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Abstract

This paper investigates the impact of two commonly used asking price strategies
on house sales prices. In particular, we compare a dynamic asking price, where
the seller adjusts her asking price over time as she fails to sell her property,
with a static asking price, where the seller sets an asking price and sticks
to it until the property is sold. While this comparison is ambiguous from a
theoretical perspective, our empirical study using a comprehensive data set on
the properties sold in the greater Sydney region indicates that properties with
a dynamic asking price sold, on average, for $25,400 less than properties with a
static asking price, which is approximately four percent of the mean property
price in our sample. In addition, we also show that, controlling for the asking
price strategy, the duration of sale has a significant impact on sales prices.
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1 Introduction

Homes account for a significant proportion of household net worth in countries
like Australia and the USA | For most households, the decision to buy or sell a house
is likely to be the most significant financial transaction of their lives.

The selling mechanism is amongst the various factors that can influence the out-
come of a sale. For instance, the method of sale can affect the time that sellers spend
on the market or the price at which they sell their homes. As a result, the selling
method can have a significant impact on household’s wealth. Not surprisingly, there
has been considerable interest in the real estate economics literature in determining
what selling strategies may be more successful in terms of higher sale prices.

The existing theoretical literature on the housing market focuses by and large
on sellers as the owners of heterogeneous properties who search for potential buyers.
This literature typically models buyers as searching for suitable properties having to
incur inspection (or search) costs. For example, |Chen and Rosenthal| (1996a)), |(Chen
and Rosenthal (1996b)) and Horowitz (1992)) examine the behaviour of sellers who ad-
vertise an asking price to attract potential buyers who then negotiate with the seller.
These authors suggest that the asking price is the upper bound of the transaction
price and acts as a commitment device from the seller; a commitment to sell at any
price lower than or equal to the asking price. In this literature, the seller’s decision
entails setting both a static, public asking price and a secret reserve price, which is
inferred by buyers in equilibriumEparrillo (2012) extends this framework to consider
a situation where buyers also undertake a search. He finds an stationary equilibrium
in which the asking price is the ceiling price for the negotiations between sellers and
buyers. He then estimates the model with the maximum likelihood method and
simulates the housing market outcomes when the amount of information and the

1See for example http://www.federalreserve.gov /releases/z1/current /z1r-5.pdf for the USA and

http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/ for Australia.

2Chen and Rosenthal (1996b) shows that when buyers arrive one at a time and do not com-
pete with each other, the asking price mechanism is optimal among all other incentive compatible
mechanisms. The determination of optimal sale mechanisms is also pursued by [Mayer| (1995]). This
author develops a search model to compare auctions with private negotiations. In his model, the
choice of asking price affects both the number of arrivals and the distribution of offers. Given the
property’s characteristics, [Mayer| (1995) shows that a higher asking price reduces buyers’ arrival
rate and increases the duration of search. He also suggests that auctions generate higher expected
prices than bilateral negotiations in booming markets, with the reverse during a bust. |[Arnold and
Lippman| (1995) is another example of comparing two different selling institutions. Finally, [Lusht
(1996) provides empirical evidence that auctions can generate higher transaction prices than private
negotiation.



real estate agent commission change. |Carrillo| (2012)’s analysis, however, does not
consider the possibility of dynamic asking prices and disregards the cases where the
asking price is different from the ceiling price. Both of these are pervasive in the real
estate industry.

In contrast, Read (1988)) and |Lazear| (1986) provide a rationale for a dynamic
asking price, where sellers revise their asking prices if their properties fail to sell at a
particular time period. These authors argue that such dynamic asking price strategy
may be an optimal response, for example, when sellers learn about the current state
of demand in the market.

This paper contributes to the literature by providing a theoretical background
that makes it clear that the comparison between static and dynamic asking price
strategies, from the point of view of their impact on final transaction prices, is
ambiguous.

