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Abstract

We use data envelopment analysis to model the educational production function,

and then explore how a shift to weighted-student funding using the student weights

embedded in the Texas School Finance Formula would alter the allocation of inputs

and potential outputs. School outputs are measured as value-added reading and

math scores on standard achievement tests. We find that if school districts allocated

their resources efficiently, then they would not allocate their resources to campuses

according to the funding model weights. Policies that promote greater efficiency

would also enhance equity in educational outcomes.
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1 Introduction

Researchers have long recognized that the cost of providing a standard quality edu-

cation differs from one school district to another. Those differences could arise from

differences in labor cost, differences in student need or economies of scale or scope.

Policymakers have responded to evidence about such differences in cost with

school funding formula that provide additional resources to school districts with

higher labor cost (as in Texas, Wyoming, or Florida) higher student needs (as in all

states but Nevada, Montana and South Dakota) or a lack of economies of scale (as

in Texas, Louisiana or Kansas).1

Arguably, the factors that drive differences in cost for school districts also drive

differences in cost at the school level. Therefore, researchers have been increasingly

interested in the distribution of resources within school districts (e.g. Baker 2011,

Ladd 2008, and Miles and Roza 2006).

In this paper we simulate the efficiency and equity effects of a move toward

weighted-student funding as a means of determining school budgets. Disparities in

per pupil expenditures across schools within a school district might be justified if

some schools have students who are more costly to educate. Rather than allocate

school staff on a per pupil basis, weighted-student funding provides greater amounts

of funding for schools that have students who are more difficult to educate (Miles

and Roza 2006). Rather than focus on equity in school resources, we examine equity

in school outcomes, which we measure as value-added test scores in reading and

mathematics. In addition, we control for differences in school input prices and the

fixed inputs that schools use in the production of value-added test scores.

We examine 2,709 schools residing in 175 school districts in three Texas

metropolitan areas: Houston, Dallas, and San Antonio. The schools include 1,694
1For a more complete description of school funding formula, see Verstegen and Jordan (2009)

which is the source of the information about formula weights for student need. See Baker and
Duncombe (2009) for a discussion of scale adjustments. See Taylor and Fowler (2006) for a discussion
of formula adjustments for higher labor cost.
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elementary schools, 618 middle schools, 387 high schools, and 10 mixed schools. We

use DEA (data envelopment analysis) to model the multi-output multi-input pro-

duction process of schools. The method of DEA allows schools to produce different

mixes of outputs using different relative amounts of inputs. Schools that maximize

the various outputs given inputs are efficient and can only expand outputs if given

access to larger amounts of inputs. We compare school output efficiency when schools

take inputs as given with school output efficiency given a budget with which to hire

inputs. Holding the budget constant, some schools might find that they can fur-

ther expand outputs if they were to reallocate inputs; for instance, by increasing

or decreasing teachers and staff relative to non-personnel inputs, such as computer

software expenditures.

After measuring school output efficiency relative to their observed inputs and

school budget we simulate the effects of a change in school budgets toward weighted-

student funding. Under weighted-student funding some schools will gain resources

and some schools will lose resources. We use DEA to simulate the potential outputs

that could be produced under weighted-student funding.

We examine several indicators of inequality for actual outputs, potential out-

puts if schools were efficient, and potential outputs that could be produced under

weighted-student funding. These indicators include Theil’s inequality measure, the

Gini coefficient, Brazer’s coefficient of variation, the range, and the 95 to 5 percentile

ratio.

2 Efficiency and Equity Issues in Schools

Many researchers have applied the tools of efficiency analysis to public education.

Indeed, one of the first applications of DEA examined 167 elementary schools in the

Houston Independent School District (Bessent, Bessent, Kennington, and Reagan

1982). Among the 167 elementary schools under analysis, 78 were found to be inef-

ficient in producing achievement on the Iowa Test of Basic Skills. Numerous studies
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of educational efficiency have since been undertaken studying individual students

(e.g. Cherchye, De Witte, Ooghe, and Nicaise 2010), schools (e.g. Gronberg et al.

2013) and school districts (e.g. Chakraborty, Biswas and Lewis 2001).

In a series of papers studying Texas school districts Grosskopf et al. (1997,

1999, 2001) accounted for school district differences in input prices and students’

own human capital and measured district technical efficiency in the production

of value added on a battery of achievement tests in mathematics, reading, and

writing. In a post-estimation simulation exercise Grosskopf et al. (1997) found that

policy reforms aimed at equalizing budgets between school districts would generate

a distribution of student achievement and school outputs that exhibited greater

inequality than the status quo. However, Grosskopf et al. (1999) found that student

achievement gains could be achieved by relaxing various regulations governing input

use. In addition, Grosskopf et al (2001) found that greater competition and citizen

monitoring enhance efficiency in school outcomes.

