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1 Introduction

The Malmquist productivity index (MPI) (Caves et al., 1982) is widely used to measure the

productivity change of firms over time, and is typically estimated using Data Envelopment

Analysis (DEA). For some examples of applications of MPI, see Färe et al. (1994), Ray

and Desli (1997), Kumar and Russell (2002), Casu et al. (2013), Ramakrishna et al. (2016),

Kevork et al. (2017), Pastor et al. (2020), Simar and Wilson (2022), to name a few.1

Recently, based on the seminal work of Kneip et al. (2015) for technical efficiency, Kneip

et al. (2021) established statistical results for the individual MPI and geometric mean of

MPIs, and also for these two measures in log terms. Based on Kneip et al. (2015), Simar

and Zelenyuk (2018), and Kneip et al. (2021), Pham et al. (2023) further established the

theoretical results for the weighted harmonic-type mean aggregation of MPIs, by taking

the economic weight of each individual into account. These recent theoretical frameworks

of MPI established by Kneip et al. (2021) and Pham et al. (2023), have enabled applied

researchers for the first time to make theoretically well-grounded statistical inferences on the

DEA-estimated productivity changes for a group of firms from various interesting economic

questions.

However, it is observed from the Monte-Carlo (MC) simulations that for the simple

mean of log MPIs (as evident in our MC results in Section 5) and the aggregate of log MPIs

(Pham et al., 2023), the estimated confidence intervals based on the developed CLTs typically

under-cover the true values in relatively small sample sizes, especially in large dimensions

(measured by the total number of inputs and outputs). This under-covering phenomenon

is also well observed in the other related non-parametric frontier efficiency estimators, such

as the simple mean efficiency (Kneip et al., 2015) and the aggregate efficiency (Simar and

Zelenyuk, 2018). This under-covering phenomenon mainly comes from the remaining bias in

the estimation of the first and second moments. It is also amplified by the well known “curse

of dimensionality” problem that the non-parametric methods typically suffer from, which

states that the estimation errors are larger in finite sample sizes and in large dimensions,

due to the slow convergence rates of the non-parametric methods.

To improve the finite sample approximation of these non-parametric frontier efficiency

1 For a comprehensive review, see Ch4 and Ch7 of Sickles and Zelenyuk (2019).
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estimators, Simar and Zelenyuk (2020), Nguyen et al. (2022), Simar et al. (2023a), and Simar

et al. (2023b) have proposed various improving methods for the simple mean and aggregate

(both input-oriented and output-oriented) efficiency. Their MC results suggest that the data

sharpening method in Nguyen et al. (2022) and the method using bias-corrected efficiency

estimates to obtain variance estimates in Simar et al. (2023a) are particularly useful in

terms of larger coverages of the true values while also maintaining the developed central

limit theorems for the simple mean and aggregate efficiency.

In this paper, our main objective is to examine whether the improving methods in Nguyen

et al. (2022) and Simar et al. (2023a) developed specifically for the context of the simple

mean and aggregate efficiency, are also useful to improve the finite sample approximation of

CLTs for the simple mean and aggregate MPI, established by Kneip et al. (2021) and Pham

et al. (2023), respectively. Through extensive Monte-Carlo experiments, we find that the

method adapted from Simar et al. (2023a) could provide a better performance for the simple

mean and aggregate MPI for relatively small samples (e.g., up to around 50, perhaps 100)

and after that the original methods from Kneip et al. (2021) and Pham et al. (2023) are

recommended. Moreover, we find that the better performance of the data sharpening method

(Nguyen et al., 2022) observed in the simple mean and aggregate efficiency by Nguyen et al.

(2022), Simar et al. (2023a), and Simar et al. (2023b), is not obvious in the simple mean and

aggregate MPI, as the MPI estimates involve the ratios of technical efficiency estimates and

so the magnitude of the bias seems to be partially cancelled out in practice.

Finally, using the well-known PennWorld Table data set from 1990 to 2019 as an example,

we illustrate the differences of all these methods in the estimated standard deviations and the

significant levels for the simple mean and aggregate MPI, for the entire sample, developed

and developing countries, and for pairs of years at 5–year intervals and the overall period

1990–2019.

The rest of the paper is organized as follows. Section 2 briefly introduces the theoretical

background on technical efficiency, individual MPI, the simple mean and aggregate MPI,

and the estimators of these measures. Section 3 briefly summarizes the main theoretical

results from Kneip et al. (2021) and Pham et al. (2023) for the simple mean and aggregate

MPI, respectively. Section 4 discusses how to adapt the improving methods from Nguyen

et al. (2022) and Simar et al. (2023a) to the context of the simple mean and aggregate MPI.
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Section 5 performs extensive MC experiments to evaluate the effectiveness of these improving

methods. In Section 6, we use one real empirical data set to illustrate the differences of these

methods in the estimated standard deviations and the significance levels. Section 7 concludes.

2 The Theoretical Background

2.1 The Production Economics Model

Denote x ∈ R
p
+ and y ∈ R

q
+ column vectors as inputs and outputs, respectively. The typical

production set is

Ψt = {(x, y) | x can produce y at time t}, (2.1)

which describes the set of physically attainable points (x, y) in the relevant input-output

space at time t. We impose the common regularity assumptions on the production set Ψt,

which are described in Appendix A in Pham et al. (2023). The upper boundary of Ψt, is

called the technology or frontier, which is defined as

Ψt∂ :=
{
(x, y) | (x, y) ∈ Ψt, (x/γ, γy) /∈ Ψt for any γ ∈ (1,∞)

}
. (2.2)

The technical efficiency for a particular firm (x, y) is measured by the distance between

the point of (x, y) in Ψt and the technology Ψt∂. Efficiency can be measured in various

orientations or directions. The Farrell output-oriented efficiency measure (Farrell, 1957) is

λ(x, y | Ψt) := sup{λ | (x, λy) ∈ Ψt}, (2.3)

which gives the maximal proportion by which all outputs can be increased, while holding the

inputs and technology fixed. For simplicity, in this paper, we focus on the output-oriented

MPI. The results in this paper can be extended to the other directions.

The conical closure of the production set Ψt is defined as

C(Ψt) :=
{
(x̃, ỹ) | x̃ = ax, ỹ = ay, ∀ a ∈ R1

+,∀ (x, y) ∈ Ψt
}
. (2.4)

If Ψt∂ exhibits globally constant returns to scale (CRS), then C(Ψt) = Ψt; otherwise, Ψt ⊂
C(Ψt). The corresponding conical Farrell output efficiency measure is defined as

λC(x, y | Ψt) := λ(x, y | C(Ψt)) = sup{λ | (x, λy) ∈ C(Ψt)}. (2.5)
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2.2 The Simple Mean and Aggregate MPI

Now consider a sample Sn = {(X1
i , Y

1
i ), (X

2
i , Y

2
i )}ni=1 of input-output combinations for n

firms observed in periods t = 1 and 2. To simplify the notation, let Z1
i = (X1

i , Y
1
i ), Z

2
i =

(X2
i , Y

2
i ), S1

n = {Z1
i }ni=1 and S2

n = {Z2
i }ni=1. We assume each firm i has access to the

technology Ψt∂ in period t, although potentially not efficient with respect to this technology.

Following Caves et al. (1982), the productivity change for firm i from period 1 to period 2

can be defined as

Mi :=

(
λC(Z

2
i | Ψ1)

λC(Z1
i | Ψ1)

× λC(Z
2
i | Ψ2)

λC(Z1
i | Ψ2)

)−1/2

. (2.6)

Clearly, Mi > 1, = 1, or < 1, indicates the productivity for firm i has increased, remained

unchanged or decreased from period 1 to period 2.

In addition to estimating the productivity change for individual firms, applied researchers

often are interested in whether the productivity change for a group, such as the geometric

means of the individual productivity change,

M :=

(
n∏

i=1

Mi

)1/n

, (2.7)

is significantly greater or less than 1. Note that M uses the equally weighted geometric

mean. Now consider the log MPI for individual firm as

logMi = −1

2

[
log λC(Z

2
i | Ψ1) + log λC(Z

2
i | Ψ2)

− log λC(Z
1
i | Ψ1)− log λC(Z

1
i | Ψ2)

]
,

(2.8)

and denote the mean value as

µM := E(logMi). (2.9)

The log MPI for a group of firms is

µM,n := logM =
1

n

n∑
i=1

logMi, (2.10)

which is an estimate of µM if the true value for individual MPI, Mi, is known.

Another alternative is to take individual economic importance (such as the revenues) into

account and consider the aggregate MPI (Zelenyuk, 2006), defined as

M :=

(∑n
i=1 β

2
i λC(Z

2
i | Ψ1)∑n

i=1 β
1
i λC(Z1

i | Ψ1)
×
∑n

i=1 β
2
i λC(Z

2
i | Ψ2)∑n

i=1 β
1
i λC(Z1

i | Ψ2)

)−1/2

, (2.11)
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where

βt
i =

wtY t
i∑n

i=1w
tY t

i

, (2.12)

is the revenue weight for firm i at time t, and wt ∈ R
q
++ is the row vector of output prices,

assumed to be the same for different firms in the same period t.

Now, consider the log version of M as

ξn = logM =− 1

2

[
log
( n∑

i=1

β2
i λC(Z

2
i | Ψ1)

)
+ log

( n∑
i=1

β2
i λC(Z

2
i | Ψ2)

)
− log

( n∑
i=1

β1
i λC(Z

1
i | Ψ1)

)
− log

( n∑
i=1

β1
i λC(Z

1
i | Ψ2)

)]

=− 1

2

[
log
( n∑

i=1

λC(Z
2
i | Ψ1)w2Y 2

i

)
+ log

( n∑
i=1

λC(Z
2
i | Ψ2)w2Y 2

i

)
− log

( n∑
i=1

λC(Z
1
i | Ψ1)w1Y 1

i

)
− log

( n∑
i=1

λC(Z
1
i | Ψ2)w1Y 1

i

)]

+ log
( n∑

i=1

w2Y 2
i

)
− log

( n∑
i=1

w1Y 1
i

)
.

(2.13)

As shown by Pham et al. (2023), ξn is an consistent estimate of

ξ = −1

2
(log µ1 + log µ2 − log µ3 − log µ4) + log µ5 − log µ6, (2.14)

where µs = E(Us,i), s = 1, 2, . . . , 6 and

U1,i = λC(Z
2
i | Ψ1)w2Y 2

i ,

U2,i = λC(Z
2
i | Ψ2)w2Y 2

i ,

U3,i = λC(Z
1
i | Ψ1)w1Y 1

i ,

U4,i = λC(Z
1
i | Ψ2)w1Y 1

i ,

U5,i = w2Y 2
i ,

U6,i = w1Y 1
i .

(2.15)

However, all the above quantities of λC(Z
2
i | Ψ1), λC(Z

2
i | Ψ2), λC(Z

1
i | Ψ1), and

λC(Z
1
i | Ψ2) are the so-called true quantities of interest, derived and based on economic

theory reasoning, which are usually unobserved in practice, and must be estimated from the

sample data, as discussed in the next sections.
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2.3 DEA Estimators

In the empirical analysis, we do not observe λC(Z
2
i | Ψ1), λC(Z

2
i | Ψ2), λC(Z

1
i | Ψ1), and

λC(Z
1
i | Ψ2), and thus we do not observe µM,n and ξn and hence they must be estimated

from the sample data.

Given a random sample Sn, the conical Farrell output efficiency λC(x, y | Ψt) can be

estimated by the DEA estimator as,

λ̂C(x, y | St
n) = max

λ,s1,...,sn

{
λ | λy ≤

n∑
i=1

siY
t
i , x ≥

n∑
i=1

siX
t
i , ∀ si ≥ 0

}
. (2.16)

The simple mean MPI, µM, can then be estimated by

µ̂M,n =
1

n

n∑
i=1

log M̂i, (2.17)

where

log M̂i = −1

2

[
log λ̂C(Z

2
i | S1

n) + log λ̂C(Z
2
i | S2

n)

− log λ̂C(Z
1
i | S1

n)− log λ̂C(Z
1
i | S2

n)
]
.

