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Basic Research Issues for Education:

I How to model educational process?
Multi-stage network models?

I How to measure performance?
Multiple output frontier methods?

I How to estimate efficiency?
Parametric (SFA) and nonparametric estimators (DEA, robust
conditional efficiency measures, m-frontier, etc)?
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Modeling Issues

Education involves multiple outputs or services with no obvious
prices.

I How do we specify and measure these multiple outputs?
Primary and secondary: school value-added, passing rates?
Higher ed: education and research, other goals?

I How do we account for the role of budgets?
Cost Indirect output distance functions?

I And the role of bureaucrats, citizen-voters in the public school
context?

I As a service, students, peers, environment, and previous
human capital are also important factors.
Environmental/fixed factors: conditional measures, two stage
approaches?
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Some Background: US perspective

I The U.S. spends more per pupil on primary and secondary
education than any other OECD country except Luxembourg.

I U.S. students score no better than the OECD average in
reading, math and science (PISA 2009).

I U.S. public schools are inefficient (see A Nation at Risk)

I Why?
No carrot (no profit, but rents?)
No stick (little or no competition)
Regulatory distortion (state and recently federal regulations)



Outline: Some Familiar Models for Education and
Efficiency

I Education Production Function,
f (x) = max{y : y ∈ P(x)}
Scalar output, input quantities, no prices, typically OLS which
describes average performance.

I Cost Function, C(y,w)= min{wx : x ∈ L(y)}
Allows for multiple outputs, no output prices required, but
need input prices

I Input Distance Function, Di (y , x) = max{λ : x/λ ∈ L(y)}
Only requires data on input and output quantities, Can
identify technical efficiency (and shadow input prices)

I Output Distance Function,
Do(x , y) = min{θ : y/θ ∈ P(x)}
multiple output generalization of the production function,no
prices required, Useful in constructing quantity, quality and
productivity indexes
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Less familiar models for measuring efficiency in education?

I Directional Distance Function,
~D(x , y ; g) = max{β : (x − βgx , y + βgy ) ∈ P(x)}
allows for simultaneous expansion of outputs and contraction
of inputs, or performance measurement with good and bad
outputs (dropout rates?).

I Cost Indirect Output Distance Function,
IDo(w/C , y) = min{θ : y/θ ∈ IP(w/C )}
Models budget-constrained multiple output maximization,
well-suited for modeling public sector performance.

I Network Models
Specify links within the black production box, allowing for
optimal allocation across subunits, multi-stage production,
time, etc.
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Plan

I Brief overview of some characteristics and applications of the
familiar distance functions

I More detailed presentation of less familiar models

I Combine directional distance functions and cost indirect
model in a network application to Texas schools



Some Applications of Input Distance Functions:
Di(y , x) = max{λ : x/λ ∈ L(y)}

I Grosskopf and Hayes, ‘Local Public Sector Bureaucrats and
their input choices,’ Journal of Urban Economics, 1993.
Estimate technical and allocative efficiency of Illinois
municipalities including instrumental variables: rural cities
overcapitalize, urban cities overemploy.

I Grosskopf, Hayes, Taylor and Weber, ‘On the determinants of
school district efficiency: competition and monitoring,’
Journal of Urban Economics, 2001.
Estimate technical and allocative efficiency of Texas school
districts; monitoring enhances technical and allocative
efficiency, competition reduces allocative inefficiency.



Estimation of Allocative Efficiency using Distance
Functions:

Compare observed relative prices to |slope| of tangent at
xo/Di (y , xo) (relative shadow prices):

For example, with two input case, If

w s
1/w s

2 > wo
1 /wo

2 (1)

→ too little x1, too much x2 at observed relative prices

Solve for relative shadow prices as dual Shephard’s lemma:

w s
1/w s

2 =
∂Di (y , x)

∂x1
/
∂Di (y , x)

∂x2
(2)



Allocative Efficiency with Input Distance Function
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Estimation of Distance Functions:

I Parametric estimation facilitates solving for shadow prices.

I Translog function provides flexible functional form which
facilitates imposition of homogeneity restrictions.

I See also Atkinson, Färe and Primont, Stochastic Estimation
of Firm Inefficiency using Distance Functions, Southern
Economic Journal 2003, 69, 596-611, for details including
endogeneity and instrumental variables.