An even larger group of researchers have examined the equity of the public

education system. For example, Murray, Evans, and Schwab (1998) conclude that

differences across states are a more important component of measured inequality

than are differences in expenditures within states, whereas Taylor (2006) concludes

that once regional differences in labor cost are taken into account the within-state

differences in expenditures are equally important. Ruggiero, Miner, and Blanchard

(2002) examined New York School districts and found that approximately 50% of

measured inequities in educational spending between districts were due to differences

in input prices and the exogenous influences of school demographics and socio-

economic characteristics.

Several concepts of equity are relevant in school research and policy. Horizon-

tal equity refers to the equal treatment of equals (Berne and Stiefel 1999, Ladd

2008). Common measures of horizontal equity include the Gini coefficient, range,

McLoone index, mean absolute deviation, and coefficient of variation (Toutkoushian

5



and Michael 2007). Vertical equity refers to the unequal treatment of students in

different circumstances. Different outcomes can be a consequence of different admin-

istrative and pedagogical processes used to provide education. In addition, student

needs, geographical cost of living differences, and local capacity can lead to differ-

ences in per pupil spending that might still be regarded as equitable.

Rice (2004) argued that the equity and efficiency movements both failed to

achieve their goals and that linking the two goals by recognizing their interrelations

might provide a more reasonable policy goal. For instance, if some schools with

more difficult to educate students are to receive greater amounts of resources, the

increased funding should be contingent on efficiency. In addition, school voucher

programs might be targeted at minority and low income students in an effort to

enhance school outcomes and promote greater equity.

In a recent paper Cherchye, De Witte, Ooghe, and Nicaise (2010) used DEA

to evaluate efficiency and equity in Flemish private and public schools. After con-

trolling for environmental variables such as socio-economic status and past student

achievement in mathematics and reading, the authors found no evidence that private

schools dominate public schools in efficiency and equity outcomes.

Miles and Roza (2006) compare and contrast staff allocation formulas with

weighted-student funding. Weighted student funding incorporates all educational

and student needs into a formula that drives funding. Students with different needs

are weighted differently. Common categories include the number of students in spe-

cial education, poverty, limited English proficiency, vocational education, grade level,

and gifted education. In theory, the formula would be derived from a cost analysis

with the amount of funding depending on the specific needs of the students that the

school serves but ultimately the political process plays an important role in deter-

mining the weights (Ladd 2008). In practice, weighted-student funding as examined

by Miles and Roza (2009) appears to be based on linear cost adjustment factors and

ignores any potential interaction between outputs and the various categories, the
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level and mix of outputs, differences in input prices across schools, or resources from

central administration for things like professional development or special program

staff. Miles and Roza examined Houston and Cincinnati school districts which had

staff-based allocation formulas in 1998-99 and then switched to weighted-student

funding. Using data from 1999-2000 2002-2003 they found that Houston experi-

enced a small decline in inequality as measured by the coefficient of variation for

the weighted-student funding index. In addition, the move toward weighted-student

funding was positively correlated with an increase in the number of schools within

the district that were within 5% or 10% of the district average expenditures per

pupil after implementation of weighted-student funding.

A complicating factor in implementing a weighted-student funding system is

accounting for incentive effects associated with differential student weights. Cullen

(2003) found that school administrators in Texas were more likely to classify students

as having a learning disability when the school funding formula provided a greater

weight for students with a disability. Using estimates derived from 1991-1992 to 1996-

97 Texas school districts Cullen found that a 10% increase in revenue generated by

a special education student lead to a 2.1% increase in the student disability rate.

The results were most pronounced for learning disabilities that involved subjective

judgments on the part of those people evaluating students. Furthermore, there was

a greater tendency to classify students as disabled in school districts with a small

number of campuses which enabled greater centralized decision-making.

3 Method

Although past researchers have focused on equality in school budgets (e.g. Miles and

Roza 2009, Berne and Stiefel 1994, Baker 2007, 2009, Toutkoushian and Michael

2007) our goal in this paper is to focus on equity in school outcomes. Specifically,

we want to examine equity in actual reading and math test scores under the status

quo allocation of resources versus the equity outcomes that might occur with a move
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toward weighted-student funding. Since numerous papers have found various levels

of inefficiency in schools, we also want to control for any potential inefficiency that

might be present.

One way to model a multi-output and multi-input school production process

is to use a cost function as did Ruggiero, Miner, and Blanchard (2002). With a

cost function approach any variation between the minimum cost of production and

the actual cost of production would be attributed to inefficiency. However, with

weighted-student funding schools would receive a budget and citizens, parents, and

policy-makers would like school administrators to try and maximize outputs and

would not necessarily have cost minimization as a goal. As mentioned by Rice (2004),

schools that receive larger resources should be expected to make efficient use of those

resources. In addition, Ladd (2008) argues that weighted-student funding “enhances

equity defined in terms of outcomes” as long as “the weights correctly reflect differ-

ential needs” (Ladd 2008, p. 416). Therefore, we would like our method to provide an

assessment of whether weighted-student funding as determined through the political

process has enhanced equity in school outcomes.