It follows then that the determination of the optimal asking price strategy is
by nature an empirical question. To answer this question, we use a comprehensive
data set on properties sold in the greater Sydney region. Our empirical evidence
suggests that properties with a dynamic asking price sold, on average, for less than
properties with a static asking price. We also show that, controlling for the asking
price strategy, the duration of sale has a significant impact on transactions prices]

Different approaches have been used in the empirical literature to examine the
impact of asking prices on transaction prices and time on the market. For example,
Yavas and Yang (1995) use a hedonic model to provide evidence that, depending
on the value of the properties, asking price may influence the time-on-the-market.
Horowitz (1992) considers a framework in which the static asking price posted by
the sellers can affect the arrival rate of buyers given the property characteristics.
Based on specific functional form assumptions for the distribution of buyers’ arrival,
Horowitz (1992) shows that the maximum likelihood estimates of his model yield
more accurate predictions than hedonic models.

While most empirical studies focus on the impact of static asking prices on final
transaction prices or duration of saleﬂ Knight| (2002)) examines 3,490 observations in
Stockton, California with information about properties with dynamic asking prices.
He uses a maximum-likelihood probit model to analyse what determines changes in
the asking price. In a similar vein, Knight| (2002) provides evidence that properties
with atypical characteristics are less likely to be subject a dynamic asking price,

3The potential impact of duration on the final selling prices is well-documented in the literature.
See for example [Khezr| (2014)) for a study on the Sydney housing market.
4See for example, Haurin| (1988), [Haurin et al.| (2010)



while occupancy status (rented versus owner-occupied) of the property and the gap
between the initial asking and the revised asking price could increase the likelihood
of a price revision. Knight (2002)’s results also suggest that larger revisions in the
asking price, on average, result in longer time on the market and a lower selling
price. While [Knight| (2002) attempts to answer why some sellers revise their asking
prices, our focus is on determining which of the two asking price strategies result, on
average, in higher sales prices. Our empirical approach is also differs since we apply
a two-stage regression model to overcome the endogeneity problem that arises as the
choice of the asking price strategy may not be independent of the characteristics of
the property or sale.

This paper is organised as follows. Section 2 presents two competing models of
the seller’s decision making process when choosing an asking price strategy. Section
3 describes in details the data used in this study and section 4 presents the results.
Section 5 concludes.

2 Model

A seller of a property advertises an asking price P, to attract potential buyers to
make offers for her home. The sale takes place over T equal, discrete time periods
and for simplicity there is no discounting. The asking price P, is higher than the
seller’s true reservation price P,., which is the lowest price she is willing to sell the
property. In this setting, sellers may not want to reveal their reservation prices but
instead signal their values through the asking price.

We also assume that the seller’s outside value for the property is s. The value
of s, for example, may represent an independent valuation of the property. If the
seller decides to leave the market at the end of any period, she retains the property
at value s. It follows that P, > s.

The selling process can be summarised as follows. First, the seller advertises an
asking price. Then buyers observe the asking price and decide whether to make an
offer to the seller. If there is more than one offer, the seller chooses the highest one.
If the seller accepts an offer P, then we refer to P as the transaction price at which
she sells her property. Otherwise, she waits for the next round of offers or leaves the
market and retain the property at value s. Clearly, P > P,.

We do not explicitly model the behaviour of buyers and instead assume that
F(.|P,) describes the conditional distribution of offers made by buyers on the interval
[0, P] at any period of time. More specifically, F/(P|P,) is the probability that the
seller receives an offer P or less given an asking price P, at any particular period.