Output Distance Function
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Some Applications of Output Distance Functions:

Do(x , y) = min{θ : y/θ ∈ P(x)}, x ∈ <N
+

Useful in constructing index numbers as shown by Malmquist
(1951) and Caves, Christensen and Diewert (1982).
Building block for productivity measurement, including Malmquist
Index and Färe-Primont Index

I Productivity decomposes into various components, including
catching up and shifts in the frontier

I No price information required, accommodates multiple outputs
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Alternative Productivity Decomposition with Quality

Färe, Førsund, Grosskopf, Hayes and Heshmati, Measurement of
productivity and quality in non-marketable services,Quality
Assurance in Education, 2006.

Estimate a quality augmented output distance function
DQo(x , a, b, y), where a and b represent quality attributes of
inputs and outputs.
Use DQ(·) to define a quality adjusted productivity index
MQ(t, t + 1). Define an implicit quality index:

Q(t, t + 1) = MQ(t, t + 1)/M(t, t + 1).

Rearranging we have

MQ(t, t + 1) = Q(t, t + 1) ·M(t, t + 1)



Frontier Productivity of Universities

See Bonaccorsi, Daraio and Simar, Advanced indicators of
productivity of universities: an application of robust nonparametric
methods to Italian data, Scientometrics 66, 2006.

Apply robust nonparametric methods—order-m frontiers—to
estimate university performance with respect to scale and scope, as
well as trade-offs between teaching vs research and academic
research vs commercial applied work.



Cost Indirect Output Distance Function

IDo(w/C , y) = min
θ,x

{θ : y/θ ∈ IP(w/C )} (3)

= min
θ,x

{θ : y/θ is feasible given budget wx<
=C}

Due to Shephard (1970?)

Allows for budget constraint and reallocation of inputs, multiple
outputs

captures allocative and technical efficiency

IP(w/C ) is the set of all direct output sets that satisfy the budget
constraint wx<

=C where C is the given budget.



A Cost Indirect Output Set,IP(w/C ) = {y : wx<
=C}
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Application:

Grosskopf, Hayes, Taylor and Weber, ‘Anticipating the
consequences of school reform: a new use of DEA,’ Management
Science, 1999.

Simulate the introduction of site-based management, which would
allow decentralization of public school budgets, by comparing
maximum potential outputs given P(x), i.e., the direct output set
with inputs given, to maximum outputs given IP(w/C ), which
allows reallocation of inputs subject to the budget for a sample of
Texas school districts. The ratio gives the potential ‘Gain’ in
outputs (3%). It also allows identification of the optimal input
choices that satisfy the budget constraint; teachers and
administrators would ‘lose’, teacher aides would ‘gain’. ‘Poorer’
school districts would realize smaller gains.



Applying Cost Indirect Output Distance Function
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More Applications of IDo(y , w/C )

Grosskopf, Hayes, Taylor and Weber, Budget Constrained frontier
measures of fiscal equality and efficiency in schooling, Review of
Economics and Statistics, 1997.

Estimate parametric cost indirect output distance function for
Texas school districts in 1989. Simulate school finance reforms:
compare potential output to observed output when: 1) level
below–average districts up to average budget, 2) equalize per pupil
expenditure at mean for all districts, adjust input prices and
expenditures to yield mean values. All reforms yield distribution of
outcome equality that is less equal than the status quo.



Directional Distance Functions

~DT (x , y ; g) = maxβ{β : (y + βgy , x − βgx) ∈ T}
where g is the direction in which the input-output bundle is
projected to the frontier.

I In contrast to usual Shephard distance functions, this has an
additive structure.

I This function satisfies translation rather than homogeneity.

I This implies that parameterization of the function should be
quadratic rather than the translog—translog is appropriate for
homogeneous functions.

I On parameterization, see Chambers, Färe, Grosskopf and
Vardanyan, Generalized Quadratic Revenue Functions,’
Journal of Econometrics 173, 2013.

I Endogeneity issues under current debate, including
endogenizing the direction vector



Applications of the Directional Distance Functions

I Partitioning output vector allows for simultaneous expansion
of good outputs (test scores, graduation) and contraction of
bad outputs (dropouts) in assessing performance

I Can be used to estimate shadow prices of non marketed goods
and bads

I Has been used extensively in environmental applications

I Has been extended to case of robust conditional estimator



Directional (good) Output Distance Function



Network Models

Networks are very flexible models, which allow for specification of
links across observations, multi-stage processes, links across time.
Examples:

I dynamic productivity: endogenize investment which links
production across time periods

I specification of intermediate or multi-stage production in a
static setting

I simulate permit trading or cap and trade, which requires
reallocation across observations to meet an environmental
target

I model reallocation across bank branches

To date, most applications have employed activity analysis (Data
Envelopment Analysis).