One way to account for inefficiency and determine maximum potential outputs

given a budget that administrators can use to hire inputs is to use distance functions.

In this section we develop a distance function based indicator of school performance

that accounts for the multiple inputs that schools use to produce various outputs.

Our performance indicator builds on the directional output distance function de-

veloped by Chambers, Chung, and Färe (1996, 1998). This distance function is an

outgrowth of Luenberger’s (1992) benefit function that was used in consumer theory.

Directional distance functions can be estimated using a linear programming method

called DEA which was developed by Charnes, Cooper, and Rhodes (1978).

We illustrate our method of measuring efficiency and simulating a policy change

to weighted-student funding graphically. A particular school within a school dis-

trict uses variable inputs, x ∈ RN+ , and fixed inputs, F ∈ RJ+, to produce out-

8



puts, y ∈ RM+ . Each school uses some technology that transforms the inputs into

various outputs and we represent the technology by the output possibility set:

P (x, F ) = {y : (x, F ) can produce y}, that is, P (x, F ) gives the set of outputs that

can be produced from the variable and fixed inputs. In our analysis of Texas schools

we assume that the variable inputs, x, consist of school specific personnel (teachers)

and non-personnel (maintenance) inputs. The fixed inputs, F , include a share of

the central administration overhead expenses and the demographic characteristics

of the student population.

Suppose the school faces input prices w ∈ RN+ with which to hire inputs x. In

addition, the school faces some fixed costs and fixed inputs in producing the outputs.

The cost of using x and F to produce y is
∑
wnxn ≤ c. Let the school have discretion

over which variable inputs to use as long as the input choice satisfies the budget

constraint. Then different choices of x will generate different output possibility sets.

Figure 1 depicts the budget constraint facing the school district and the output pos-

sibility sets for three choices of variable inputs, xA, xB, and x∗. Each of these input

choices satisfies the budget constraint. We let the set of outputs that can be pro-

duced given fixed inputs and the budget, c be represented by the budget-constrained

output possibility set: IP (w/c, F ) = {y : (x, F ) can produce y and
∑
wnxn ≤ c}.

Each of the individual production possibility sets, P (x, F ), is a subset of the

budget-constrained production possibility set, IP (w/c, F ). Inputs are efficiently al-

located when, given the budget and input prices, the school is able to produce the

maximum amounts of the two outputs. In Figure 1 the largest production possibility

set occurs when the chosen inputs are x∗. Other choices of inputs, say xA or xB,

are affordable, but yield smaller production possibility sets than x∗. Much of the

school choice literature argues that rules and regulations constrain schools in what

they can achieve and that giving schools greater discretion over inputs is one way

to enhance school efficiency.

The two production possibility sets have various properties. First, when the
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Figure 1: Campus Inefficiency

school has access to more inputs, (x, F ), the set P (x, F ) expands. Second, when the

school faces lower input prices or has a larger budget or is endowed with a larger

amount of fixed input, the set IP (w/c, F ) expands. We make use of these properties

in our simulation exercise that examines a policy of weighted-student funding.

We measure efficiency using the directional output distance function. Given

inputs, the directional output distance function finds the maximum expansion

in the various outputs that could be produced if a school were efficient. Out-

puts are expanded for the directional vector g = (g1, . . . , gM ). For instance, when

g = (1, 1, . . . , 1) the directional output distance function gives the maximum unit

expansion in each of the M outputs. If instead, g = (y1, y2, . . . , yM ) the directional

output distance function when multiplied by 100% gives the maximum percentage

expansion in each of the M outputs. Formally, we can write this distance function

as
→
Do(x, F, y; g) = max{β : (y + βg) ∈ P (x, F )}. (1)
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When a school is efficient,
→
Do(x, F, y; g) = 0 meaning that it is not possible to

further expand outputs given inputs. Inefficient schools have
→
Do(x, F, y; g) > 0 with

larger values indicating greater inefficiency. Figure 2 illustrates how
→
Do(x, F, y; g) is

estimated assuming a directional vector of g = (1, 1) and two outputs: y1=value-

added on a reading test and y2=value-added on a mathematics test. We observe

.

y =reading

y =math

1

2

. .
A

B
C

1

10

g

P(x,F)

IP(w/c,F)

y

y +β

y+δ

y y +δy +β

1

1

1

2 22

Figure 2: School Inefficiency

a particular school (campus) within a school district to produce at point A. The

reference technology holding all inputs constant is P (x, F ). We seek the maximum

expansion in the two outputs that is feasible given the technology. If campus A

were to use its resources efficiently it could produce at B on the frontier of P (x, F ).

Campus A’s reading score could expand from y1 to y1 + β and their math score

could increase from y2 to y2 + β.

To measure efficiency relative to the budget-constrained production possibility

set, IP (w/c, F ) we use the budget-constrained directional output distance function.