Without loss of generality, we assume the seller knows this distribution. E|

There are a number of variables, which are assumed to be exogenous, that can
affect this probability including property characteristics, competition between buy-
ers, and interest rates. The seller, of course, can influence this probability by her
choice of the asking price. While in most of the related litelrautureﬁ7 the asking price
is the upper bound of the possible transaction prices (P), there is no such restriction
in our model. Instead we assume that the transaction price belongs to the interval
[P,, P] with P > P,. Transaction prices that are higher than the asking price arise
due to competition between buyers. For instance, if there are two interested buyers

with high values, then one of them can make an offer above the asking price.
We impose the following distributional assumptions:

A.1. Offers are drawn independently at every period according to F(.|P,), which are
independent of time; and

A.2. Ceteris paribus, a higher asking price decreases the probability of receiving an
offer at any particular point in time:

OF (P|P,)

0
op, *

A.3. The probability of having no offer at every period is positive:
F(P=0|P,) > 0.

We now turn to the determination of the optimal reserve price. In our setting,
the seller’s expected payoftf depends on both the asking price and the reserve price.
A utility maximising seller chooses these two prices, at any period ¢, optimally to
maximise her overall expected payoff:

Ut(PmPr) = /P(P - S>dF(P’Pa> + F<Pr’Pa)Ut+1- (1)

The solution of this problem depends on a non-trivial way on how we model the
time dimension. We will consider two different approaches.

Infinite-horizon

SHorowitz (1992) suggests that the theory does not change if the actual distribution is replaced
by the realized distribution satisfying the same assumptions and buyers behave strategically.

SFor instance, see (Chen and Rosenthal (1996a)), (Chen and Rosenthal (1996b) and [Horowitz
(1992).



Suppose T'is very large and it can be interpreted as a infinite-horizon time dimen-
sion. This might be appropriate, for example, for the case of sellers who are not in a
hurry to sell their properties — perhaps because the property is being rented — and are
opportunistically waiting for a large valuation buyer. (See, for example, [Horowitz
(1992)). In this instance, the optimal search behaviour of the seller is such that
the expected payoffs at every period become the sameﬂ So the seller’s optimization
problem is to choose an asking price and a reservation price which maximises one
period’s expected payoff. This would also maximise the sum of per period expected
payoffs, which is the total expected payoff. Suppose U€ is the steady state payoff,
then we have,

P
U¢(P,, P.) = / (P — s)dF(P|P,) + F(P,|P,)U®, (2)
and therefore,

f p (P — s)dF(P|F,) 5
I=F(RIP) )
Proposition 2.1. Under an infinite-time horizon, the optimal decision of the seller

is to choose the pair (P}, PY) in which P; = U®+ s and P, satisfies (3)).

T

U¢(P,, P,) =

Proof. See Appendix.

Proposition states that the seller’s optimal behaviour is to post an asking
price at the first period, which is kept constant until she sells the object. This type
of behaviour is commonly observed in housing markets. As it will be discussed in
the next Section, very often sellers do not revise their asking prices even when the
property fails to sell for a substantive period of time.

Note that the equilibrium reserve price and the asking price are time invariant
because the expected payoff is also time invariant. While our model assumes no
discounting, a similar result would hold under positive discounting as the basic un-
derlying idea that (discounted) expected payoffs are constant will continue to hold
true. [

Finite-horizon
There are several models that analyse the seller’s behaviour when the time horizon
is finitd’] These models typically assume a stopping rule or deadline for a sale to

"See Lippman and McCall| (1976)) for infinite-horizon stationary models.
8See [Chen and Rosenthal| (1996a)) for an example with positive discounting.
9Read| (1988) and |Lazear| (1986)).



occur, and so if a seller is unable to sell her property within that specific time, she
leaves the market. This may be an appropriate modelling approach, for example,
when a seller has committed to buy a property elsewhere and faces a deadline to sign
the purchase contract of her new property. If she cannot sell her home by that time
she may withdraw from the market and rent her property instead.

Here we assume that the maximum number of periods in which a particular seller
advertises her property is 7. If she cannot sell her home by that time she will
withdraw from the market and retain the value s for the property. In this case, we
show below that both the asking price and the reservation price are time variant.
The seller faces a different maximisation problem at each period. At each period
t € {1,2,..,T}, the seller’s expected payoff is,

P

Ht = / (P — S)dF(P‘Pat) —+ F(PTt|Pat)Ht+1° (4)
Prt

Proposition 2.2. Under a finite-time horizon, the optimal reservation price at every

period t < T is equal to, P, = s+ I1;44.