Network Applied to Texas Schools
Grosskopf, Hayes, Taylor and Weber, Centralized or Decentralized
Control of Resources? A Network Model, Journal of Productivity
Analysis, 2014.

I No Child Left Behind changed the focus from school districts
to performance and accountability of individual schools.

I We explicitly model the school district as a collection of
campuses, i.e., a network which is connected through the
school district budget.

I We use a cost indirect directional output distance function to
model the network and solve for the optimal allocation of
school district resources.

I We apply this to 70 school districts in the Dallas Metropolitan
area and solve for the optimal allocation of resources within
the network using activity analysis (or Data Envelopment
Analysis).

I We begin with a simple school district set up where there is
no connection across schools.



Stylized School District—no Network
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Estimation: Benchmark Directional Output Distance
Function–No Network

~Do(x , y ; g) = max{β : (y + βg) ∈ P(x)} (4)



Stylized Setup for Network Model of a School District

I Allow for reallocation of school district resources across
primary (P), middle (J), mixed (MX)and secondary schools
(H) within a school district (D).

I Objective is to maximize potential output gains of the school
district.

I Network model solves for the maximum potential output as
well as optimal degree of centralization within districts,
optimal allocation of resources across campuses and optimal
allocation of resources across input types that satisfy the
school district budget.
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Stylized School District as a Network
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Est: Dir. Dist. Fn. with budget constraint
input prices=w , budget=B, direction vector, g=1

IP(w/B) = {y : x can produce y and wx ≤ B} (5)
→
IDo(w/B, y ; g) = max

β,x
{β : (y + βg) ∈ IP(w/B)} (6)



Remarks

I School district maximizes the sum of the potential gains (the
optimal β’s for which we solve) in school outputs

I By removing technical efficiency only in the benchmark model
(all inputs fixed)

I By removing technical inefficiency and allowing for
reallocation of resources in the network model,

I Both models subject to the output, technology, and input
constraints

I Network model solves for the optimal allocation of variable
inputs, two types of overhead (personnel and non-personnel)
across schools for each school district.



More Remarks

I To estimate our model we use mathematical programming
techniques familiar from DEA.

I Reference technologies include all schools in the sample of the
associated type.

I Included in the network model is a reallocation constraint of
District budget across schools in each district.



Full Model Specification

We can now state the programming problem for a given school
district d ′:

max
β,z,x ,Ov

Pd∑
pd=1

βpd +
Jd∑

jd=1

βjd +
Hd∑

hd=1

βhd +
MXd∑

mxd=1

βmxd (7)

subject to:The output constraints

ypd ′
m + βpd · 1<

=
∑KP

kp=1 zkpy
kp
m , m = (math,read),∀pd

y jd ′
m + βjd · 1<

=
∑KJ

kj=1 zkjy
kj
m , m = (math,read),∀jd

yhd ′
m + βhd · 1<

=
∑KH

kh=1 zkhy
kh
m , m = (math,read),∀hd

ymxd ′
m + βmxd · 1<

=
∑KMX

kmx=1 zkmxy
kmx
m , m = (math,read),∀mxd



The Variable Input Constraints

xpd
n

>
=

∑KP
kp=1 zkpx

kp
n , n = (teachers, non-personnel),∀pd

x jd
n

>
=

∑KJ
kj=1 zkjx

kj
n , n = (teachers, non-personnel),∀jd

xhd
n

>
=

∑KH
kh=1 zkhx

kh
n , n = (teachers, non-personnel),∀hd

xmxd
n

>
=

∑KMX
kmx=1 zkmxx

kmx
n , n = (teachers, non-personnel),∀mxd



Fixed Input Constraints

xf pd ′
n

>
=

KP∑
kp=1

zkpxf
kp
n , n = (stud,%HEP,%nospeced,%HSES),∀pd

xf jd ′
n

>
=

KJ∑
kj=1

zkjxf
kj
n , n = (stud,%HEP,%nospeced,%HSES),∀jd

xf hd ′
n

>
=

KH∑
kh=1

zkhxf
kh
n , n = (stud,%HEP,%nosped,%HSES),∀hd

xf mxd ′
n

>
=

KMX∑
kmx=1

zkmxxf
kmx
n , n = (stud,%HEP,%nosped,%HSES),∀mxd



Overhead Constraints

Opd
v

>
=

∑KP
kp=1 zkpO

kp
v , v = 1, 2, pd = 1, . . . ,Pd

O jd
v

>
=

∑KJ
kj=1 zkjO

kj
v , v = 1, 2, jd = 1, . . . , Jd

Ohd
v

>
=

∑KH
kh=1 zkhO

kh
v , v = 1, 2, hd = 1, . . . ,Hd

Omxd
v

>
=

∑KMX
kmx=1 zkmxO

kmx
v , v = 1, 2,mxd = 1, . . . ,MXd



The District d ′ Budget Constraint

Pd∑
pd=1

(
2∑

n=1

wpd
n xpd

n +
2∑

v=1

Opd
v )