Again, this function seeks the maximum expansion in outputs for a directional vector
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g but in this case, the school can reallocate inputs, x, as long as those inputs satisfy

the budget constraint. The budget-constrained directional output distance function

takes the form

→
IDo(w/c, F, y; g) = max {δ : (y + δg) ∈ IP (w/c, F )}. (2)

We again choose g = (1, 1) and illustrate in Figure 2. Suppose that school A

were able to reallocate their inputs, x, holding the budget with which to hire those

inputs constant. Clearly, they could increase the two outputs to B by using the same

inputs but reducing technical inefficiency. However, if school A were to reallocate

its inputs so as to maximize the potential outputs it could expand its outputs even

further: reading and math scores could be expanded to y1 + δ and y2 + δ. A campus

produces on the frontier of IP (w/c, F ) if δ = 0 and is inefficient if δ > 0.

There might be some campuses that produce outputs such that β=0 but δ > 0.

These schools are technically efficient but could expand outputs by reallocating their

inputs, x. There might be other schools that are both technically efficient, β=0, and

have also allocated inputs efficiently, δ = 0. Appendix 1 shows how the two distance

functions are estimated using DEA.

One of our objectives in this paper is to simulate how campus outputs would

change if each school received a budget that had been determined by weighted-

student funding. Such a funding formula would reallocate resources from some dis-

tricts and campuses to other districts and campuses. Campuses that receive greater

amounts of inputs would see their production possibilities expand, while campuses

that receive smaller amounts of inputs would see their production possibilities con-

tract. We define xwsf as the inputs a campus would receive if a policy of weighted-

student funding were adapted. Given the variable input prices that a campus faces we

define cwsf = wxwsf as the budget the campus would have available given weighted-

student funding.

How will potential math and reading scores change under weighted-student fund-
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ing? If xwsf ≥ x, then the production possibility set, P (x, F ) ⊆ P (xwsf , F ) and

potential outputs can expand. On the other hand, if xwsf ≤ x potential outputs

will contract under weighted-student funding. Similarly, if cwsf ≥ c, the budget-

constrained production possibility sets are such that IP (w/c, F ) ⊆ IP (w/cwsf , F ).

In contrast, if cwsf ≤ c, the new budget-constrained production possibility set will

be no larger than the status quo budget-constrained production possibility set.

Figure 3 illustrates two possible shifts in IP (w/c, F ) for a policy change con-

sistent with a move to weighted-student funding. We observe a school operating

inefficiently at point A. If that school were to produce efficiently it could expand

reading and math scores to point B on the school’s actual indirect production pos-

sibility frontier. If weighted-student funding is such that school A receives a larger

budget (c < cwsf ) then the school’s production possibilities would shift toward the

northeast and the school could expand its two outputs to point C. In contrast, if

school A receives a smaller budget under weighted-student funding the school’s pro-

duction possibilities would shift toward the southwest and the school would only be

able to produce at point D.

A

IP(w/c,F)

IP(w/c    ,F)wsf

IP(w/c   ,F)wsf

g

0

y

y

B

C

D

1

2

Figure 3: Output Gains or Losses under Weighted-student Funding
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As with most public policies we anticipate winners and losers in a move toward

weighted-student funding. If the schools that lose money (c > cwsf ) are inefficient,

then the reduction in output will be somewhat tempered by any existing inefficiency.

If the schools that gain money (c < cwsf ) are efficient under the status quo, then

the expansion in the budget has real potential to help those schools achieve greater

outputs. However, if the schools that lose money are efficient under the status quo,

then the reduction in the budget will cause schools outputs to fall. Likewise, if the

schools that gain money are inefficient under the status quo, then the expansion in

the budget, while increasing potential outputs, will have no guarantee of increasing

actual outputs.

4 Data

The data for our analysis come from administrative files and public records of the

Texas Education Agency (TEA) and cover the three largest metropolitan areas in

Texas-Dallas, Houston, and San Antonio-during the 2008-09 school year. These three

metropolitan areas were chosen because they are the largest in Texas and among

the largest in the nation. Nearly half of the public school students in Texas reside

in one of these three metropolitan areas.

The unit of analysis is the school, and the analysis includes all traditional public

schools with complete data that were located in one of the three metropolitan areas.2

Table 1 provides descriptive statistics on the variables used in this analysis.

4.1 Outputs

We use two measures of school quality, both of which are based on the Texas As-

sessment of Knowledge and Skills, or TAKS. TAKS was a group of high stakes tests

administered every year from 2003 through 2012. Student performance on TAKS
2Because they have access to a different educational technology, open enrollment charter schools

have been excluded.
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was used not only for federal accountability under the No Child Left Behind Act of

2001, but also for state accountability purposes. Students in the third and eighth

grades had to pass TAKS to be promoted to the next grade, and students in the

11th grade had to pass TAKS in order to graduate. TAKS tests in mathematics and

reading/language arts were administered annually in grades 3-11. Tests in other

subjects such as science and history were also administered, but not in every grade

level.