Proof. Appendix.

The above proposition states that the optimal reserve price at any period t < T'
is equal to the seller’s outside value for the property plus the expected payoff for the
next period. This is a standard result for this type of model. To be able to make
inferences about expected sales prices, however, we need to further investigate the
sequence of reserve prices from the first period until the final period. The following
corollary shows that the optimal reserve price decreases over time.

Corollary 2.1. P}, > P, ;.

Proof. Appendix.

Thus, the seller starts with a high reserve price at period one and reduces it
over the time if she fails to sell the property at each period. This implies that the
expected payoffs decrease over the time. In fact, we show that if the seller fails to
sell until the last period, she sets a final-period reserve equal to the outside value for
the property. To see this, note that we can write the final period’s expected payoff
as:

My — / " (P AF(P|Puy) - F(P|Pap) T, (5)

P.r



It is straightforward to check that the first order conditions to maximise (/))
implies a final-period optimal reserve price which is equal to the seller’s value as the
net payoff at period T'+ 1 is zero. This is summarised by the following lemma.

Lemma 2.1. The optimal reservation price at the final period is equal to s.

Having characterised the optimal reserve price for both finite and infinite time
horizons, we now focus on setting the optimal asking prices. This is however, trivial,
given that the asking price and reserve prices are linked through the distribution

This, in turn, suggests that the optimal asking price will depend on how we model
the time dimension. Under an infinite-time horizon, the optimal asking price will
be constant over time. Under a finite-time horizon, the optimal asking price will
decrease over time. However, there is no a priori reason for selecting either model.
Moreover, both asking price strategies are commonly observed in practice. This
ambiguity is the key motivation for our paper, which aims to provide some light on
the choice of asking prices by sellers and the impact of these choices on final prices
(and, consequently, on expected payoffs).

3 Data

The data includes 28,244 properties which have been sold in the Sydney region in
Australia, including all completed transactions in the calendar year of 2011. For each
property, we observe location and over twenty different characteristics. In this study
we focus on the characteristics that are commonly used in the literature, namely
number of bedrooms, bathrooms, type of property (house or unit), parking and
geographic location.

The data also includes the first date when each property was first advertised and
the initial asking price. The final date in which the property was in the market and
the final advertised price are also observed. Furthermore, the transaction price and
transaction date are recorded for each property. The data shows the properties that
have been sold in the calendar year 2011. Therefore, it is possible that there are
properties that had been advertised in the previous year but sold in 2011. Similarly,
there will be properties that were advertised in 2011 but sold later and, therefore,
are not included in the data. Our analysis assumes that one calendar year is the
maximum time in which a property will be in the market and, given the sample size,
we are confident that the data captures enough variation so that we can meaningfully



distinguish between properties that took long to sell or that sold quickly["Y]

We divided the data by geographic location into the following six regions: Sydney
central business district and the lower north shore, eastern suburbs, inner west,
upper north shore and the northern beaches, west and south western suburbs and
finally St George and Sutherland shire. For more information regarding each region
and their postcodes please refer to Appendix A. These geographical regions include
fairly similar suburbs to control for the location differences between properties. This
classification is standard in the real estate industry in SydneyEr] Table 1| provides
some of the key descriptive statistics of the data.

Table 1: Data Summary

Mean Median Max. Min. Std. Dev.