(2.18)

Similarly, the aggregate MPI, ξ, can be estimated by

ξ̂n = −1

2
(log µ̂1 + log µ̂2 − log µ̂3 − log µ̂4) + log µ̂5 − log µ̂6, (2.19)

where µ̂s =
1
n

∑n
i=1 Ûs,i, s = 1, 2, . . . , 6 and

Û1,i = λ̂C(Z
2
i | S1

n)w
2Y 2

i ,

Û2,i = λ̂C(Z
2
i | S2

n)w
2Y 2

i ,

Û3,i = λ̂C(Z
1
i | S1

n)w
1Y 1

i ,

Û4,i = λ̂C(Z
1
i | S2

n)w
1Y 1

i ,

Û5,i = w2Y 2
i ,

Û6,i = w1Y 1
i .

(2.20)

3 Central Limit Theorems and Inferences

The statistical properties for the estimators µ̂M,n and ξ̂n have been well established by Kneip

et al. (2021) and Pham et al. (2023), respectively. In this section, we briefly summarize their

main results, in order to adapt the improving methods in Nguyen et al. (2022) and Simar

et al. (2023a) to the context of the simple mean and aggregate MPI.
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3.1 CLTs and Inferences for the Simple Mean MPI

Notice that µ̂M,n is a biased estimator of µM. The bias of µ̂M,n comes from the bias of various

efficiency estimates λ̂C(Z
2
i | S1

n), λ̂C(Z
2
i | S2

n), λ̂C(Z
1
i | S1

n), and λ̂C(Z
1
i | S2

n). According to

Kneip et al. (2021), the bias of µ̂M,n can be consistently estimated using the generalized

jackknife method. The procedures described by Kneip et al. (2021) are as follows.

For each k = 1, 2, . . . , K, where K ≪
(

n
⌊n/2⌋

)
,2 split the sample into two evenly sized

subsamples (for simplicity, assuming n is even) S1,n/2,k and S2,n/2,k, so that S1,n/2,k∩S2,n/2,k =

∅ and S1,n/2,k ∪ S2,n/2,k = Sn. Further, for each l = 1, 2, let S1
l,n/2,k and S2

l,n/2,k be the

observations in Sl,n/2,k, split by periods 1 and 2, respectively. For each l = 1, 2, compute

µ̂M,l,k =
2

n

∑
(Z1

i ,Z
2
i )∈Sl,n/2,k

−1

2

[
log λ̂C(Z

2
i | S1

l,n/2,k) + log λ̂C(Z
2
i | S2

l,n/2,k)

− log λ̂C(Z
1
i | S1

l,n/2,k)− log λ̂C(Z
1
i | S2

l,n/2,k)
]
.

(3.1)

Then compute

µ̂∗
M,n,k =

1

2
(µ̂M,1,k + µ̂M,2,k). (3.2)

Repeating the above process for K times (large enough), we end up with the estimate of the

bias term for µ̂M,n given by

B̂M,n,κ,K =
1

K

K∑
k=1

(2κ − 1)−1(µ̂∗
M,n,k − µ̂M,n), (3.3)

where κ = 2/(p+ q + 1), if the true technology is VRS and κ = 2/(p+ q) if it is CRS. After

obtaining the estimate of the bias term for µ̂M,n, the key results from Kneip et al. (2021)

can be summarized in the following theorem.

Theorem 1. Under the appropriate set of assumptions described in Theorem 3.6 of Kneip

et al. (2021), for κ ≥ 2/5, we have

√
n
(
µ̂M,n − B̂M,n,κ,K − µM +Rn,M,κ

)
L−→N(0, σ2

M), (3.4)

and if κ < 1/2, we have

√
nκ

(
µ̂M,nκ − B̂M,n,κ,K − µM +Rn,M,κ

)
L−→N(0, σ2

M), (3.5)

2 ⌊n/2⌋ denotes the largest integer that is less than or equal to n/2.
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where Rn,M,κ = o(n−κ) and µ̂M,nκ is a random subsample version, with size nκ = ⌊n2κ⌋ < n,

of µ̂M,n. Formally,

µ̂M,nκ =
1

nκ

∑
{i|(Z1

i ,Z
2
i )∈Snκ}

log M̂i, (3.6)

where Snκ is a random subsample, with the sample size nκ, from Sn.
3

Further, σ2
M is not observed and must be estimated. To estimate σ2

M, Kneip et al. (2021)

suggest using the empirical version of σ2
M, i.e.,

σ̂2
M =

1

n

n∑
i=1

(log M̂i − µ̂M,n)
2. (3.7)

The asymptotic 100(1− α)% confidence intervals for µM are then given by[
µ̂M,n − B̂M,n,κ,K ± Φ−1

1−α/2 σ̂M/
√
n

]
, (3.8)

and [
µ̂M,nκ − B̂M,n,κ,K ± Φ−1

1−α/2 σ̂M/
√
nκ

]
, (3.9)

for κ ≥ 2/5 and κ < 1/2, respectively. As noted by Kneip et al. (2021), if κ = 2/5, both

(3.8) and (3.9) are applicable, but (3.9) is recommended due to a smaller remainder term.

3.2 CLTs and Inferences for the Aggregate MPI

Similarly, ξ̂n is a biased estimator of ξ. The bias of ξ̂n also comes from the bias of various

efficiency estimates λ̂C(Z
2
i | S1

n), λ̂C(Z
2
i | S2

n), λ̂C(Z
1
i | S1

n), and λ̂C(Z
1
i | S2

n). According

to Pham et al. (2023), the bias of ξ̂n can be consistently estimated using the generalized

jackknife method. The procedures described by Pham et al. (2023) are as follows.

For each k = 1, 2, . . . , K, where K ≪
(

n
⌊n/2⌋

)
, split the sample into two evenly sized

subsamples (for simplicity, assuming n is even) S1,n/2,k and S2,n/2,k, so that S1,n/2,k∩S2,n/2,k =

∅ and S1,n/2,k ∪ S2,n/2,k = Sn. Further, for each l = 1, 2, let S1
l,n/2,k and S2

l,n/2,k be the

3 Note that here, M̂i as defined in (2.18) is computed for each i in the sub-sample, but relative to all
the data points in Sn rather than Snκ

, and then averaged over all i in that subsample (of size nκ) to obtain
µ̂M,nκ .
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observations in Sl,n/2,k, split by periods 1 and 2, respectively. For each l = 1, 2, compute

µ̂1,l,k =
2

n

∑
Z2
i ∈S1

l,n/2,k

λ̂C(Z
2
i | S1

l,n/2,k)w
2Y 2

i ,

µ̂2,l,k =
2

n

∑
Z2
i ∈S2

l,n/2,k

λ̂C(Z
2
i | S2

l,n/2,k)w
2Y 2

i ,

µ̂3,l,k =
2

n

∑
Z1
i ∈S1

l,n/2,k

λ̂C(Z
1
i | S1

l,n/2,k)w
1Y 1

i ,

µ̂4,l,k =
2

n

∑
Z1
i ∈S2

l,n/2,k

λ̂C(Z
1
i | S2

l,n/2,k)w
1Y 1

i ,

(3.10)

and define

ξ̂l,k = −1

2
(log µ̂1,l,k + log µ̂2,l,k − log µ̂3,l,k − log µ̂4,l,k) + log µ̂5 − log µ̂6. (3.11)

Then compute

ξ̂∗n,k =
1

2
(ξ̂1,k + ξ̂2,k). (3.12)

Repeating the above process for K times, we end up with the estimate of the bias term for

ξ̂n given by

B̂ξ,n,κ,K =
1

K

K∑
k=1

(2κ − 1)−1(ξ̂∗n,k − ξ̂n). (3.13)

After obtaining the estimate of the bias term for ξ̂n, the key results from Pham et al. (2023)

can be summarized in the following theorem.

Theorem 2. Under the appropriate set of assumptions described in Theorem 8 of Pham

et al. (2023), for κ ≥ 2/5, we have

√
n
(
ξ̂n − B̂ξ,n,κ,K − ξ +Rn,ξ,κ

)
L−→N(0, σ2

ξ ), (3.14)

and if κ < 1/2, we have

√
nκ

(
ξ̂nκ − B̂ξ,n,κ,K − ξ +Rn,ξ,κ

)
L−→N(0, σ2

ξ ), (3.15)

9



where Rn,ξ,κ = o(n−κ) and ξ̂nκ is a random subsample version, with size nκ = ⌊n2κ⌋ < n, of

ξ̂n. Formally,

ξ̂nκ = −1

2
(log µ̂1,nκ + log µ̂2,nκ − log µ̂3,nκ − log µ̂4,nκ) + log µ̂5,nκ − log µ̂6,nκ , (3.16)

where

µ̂s,nκ =
1

nκ

∑
{i|(Z1

i ,Z
2
i )∈Snκ}

Ûs,i, s = 1, 2, . . . , 6, (3.17)

and where Snκ is a random subsample, with the sample size nκ, from Sn.
4

Further, σ2
ξ is not observed and must be estimated. To estimate σ2

ξ , Pham et al. (2023)

suggest plugging the corresponding empirical estimates of these components in σ2
ξ , i.e.,

σ̂2
ξ = [∇ξ̂n]

′Σ̂[∇ξ̂n], (3.18)

where ∇ξ̂n is the column vector of the gradient of ξ̂n with respect to µ̂s. Formally, ∇ξ̂n =

[∂ξ̂n
µ̂1

, ∂ξ̂n
µ̂2

, ∂ξ̂n
µ̂3

, ∂ξ̂n
µ̂4

, ∂ξ̂n
µ̂5

, ∂ξ̂n
µ̂6

]′, where

∂ξ̂n
µ̂1

= − 1

2µ̂1

,
∂ξ̂n
µ̂2

= − 1

2µ̂2

,
∂ξ̂n
µ̂3

=
1

2µ̂3

,

∂ξ̂n
µ̂4

=
1

2µ̂4

,
∂ξ̂n
µ̂5

=
1

µ̂5

,
∂ξ̂n
µ̂6

=
1

µ̂6

.

(3.19)

Further, Σ̂ is the covariance matrix of a column vector [µ̂1, µ̂2, µ̂3, µ̂4, µ̂5, µ̂6]
′, Formally, the

(j, k)th element of Σ̂ is

Σ̂j,k =
1

n

n∑
i=1

(Ûj,i − µ̂j)(Ûk,i − µ̂k). (3.20)

The asymptotically 100(1− α)% confidence intervals for ξ are given by[
ξ̂n − B̂ξ,n,κ,K ± Φ−1

1−α/2 σ̂ξ/
√
n

]
, (3.21)

and [
ξ̂nκ − B̂ξ,n,κ,K ± Φ−1

1−α/2 σ̂ξ/
√
nκ

]
, (3.22)

for κ ≥ 2/5 and κ < 1/2, respectively. In the remark 2 of Pham et al. (2023), if κ = 2/5,

both (3.21) and (3.22) are applicable, but (3.22) is recommended due to a smaller remainder

term.

4 Note that here, Ûs,i as defined in (2.20) is computed for each i in the sub-sample, but relative to all
the data points in Sn rather than Snκ , and then averaged over all i in that subsample (of size nκ) to obtain
µ̂s,nκ

.
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4 Further Improvements of Finite Sample Approxima-

tion of CLTs

It is observed from the simulations that for the simple mean (Kneip et al., 2021) and aggregate

MPI (Pham et al., 2023), the estimated confidence intervals based on the developed CLTs

typically under-cover the true values in finite sample sizes and large dimensions. For example,

Table EC.9 in Pham et al. (2023) presents the coverages of confidence intervals when p =

4, q = 1, δ = 0.04, which shows that when the nominal coverage is 95%, the estimated

confidence intervals based on (3.22) for n = 10, 20, 50, 100 is only 0.684, 0.835, 0.902, 0.932,

respectively.

This under-covering phenomenon is also observed in the simple mean (Kneip et al.,

2015) and aggregate efficiency (Simar and Zelenyuk, 2018). Recently, Simar and Zelenyuk

(2020), Nguyen et al. (2022), Simar et al. (2023a), and Simar et al. (2023b) propose various

methods to improve the finite sample approximation for the simple mean and aggregate

(input-oriented and output-oriented) efficiency. In this section, to improve the finite sample

approximation of CLTs for the simple mean of MPI and aggregate (weighted mean of) MPI,

we adapt the methods from Nguyen et al. (2022) and Simar et al. (2023a).