We measure school quality as the normalized gain score in reading and math-

ematics. The normalizations follow Reback (2008), Gronberg, Jansen and Taylor

(2012), and Grosskopf et al. (forthcoming). They are designed to address concerns

about reversion to the mean found in traditional gain scores.

In this normalization, we use test scores for student (i), grade (g), and time or

year (t), denoted as Sigt. We measure each student’s performance in each subject

(reading or math) relative to the performance of all other students in the state at

the same grade level with same past score:

Yigt = Sigt − E(Sigt|St,g−1,t−1)[
E(S2

igt|Si,g−1,t−1)− E(Sigt|Si,g−1,t−1)2
]0.5 (3)

In calculating Yigt we calculate the average test score at time t, grade g, for

students scoring Si,g−1,t−1 at time t−1, grade g−1. For example, we divide all fifth-

grade students in the state into groups or bins based on their fourth-grade math

test scores in 2008. We then calculate the average fifth grade math score and the

standard deviation of the average fifth-grade math score for each bin. The average

fifth-grade math score for each bin is the expected score for students in the bin. Our

variable Yigt measures the number of standard deviations from the expected score.

This is a type of z−score, which has a mean of zero. These z−scores are averaged

over all the students in each school to arrive at a school level measure of reading

and math value added.3
3Students for whom the prior test score was missing are treated as one of the groups. This is
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Because outputs with negative values are not tractable for analysis purposes,

we further transform the z−scores into normal curve equivalent (NCE) scores. The

normal curve equivalent, which is a standardization commonly used in the education

literature, is defined as 50 + 21.06 × z. We multiply the NCE by the number of

students at the school to obtain the aggregate school outputs.

4.2 Inputs

We use data on school and district expenditures to measure the campus-specific re-

sources and the central administration resources in each school district. The data on

actual expenditures come from administrative records provided by the TEA. Under

the state’s Public Education Information Management System, school districts are

required to report the fund, function, object and financial unit (campus) for each

dollar they spend, using standard definitions published by TEA. We use these data

to calculate the level of personnel and non-personnel expenditures allocated to each

campus. Expenditures not allocated to a specific campus are treated as overhead.

All measures (personnel expenditures at the campus level, non-personnel ex-

penditures at the campus level, central administration personnel expenditures and

central administration non-personnel expenditures) are aggregate amounts at the

particular campus. However, the budget excludes food and student transportation

expenditures. We exclude transportation expenditures on the grounds that they are

unlikely to be explained by the same factors that explain student performance, and

therefore that they add unnecessary noise to the analysis. We exclude food expen-

ditures on similar grounds, and because it is not clear how to value the butter,

eggs and other in-kind subsidies that school lunch programs may receive. We also

exclude community service, debt service, capital outlays, facility acquisition and

construction, and intergovernmental payments between school districts.

We note that the expenditures variables used in our analysis include all operat-

equivalent to assuming that all students with missing pre–test data had the state average pre–test
score.
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ing expenditures regardless of the sources of revenue. Charitable donations, federal

grants, local tax revenues and state funding formula aid are all included. Our mea-

sures also include all types of operating expenditures in the designated categories.

Thus, they include not only direct salary expenditures, but also contributions to

the statewide teacher pension system, payments for group health and life insurance,

and other outlays for employee benefits. The personnel expenditures measure in-

cludes payments for contracted workers as well as employees. The non-personnel

expenditures measure includes payments for rents, utilities and supplies.

Previous research has found that there is substantial difference in labor cost

from one part of Texas to another. Therefore, transforming the personnel and non-

personnel expenditures into effective input quantities requires use of a labor cost

index. Following Gronberg, Jansen and Taylor (2011) and Grosskopf et al. (forth-

coming), we estimate a hedonic wage model wherein teacher salaries are a function of

teacher demographics and cost factors that are outside of school district control. De-

tails of this model are described in Appendix 2. We use the hedonic model to predict

the monthly wage each school would have to pay to hire a teacher with zero years of

experience and a bachelor’s degree, holding all other observable teacher characteris-

tics constant at the statewide mean, and suppressing any charter school differentials.

We then define the effective quantity of school personnel as the school’s total expen-

diture on personnel, divided by the prevailing monthly wage. This approach treats

compensation as a direct indicator of educator quality, and is consistent with work

by Loeb and Page (2000) which indicates that there is a positive and statistically

significant relationship between teacher salaries and teacher quality, once working

conditions are taken into account.

There is no such evidence to suggest that there are systematic differences in the

cost of non-personnel inputs. Therefore, we presume that the cost of non-personnel

inputs is constant throughout the three metropolitan areas, and normalize it to one.
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4.3 Other Environmental Factors

The model includes indicators for several environmental factors that influence the

educational technology but which are not purchased inputs. To capture variations

in costs that derive from variations in student needs, we include the percentages

of students in each district who have high English proficiency (%HEP), percentage

non-special education students (%nonspecialed) and percent with high socioeco-

nomic status (%HighSES). Finally, we include the number of students on a partic-

ular campus as a fixed input for that campus, so that students are not reallocated

(bussed) across campuses, say from one primary campus to another primary campus

in that school district.