Price (thousand $) 604.36  513.77 16450.00 107.00 469.02
Property Type (House = 1, Unit = 0)  0.51 1 1 0 0.49
Bedrooms 2.66 3.00 8.00 1.00 1.02
Bathrooms 1.53 1.00 8.00 1.00 0.66
Parking 1.36 1.00 6.00 0.00 0.77
Balcony 0.33 0.00 1.00 0.00 0.47
Study 0.12 0.00 1.00 0.00 0.32
Ensuit 0.22 0.00 1.00 0.00 0.41
Number of observations in Region 1 3,057

Number of observations in Region 2 1,381

Number of observations in Region 3 3,401

Number of observations in Region 4 3,954

Number of observations in Region 5 12,760

Number of observations in Region 6 3,691

Properties with dynamic asking price 11,898

Number of observations 28,244

Table [1] shows that the number of properties sold vary across regions. The reason
for this is that, as we discussed earlier, the regions are determined by suburbs char-
acteristics rather than by geographic area and number of properties. For instance,

10Gince we sample properties with completed transactions, the properties that are still active in
the market at the end of the year 2011 will not be in our sample. In fact, at any point of time
there are some properties which are active in the market. However, this does not result in sample
selection bias since we capture those properties that have been advertised in the year before and
completed their transaction in 2011.

HFor example, see www.domain.com.au.



eastern suburbs (Region 2) are characterised by luxury dwellings within short dis-
tance to famous beaches and the Sydney’s CBD. We use each region as a dummy
in our empirical analysis to reduce heterogeneity between suburbs. Properties have
been divided into two categories in terms of their types: houses and units. Units or
apartments are usually located in a complex with more than one level. Houses and
Town-houses, which are considered in the same category, have similar characteristics
such as backyard and secure garage.

Finally, over forty percent of sellers (11,898 sellers) updated their asking price
during the period when the dwelling was advertised. This variation in the data will
allow us to explore the returns from the two different pricing strategies that we have
identified in the previous section.

4 Empirical analysis

Our empirical analysis is designed to investigate the effect of the two alternative
asking price strategies— identified in Section 2— on the final selling price of properties.
With this in mind, we divided sellers into two groups according to whether or not
they have updated their asking prices.

We define a dummy variable that takes value of one if the seller uses a dynamic
asking price. Of course, the price strategy is itself endogenous, and it is not possible
to observe what would have happened to the final sales price if a particular seller
had used a constant asking price rather than a dynamic asking price. Endogeneity,
then, can result in selectivity bias because the conditional expectation of the error
terms are non-zero, specially if there are some omitted price affecting variables. See,
for example, Lusht| (1996)).

To overcome potential selectivity bias, we use the method introduced by Heckman
(1979). This approach entails following two steps. First, we run a probit regression
with the endogenous variable (the dummy price strategy) as the dependent variable
and property characteristics, duration dummies and the location dummies as inde-
pendent variables. The outcome of the probit regression (generalized and ordinary
residuals) is used to construct the selectivity variable, which is given by the inverse
of the Mills ratio or the hazard rate function[:g]. We use the generalised, ordinary
and actual fitted residuals to form the Mills ratid™®} The use of the selectivity vari-

f(z)

T=F(z) where F' is the cumulative

2The hazard rate function of a distribution is: h(z) =

distribution function and f is its density function.

BMills = M, where G is the generalised, F' is the fitted and f is the ordinary residuals.



able in the second-stage of estimation, which is a hedonic regression, eliminates the
selectivity biad™]

Three dummy variables are included in this regression to control for sale duration.
The variable 4 Weeks is equal to one if sale duration is less than four weeks and zero
otherwise. Similarly, the variable § Weeks is equal to one if the property was sold
within four to eight weeks and zero otherwise. Finally, the variable 12 Weeks is equal
to one if the property was sold within eight to twelve weeks and zero otherwise.

More specifically, the first stage regression model is given by:

PS; = oy + BoXi + 0D} +oLi" + €,

where «q is the intercept and X is a vector of the property characteristics listed
in Section 3 (e.g., whether it is a house or a unit, or the number of bedrooms and
bathrooms). Ds are the dummy variables for the duration of time in which the
property was in the market until being sold. Ls are the location dummies and and ¢
is the error term. The outcome of this model is used to build the selectivity variable
for the second-stage estimation.