+
Jd∑

jd=1

(
2∑

n=1

w jd
n x jd

n +
2∑

v=1

O jd
v )

+
Hd∑

hd=1

(
2∑

n=1

whd
n xhd

n +
2∑

v=1

Ohd
v )

+
MXd∑

mxd=1

(
2∑

n=1

wmxd
n xmxd

n +
2∑

v=1

Omxd
v )

<
=Bd ′



Remarks

I There will be similar problems for each school district,
d = 1, . . . ,D

I The reference technology for each school type in each district
includes all of the schools of the same type in the sample

I The benchmark model (no network) does not allow for
reallocation of budget, thus removes only technical
inefficiency.

I The network model solves for optimal levels of variable inputs,
overhead Ov and intensity variables z which will maximize the
sum of the potential gains in reading and math summed over
all schools in the district

I There are KP=663 primary schools, KJ=221 middle schools,
KH=151 high schools and KMX=4 mixed schools in a total of
D=70 Dallas area school districts operating in 2008-2009.



Data: variable specification

I Outputs: normalized, student-level gains in mathematics and
reading (i.e., value added approach)

I Variable Inputs: teachers, non personnel expenditures

I Fixed Inputs: student enrollment,%high English proficiency, %
high SES, % non special ed



Remarks: Dallas School Districts

I Average school district has over 10,000 students, with 10
primary schools, 3 middle and 2 high schools

I The smallest has 201 students, the largest 151,610

I Budgets range from 1.7 million to 1.3 billion dollars, average
per pupil spending is $ 8829

I On average 79% of the budget is allocated to school
campuses, 21% remaining in central administration on average

I Maximum central administration share is 59%, minimum 9%



Static and Optimal Network Results

Primary Middle High Mixed District
Schools Schools Schools Schools

KP=663 KJ=221 KH=151 KMX=4 D=70

Static Model, all inputs fixed

β/students 7.14 2.29 3.63 0 5.63
(4.96) (2.46) (3.66) (0) (3.03)

Network Model, reallocation of inputs

β/students 11.56 3.52 5.28 0 9.29
(5.81) (2.51) (3.78) (0) (3.03)



Remarks

I As expected, allowing for reallocation of resources increases
potential gains in outcomes

I Average potential gain in static case is 5.63 points per
student, with reallocation that increases to 9.29 additional
points on average

I Largest average gains at the primary level



Notes

I Optimal reallocation increases teachers for primary but not
middle or high school on average

I Optimal reallocation reduces non-personnel spending at every
level on average

I Optimal reallocation reduces central administration for
primary but not middle or high schools on average



School District Ratios: Actual vs Optimal Shares

Mean St. Dev. Min Max

Obs School
∑

(w1x1 + w2x2)/B 0.79 .08 0.41 0.91
Share

Opt School
∑

(w1x
∗
1 + w2x

∗
2 )/B 0.84 .02 0.78 0.93

Share

Obs Overhead (O1 + O2)/B 0.21 .08 0.09 0.59
Share

Opt Overhead (O∗
1 + O∗

2 )/B 0.16 .02 0.07 0.22
Share



School District Ratios

In general, allocated shares to schools increase with reallocation,
and non-allocated (central administration) decreases. The
reallocation reduces the range and standard deviation of these
shares in general, suggesting that reduced variation is efficient.



Future Efforts

Address:

I Robustness–we have tried several formulations, qualitative
results are similar

I Bootstrapping?

I Does school district size matter?

I Currently extending to effect on equity of outcomes of
reallocation.



Output Specification

Normalized student level gains in math and reading standardized
tests following Reback (2007) and as required by the state as part
of their accountability system to satisfy No Child Left Behind.
Each student’s performance in math and reading is compared to
the average score in the current year of all other students in the
state at the same grade level who had the same score from the
previous year. This average is used as the expected score for each
student. The difference between the actual and expected score is
then normalized to yield the number of standard deviations from
the expected score and transformed into Normal Curve Equivalent
scores.

Yigt =
Sigt − E (Sigt |Si ,g−1,t−1)

[E (S2
igt |Si ,g−1,t−1)− E (Sigt|Si ,g−1,t−1)2]0.5

(8)