4.4 Weighted Student Funding Simulation

Under the Texas school funding model students with different characteristics gen-

erate additional revenues for a school district. For example, an economically disad-

vantaged student will generate 20% more revenue than a student who is not eco-

nomically disadvantaged. A student who is in bilingual education programs would

generate 10% more than a student who is not in bilingual education. Furthermore,

the weights are additive, meaning that a student who is both economically disad-

vantaged and LEP would generate 30% more revenue than a student who is neither.

Funding model weights are provided for students in compensatory education pro-

grams for economically disadvantaged students, special education programs, bilin-

gual education programs, gifted education program, career and technology education

programs and the high school program.

School districts are not obliged to use these formula weights when allocating

resources to schools and most do not. However, we compare the level of performance

given the status quo budget with the level of performance a school might achieve

if each district allocated resources to schools according the state’s school funding

model, assuming no change in overhead expenses. Let s = 1, . . . , S represent a
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particular school (campus) within the district and let i = 1, . . . , P represent the

number of programs. To obtain the amount school s would receive under weighted-

student funding we calculate the school share of weighted-average daily attendance

(SWADAs) based on the school’s programmatic enrollment:

SWADAs =
∑P
i=1DPPi × STUDsi∑S

s=1
∑P
i=1DPPi × STUDsi

(4)

where DPPi is the district revenue per pupil for program i, and STUDsi is enroll-

ment at school s in program i. We then apply the school share of district weighted-

average daily attendance, SWADAs, to the district total spending on campus per-

sonnel and nonpersonnel to yield the school-level weighted-student funding. We

note that DPPi varies across school districts as each school district receives a basic

amount of funding that is then adjusted for the size of the district, cost differences,

and regulations such as hold-harmless provisions.

5 Performance Estimates

To estimate the distance functions we use data taken from the Texas Education

Agency for the 2008-09 school year for 175 school districts in the Dallas (70 dis-

tricts), Houston (66 districts) and San Antonio (39 districts) metropolitan areas.

The 175 school districts include 387 high schools, 618 middle schools, 1694 ele-

mentary schools, and 10 mixed schools. Students in grades 3 to 11 take the Texas

Assessment of Knowledge and Skills, a standardized achievement test. Each school

is assumed to produce two outputs: value added on a statewide reading achievement

test (y1) and value added on a statewide mathematics achievement test. Each school

uses variable inputs of personnel (x1) and non-personnel expenditures (x2). The per-

sonnel input is measured as the number of teacher units at the school. In addition,

two kinds of school district central administration overhead expenses are allocated

to each campus within the school district on a per pupil basis: central administration
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core operating overhead expenses(F1) and central administration overhead payroll

expenses (F2). We also control for the number of students at each school (F3), the

percent of students at the school who have high English proficiency (F4), the percent

of students at the school who are deemed high socio-economic status (F5), and the

percent of students at the school who are not special education students (F6).

Table 1 reports descriptive statistics for the 2,709 schools. The average school

spends (wx) slightly more than $5 million on the two variable inputs of personnel and

non-personnel maintenance and utilities and has an additional $1.36 million ($653

thousand and $483 thousand) in central administration overhead spending. Among

the 802 average students, approximately 81% have high English proficiency and 91%

are non-special education students, but only 44% are deemed high socio-economic

status. Average reading and math NCE scores per pupil are 50.8 and 50.7.

Table 1: Descriptive Statistics for 2709 Schools

mean Std. Dev. Minimum Maximum

y1=read 40738.5 27751.5 112.7 223181
y1/student 50.8 5.6 4.3 71
y2=math 40705.6 27944.9 220.0 212686
y2/student 50.7 4.4 30.0 77
x1=# of personnel 1149.4 726.6 21.4 6497
x2=non-personnel exp. 476843.8 515593.7 0.0 5063815
F1=personnel overhead 653633.7 560800.0 1711.9 8116015
F2=non-personnel overhead 483186.8 703036.7 710.1 28610110
F3=students 802.1 543.6 3.0 4572
F4=% high English prof. 0.81 0.19 0.13 1
F5=% high socio-econ. status 0.44 0.30 0 1
F6=% non-special ed. 0.91 0.04 0.65 1
w1 3937.0 109.3 3427.9 4093
w2 1.0 1.0 1.0 1
wx = c 5027680.8 3345020.3 73308.0 30560288.3
wx/student 6457.9 1434.1 2810.8 25893

