when x = 1
2
, A(b,x,x)+B(b,x,x)
A(b,x,x)−B(b,x,x)

= +∞; thus, at x = 1
2
,

Vt−1(A(b, x, x))− Vt−1(B(b, x, x))

A(b, x, x)−B(b, x, x)
<
A(b, x, x) +B(b, x, x)

A(b, x, x)−B(b, x, x)
.

Therefore, there exists a pair (x̂, ŷ) = (x̂, x̂) that satisfies the indifference condition for the type-L in

the interval (1
2
, 1). This completes the proof.

Appendix II. The Computation Procedure

As we make use of an approximation, we set out a different notation to use for calibration. Bold-faced

letters denote approximated variables in our simulation. For example, in the calibration, we denote

the probability that the type-H trader buys in the high state at period t by ht and the probability that

the type-L trader sells in the low state by lt. Moreover, let

Ht = (1− µ)γ + µht and Lt = (1− µ)(1− γ) + µlt.
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Then, Ht is the probability that a buy occurs in the high state in period t and Lt is the probability

that a sell occurs in the low state. We can write:

αt =
Htb

Htb+ (1− Lt)(1− b)
and βt =

(1−Ht)b

(1−Ht)b+ Lt(1− b)
.

When the type-L trader manipulates, we write the bid price as a function of the ask price and the

probability that a buy will occur in the high state. Then, we obtain:

βt =
αtb(1−Ht)

(αt − bHt)
. (32)

In the computer program, we inspect each interval of b to check whether there is a pair of ask and

bid prices that satisfies the following indifference condition for the type-L:

−αt + Vt−1(αt) = βt + Vt−1(βt), (33)

where βt satisfies (32). In our procedure, the new function Vt−1 is constructed through a linear

interpolation from Vt−1, which is: for αt ∈ [bk, bk+1],

Vt−1(αt) = (αt − bk)
Vt−1(bk+1)− Vt−1(bk)

(bk+1 − bk)
+ Vt−1(bk),

and for βt ∈ [bj, bj+1],

Vt−1(β) = (βt − bj)
Vt−1(bj+1)− Vt−1(bj)

(bj+1 − bj)
+ Vt−1(bj).

Similarly, when the type-H trader manipulates, we write the ask price as a function of the bid price

and the probability that a buy will occur in the low state. First, we solve Ht as a function of the ask

price αt. Then we have:

Ht =
αt(1− b)(1− Lt)

(1−αt)b
.

Then, we substitute H into the bid price. Then, we obtain:

βt =
(b−αt) + αtLt(1− b)
(b−αt) + Lt(1− b)

.

We inspect each interval of b to check whether there is a pair of ask and bid prices that satisfies the

following indifference condition for the type-H:

1−αt + Jt−1(αt) = βt − 1 + Jt−1(βt). (34)
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mθ
k :=

F θt−1(bk+1)−F θt−1(bk)

bk+1−bk

mθ
j :=

F θt−1(bj+1)−F θt−1(bj)

(bj+1−bj)

Aθk := mθ
k − 1

Bθ
j := mθ

j + 1

CL := (bjm
L
j −Vt−1(bj))− (bkm

L
k −Vt−1(bk))

CH := (bjm
H
j − Jt−1(bj))− (bkm

H
k − Jt−1(bk)) + 2

K(θ) := −Aθk +Bθ
j − Cθ

G(θ,Lt, b) := Bθ
j [(1− Lt)(1− b)− b]−Aθk [(1− Lt)(1− b)− 1] + Cθ [1− 2(1− Lt)(1− b)]

N(θ,Lt, b) := Bθ
j b− Cθ [1− (1− Lt)(1− b)]

Tθ := Htb
(
Bθ
j −Aθk − 2Cθ

)
+
(
−Bθ

j b+ Cθ
)

Mθ := Htb
(
−bBθ

j +Aθk + Cθ
)

Table 2: Summary of abbreviated notations

* Each θ belongs to {H,L} and for each F θ, FH = J and FL = V.

By applying the method of linear interpolation, we construct a function Jt+1 that approximates

Jt−1 such that for αt ∈ [bk, bk+1],

Jt−1(α) = (αt − bk)
Jt−1(bk+1)− Jt−1(bk)

(bk+1 − bk)
+ Jt−1(bk),

and for β ∈ [bj, bj+1],

Jt−1(β) = (βt − bj)
Jt−1(bj+1)− Jt−1(bj)

(bj+1 − bj)
+ Jt−1(bj).

Finally, we obtain the following propositions. To keep the notation simple, we use some abbrevi-

ations, which are summarized in Table 2.

Proposition II-1. When the type-L trader manipulates, an equilibrium ask price αt solves:

α2
tA

L
k + αt

(
−bHtA

L
k + b(Ht − 1)BL

j + CL
)
− CLbHt = 0,

subject to Ht = (1− µ)γ + µ and Lt = αt(1−b)−b(1−αt)Ht

αt(1−b) ≤ (1− µ)(1− γ) + µ.