4.1 Improvements via Data Sharpening

Specifically, we adapt the idea of the data sharpening method in Nguyen et al. (2022) to the

output-oriented MPI. First, we sharpen Z1
i = (X1

i , Y
1
i ) as follows,

λ̃C(Z
1
i | S1

n) =


λ̂C(Z

1
i | S1

n), if 1/λ̂C(Z
1
i | S1

n) < 1− τ,

λ̂C(Z
1
i | S1

n)/εi, otherwise ,

(4.1)

where the sharpening parameter τ = n−γ, while εi is a random independent number drawn

from a uniform distribution on the interval [1− τ, 1], where we set γ = κ.5 It can be shown

that λ̃C(Z
1
i | S1

n) = λ̂C(X
1
i , Ỹ

1
i | S1

n), where

Ỹ 1
i =


Y 1
i , if 1/λ̂C(Z

1
i | S1

n) < 1− τ,

Y 1
i × εi, otherwise .

(4.2)

5 Simar et al. (2023b) show that the main asymptotic results hold for any γ > min(κ/2, 1/4), and their
extensive MC results suggest that choosing γ equal to or near κ, usually provides the best coverage.
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After the data sharpening, (X1
i , Y

1
i ) becomes (X1

i , Ỹ
1
i ). Moreover, we have

λ̃C(Z
1
i | S2

n) = λ̂C(X
1
i , Ỹ

1
i | S2

n) =


λ̂C(Z

1
i | S2

n), if 1/λ̂C(Z
1
i | S1

n) < 1− τ,

λ̂C(Z
1
i | S2

n)/εi, otherwise .

(4.3)

Similarly, we do the data sharpening for Z2
i = (X2

i , Y
2
i ) as follows,

λ̃C(Z
2
i | S2

n) =


λ̂C(Z

2
i | S2

n), if 1/λ̂C(Z
2
i | S2

n) < 1− τ,

λ̂C(Z
2
i | S2

n)/ϵi, otherwise ,

(4.4)

where the sharpening parameter τ = n−κ, while ϵi is a random independent number drawn

from a uniform distribution on the interval [1 − τ, 1]. It can be shown that λ̃C(Z
2
i | S2

n) =

λ̂C(X
2
i , Ỹ

2
i | S2

n), where

Ỹ 2
i =


Y 2
i , if 1/λ̂C(Z

2
i | S2

n) < 1− τ,

Y 2
i × ϵi, otherwise .

(4.5)

After the data sharpening, (X2
i , Y

2
i ) becomes (X2

i , Ỹ
2
i ). Moreover, we have

λ̃C(Z
2
i | S1

n) = λ̂C(X
2
i , Ỹ

2
i | S1

n) =


λ̂C(Z

2
i | S1

n), if 1/λ̂C(Z
2
i | S2

n) < 1− τ,

λ̂C(Z
2
i | S1

n)/ϵi, otherwise .

(4.6)

Combining together, after the data sharpening, the input-output pair for observa-

tion i, (X1
i , Y

1
i , X

2
i , Y

2
i ) becomes (X1

i , Ỹ
1
i , X

2
i , Ỹ

2
i ). We then use the sharpened sample

{(X1
i , Ỹ

1
i , X

2
i , Ỹ

2
i )}ni=1 to obtain the estimates of the simple mean and aggregate MPI as

well as their confidence intervals.

4.2 Improvements via Bias-corrected Individual Efficiency Esti-
mates

Recently, Simar et al. (2023a) propose using the bias-corrected efficiency estimate to obtain

the variance estimator for the simple mean efficiency, which is further extended by Simar et al.

(2023b) for the aggregate efficiency. As the simple mean and aggregate MPI is constructed

using various technical efficiency, the method in Simar et al. (2023a) can also be extended

to here.

12



First, it is worth noting that when we estimate the bias for the simple mean MPI estimate

µ̂M,n or aggregate MPI estimate ξ̂n, we can also obtain the bias for each individual technical

efficiency estimate λ̂C(Z
s
i | St

n), where s, t ∈ {1, 2}. Specifically, when splitting the sample Sn

into S1,n/2,k and S2,n/2,k, we know that the observation i with the input-output pair (Z1
i , Z

2
i )

must lie in either S1,n/2,k or S2,n/2,k with equal probability. Without loss of generality, we

assume (Z1
i , Z

2
i ) ∈ S1,n/2,k. Then we compute

B̂∗
i,s,t,k = λ̂C(Z

s
i | St

1,n/2,k)− λ̂C(Z
s
i | St

n). (4.7)

Repeating the above process K times, we end up with the estimate of the bias term for

λ̂C(Z
s
i | St

n) given by

B̂i,s,t =
1

K

K∑
k=1

(2κ − 1)−1(B̂∗
i,s,t,k). (4.8)

Extending the idea of Simar et al. (2023a) to the simple mean and aggregate MPI, for

the original variance estimator of simple mean and aggregate MPI expressed in equations

(3.7) and (3.18), respectively, we propose replacing λ̂C(Z
s
i | St

n) by λ̂C(Z
s
i | St

n) − B̂i,s,t at

every place, where s, t ∈ {1, 2}, and B̂i,s,t is the estimated individual bias for λ̂C(Z
s
i | St

n)

using the generalized jackknife method of Kneip et al. (2015), as discussed above.

5 Monte-Carlo Evidence

5.1 Details on Monte-Carlo Simulations

Our MC experiments closely follow that in Pham et al. (2023), and we briefly restate it here

for the sake of being self-contained. Interested readers can see Appendix EC.3 in Pham et al.

(2023) for more details. The true technology in the first period is

y1∂i =

p∏
j=1

(x1
ij − 1)βj , (5.1)

while the true technology in the second period is

y2∂i = (1 + δ)

p∏
j=1

(x2
ij − 1)βj+δ, (5.2)
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where δ controls the changes of the technology from period 1 to period 2. Denote xt
i =

(xt
i1, x

t
i2, . . . , x

t
ip), for t = 1, 2 and i = 1, . . . , n, then (x1

i , y
1∂
i ) and (x2

i , y
2∂
i ) are the points on

the technology in (5.1) and (5.2), respectively.

The inputs and technical efficiency between the two periods are typically correlated. To

account for the correlations of inputs, following Pham et al. (2023), for each j = 1, . . . , p, we

generate the observed inputs as

x1
ij, x

2
ij,

iid∼ Unif(1, 10),∀ i = 1, . . . , n, (5.3)

where corr(x1
ij, x

2
ij) = 0.5, for each j = 1, . . . , p.6 Similarly, to account for the correlations

of efficiency, we generate the true efficiency as

λ(X1
i , Y

1
i | Ψ1), λ(X2

i , Y
2
i | Ψ2)

iid∼ 1 + |N(0, 0.252)|,∀ i = 1, . . . , n, (5.4)

where corr(λ(X1
i , Y

1
i | Ψ1), λ(X2

i , Y
2
i | Ψ2)) ̸= 0 and N(0, 0.252) is the normal distribution

with the variance 0.252 so that |N(0, 0.252)| is the half normal distribution. The observed

outputs then can be computed as

y1i =

p∏
j=1

(x1
ij − 1)βj/λ(X1

i , Y
1
i | Ψ1), (5.5)

and

y2i = (1 + δ)

p∏
j=1

(x2
ij − 1)βj+δ/λ(X2

i , Y
2
i | Ψ2), (5.6)

i.e., we project the optimal points from the corresponding technologies to the production set

to obtain a simulated sample Sn = {(x1
i , y

1
i , x

2
i , y

2
i )}ni=1.

6 See EC.3 in Pham et al. (2023) for more details on how to generate the correlated numbers.
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Table 1: The Values of βj and wj

p 1 2 3 4 5 7

β1 0.5 0.3 0.1 0.1 0.05 0.025
β2 0.4 0.2 0.15 0.1 0.05
β3 0.3 0.2 0.15 0.075
β4 0.25 0.2 0.1
β5 0.25 0.125
β6 0.15
β7 0.175

We set δ = 0.04, the output prices w1
y = w2

y = 1, and the values of βj are presented

in Table 1. The number of MC trials for each experiment consisting of (n, p, q) is 1, 000.

Moreover, we consider both the simple mean and aggregate Malmquist productivity indices.

The true values of the simple mean and aggregate MPI are computed by following the steps

in EC.3.8 of Pham et al. (2023). Before presenting our MC results, to simplify the notation,

for simple mean MPI, we denote,

• (i): Using the standard central limit theorems, i.e., the unobserved elements being

replaced by their respective DEA estimates.

• (ii): Kneip et al. (2021).7

• (iii): Kneip et al. (2021)+Simar et al. (2023a).

• (iv): Kneip et al. (2021)+Nguyen et al. (2022).

• (v): Kneip et al. (2021)+Nguyen et al. (2022) +Simar et al. (2023a).

For aggregate MPI, we denote

• (i): Using the standard central limit theorems, i.e., the unobserved elements being

replaced by their respective DEA estimates.

7 When p + q < 4, Theorem B.2 in Kneip et al. (2021) is used; otherwise, Theorem B.3 in Kneip et al.
(2021) is used.
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• (ii): Pham et al. (2023).8

• (iii): Pham et al. (2023)+Simar et al. (2023a).

• (iv): Pham et al. (2023)+Nguyen et al. (2022).

• (v): Pham et al. (2023)+Nguyen et al. (2022) +Simar et al. (2023a).

5.2 Monte-Carlo Results

5.2.1 General Remarks

We notice that when the nominal coverage is 99%, the coverage of the estimated confidence

intervals for both the simple mean and aggregate MPI using either of (ii)–(v) is generally

close to 99%, and thus we only focus on the cases where the nominal coverage is 90% and

95%. Further, the results in this section are robust to the values of δ. The empirical coverages

from the simulation results for δ = 0.02 and δ = 0.10 are reported in the separate Appendix

B and Appendix C, respectively, which have a similar pattern as those for δ = 0.04.

5.2.2 Main Results

Figures 1 and 2 present the results for the coverage of the estimated confidence intervals for

the simple mean MPI in the cases of the 90% and 95% nominal coverage, respectively, while

Figures 3 and 4 present similar results for aggregate MPI.9 We notice that when the sample

size increases, the estimated coverage of (ii) in Figures 1–4 shows a gradual improvement

in the approximation of the respective nominal coverage across different dimensions, which

supports the developed theories for the simple mean MPI in Kneip et al. (2021) and the

aggregate MPI in Pham et al. (2023).

Comparing (iii) with (ii), across different nominal coverage, we see that the coverage using

(iii) is larger than or equal to that using (ii) for the simple mean MPI. For the aggregate

MPI, this is also true in general, except for the three cases p = q = 1, n = 20, 50, 200 with

90% nominal coverage, the one case p = q = 1, n = 100 with 95% nominal coverage, and

8 More specifically, when p+ q < 4, equation (62) in Theorem 8 in Pham et al. (2023) is used; otherwise,
equation (63) in Theorem 8 in Pham et al. (2023) is used.

9 Tables A.1 and A.2 in the separate Appendix A present the values for the coverage of estimated confi-
dence intervals for the simple mean and aggregate MPI, respectively.
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the one case p = q = 1, n = 20 with 99% nominal coverage.10 However, the goal should

not be just larger per se, but closer to the nominal level. The improvements (measured by

the closeness to the nominal level) of (iii) over (ii) are mainly observed in high dimensions

(p ≥ 2) and relatively small sample sizes (n ≤ 50). For example, for the simple mean MPI,

when p = 3, n = 20 and the nominal coverage is 95%, the coverage using (iii) is 0.949, which

is much closer to the 95% nominal coverage than 0.881% obtained using (ii). Moreover this

difference is especially substantial in high dimensions. For example, for the simple mean

MPI, holding n = 20 and the nominal coverage 95%, the difference of the coverage between

(iii) and (ii) increases from 0.068 (0.949− 0.881) to 0.121 (0.959− 0.838) when the number

of input increases from p = 3 to p = 7. However, it is observed that (iii) often starts

overshooting after n = 100 (and sometimes from around n = 50), while at around n = 100,

(ii) starts approximating the nominal levels relatively well and the additional improvements

seem to not be needed, especially if they can add noise and overshoot with the nominal

coverage.

The comparison between (iii) and (ii) suggests that the method in Simar et al. (2023a)

generally could improve the finite sample approximation of the developed CLTs for simple

mean and aggregate MPI in high dimensions (p ≥ 2) and relatively small sample sizes

(n ≤ 50). To some extent, our results are consistent with Simar et al. (2023a) and Simar

et al. (2023b) who also find the better performance of the method in Simar et al. (2023a) for

improving the finite sample approximation of CLTs for simple mean efficiency and aggregate

efficiency, respectively. However, our result is also different from the context of CLTs for

efficiency aggregates, where the improvement was really needed, even for n = 300 and

especially below that. This is likely due to the ratio nature of the measurement where the

magnitude of the bias shrinks substantially.