In the second-stage, we run the following linear regression model.

Pi=a+ BX; +vD! + L+ 0A; + 6PS; + £SV; + & (6)

A is the initial asking price and P.S is the asking price strategy dummy variable.
Finally, SV is the selectivity variable and ¢ is the error term capturing unobserved
variables. We run two regressions; one with the selectivity variable and one without
it to assess the impact of the potential selectivity bias on estimated coefficients. To
conclude, we also run another similar two-step model but without duration dummies
to investigate the effect of duration on the price strategy.

5 Results

As discussed above, we first run a probit model in which the dependent variable
takes a value equal to one if the asking price strategy was dynamic and zero otherwise.
Table |2 shows the result of the probit estimation. Recall that the key role of the
results from the probit regression is to allow us construct the selectivity variable.
Note also that most coefficients are significant at the 1% level, including the log-
likelihood of this model.

M Lee| (1982).
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Table 2: Probit model

Variable Coefficient Std. Error z-Statistic Prob.
Constant -0.284 0.035 -8.095 0.000
Property Type 0.087 0.023 3.686 0.002
Bedrooms 0.079 0.013 5.979 0.000
Bathrooms -0.095 0.016 -5.660 0.000
Parking -0.022 0.012 -1.849* 0.064
Balcony 0.106 0.018 5.712 0.000
Study 0.132 0.024 5.354 0.000
Ensuite 0.137 0.021 6.350 0.000
4 Weeks -0.935 0.022 -40.766 0.000
8 Weeks -0.177 0.019 -9.186 0.000
12 Weeks 0.299 0.023 12.727 0.000
Region 1 0.127 0.032 3.867 0.000
Region 2 0.070 0.041 1.676* 0.093
Region 3 0.082 0.031 2.625 0.008
Region 4 0.039 0.030 1.305** 0.191
Region 5 0.127 0.024 5.124 0.000
Log likelihood -17,799.68

Obs with Dependent var. = 0 16346 Total obs 28244

* Significant at the %10 level.
** Not significant at %10 level.
TAll other variables significant at the 1% level.

The next stage is to construct the selectivity variable from the results of the
probit model. As explained in the previous section, we use the selectivity variable
in our hedonic regression to overcome a potential selectivity bias. Table |3 shows
the result of the second-stage estimation with and without the selectivity variable.
All coefficient for the property characteristics have the expected signs. The results
with the selectivity variable surprisingly have higher level of significance specially for
duration dummies. The significance of the selectivity variable suggests it is important
to control for this and the inclusion of the selectivity variable could account for some
part of the selectivity bias problem.

Our focus, however, is on the coefficient of the price strategy dummy (PS dummy).
The results suggest that the pricing strategy matters and properties with dynamic
asking price have lower average transaction prices. These properties sold, on average
and ceteris paribus, for $25,400 less than properties with a static asking price.

Therefore, sellers benefit by not changing their asking prices. There are different

11



Table 3: OLS regression, dependent var. transaction price.

With selectivity var. Without selectivity var.
Variable Coefficient t-statistics  Coefficient t-statistics
Constant -116.2 -2.35 37.28 5.08
PS dummy -25.4 -7.43 -25.7 -7.51
Asking price 0.78 174.8 0.78 175.6
Property type 31.2 5.43 21.9 4.45
Bedrooms 23.1 6.25 15.5 5.55
Bathrooms 21.0 5.68 26.3 7.92
Parking 0.80 0.31** 2.85 1.13**
Balcony 13.7 2.46* 0.99 0.26**
Study 20.7 2.97 5.93 1.14**
Region 1 64.5 7.95 51.3 7.39
Region 2 46.3 5.13 39.5 4.51
Region 3 17.9 2.55* 9.27 1.43**
Region 4 24.8 3.88 20.6 3.30
Region 5 -30.2 -4.56 -43.4 -8.44
4 Weeks -102 -3.05 1.95 0.43**
8 Weeks -17.0 -2.39% 1.12 0.27**
12 Weeks 25.7 2.54 -1.84 -0.36**
Selectivity Var. 151 3.14
R? 0.66 0.66
DW 1.98 1.98

* Significant at the 5% level.