Proof of Proposition II-1. From (33),

−αt + (αt − bk)mL
k + Vt−1(bk) =

αtb(−1 + Ht)

(−αt + bHt)
+ (

αtb(−1 + Ht)

(−αt + bHt)
− bj)mL

j + Vt−1(bj).

Reorganizing terms, we can obtain the desired equation.
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Proposition II-2. When the type-H trader manipulates, then an equilibrium ask price αt solves:

α2
tA

H
k +Xαt + Y = 0,

where

X = 1 + b+ 2Lt(1− b)− [bk + b+ Lt(1− b)]mH
k + [bj − 1 + Lt(1− b)]mH

j +

+Jt−1(bk)− Jt−1(bj);

Y = −L(1− b) + [b+ Lt(1− b)]
[
bkm

H
k − 1 + Jt−1(bj)− Jt−1(bk)

]
+

+ [b(1− bj)− bjLt(1− b)]mH
j ,

subject to Lt = (1− µ)(1− γ) + µ and Ht = αt(1−Lt)(1−b)
b(1−αt) ≤ (1− µ)γ + µ.

Proof of Proposition II-2. From (34),

1−αt + (αt − bk)mH
k + Jt−1(bk) =

= (b−αt)+αtLt(1−b)
(b−αt)+Lt(1−b) − 1 + ( (b−αt)+αtLt(1−b)

(b−αt)+Lt(1−b) − bj)m
H
j + Jt−1(bj).

Similarly to Proposition II-1, we can obtain the desired equation by calculation.

Lastly, we consider the case where both types manipulate. To compute the equilibrium in this

case, we simultaneously solve the two equations (33) and (34). Then, (33) and (34) can be rewritten

as: for each θ ∈ {H,L}, Let xH = Htb and xL = (1 − Lt)(1 − b). Then, for each θ ∈ {H,L}, the

indifference conditions can be rewritten as:
[
−Aθk +Bθ

j − Cθ
]
x2
H + xH

(
−bBθ

j + Aθk + Cθ
)

+

+xL
[
xH
(
Bθ
j − Aθk − 2Cθ

)
+
(
−Bθ

j b+ Cθ
)]
− Cθx2

L = 0.
(35)

Proposition II-3. When both types manipulate, xH = Htb and xL = (1− Lt)(1− b) satisfy (35) for

each θ ∈ {H,L}. Moreover, Ht and Lt must satisfy:

(1− µ)γ < Ht < (1− µ)γ + µγ and (1− µ)(1− γ) < Lt < (1− µ)(1− γ) + µ.

Simultaneously solving for Ht and Lt is somehow tricky as the procedure has to find a two-

dimensional fixed point. First, we identify a pair of strategies that derives bid and ask prices so as

to make both types indifferent for each belief. Given Ht, we can find an interval for Lt where (34)

holds and given Lt, (33) holds. By using this point as an initial point, we use the Newton–Raphson

method to obtain the solution to the above equations. We denote the LHS of (35) by fθ(xH ,xL).

Then, keeping all coefficients fixed, we obtain:

dfθ
xH

=
[
−Aθk +Bθ

j − Cθ
]

2xH +
(
−bBθ

j + Aθk + Cθ
)

+ xL
(
Bθ
j − Aθk − 2Cθ

)

dfθ
xL

=
[
xH
(
Bθ
j − Aθk − 2Cθ

)
+
(
−Bθ

j b+ Cθ
)]
− 2CθxL.
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Let x =

(
xH

xL

)
, f(x) =

(
fH(x)

fL(x)

)
and J =

(
dfH
dxH

dfH
dxL

dfL
dxH

dfL
dxL

)
. By the Newton–Raphson

method,

f(x + δx) = f(x) + J δx.

Assuming f(x + δx) ≈ 0 yields:

δx = −J −1f(x). (36)

We obtain a convergent point x∗ by using (36).

Proof of Proposition II-3. Let Htb+ (1− Lt)(1− b) = P. Then, from (33),

(mL
k − 1)(1−P)Htb− bkP(1−P)mL

k + P(1−P)Vt−1(bk)

= (mL
j + 1)P(1−Ht)b−P(1−P)bjm

L
j + P(1−P)Vt−1(bj).

Then, (
ALkH−BL

j P
)
b−PHtb(A

L
k −BL

j ) + P(1−P)CL = 0.

Reorganizing terms, resubstituting P = [Htb+ (1− Lt)(1− b)], and again reorganizing terms,
we obtain:

[
−ALk +BL

j − CL
]
H2
t b

2

+Htb
[
BL
j [(1− Lt)(1− b)− b]−ALk [(1− Lt)(1− b)− 1] + CL [1− 2(1− Lt)(1− b)]

]

−(1− Lt)(1− b)
[
BL
j b− CL [1− (1− Lt)(1− b)]

]
= 0.

By symmetry, we obtain:
[
−AHk +BH

j − CH
]
H2
t b

2

+Htb
[
BH
j [(1− Lt)(1− b)− b]−AHk [(1− Lt)(1− b)− 1] + CH [1− 2(1− Lt)(1− b)]

]

−(1− Lt)(1− b)
[
BH
j b− CH [1− (1− Lt)(1− b)]

]
= 0.
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