Comparing (iv) with (ii), for both simple mean and aggregate MPI, the coverage using

(iv) is generally smaller than that using (ii), except in high dimensions (p ≥ 4) and small

sample sizes (n ≤ 100); in other words, the improvements of (iv) over (ii) are only observed

in high dimensions and relatively small sample sizes. For example, for the simple mean MPI,

when p = 5 and the nominal coverage is 95%, the difference of the coverage between (iv) and

(ii) is 0.049 (0.912 − 0.863) when n = 20 and it decreases to −0.004 (0.942 − 0.946) when

10 Note that the standard CLT (i) is also correct for the case p = q = 1.
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Figure 1: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices for the 90% Nominal Coverage
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Figure 2: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices for the 95% Nominal Coverage
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Figure 3: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices for the 90% Nominal Coverage
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Figure 4: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices for the 95% Nominal Coverage
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n = 1000. Our results here are different from Nguyen et al. (2022), Simar et al. (2023a),

and Simar et al. (2023b) where they all find that the data sharpening method could improve

the finite sample approximation of the central limit theorems for simple mean and aggregate

efficiency; i.e., they all find the better performance of the data sharpening method over the

original methods in Kneip et al. (2015) and Simar and Zelenyuk (2018). The reason might

come from the fact that the MPI estimates involve ratios of technical efficiency estimates

and so the magnitude (i.e., the constant part) of the bias seems to be partially cancelled out

in practice.11

As both (iii) and (iv) have better performance over (ii) in high dimensions and relatively

small sample sizes, next we compare these two methods. From Figures 1–4, we see that the

improvements of (iii) are always more substantial than (iv) in all the high dimensions and

relatively small sample sizes. Combining the results until now, the estimated coverage using

(iii) seems to be much closer to the nominal coverage than those using (ii) and (iv) in high

dimensions (p ≥ 2) and relatively small sample sizes (n ≤ 50), while at around n = 100, the

method (ii) starts approximating the nominal levels relatively well.

Comparing (v) with (iv) again indicates the better performance of Simar et al. (2023a),

as for both the simple mean and aggregate MPI, the coverage using (v) is larger than that

using (iv), especially in high dimensions (p ≥ 2) and small sample sizes (n ≤ 50), (v) seems

to often give slightly (and sometimes significantly) closer coverage than (iv). However, when

comparing (v) and (iii), the former seems to often give slightly (and sometimes significantly)

closer coverage than the latter, yet not always and the difference is often too small to justify

the additional complexity. So, for simplicity reasons, (iii) might be preferred over (v).

To conclude for this section, both (iii) and (v) are very similar and help to improve the

coverage for relatively small samples, such as around n = 50 and less, and sometimes up to

around 100, but they also often start to overshoot after that (and sometimes from around 50).

Fortunately, and unlike the context of efficiency measurement, already at around n = 100,

the original methods from Kneip et al. (2021) and Pham et al. (2023) start approximating

the nominal levels relatively well and the additional improvements seem to be not needed,

11 For example, suppose the true efficiency scores are 1.4 and 1.5, but their DEA estimates are 1.3 and
1.4, respectively: the absolute value of the bias for both cases is 0.1, however if the interest is about the
ratio of the true efficiency scores, i.e., 1.5/1.4=1.0714, it is still fairly well approximated by the ratio of their
estimates, even though those estimates are biased (according to the same estimator). Indeed, 1.4/1.3=1.0769,
implying the absolute value of the bias is only 0.0055.
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especially if they can add noise and overshoot with the coverage (i.e., rejecting a hypothesis

less than they should). This is indeed very different from the context of CLTs for efficiency

aggregates, where the improvement was often needed even for n = 300 and especially below

that. This is likely due to the ratio nature of the measurement in the MPI framework where

the magnitude of the bias shrinks substantially. Hence, the bottom line conclusion is that

the use of (iii) or (v) is advisable for relatively small samples (e.g., up to around 50, perhaps

100) and after that just use (ii), i.e., the original methods from Kneip et al. (2021) and Pham

et al. (2023).

6 Empirical Illustrations

Our illustration closely follows that in Pham et al. (2023), which employs the widely used

Penn World Table data (PWT 10.0, Feenstra et al., 2015) to study the MPI of coun-

tries/regions in the world from 1990 to 2019. For the related literature using PWT, see

also Färe et al. (1994), Kumar and Russell (2002), and Badunenko et al. (2008, 2018).

Same as Pham et al. (2023), the production of countries is modelled using labor (emp)

and capital stock (cn) to produce GDP (rgdpo). The output price is the same for all coun-

tries/regions. To illustrate the evolution of the simple mean and aggregate MPI from 1990

to 2019, we will use the same sub-set of 84 countries/regions as Badunenko et al. (2008) and

Pham et al. (2023). Different from Pham et al. (2023), we present results for pairs of years at

5–year intervals and the overall period 1990–2019 in Table 2 for the simple mean MPI and in

Table 3 for aggregate MPI. Moreover, same as Pham et al. (2023), we conduct the analysis

for the entire sample, 27 developed countries, and 57 developing countries, separately.

First, from Tables 2 and 3, we can see that our results for the simple mean and aggregate

MPI estimates from 1990 to 2019 are similar to those in Table 1 of Pham et al. (2023).12 In

terms of the estimates of the variance for the simple mean and aggregate MPI, we find that

(iii) generally yields slightly larger estimates than (ii). For example, among the 21 cases

in Table 2 (7 cases for each of the entire sample, developed and developing countries), the

estimates of σM using (iii) are larger than that using (ii) for 19 cases; similarly, Table 3

12 For example, we find that the bias-corrected simple mean MPI estimate (exp (M̂n − B̂M,n)) is 1.0579,
while it is 1.0640 in Pham et al. (2023). The small difference comes from the estimated bias for the simple
mean and aggregate MPI, which uses the generalized jackknife method by randomly splitting the sample
into two sub-samples many times.
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Table 2: Estimation Results for the Simple Mean MPI of Countries/Regions

— Estimate of σM — — Significant Level —

Year 1 Year 2 exp (µ̂M,n) exp (µ̂M,n − B̂M,n,κ,K) µ̂M,n µ̂M,n − B̂M,n,κ,K (ii) (iii) (iv) (v) (ii) (iii) (iv) (v)

— Entire Sample —

1990 1995 0.8970 0.9121 -0.1087 -0.0921 0.3441 0.3540 0.3402 0.3497 ** ** ** **
1995 2000 1.0342 1.0371 0.0336 0.0364 0.1911 0.1910 0.1881 0.1877 * * * *
2000 2005 1.0934 1.0912 0.0893 0.0873 0.2088 0.2141 0.2055 0.2104 *** *** *** ***
2005 2010 0.9628 0.9786 -0.0380 -0.0216 0.2299 0.2444 0.2222 0.2373 – – – –
2010 2015 0.9855 0.9848 -0.0146 -0.0153 0.1897 0.2041 0.1855 0.1999 – – – –
2015 2019 1.0156 1.0157 0.0155 0.0156 0.1779 0.1953 0.1773 0.1944 – – – –
1990 2019 1.0388 1.0579 0.0381 0.0563 0.4555 0.4678 0.4503 0.4617 – – – –

— Developed Countries —

1990 1995 1.0532 1.0918 0.0519 0.0878 0.1067 0.1239 0.1337 0.1523 *** *** *** ***
1995 2000 1.1706 1.1682 0.1576 0.1555 0.0785 0.0901 0.1086 0.1174 *** *** *** ***
2000 2005 1.0720 1.0597 0.0695 0.0580 0.0881 0.0946 0.0939 0.0999 *** *** *** ***
2005 2010 0.8654 0.8005 -0.1446 -0.2225 0.1284 0.1671 0.1148 0.1518 *** *** *** ***
2010 2015 0.9295 0.8968 -0.0731 -0.1090 0.1122 0.1321 0.1019 0.1196 *** *** *** ***
2015 2019 1.0403 1.0388 0.0395 0.0381 0.0393 0.0487 0.0583 0.0640 *** *** *** ***
1990 2019 1.1284 1.0587 0.1208 0.0570 0.2046 0.2365 0.2085 0.2311 – – ** **

— Developing Countries —

1990 1995 0.8665 0.8908 -0.1433 -0.1157 0.4045 0.4249 0.3962 0.4167 ** ** ** **
1995 2000 0.9823 0.9922 -0.0179 -0.0078 0.1961 0.2002 0.1995 0.2036 – – – –
2000 2005 1.1254 1.1309 0.1181 0.1230 0.2393 0.2482 0.2406 0.2498 *** *** *** ***
2005 2010 1.0953 1.1647 0.0910 0.1525 0.2271 0.2248 0.2124 0.2090 *** *** *** ***
2010 2015 1.0455 1.0691 0.0445 0.0668 0.2115 0.2198 0.2070 0.2152 ** ** ** **
2015 2019 1.0180 1.0211 0.0179 0.0208 0.2164 0.2324 0.2218 0.2377 – – – –
1990 2019 1.1114 1.1772 0.1056 0.1632 0.5597 0.5861 0.5515 0.5767 ** ** ** **

NOTE: Statistical significance (difference from 1) for the bias-corrected estimate (i.e.,

exp (µ̂M,n − B̂M,n,κ,K)) of the true mean of MPI at the ten, five, or one percent levels is
denoted by one, two, or three asterisks, respectively, while “–” indicates insignificance at the
ten percent level.
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Table 3: Estimation Results for the Aggregate MPI of Countries/Regions

— Estimate of σξ — — Significant Level —

Year 1 Year 2 exp (ξ̂n) exp (ξ̂n − B̂ξ,n,κ,K) ξ̂n ξ̂n − B̂ξ,n,κ,K (ii) (iii) (iv) (v) (ii) (iii) (iv) (v)

— Entire Sample —

1990 1995 1.0057 1.0106 0.0057 0.0106 0.2361 0.2732 0.2275 0.2660 – – – –
1995 2000 1.0453 1.0307 0.0443 0.0302 0.4584 0.5281 0.4003 0.4629 – – – –
2000 2005 1.0202 0.9983 0.0200 -0.0017 0.2586 0.2963 0.2801 0.3146 – – – –
2005 2010 0.9352 0.9651 -0.0670 -0.0355 0.1773 0.2714 0.1769 0.2712 * – * –
2010 2015 0.9998 1.0199 -0.0002 0.0197 0.1526 0.2636 0.1726 0.2958 – – – –
2015 2019 1.0034 1.0044 0.0034 0.0044 0.2098 0.1588 0.2314 0.1722 – – – –
1990 2019 0.9850 0.9232 -0.0151 -0.0799 0.7554 0.6721 0.7907 0.7001 – – – –

— Developed Countries —

1990 1995 1.0724 1.1113 0.0699 0.1056 0.0705 0.0855 0.1170 0.1106 *** *** *** ***
1995 2000 1.1513 1.1656 0.1409 0.1532 0.0582 0.1146 0.0617 0.1099 *** *** *** ***
2000 2005 1.0509 1.0563 0.0496 0.0548 0.0583 0.0546 0.0872 0.0717 *** *** *** ***
2005 2010 0.8986 0.8751 -0.1069 -0.1334 0.1789 0.2139 0.1557 0.1767 *** *** *** ***
2010 2015 0.9854 0.9744 -0.0147 -0.0259 0.1712 0.2063 0.2124 0.2426 – – – –
2015 2019 1.0340 1.0312 0.0334 0.0307 0.0311 0.0410 0.1015 0.0961 *** *** *** ***
1990 2019 1.1570 1.1583 0.1458 0.1469 0.3214 0.3618 0.3912 0.4262 ** ** *** ***

— Developing Countries —

1990 1995 0.9389 0.9170 -0.0631 -0.0866 0.4814 0.5272 0.4787 0.5229 – – – –
1995 2000 0.8930 0.8152 -0.1132 -0.2043 0.4151 0.4694 0.3994 0.4552 *** *** *** ***
2000 2005 0.9963 0.9083 -0.0037 -0.0961 0.3676 0.4079 0.3672 0.4083 ** * * *
2005 2010 1.0530 1.1372 0.0516 0.1285 0.2378 0.2164 0.2362 0.2154 *** *** *** ***
2010 2015 1.0510 1.1000 0.0498 0.0953 0.1428 0.2189 0.1436 0.2184 *** *** *** ***
2015 2019 0.9968 0.9708 -0.0032 -0.0297 0.2733 0.2615 0.2687 0.2581 – – – –
1990 2019 1.1297 1.0447 0.1219 0.0437 0.3803 0.3290 0.3663 0.3106 – – – –

NOTE: Statistical significance (difference from 1) for the bias-corrected estimate (i.e.,

exp (ξ̂n − B̂ξ,n,κ,K)) of the true aggregate of MPI at the ten, five, or one percent levels is
denoted by one, two, or three asterisks, respectively, while “–” indicates insignificance at the
ten percent level.
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shows that the estimates of σξ using (iii) are larger than that using (ii) for 16 cases out of 21

cases. This result suggests that the estimates of confidence intervals based on (iii) generally

will be slightly larger than that using (ii). This is consistent with our MC results which

also suggested that (iii) has a better performance (in terms of covering the true values) than

(ii) in relatively small sample sizes (e.g., up to around 50) and large dimensions. Similarly,

comparing (v) and (iv), we find that (v) generally yields slightly larger estimates of the

variance than (iv). Table 2 shows that the estimates of σM using (v) are larger than that

using (iv) for 19 cases out of 21 cases and Table 3 shows that the estimates of σξ using (v)

are larger than that using (iv) for 13 cases out of 21 cases. This result suggests that the

estimates of confidence intervals based on (v) generally will be slightly larger than that using

(iv). Thus, our illustration confirms again our main takeaways from the MC results that the

use of (iii) or (v) is advisable for relatively small samples (e.g., up to around 50, perhaps

100).