** Not significant at the 10% level.

TAll other variables significant at the 1% level.
fPS dummy is one if the asking price is dynamic.

potential explanation for this result. For example, a dynamic asking price strategy
could entail setting a higher than average initial asking price. As we suggested in
our theoretical model, a higher than average asking price, ceteris paribus, reduces
the probability of receiving offers. It is plausible that some sellers may benefit from
setting a higher reserve (and, therefore, successfully signalling some unobserved pos-
itive characteristics of the property). However, our empirical results suggest that,
on average, this strategy does not pay off because the marginal cost of a higher than
average asking price (i.e., the foregone offers) is greater than the marginal benefit
(the value of signalling the unobserved characteristics of the property).

Controlling for the asking price strategy, duration of sale turns out to have a
significant impact on transactions prices. In particular, if a seller who sells her

12



property within the first month were instead to wait another four weeks, her expected
transaction price would increase by $85,000. On average, controlling for the asking
price strategy, waiting for another month increases the average transaction price by
$32,700. This corresponds to approximately 5% of the average sale of properties.

The coefficients on region dummies provide clear confirmation that the geograph-
ical classification by real estate agencies captures the diversity in the market place.
While Region 1 (Sydney CBD and lower north shore) attract the highest sale prices,
Region 5 (west and south western suburbs) has the lowest transaction prices.

Finally tables {4] and [5| show the results for a two-stage estimation where we
omitted the duration dummies. As it can be observed, the impact of such omission
on the coefficients of all variables is small and the Durbin-Watson test suggests that
there is no autocorrelation in the results reported on Tables 2 and 3. It confirms that
the significant impact of duration on transaction price is not caused by correlation
between the duration and the property characteristics.

Table 4: Probit model without duration dummies

Variable Coefficient Std. Error z-Statistic Prob.
Constant -0.549 0.032 -16.78 0.000
Property Type 0.088 0.023 3.858 0.000
Bedrooms 0.084 0.012 6.527 0.000
Bathrooms -0.069 0.016 -4.240* 0.000
Parking -0.026 0.011 -2.302 0.021
Balcony 0.123 0.018 6.80 0.000
Study 0.159 0.024 6.617 0.000
Ensuite 0.173 0.021 8.213 0.000
Region 1 0.155 0.032 4.846 0.000
Region 2 0.092 0.040 2.270* 0.023
Region 3 0.116 0.030 3.831 0.000
Region 4 0.063 0.029 2.159* 0.030
Region 5 0.171 0.024 5.124 0.000
Log likelihood -19,014.54

Obs with Dependent var. = 0 16346 Total obs 28244

* Significant at the %5 level.
TAll other variables significant at the 1% level.
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Table 5: Second-stage regression without duration dummies

With selectivity var. Without selectivity var.
Variable Coefficient t-statistics  Coefficient t-statistics
Constant -127.7 -2.68 38.2 5.54
PS dummy -25.8 -7.86 -26.3 -8.03
Asking price 0.78 174.8 0.78 175.6
Property type 30.5 5.50 21.9 4.45
Bedrooms 229 6.55 15.5 5.55
Bathrooms 24.9 7.48 26.2 7.90
Parking 0.59 0.23** 2.86 1.14**
Balcony 14.6 2.68* 0.93 0.24**
Study 22.5 3.21 5.87 1.13*
Region 1 65.9 8.14 51.3 7.38
Region 2 47.7 5.26 39.5 4.51
Region 3 20.4 2.83 9.19 1.42**
Region 4 26.6 4.11 20.6 3.30
Region 5 -27.3 -3.95 -43.5 -8.47
Selectivity Var. 138 3.52
R? 0.66 0.66
DW 1.98 1.98

* Significant at the 5% level.