We solve four linear programming problems using DEA for each school (cam-

pus) within the district. Each model estimates either the directional output distance
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function or the budget-constrained directional output distance function for the di-

rectional vector g = (1, 1). In model 1 we estimate the directional output distance

function for each school and obtain an estimate of β. This estimate gives the si-

multaneous expansion in reading and math test scores given variable inputs x and

fixed inputs F . In model 2 we estimate the budget-constrained output distance

function for each school and obtain an estimate of δ. Here, δ gives the expansion

in reading and math test scores given the school budget (c), input prices (w), and

fixed inputs. In our last two models we switch to a system of weighted-student

funding and simulate the expansion in reading and math scores that could result if

schools were efficient. In model 3 we give each school variable inputs correspond-

ing to weighted-student funding, xwsf , but hold the fixed inputs (F ) corresponding

to central administration overhead and student demographic students constant. In

model 4 we give each school a budget that is consistent with weighted-student fund-

ing, cwsf , but hold the fixed inputs (F ) constant and also hold variable input prices

(w) constant.

Rather than pooling all schools together and assuming a common production

technology we instead estimate each of the four models for the different types of

schools: high schools, middle schools, elementary schools, and mixed schools. This

amounts to assuming that different types of schools face different technologies. That

is, a high school and an elementary school with identical amounts of variable and

fixed inputs would have output possibility sets, P (x, F ), that are shaped and posi-

tioned differently. Similarly, a high school and an elementary school with the same

budget, input prices, and fixed inputs would potentially have indirect output possi-

bility sets, IP (w/c, F ), that are shaped and positioned differently. This assumption

allows for the possibility that it might be easier or more difficult to educate an

elementary school student than a high school student with the same demographic

characteristics. However, we do assume that schools of the same type, say elementary

schools, face the same technology regardless of the metropolitan area they reside in.
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The model estimates derived from the linear programming problems that are

stated in the Appendix 1 give the aggregate addition to reading and math test

scores. However, for ease of exposition we report the estimates of inefficiency in

Table 2 on a per student basis.

Elementary schools in the Dallas metropolitan area exhibit the most technical

inefficiency (β̂) followed by elementary schools in the Houston and San Antonio

metropolitan areas. The mean estimate of inefficiency among all 1694 elementary

schools is β̂ = 8.81 standardized points per student. This estimate indicates the per

student amount that reading and math test scores could simultaneously increase

if the average school were to become technically efficient in their use of existing

resources. If schools were able to optimally reallocate their existing budgets by

choosing the right mix of school personnel and non-personnel inputs they could

increase reading and math scores by an additional 0.79 points (δ̂ − β̂) per student.

In this case, elementary schools in San Antonio are the least inefficient, δ̂ = 9.92,

followed by schools in Dallas and then Houston.

Dallas also has the most technical inefficiency among middle schools, high

schools, and mixed schools. However, relative to elementary schools, middle schools

and high schools exhibit less technical inefficiency on average, β̂ = 4.51 for middle

schools and β̂ = 4.91 among high schools.

Next we turn to our estimates of what potential inefficiency might be if districts

allocated resources internally to schools consistent with weighted-student funding.

To do the simulation we first estimate the budget the school would receive as de-

scribed by Equation (4). Let this budget equal cwsf . Then, given the simulated

budget and the actual input prices, w, actual fixed inputs, F , and actual outputs,

y, we re-estimate the budget-constrained directional output distance function. This

problem is described in Appendix 1. Schools which receive a larger budget will

see their production possibility frontiers shift outward. Those schools will have the

potential to increase outputs which will show up as increased inefficiency in our sim-
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Table 2: Potential Test Score Gains from Enhanced Efficiency under the Status Quo
(SQ) and Weighted Student Funding (WSF). β̂ represents the gain from reducing
technical inefficiency and δ̂ represents the gain from reducing technical inefficiency
and allocative inefficiency.

All Dallas Houston San Antonio

Elementary Schools
# of schools 1694 663 732 299
β̂/stud. SQ 8.81 9.19 8.57 8.55
δ̂/stud. SQ 9.60 9.90 9.20 9.92
β̂/stud. WSF 8.38 8.85 7.95 8.41
δ̂/stud. WSF 8.89 9.33 8.38 9.17

Middle Schools
# of schools 618 221 293 104
β̂/stud. SQ 4.51 4.84 4.25 4.56
δ̂/stud. SQ 5.18 5.52 4.86 5.37
β̂/stud. WSF 3.97 4.49 3.66 3.70
δ̂/stud. WSF 4.54 5.05 4.11 4.65

High Schools
# of schools 387 151 169 67
β̂/stud. SQ 4.91 4.98 4.84 4.90
δ̂/stud. SQ 5.55 5.85 5.28 5.53
β̂/stud. WSF 2.84 3.32 2.55 2.47
δ̂/stud. WSF 4.79 5.33 4.29 4.85

Mixed Schools
# of schools 10 4 3 3
β̂/stud. SQ 0.74 1.42 0 0.58
δ̂/stud. SQ 0.89 1.76 0 0.61
β̂/stud. WSF -7.78 -4.11 -20.48 0.03
δ̂/stud. WSF -4.94 -1.69 -15.40 1.20

All Schools
# of schools 2709 1039 1197 473
β̂/stud. SQ 7.24 7.62 6.96 7.11
δ̂/stud. SQ 7.98 8.35 7.56 8.24
β̂/stud. WSF 6.52 7.07 6.06 6.48
δ̂/stud. WSF 7.26 7.80 6.70 7.51

ulation estimates. Schools which receive a smaller budget will see their production

possibility frontier shift inward resulting in a contraction in potential outputs which
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will show up as a decline in inefficiency.