From Table 2, we see that the simple mean MPI for the entire sample is significantly

different from 1 for 1990–2005; Further, this result is robust as the 95% CI constructed using

either of (ii), (iii), (iv), and (v) does not contain 1, suggesting that the productivity growth

of these 84 countries significantly decreased from 1990 to 1995, significantly increased from

1995 to 2005 and remained unchanged for the other remaining periods. For the developed

countries, the simple mean MPI is significantly larger than 1 in the periods 1990–1995,

1995–2000, 2000–2005, and 2015–2019, while it is significantly smaller than 1 in the periods

2005–2010 and 2010–2015. This result is robust across different methods, suggesting that

the productivity growth for the developed countries continued increasing from 1990 to 2005,

then continued decreasing from 2005 to 2015 (possibly due to the global financial crisis) and

increased again from 2015 to 2019. However, for the whole period 1990–2019, (ii) and (iii)

suggest that productivity remained unchanged while (iv) and (v) suggest that productivity

increased significantly. The productivity growth for the developing countries significantly

decreased from 1990 to 1995, continued increasing from 2000 to 2015, and increased over the

whole period 1990–2019. Thus, the results indicate that from 1990 to 2019 only developing

countries achieved about 17.72% percent increase in productivity, while there is no evidence

supporting the changes in productivity for the full sample of 84 countries and mixed evidence

for the developed countries. Recall that these estimates ignore the economic weights of each
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country in the averaging, e.g., weighting the productivity estimate for the USA with the

same weight as for any other country. To address this we estimate the aggregate MPI as per

our discussions above and report the results in Table 3.

From Table 3, we see that the aggregate MPI for the entire sample is not significantly

different from 1 in most of the considered periods, except for 2005–2010, where only (ii) and

(iv) find that the productivity decreased at the 10% significance level. For the developed

countries, the aggregate MPI is significantly larger than 1 in the periods 1990–1995, 1995–

2000, 2000–2005, 2015–2019 and over the whole period 1990–2019, while it is significantly

smaller than 1 from 2005 to 2010. This result is robust across different methods, suggesting

that the productivity growth for the developed countries continued increasing from 1990 to

2005, decreased from 2005 to 2010 (when recall the global financial crisis occurred), increased

again from 2015 to 2019, and also increased over the whole period 1990–2019. The produc-

tivity growth for the developing countries continued decreasing from 1995 to 2005, continued

increasing from 2005 to 2015. Thus, the results in Table 3 indicate that only developed coun-

tries achieved about 15.83% percent increase in productivity, while productivity for the full

sample of all countries and for the sample of developing countries remained unchanged. This

result is different from the simple mean MPI presented in Table 2, where we find that only

developing countries achieved about 17.72% percent increase in productivity, while produc-

tivity for the full sample of all countries remained unchanged and the productivity change

for the developed countries is mixed.

To conclude this section, we see fairly different results between the weighted and non-

weighted approaches of MPIs, illustrating the importance of deploying both approaches to

check the changes of productivity growth. Moreover, our illustration confirms again our

main takeaways from the MC results that the use of (iii) or (v) is advisable for relatively

small samples (e.g., up to around 50).

7 Conclusions

The CLT results for the simple mean (Kneip et al., 2021) and aggregate MPI (Pham et al.,

2023) estimated via DEA are useful recent advancements of the statistical theory for efficiency

and productivity analyses. However, for relatively small sample sizes and large dimensions,

the coverages of the estimated confidence intervals based on the CLT results for the simple
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mean and aggregate MPI are below the nominal coverage. This under-covering phenomenon

in relatively small sample sizes was also observed for the simple mean and aggregate efficiency.

Some of the improvements were made through Simar and Zelenyuk (2020), Nguyen et al.

(2022), Simar et al. (2023a), and Simar et al. (2023b) for the simple mean and aggregate

efficiency. However, whether these methods are effective to improve the finite sample per-

formance of CLT results for the simple mean and aggregate MPI remains unknown. We fill

this gap in the literature by thoroughly examining the performance of these two methods

in Nguyen et al. (2022) and Simar et al. (2023a) for the simple mean and the aggregate

MPI through extensive simulations and we also use one empirical data set to illustrate their

differences.

In our extensive Monte-Carlo experiments, we find that the method adapted from Simar

et al. (2023a) to the MPI context could provide a better performance for the simple mean

and the aggregate MPI for relatively small samples (e.g., up to around 50, perhaps 100)

and after that the original methods from Kneip et al. (2021) and Pham et al. (2023) are

recommended.
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Appendix A Additional Simulation Results for δ = 0.04

In this appendix, we present additional simulation results for δ = 0.04, which are not shown

in the paper.
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Table A.1: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

1 1 20 0.894 0.894 0.894 0.879 0.879 0.949 0.949 0.949 0.937 0.937 0.991 0.991 0.991 0.984 0.984
1 1 50 0.903 0.903 0.903 0.903 0.903 0.953 0.953 0.953 0.951 0.951 0.990 0.990 0.990 0.990 0.990
1 1 100 0.888 0.888 0.888 0.888 0.888 0.946 0.946 0.946 0.944 0.944 0.985 0.985 0.985 0.984 0.984
1 1 200 0.892 0.892 0.892 0.891 0.891 0.943 0.943 0.943 0.943 0.943 0.985 0.985 0.985 0.985 0.985
1 1 300 0.900 0.900 0.900 0.899 0.899 0.939 0.939 0.939 0.940 0.940 0.988 0.988 0.988 0.987 0.987
1 1 500 0.896 0.896 0.896 0.896 0.896 0.943 0.943 0.943 0.943 0.943 0.990 0.990 0.990 0.989 0.989
1 1 1000 0.894 0.894 0.894 0.894 0.894 0.945 0.945 0.945 0.946 0.946 0.992 0.992 0.992 0.992 0.992

2 1 20 0.841 0.822 0.862 0.811 0.846 0.909 0.897 0.929 0.875 0.907 0.977 0.972 0.985 0.957 0.972
2 1 50 0.880 0.873 0.887 0.841 0.866 0.938 0.933 0.948 0.916 0.940 0.985 0.980 0.986 0.981 0.986
2 1 100 0.898 0.897 0.906 0.879 0.890 0.952 0.947 0.955 0.943 0.950 0.990 0.990 0.993 0.989 0.993
2 1 200 0.892 0.877 0.889 0.873 0.881 0.948 0.942 0.946 0.939 0.951 0.991 0.990 0.992 0.988 0.991
2 1 300 0.891 0.890 0.898 0.890 0.892 0.949 0.950 0.957 0.941 0.946 0.990 0.991 0.991 0.990 0.992
2 1 500 0.893 0.889 0.892 0.884 0.890 0.948 0.943 0.945 0.940 0.944 0.985 0.985 0.985 0.985 0.988
2 1 1000 0.881 0.880 0.882 0.882 0.884 0.947 0.946 0.948 0.945 0.949 0.993 0.990 0.990 0.990 0.991

3 1 20 0.810 0.812 0.898 0.841 0.891 0.896 0.881 0.949 0.905 0.947 0.961 0.964 0.995 0.978 0.988
3 1 50 0.888 0.863 0.911 0.843 0.886 0.928 0.920 0.963 0.911 0.940 0.982 0.982 0.993 0.968 0.987
3 1 100 0.866 0.870 0.909 0.860 0.894 0.936 0.939 0.963 0.913 0.948 0.986 0.986 0.992 0.980 0.989
3 1 200 0.899 0.907 0.926 0.887 0.910 0.955 0.950 0.967 0.937 0.952 0.991 0.992 0.994 0.990 0.993
3 1 300 0.885 0.888 0.908 0.882 0.901 0.936 0.945 0.956 0.930 0.945 0.991 0.987 0.990 0.983 0.988
3 1 500 0.890 0.908 0.922 0.902 0.912 0.949 0.958 0.965 0.954 0.962 0.986 0.988 0.991 0.987 0.989
3 1 1000 0.905 0.899 0.906 0.890 0.897 0.952 0.946 0.951 0.943 0.947 0.986 0.990 0.992 0.990 0.992
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Table A.1: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices (continued)

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

4 1 20 0.808 0.774 0.902 0.842 0.905 0.876 0.858 0.959 0.910 0.950 0.962 0.956 0.993 0.966 0.984
4 1 50 0.840 0.868 0.935 0.870 0.923 0.899 0.931 0.968 0.924 0.967 0.964 0.975 0.993 0.980 0.992
4 1 100 0.871 0.881 0.938 0.872 0.918 0.926 0.935 0.982 0.921 0.966 0.972 0.990 0.998 0.981 0.996
4 1 200 0.881 0.918 0.947 0.892 0.943 0.942 0.959 0.979 0.950 0.973 0.987 0.985 0.994 0.984 0.995
4 1 300 0.890 0.898 0.928 0.869 0.913 0.942 0.936 0.960 0.928 0.960 0.986 0.986 0.991 0.981 0.989
4 1 500 0.893 0.916 0.937 0.907 0.934 0.954 0.956 0.972 0.957 0.976 0.991 0.989 0.994 0.990 0.994
4 1 1000 0.888 0.906 0.929 0.898 0.919 0.945 0.961 0.967 0.953 0.964 0.985 0.989 0.992 0.987 0.994

5 1 20 0.773 0.783 0.910 0.859 0.900 0.844 0.863 0.957 0.912 0.943 0.936 0.948 0.989 0.971 0.985
5 1 50 0.826 0.862 0.946 0.867 0.924 0.887 0.920 0.975 0.921 0.965 0.958 0.976 0.995 0.978 0.989
5 1 100 0.852 0.874 0.946 0.893 0.944 0.911 0.934 0.980 0.942 0.971 0.979 0.978 0.994 0.982 0.993
5 1 200 0.866 0.889 0.945 0.887 0.944 0.918 0.941 0.981 0.944 0.975 0.978 0.990 1.000 0.989 0.998
5 1 300 0.878 0.890 0.945 0.903 0.944 0.930 0.949 0.974 0.947 0.969 0.982 0.988 0.994 0.985 0.996
5 1 500 0.877 0.902 0.938 0.892 0.939 0.931 0.951 0.978 0.947 0.974 0.983 0.990 0.998 0.990 0.997
5 1 1000 0.887 0.895 0.929 0.889 0.925 0.941 0.946 0.967 0.942 0.967 0.987 0.992 0.994 0.988 0.997