** Not significant at the 10% level.

TAll other variables significant at the 1% level.
'PS dummy is one if the asking price is dynamic.

6 Concluding Remarks

The decision to buy or sell a house or a unit is one of the most important financial
decisions at the household level. The family home accounts for a large share of
household wealth in many developed economies. It follows that the selling method
can have a significant impact on household’s wealth, and as a result, it can impact
on other life-changing decisions such as when to retire, when to downsize or whether
it is possible to move between suburbs, for example, to take advantage of better
schools for the children. Not surprisingly, there has been considerable interest in the
real estate economics literature in determining what selling strategies may be more
successful in terms of higher sale prices.

This paper fills a gap in the literature by comparing two commonly used selling
strategies: dynamic versus static asking prices. From a theoretical perspective, the
comparison of these two strategies in terms of expected sales price is ambiguous.
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However, we present robust evidence that a dynamic asking price is associated with
a lower sale price in the Sydney housing market. Our empirical results also highlight
that the duration of the sale, perhaps as a proxy for the quality of the match between
buyers and sellers, is an important determinant of transaction prices. On average,
waiting another month to sell the property would add $85,000 to the sales price, or
approximately 14% of the average property values.
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7 Appendix

7.1 Appendix A

Region 1

— Sydney CBD (Post Code 2000-2016, City- Redfern)
— Lower North Shore (2060-2090, North Sydney - Cremorne)

Region 2

— Eastern Suburbs (2017-2036, Waterloo - Matraville)

Region 3

— Inner West (2037-2050, Glebe-Camperdown)
— Gladesville-Ryde-Eastwood (2110-2126, Hunters Hill - Cherrybrook)

Region 4

— Upper North Shore (2070-2087, Linfield-Forestville)
— Northern Beaches (2092-2107, Seaforth-Avalon)

Region 5

— Western Suburbs (2127-2148, Homebush Bay - Blacktown)
— Parramatta-Hills District (2150-2159, Parramatta - Galston)
— South Western Suburbs (2160-2214, Merrylands - Milperra)

Region 6

— St George (2216-2227, Rockdale-Gymea)
— Sutherland Shire (2228-2234, Miranda - Menai)
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7.2 Appendix B

Proof of Proposition |2.1
The first order condition is givey by:

oue —1
8Pr = [.f(Pr’Pa)(PT - S)](l - F(Pr‘Pa))
P (7)
+H(PIR) = FBIP)? [ (P=saF(PIP) = 0.
After some cancellation it becomes,
(P~ 5)(1 = F(PIR) ~ [ (P~ 9)dF(PIP) =0. (%)

Suppose the second order condition for maximisation is satisfied. Then the optimal
reservation price must satisfy,

P =U+s. 9)
Substituting [9] into [3] yields:

 Jp(P = $)dF(PIP,)

Pr—s= 10
T T RER) o
The other first order condition is given by g—g: = 0, that is:
P j2
/ (P = s)dFp,(P|Pa)(1 = F(Pr|Fa)) + fp, (PTIPa)/ (P = s)dF(P|F,) =0, (11)
P’I‘ T
which becomes:
P
/ (P — s)dFp,(P|F.) + fp,(P|Pa)U" =0 (12)
The pair (P, P¥) is the one which satisfies and simultaneously.
O

Proof of Proposition

17



We have,

oIl
aPt - _(P’r‘t - S)f(Prtlpat) + f(PTt|Pat>Ht+1 - 07 (13)
rt

and therefore,

Py =s+1n

It is easy to check that as long as f(.) function is non-increasing the second order
condition is also satisfied. U

Proof of Corollary
Since P,; is the lower bound of the expected profit, at every period ¢ we have,
P., <II;. Thus it follows that

Pl S <My +s = By
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