7 1 20 0.770 0.761 0.922 0.864 0.915 0.842 0.838 0.959 0.932 0.967 0.930 0.938 0.986 0.988 0.995
7 1 50 0.803 0.859 0.956 0.868 0.921 0.874 0.913 0.981 0.927 0.969 0.943 0.970 0.998 0.981 0.996
7 1 100 0.792 0.894 0.968 0.871 0.945 0.865 0.938 0.989 0.932 0.975 0.949 0.981 0.996 0.987 0.996
7 1 200 0.808 0.891 0.971 0.897 0.959 0.875 0.943 0.986 0.945 0.982 0.955 0.980 0.998 0.987 0.999
7 1 300 0.812 0.896 0.968 0.896 0.962 0.880 0.944 0.987 0.945 0.989 0.963 0.983 0.998 0.994 1.000
7 1 500 0.816 0.906 0.960 0.907 0.963 0.882 0.946 0.980 0.952 0.988 0.967 0.980 1.000 0.992 0.999
7 1 1000 0.807 0.883 0.942 0.890 0.950 0.883 0.930 0.974 0.942 0.981 0.960 0.981 0.997 0.987 0.997
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Table A.2: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

1 1 20 0.890 0.894 0.889 0.879 0.879 0.950 0.947 0.948 0.943 0.944 0.989 0.991 0.989 0.983 0.982
1 1 50 0.902 0.899 0.897 0.899 0.899 0.942 0.942 0.942 0.943 0.946 0.982 0.981 0.982 0.980 0.982
1 1 100 0.884 0.882 0.882 0.883 0.883 0.942 0.942 0.941 0.941 0.941 0.983 0.981 0.982 0.981 0.982
1 1 200 0.901 0.903 0.902 0.903 0.902 0.944 0.943 0.943 0.943 0.943 0.985 0.985 0.985 0.985 0.985
1 1 300 0.902 0.903 0.903 0.903 0.902 0.955 0.955 0.955 0.955 0.955 0.990 0.990 0.990 0.990 0.990
1 1 500 0.893 0.891 0.891 0.891 0.891 0.935 0.936 0.937 0.937 0.937 0.983 0.983 0.983 0.983 0.983
1 1 1000 0.875 0.873 0.873 0.873 0.873 0.945 0.944 0.944 0.944 0.944 0.985 0.984 0.984 0.984 0.984

2 1 20 0.860 0.822 0.869 0.801 0.837 0.918 0.884 0.919 0.876 0.895 0.969 0.960 0.973 0.944 0.960
2 1 50 0.879 0.866 0.882 0.825 0.853 0.932 0.923 0.941 0.892 0.914 0.984 0.986 0.988 0.963 0.973
2 1 100 0.902 0.901 0.905 0.867 0.877 0.947 0.945 0.948 0.919 0.922 0.990 0.988 0.991 0.975 0.978
2 1 200 0.891 0.880 0.890 0.853 0.861 0.947 0.946 0.949 0.927 0.934 0.990 0.991 0.993 0.984 0.986
2 1 300 0.903 0.896 0.899 0.886 0.888 0.958 0.955 0.960 0.937 0.942 0.990 0.993 0.993 0.987 0.988
2 1 500 0.901 0.896 0.897 0.881 0.885 0.941 0.945 0.945 0.942 0.944 0.990 0.988 0.989 0.984 0.986
2 1 1000 0.893 0.899 0.902 0.885 0.887 0.952 0.951 0.952 0.948 0.950 0.988 0.989 0.989 0.986 0.987

3 1 20 0.823 0.831 0.909 0.845 0.904 0.894 0.898 0.964 0.919 0.942 0.966 0.972 0.994 0.970 0.985
3 1 50 0.872 0.872 0.923 0.838 0.886 0.928 0.936 0.964 0.899 0.938 0.987 0.984 0.991 0.961 0.987
3 1 100 0.883 0.884 0.906 0.833 0.878 0.937 0.942 0.960 0.911 0.932 0.989 0.983 0.992 0.968 0.979
3 1 200 0.891 0.913 0.930 0.847 0.868 0.946 0.960 0.967 0.914 0.933 0.991 0.995 0.997 0.982 0.987
3 1 300 0.893 0.899 0.908 0.860 0.868 0.940 0.952 0.963 0.925 0.932 0.989 0.993 0.994 0.983 0.988
3 1 500 0.897 0.888 0.898 0.886 0.891 0.939 0.954 0.967 0.930 0.940 0.980 0.993 0.995 0.982 0.983
3 1 1000 0.907 0.894 0.896 0.883 0.889 0.953 0.950 0.956 0.947 0.950 0.991 0.992 0.992 0.988 0.990
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Table A.2: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices (continued)

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

4 1 20 0.797 0.779 0.920 0.836 0.890 0.869 0.862 0.957 0.889 0.937 0.948 0.947 0.992 0.964 0.982
4 1 50 0.832 0.868 0.941 0.878 0.927 0.905 0.918 0.972 0.934 0.972 0.971 0.974 0.996 0.980 0.996
4 1 100 0.860 0.875 0.938 0.878 0.926 0.917 0.929 0.974 0.929 0.963 0.969 0.982 0.997 0.977 0.997
4 1 200 0.892 0.909 0.948 0.890 0.939 0.950 0.952 0.983 0.942 0.973 0.988 0.989 0.993 0.985 0.995
4 1 300 0.881 0.899 0.938 0.892 0.933 0.946 0.953 0.975 0.940 0.973 0.992 0.988 0.998 0.988 0.995
4 1 500 0.906 0.900 0.925 0.887 0.927 0.953 0.950 0.965 0.944 0.966 0.986 0.990 0.995 0.988 0.994
4 1 1000 0.888 0.915 0.926 0.911 0.929 0.944 0.959 0.965 0.951 0.961 0.991 0.991 0.998 0.993 0.997

5 1 20 0.756 0.779 0.912 0.861 0.914 0.840 0.847 0.950 0.924 0.947 0.927 0.934 0.989 0.975 0.983
5 1 50 0.823 0.854 0.955 0.862 0.931 0.881 0.914 0.982 0.933 0.969 0.954 0.971 0.998 0.978 0.989
5 1 100 0.836 0.868 0.960 0.892 0.949 0.907 0.928 0.988 0.948 0.976 0.974 0.985 0.998 0.983 0.997
5 1 200 0.848 0.898 0.970 0.882 0.945 0.911 0.950 0.992 0.943 0.980 0.973 0.995 0.999 0.989 0.999
5 1 300 0.871 0.888 0.955 0.896 0.950 0.930 0.948 0.982 0.944 0.978 0.980 0.986 0.997 0.986 0.996
5 1 500 0.868 0.885 0.946 0.868 0.943 0.938 0.949 0.979 0.940 0.974 0.977 0.991 1.000 0.986 1.000
5 1 1000 0.892 0.901 0.948 0.879 0.937 0.948 0.957 0.978 0.943 0.973 0.983 0.989 0.997 0.987 0.999

7 1 20 0.763 0.741 0.920 0.867 0.905 0.834 0.825 0.952 0.924 0.957 0.923 0.923 0.986 0.985 0.994
7 1 50 0.799 0.844 0.960 0.863 0.919 0.870 0.907 0.985 0.923 0.956 0.946 0.968 0.997 0.984 0.993
7 1 100 0.794 0.868 0.976 0.879 0.941 0.869 0.925 0.994 0.933 0.967 0.957 0.978 1.000 0.984 0.996
7 1 200 0.830 0.887 0.987 0.899 0.957 0.900 0.944 0.996 0.945 0.986 0.960 0.989 1.000 0.990 0.998
7 1 300 0.844 0.886 0.982 0.901 0.958 0.915 0.942 0.992 0.951 0.986 0.972 0.989 0.998 0.990 0.999
7 1 500 0.852 0.912 0.971 0.911 0.969 0.921 0.953 0.991 0.958 0.992 0.981 0.989 0.999 0.992 1.000
7 1 1000 0.846 0.885 0.960 0.901 0.959 0.906 0.942 0.983 0.956 0.985 0.966 0.986 0.999 0.989 0.998
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Appendix B Simulation Results for δ = 0.02

We present the simulation results for the case when δ = 0.02 here.
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Figure B.1: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices for the 90% Nominal Coverage, with δ = 0.02
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Figure B.2: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices for the 95% Nominal Coverage, with δ = 0.02
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Figure B.3: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices for the 90% Nominal Coverage, with δ = 0.02
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Figure B.4: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices for the 95% Nominal Coverage, with δ = 0.02
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Table B.1: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices, with δ = 0.02

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

1 1 20 0.900 0.900 0.900 0.874 0.874 0.944 0.944 0.944 0.937 0.937 0.985 0.985 0.985 0.978 0.978
1 1 50 0.898 0.898 0.898 0.893 0.893 0.950 0.950 0.950 0.953 0.953 0.991 0.991 0.991 0.991 0.991
1 1 100 0.882 0.882 0.882 0.881 0.881 0.940 0.940 0.940 0.939 0.939 0.985 0.985 0.985 0.986 0.986
1 1 200 0.893 0.893 0.893 0.891 0.891 0.940 0.940 0.940 0.940 0.940 0.984 0.984 0.984 0.984 0.984
1 1 300 0.902 0.902 0.902 0.903 0.903 0.941 0.941 0.941 0.941 0.941 0.988 0.988 0.988 0.988 0.988
1 1 500 0.893 0.893 0.893 0.893 0.893 0.945 0.945 0.945 0.945 0.945 0.990 0.990 0.990 0.990 0.990
1 1 1000 0.896 0.896 0.896 0.896 0.896 0.943 0.943 0.943 0.943 0.943 0.988 0.988 0.988 0.988 0.988

2 1 20 0.860 0.840 0.874 0.817 0.854 0.923 0.902 0.928 0.879 0.907 0.976 0.964 0.985 0.949 0.972
2 1 50 0.868 0.869 0.894 0.837 0.854 0.939 0.928 0.940 0.902 0.923 0.983 0.981 0.987 0.967 0.976
2 1 100 0.888 0.877 0.887 0.875 0.891 0.946 0.933 0.937 0.934 0.938 0.992 0.989 0.991 0.982 0.985
2 1 200 0.903 0.908 0.915 0.890 0.902 0.954 0.954 0.960 0.950 0.955 0.991 0.990 0.990 0.989 0.990
2 1 300 0.902 0.901 0.907 0.891 0.902 0.960 0.959 0.962 0.960 0.961 0.993 0.991 0.993 0.991 0.993
2 1 500 0.894 0.896 0.902 0.894 0.897 0.959 0.959 0.959 0.957 0.959 0.990 0.990 0.990 0.989 0.989
2 1 1000 0.906 0.903 0.907 0.906 0.911 0.946 0.942 0.944 0.944 0.945 0.989 0.989 0.989 0.989 0.989

3 1 20 0.833 0.801 0.900 0.844 0.902 0.901 0.897 0.952 0.908 0.954 0.970 0.968 0.991 0.976 0.988
3 1 50 0.867 0.867 0.913 0.844 0.897 0.917 0.918 0.959 0.916 0.958 0.975 0.983 0.995 0.980 0.989
3 1 100 0.881 0.887 0.916 0.866 0.903 0.937 0.940 0.962 0.928 0.958 0.988 0.990 0.995 0.989 0.994
3 1 200 0.885 0.902 0.923 0.871 0.897 0.932 0.950 0.959 0.940 0.963 0.991 0.992 0.996 0.991 0.996
3 1 300 0.867 0.904 0.919 0.894 0.914 0.940 0.946 0.960 0.939 0.950 0.981 0.987 0.990 0.992 0.993
3 1 500 0.890 0.912 0.925 0.921 0.929 0.946 0.956 0.961 0.959 0.963 0.989 0.991 0.993 0.991 0.992
3 1 1000 0.896 0.896 0.905 0.886 0.893 0.944 0.946 0.952 0.950 0.952 0.985 0.990 0.991 0.994 0.995
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Table B.1: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices, with δ = 0.02 (continued)

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

4 1 20 0.810 0.788 0.900 0.858 0.915 0.880 0.862 0.955 0.926 0.956 0.964 0.952 0.987 0.976 0.989
4 1 50 0.845 0.847 0.936 0.870 0.932 0.907 0.920 0.973 0.936 0.980 0.970 0.983 0.997 0.985 0.996
4 1 100 0.873 0.879 0.941 0.868 0.932 0.932 0.936 0.971 0.934 0.965 0.978 0.979 0.995 0.978 0.998
4 1 200 0.876 0.875 0.926 0.870 0.924 0.939 0.935 0.963 0.930 0.963 0.985 0.980 0.993 0.985 0.991
4 1 300 0.896 0.882 0.920 0.885 0.934 0.951 0.938 0.973 0.942 0.972 0.989 0.994 0.999 0.986 0.997
4 1 500 0.877 0.888 0.924 0.879 0.913 0.939 0.940 0.962 0.938 0.970 0.984 0.988 0.995 0.989 0.995
4 1 1000 0.885 0.889 0.916 0.889 0.914 0.937 0.953 0.967 0.950 0.964 0.988 0.993 0.994 0.990 0.993

5 1 20 0.792 0.804 0.909 0.861 0.917 0.852 0.873 0.955 0.921 0.951 0.939 0.946 0.987 0.976 0.986
5 1 50 0.848 0.878 0.960 0.891 0.948 0.909 0.928 0.985 0.946 0.980 0.972 0.982 0.996 0.986 0.996
5 1 100 0.855 0.877 0.952 0.901 0.951 0.920 0.933 0.980 0.945 0.984 0.977 0.982 0.998 0.994 0.999
5 1 200 0.872 0.902 0.962 0.889 0.955 0.931 0.957 0.984 0.949 0.982 0.980 0.988 0.997 0.990 0.996
5 1 300 0.868 0.895 0.941 0.893 0.950 0.930 0.941 0.979 0.952 0.977 0.981 0.991 0.999 0.990 0.997
5 1 500 0.888 0.902 0.941 0.892 0.942 0.943 0.947 0.974 0.947 0.971 0.984 0.986 0.994 0.986 0.994
5 1 1000 0.889 0.898 0.934 0.890 0.928 0.936 0.949 0.971 0.951 0.969 0.984 0.985 0.994 0.987 0.996

7 1 20 0.775 0.753 0.920 0.874 0.909 0.845 0.831 0.951 0.929 0.963 0.933 0.932 0.987 0.987 0.992
7 1 50 0.820 0.849 0.960 0.871 0.922 0.887 0.909 0.979 0.927 0.956 0.945 0.970 0.999 0.980 0.995
7 1 100 0.811 0.888 0.969 0.872 0.933 0.884 0.926 0.985 0.931 0.969 0.951 0.977 0.995 0.985 0.997
7 1 200 0.824 0.877 0.968 0.900 0.959 0.896 0.929 0.988 0.952 0.987 0.969 0.983 0.999 0.990 0.998
7 1 300 0.822 0.886 0.967 0.882 0.951 0.900 0.924 0.991 0.935 0.982 0.973 0.986 1.000 0.990 1.000
7 1 500 0.856 0.884 0.974 0.891 0.960 0.919 0.946 0.993 0.948 0.984 0.979 0.989 1.000 0.988 0.998
7 1 1000 0.881 0.895 0.959 0.894 0.957 0.935 0.942 0.987 0.948 0.983 0.987 0.989 0.998 0.990 0.999
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Table B.2: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices, with δ = 0.02

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

1 1 20 0.893 0.888 0.888 0.878 0.878 0.944 0.943 0.944 0.942 0.942 0.986 0.989 0.988 0.984 0.981
1 1 50 0.895 0.893 0.891 0.892 0.893 0.935 0.932 0.933 0.931 0.933 0.989 0.987 0.988 0.986 0.987
1 1 100 0.887 0.883 0.884 0.882 0.882 0.938 0.939 0.938 0.936 0.936 0.979 0.979 0.980 0.977 0.979
1 1 200 0.887 0.889 0.889 0.889 0.889 0.937 0.936 0.936 0.935 0.935 0.984 0.984 0.984 0.984 0.984
1 1 300 0.899 0.899 0.899 0.900 0.900 0.957 0.956 0.956 0.956 0.956 0.988 0.988 0.988 0.988 0.988
1 1 500 0.892 0.892 0.892 0.892 0.892 0.940 0.938 0.938 0.938 0.939 0.983 0.983 0.983 0.983 0.983
1 1 1000 0.880 0.878 0.878 0.878 0.878 0.936 0.940 0.940 0.939 0.939 0.986 0.986 0.986 0.986 0.986

2 1 20 0.861 0.829 0.873 0.799 0.831 0.920 0.894 0.927 0.875 0.902 0.977 0.963 0.978 0.943 0.965
2 1 50 0.873 0.865 0.880 0.815 0.850 0.922 0.918 0.932 0.885 0.901 0.981 0.982 0.988 0.959 0.970
2 1 100 0.893 0.885 0.897 0.857 0.869 0.939 0.931 0.941 0.920 0.926 0.990 0.988 0.990 0.983 0.984
2 1 200 0.915 0.907 0.913 0.888 0.891 0.963 0.964 0.966 0.950 0.957 0.991 0.991 0.992 0.988 0.988
2 1 300 0.912 0.911 0.915 0.902 0.905 0.956 0.955 0.956 0.946 0.948 0.992 0.992 0.992 0.993 0.993
2 1 500 0.900 0.907 0.908 0.904 0.907 0.943 0.942 0.944 0.941 0.942 0.984 0.983 0.985 0.982 0.984
2 1 1000 0.911 0.907 0.907 0.906 0.908 0.949 0.949 0.949 0.947 0.948 0.988 0.988 0.988 0.988 0.988

3 1 20 0.846 0.834 0.912 0.841 0.898 0.910 0.906 0.965 0.911 0.948 0.971 0.970 0.995 0.975 0.991
3 1 50 0.856 0.866 0.920 0.847 0.895 0.919 0.936 0.969 0.914 0.947 0.977 0.985 0.994 0.978 0.993
3 1 100 0.882 0.880 0.911 0.864 0.891 0.940 0.940 0.962 0.920 0.945 0.986 0.984 0.993 0.980 0.990
3 1 200 0.900 0.902 0.909 0.876 0.897 0.945 0.944 0.961 0.922 0.939 0.984 0.990 0.996 0.984 0.992
3 1 300 0.869 0.900 0.911 0.890 0.902 0.934 0.950 0.955 0.932 0.949 0.992 0.990 0.992 0.980 0.987
3 1 500 0.902 0.915 0.919 0.908 0.917 0.947 0.962 0.968 0.957 0.961 0.993 0.992 0.992 0.991 0.992
3 1 1000 0.896 0.888 0.898 0.884 0.891 0.942 0.943 0.952 0.946 0.950 0.985 0.984 0.986 0.984 0.985
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Table B.2: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices, with δ = 0.02 (continued)

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

4 1 20 0.802 0.782 0.920 0.859 0.914 0.874 0.865 0.958 0.932 0.963 0.958 0.943 0.994 0.979 0.990
4 1 50 0.837 0.860 0.943 0.882 0.930 0.901 0.918 0.973 0.933 0.975 0.972 0.976 0.996 0.989 0.999
4 1 100 0.851 0.881 0.948 0.875 0.936 0.926 0.942 0.980 0.941 0.973 0.983 0.987 0.999 0.984 0.997
4 1 200 0.869 0.871 0.918 0.856 0.909 0.931 0.929 0.960 0.924 0.960 0.988 0.986 0.993 0.981 0.991
4 1 300 0.896 0.885 0.923 0.903 0.936 0.947 0.944 0.967 0.946 0.974 0.985 0.992 0.998 0.982 0.993
4 1 500 0.875 0.892 0.925 0.885 0.924 0.931 0.953 0.967 0.940 0.964 0.977 0.990 0.995 0.985 0.997
4 1 1000 0.909 0.883 0.910 0.892 0.915 0.948 0.945 0.959 0.937 0.954 0.989 0.989 0.992 0.991 0.993

5 1 20 0.769 0.784 0.915 0.871 0.913 0.839 0.857 0.950 0.921 0.951 0.929 0.938 0.988 0.973 0.983
5 1 50 0.837 0.861 0.968 0.886 0.950 0.895 0.936 0.988 0.946 0.985 0.971 0.979 0.999 0.990 0.996
5 1 100 0.835 0.881 0.958 0.894 0.954 0.902 0.931 0.985 0.950 0.984 0.971 0.982 0.998 0.989 1.000
5 1 200 0.878 0.896 0.960 0.888 0.953 0.930 0.948 0.983 0.948 0.974 0.986 0.985 0.998 0.990 0.998
5 1 300 0.874 0.897 0.949 0.888 0.956 0.940 0.945 0.978 0.951 0.982 0.984 0.989 0.999 0.990 0.997
5 1 500 0.876 0.900 0.944 0.897 0.942 0.935 0.946 0.973 0.943 0.974 0.980 0.989 0.998 0.982 0.998
5 1 1000 0.883 0.898 0.937 0.893 0.931 0.942 0.946 0.969 0.938 0.963 0.985 0.989 0.994 0.984 0.994

7 1 20 0.766 0.737 0.920 0.867 0.907 0.838 0.829 0.951 0.928 0.955 0.937 0.927 0.988 0.987 0.998
7 1 50 0.802 0.853 0.965 0.866 0.918 0.874 0.907 0.988 0.923 0.953 0.943 0.971 0.998 0.977 0.993
7 1 100 0.786 0.865 0.971 0.887 0.940 0.860 0.921 0.993 0.932 0.975 0.952 0.970 0.999 0.982 0.995
7 1 200 0.804 0.868 0.977 0.903 0.959 0.884 0.924 0.992 0.953 0.986 0.965 0.985 1.000 0.992 0.999
7 1 300 0.807 0.879 0.975 0.891 0.955 0.882 0.931 0.992 0.945 0.983 0.961 0.985 1.000 0.992 0.999
7 1 500 0.857 0.887 0.979 0.896 0.960 0.911 0.944 0.998 0.951 0.985 0.973 0.993 1.000 0.993 0.998
7 1 1000 0.878 0.888 0.958 0.903 0.951 0.925 0.940 0.991 0.944 0.984 0.979 0.991 0.999 0.991 0.999
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Appendix C Simulation Results for δ = 0.10

We present the simulation results for the case when δ = 0.10 here. Note that, to ensure the

VRS for the technology, we have changed the values of βs, which are presented in Table C.1.
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Table C.1: The Values of βj and wj

p 1 2 3 4 5 7

β1 0.5 0.3 0.1 0.1 0.05 0.025
β2 0.4 0.2 0.1 0.05 0.025
β3 0.3 0.15 0.1 0.025
β4 0.2 0.1 0.025
β5 0.15 0.05
β6 0.05
β7 0.05
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Figure C.1: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices for the 90% Nominal Coverage, with δ = 0.10
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Figure C.2: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices for the 95% Nominal Coverage, with δ = 0.10
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Figure C.3: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices for the 90% Nominal Coverage, with δ = 0.10
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Figure C.4: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices for the 95% Nominal Coverage, with δ = 0.10
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Table C.2: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices, with δ = 0.10

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

1 1 20 0.886 0.886 0.886 0.872 0.872 0.940 0.940 0.940 0.927 0.927 0.983 0.983 0.983 0.977 0.977
1 1 50 0.876 0.876 0.876 0.868 0.868 0.931 0.931 0.931 0.931 0.931 0.984 0.984 0.984 0.987 0.987
1 1 100 0.909 0.909 0.909 0.906 0.906 0.957 0.957 0.957 0.958 0.958 0.988 0.988 0.988 0.988 0.988
1 1 200 0.900 0.900 0.900 0.900 0.900 0.942 0.942 0.942 0.942 0.942 0.992 0.992 0.992 0.991 0.991
1 1 300 0.883 0.883 0.883 0.883 0.883 0.940 0.940 0.940 0.941 0.941 0.987 0.987 0.987 0.987 0.987
1 1 500 0.894 0.894 0.894 0.893 0.893 0.946 0.946 0.946 0.946 0.946 0.987 0.987 0.987 0.987 0.987
1 1 1000 0.897 0.897 0.897 0.897 0.897 0.952 0.952 0.952 0.952 0.952 0.989 0.989 0.989 0.989 0.989

2 1 20 0.840 0.822 0.861 0.806 0.830 0.894 0.898 0.920 0.869 0.895 0.961 0.959 0.970 0.940 0.961
2 1 50 0.884 0.880 0.895 0.857 0.874 0.936 0.931 0.943 0.911 0.922 0.984 0.986 0.987 0.976 0.979
2 1 100 0.904 0.889 0.904 0.877 0.885 0.946 0.939 0.943 0.933 0.940 0.985 0.984 0.987 0.980 0.982
2 1 200 0.905 0.900 0.903 0.892 0.897 0.953 0.949 0.952 0.946 0.952 0.990 0.992 0.994 0.991 0.993
2 1 300 0.898 0.886 0.889 0.878 0.885 0.949 0.948 0.950 0.946 0.952 0.984 0.985 0.985 0.985 0.986
2 1 500 0.904 0.897 0.902 0.894 0.897 0.948 0.945 0.949 0.947 0.949 0.986 0.985 0.985 0.983 0.984
2 1 1000 0.897 0.899 0.901 0.897 0.901 0.945 0.943 0.944 0.942 0.945 0.994 0.993 0.993 0.993 0.993

3 1 20 0.837 0.835 0.902 0.827 0.879 0.897 0.903 0.947 0.898 0.944 0.962 0.967 0.989 0.974 0.990
3 1 50 0.867 0.864 0.907 0.856 0.902 0.927 0.926 0.959 0.923 0.959 0.980 0.986 0.996 0.981 0.992
3 1 100 0.862 0.875 0.902 0.853 0.889 0.925 0.939 0.952 0.919 0.953 0.984 0.986 0.992 0.983 0.992
3 1 200 0.881 0.883 0.904 0.880 0.897 0.936 0.949 0.957 0.939 0.952 0.986 0.989 0.993 0.987 0.992
3 1 300 0.882 0.893 0.899 0.886 0.895 0.931 0.935 0.944 0.934 0.944 0.985 0.984 0.991 0.985 0.987
3 1 500 0.903 0.914 0.920 0.905 0.913 0.947 0.959 0.964 0.958 0.966 0.992 0.993 0.993 0.991 0.993
3 1 1000 0.894 0.904 0.906 0.906 0.906 0.963 0.948 0.952 0.947 0.948 0.992 0.990 0.990 0.989 0.989
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Table C.2: Coverages of Estimated Confidence Intervals for the Simple Mean Malmquist
Productivity Indices, with δ = 0.10 (continued)

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

4 1 20 0.800 0.781 0.900 0.833 0.902 0.859 0.856 0.962 0.902 0.956 0.942 0.958 0.994 0.976 0.991
4 1 50 0.848 0.865 0.936 0.881 0.927 0.904 0.929 0.974 0.928 0.968 0.969 0.982 0.998 0.977 0.995
4 1 100 0.863 0.887 0.931 0.877 0.931 0.915 0.933 0.965 0.939 0.977 0.974 0.980 0.995 0.981 0.995
4 1 200 0.877 0.888 0.919 0.884 0.914 0.940 0.936 0.959 0.927 0.959 0.983 0.988 0.996 0.988 0.995
4 1 300 0.889 0.893 0.917 0.896 0.917 0.949 0.950 0.970 0.938 0.963 0.988 0.994 0.997 0.991 0.995
4 1 500 0.887 0.905 0.932 0.891 0.920 0.945 0.954 0.966 0.947 0.967 0.980 0.993 0.995 0.992 0.996
4 1 1000 0.880 0.906 0.921 0.899 0.912 0.931 0.957 0.963 0.949 0.960 0.983 0.985 0.989 0.985 0.990

5 1 20 0.749 0.811 0.915 0.860 0.916 0.843 0.883 0.952 0.915 0.948 0.934 0.954 0.987 0.967 0.986
5 1 50 0.812 0.853 0.946 0.852 0.930 0.884 0.916 0.974 0.917 0.968 0.952 0.976 0.994 0.981 0.995
5 1 100 0.831 0.880 0.945 0.890 0.948 0.909 0.931 0.979 0.942 0.980 0.967 0.983 0.997 0.982 0.998
5 1 200 0.868 0.912 0.958 0.899 0.952 0.920 0.955 0.978 0.947 0.981 0.975 0.990 1.000 0.986 0.995
5 1 300 0.876 0.902 0.951 0.892 0.949 0.924 0.958 0.979 0.953 0.980 0.987 0.989 0.997 0.989 0.998
5 1 500 0.874 0.893 0.937 0.863 0.912 0.942 0.950 0.972 0.922 0.965 0.984 0.986 0.992 0.981 0.995
5 1 1000 0.886 0.893 0.926 0.880 0.914 0.940 0.947 0.967 0.936 0.964 0.988 0.993 0.996 0.983 0.993

7 1 20 0.769 0.790 0.910 0.855 0.916 0.837 0.863 0.948 0.927 0.962 0.914 0.943 0.990 0.987 0.995
7 1 50 0.770 0.859 0.957 0.862 0.933 0.858 0.911 0.982 0.924 0.975 0.957 0.976 0.999 0.986 0.998
7 1 100 0.804 0.872 0.968 0.864 0.942 0.872 0.923 0.986 0.928 0.976 0.958 0.983 1.000 0.985 0.999
7 1 200 0.852 0.903 0.978 0.877 0.956 0.910 0.949 0.991 0.933 0.981 0.977 0.990 0.998 0.983 0.997
7 1 300 0.845 0.901 0.965 0.868 0.962 0.909 0.948 0.985 0.938 0.985 0.980 0.985 0.998 0.986 0.998
7 1 500 0.875 0.882 0.959 0.856 0.932 0.925 0.953 0.984 0.909 0.971 0.985 0.990 0.998 0.976 0.997
7 1 1000 0.863 0.897 0.951 0.836 0.914 0.915 0.949 0.981 0.901 0.961 0.980 0.989 0.998 0.971 0.997
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Table C.3: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices, with δ = 0.10

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

1 1 20 0.880 0.880 0.881 0.869 0.870 0.930 0.930 0.929 0.920 0.918 0.982 0.980 0.980 0.974 0.976
1 1 50 0.891 0.891 0.890 0.887 0.888 0.949 0.947 0.948 0.948 0.946 0.992 0.992 0.992 0.991 0.991
1 1 100 0.897 0.900 0.900 0.899 0.897 0.948 0.946 0.946 0.947 0.947 0.989 0.989 0.989 0.989 0.989
1 1 200 0.904 0.903 0.903 0.901 0.901 0.951 0.950 0.950 0.951 0.951 0.988 0.988 0.988 0.988 0.988
1 1 300 0.913 0.916 0.916 0.915 0.915 0.954 0.955 0.955 0.955 0.955 0.992 0.992 0.992 0.992 0.992
1 1 500 0.897 0.895 0.895 0.895 0.895 0.946 0.945 0.945 0.945 0.945 0.988 0.988 0.988 0.988 0.988
1 1 1000 0.906 0.907 0.906 0.907 0.906 0.958 0.959 0.959 0.959 0.959 0.995 0.995 0.995 0.995 0.995

2 1 20 0.824 0.796 0.841 0.790 0.824 0.899 0.865 0.908 0.856 0.889 0.963 0.961 0.975 0.939 0.951
2 1 50 0.869 0.866 0.887 0.830 0.858 0.929 0.928 0.942 0.898 0.922 0.984 0.980 0.987 0.966 0.976
2 1 100 0.875 0.874 0.888 0.845 0.863 0.934 0.926 0.937 0.917 0.923 0.993 0.989 0.991 0.968 0.974
2 1 200 0.907 0.899 0.908 0.873 0.879 0.955 0.951 0.952 0.934 0.936 0.988 0.989 0.989 0.981 0.986
2 1 300 0.898 0.898 0.900 0.897 0.900 0.951 0.952 0.952 0.939 0.944 0.987 0.991 0.992 0.986 0.986
2 1 500 0.898 0.888 0.892 0.885 0.887 0.950 0.945 0.947 0.940 0.944 0.989 0.988 0.988 0.988 0.988
2 1 1000 0.907 0.904 0.907 0.906 0.907 0.953 0.954 0.954 0.951 0.952 0.991 0.991 0.991 0.990 0.991

3 1 20 0.835 0.828 0.897 0.836 0.900 0.909 0.894 0.956 0.906 0.941 0.962 0.964 0.986 0.965 0.988
3 1 50 0.858 0.868 0.921 0.838 0.885 0.930 0.939 0.968 0.904 0.945 0.983 0.983 0.991 0.971 0.992
3 1 100 0.867 0.882 0.910 0.828 0.871 0.924 0.943 0.954 0.893 0.925 0.980 0.981 0.989 0.968 0.982
3 1 200 0.879 0.889 0.907 0.841 0.862 0.937 0.947 0.965 0.907 0.923 0.994 0.992 0.994 0.981 0.989
3 1 300 0.886 0.884 0.894 0.865 0.885 0.941 0.938 0.948 0.924 0.938 0.984 0.987 0.990 0.978 0.987
3 1 500 0.902 0.916 0.929 0.872 0.882 0.957 0.961 0.963 0.934 0.939 0.991 0.991 0.993 0.979 0.981
3 1 1000 0.899 0.903 0.907 0.880 0.889 0.950 0.946 0.948 0.942 0.944 0.993 0.990 0.990 0.983 0.985
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Table C.3: Coverages of Estimated Confidence Intervals for the Aggregate Malmquist Pro-
ductivity Indices, with δ = 0.10 (continued)

———— 0.90 ———— ———— 0.95 ———— ———— 0.99 ————
p q n (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

4 1 20 0.782 0.774 0.914 0.833 0.913 0.862 0.860 0.967 0.908 0.954 0.943 0.958 0.995 0.975 0.992
4 1 50 0.844 0.863 0.940 0.881 0.928 0.911 0.923 0.976 0.930 0.965 0.966 0.980 0.998 0.975 0.992
4 1 100 0.872 0.896 0.948 0.866 0.928 0.927 0.948 0.983 0.925 0.975 0.973 0.989 0.996 0.985 0.996
4 1 200 0.874 0.880 0.929 0.856 0.903 0.942 0.942 0.963 0.913 0.954 0.986 0.989 0.997 0.981 0.995
4 1 300 0.887 0.888 0.920 0.842 0.882 0.934 0.938 0.962 0.902 0.940 0.991 0.992 0.996 0.976 0.992
4 1 500 0.893 0.901 0.920 0.866 0.891 0.939 0.945 0.967 0.923 0.936 0.987 0.989 0.994 0.979 0.992
4 1 1000 0.891 0.907 0.921 0.880 0.899 0.944 0.952 0.960 0.936 0.948 0.991 0.983 0.989 0.984 0.987

5 1 20 0.762 0.778 0.922 0.853 0.911 0.840 0.867 0.957 0.909 0.944 0.927 0.950 0.988 0.964 0.988
5 1 50 0.815 0.854 0.954 0.864 0.932 0.869 0.916 0.980 0.921 0.971 0.957 0.976 0.996 0.980 0.996
5 1 100 0.831 0.879 0.959 0.882 0.951 0.904 0.939 0.984 0.938 0.980 0.972 0.989 0.998 0.988 0.999
5 1 200 0.858 0.902 0.962 0.869 0.944 0.920 0.958 0.983 0.940 0.980 0.978 0.991 0.999 0.983 0.993
5 1 300 0.872 0.891 0.947 0.847 0.928 0.936 0.949 0.974 0.926 0.966 0.982 0.990 0.997 0.981 0.994
5 1 500 0.881 0.902 0.938 0.821 0.881 0.932 0.952 0.971 0.897 0.934 0.982 0.989 0.994 0.961 0.987
5 1 1000 0.872 0.907 0.930 0.806 0.856 0.946 0.952 0.972 0.894 0.925 0.989 0.992 0.995 0.972 0.984

7 1 20 0.721 0.761 0.909 0.861 0.906 0.802 0.834 0.943 0.912 0.956 0.902 0.927 0.980 0.980 0.994
7 1 50 0.743 0.847 0.964 0.851 0.939 0.824 0.919 0.987 0.914 0.974 0.932 0.978 0.999 0.985 0.998
7 1 100 0.755 0.869 0.975 0.862 0.948 0.848 0.931 0.992 0.925 0.984 0.934 0.984 0.999 0.986 0.999
7 1 200 0.782 0.893 0.975 0.879 0.949 0.857 0.952 0.993 0.927 0.980 0.942 0.992 0.998 0.983 0.998
7 1 300 0.764 0.909 0.960 0.863 0.961 0.844 0.946 0.985 0.931 0.984 0.946 0.986 0.999 0.986 0.998
7 1 500 0.765 0.885 0.958 0.826 0.910 0.842 0.947 0.985 0.882 0.964 0.943 0.992 1.000 0.968 0.995
7 1 1000 0.754 0.895 0.942 0.782 0.864 0.843 0.942 0.979 0.859 0.938 0.946 0.989 0.997 0.957 0.988
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