We also estimated the amount of variable inputs, x, that schools would receive

under weighted-student funding. Here, we assume that the share of the budget al-

located to nonpersonnel expenditures remains constant. For instance, if a school

allocated 45% of their actual budget to nonpersonnel expenditures then we assume

they allocate 45% of the budget they receive under weighted-student funding to non-

personnel expenditures. That is s = w2x2
c = w2x2,wsf

cwsf
so that x2,wsf = cwsf

w2
. Given

the share allocated to nonpersonnel expenditures we calculate the quantity of per-

sonnel as x1,wsf = cwsf−w2x2,wsf

w1
. We use simulated quantities of the variable inputs,

x1,wsf and x2,wsf , along with the actual fixed inputs, F , and the actual outputs, y,

in calculating the directional output distance function. This problem is described in

Appendix 1.

Average technical inefficiency (β̂) and overall inefficiency (δ̂) are lower for the

pooled sample of 2709 schools under weighted-student funding than they are under

the status quo for each type of school in each metropolitan area. This finding indi-

cates that on average, a movement toward weighted-student funding will result in

the average school receiving resources such that potential outputs will shrink.

Our linear programming method results in a distribution of inefficiencies that

in general is not normally distributed. We test the null hypothesis that various

statistics or distribution functions of the estimates of δ for the status quo and for

δ under weighted-student funding are equal using a series of nonparametric tests.

Table 3 reports the results of the Anova-F test which does assume normality, and

the nonparametric Kruskal-Wallis, Median, van der Waerden, Savage Scores tests

as well as the Kolmogorv-Smirnov test and Qi Li’s (1996) T-test which are nonpara-

metric distributional tests of the kernel densities of inefficiency. Kneip, Simar, and

Wilson (2013) show that standard central limit theorems do not hold for means of

inefficiency scores estimated via data envelopment analysis. Therefore, although we

report all of the various tests, we focus on the results of the Kolmogorov-Smirnov
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test and Qi Li’s T-test which are valid tests of differences in the empirical distri-

bution functions. For Qi Li’s T-test we bootstrap the results 500 times following

Pagan and Ullah (1999). Both tests reject the null hypothesis of equal distributions

of inefficiency under the status quo and the simulated policy of weighted-student

funding for elementary schools, middle schools, and high schools. The T-test also

rejects the null for mixed schools but the Kolmogorov-Smirnov test does not. We

conclude that there is at least some evidence that a move toward weighted-student

funding will result in a leftward shift in the empirical distribution functions of inef-

ficiencies. Such a result implies that potential outputs will shrink under a policy of

weighted-student funding that uses the state’s funding formula weights.

Table 3: Will Weighted-student Funding Change Potential Outputs? Nonparametric
Tests

Elementary Middle High Schools Mixed Schools

Anova-F 5.25 5.35 30.48 4.56
(Prob>F) (0.02) (0.02) (0.01) (0.05)
Kruskal-Wallis 2.48 0.76 18.17 1.17
(Prob>X2) (0.12) (0.38) (0.01) (0.28)
Median 1.89 0 4.96 0.54
(Prob>X2) (0.17) (1) (0.03) (0.46)
van der Waerden 5.79 4.05 26.95 1.35
(Prob>X2) (0.02) (0.04) (0.01) (0.24)
Savage Scores 3.59 0.36 9.44 0.33
(Prob>X2) (0.06) (0.55) (0.01) (0.56)
Kolmogorov-Smirnov 1.48 2.42 3.85 1.12
(Prob>Ksa) (0.03) (0.01) (0.01) (0.16)
Li’s T-test 3.51 3.89 2.13 1.96
(Prob>T) (0.01) (0.01) (0.03) (0.05)
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6 The Effects of Weighted Student Funding on Inequal-

ity

Next, we turn our attention to an examination of various measures of vertical eq-

uity for the status quo outputs and for the potential outputs that might occur if

schools were able to realize greater efficiency under weighted-student funding. Ta-

ble 4 reports five different measures of inequality in various school resources and

outcomes. We report Brazer’s coefficient of variation (CV) which equals the inter-

quartile range as a proportion of the median, the Gini coefficient which ranges from

0 (perfect equality) to 1 (perfect inequality), the Theil inequality index, the range,

and the ratio of the 95 percentile value to the 5 percentile value. All variables are

measured in per pupil terms. The amount of variable spending (wx) per student

exhibits greater inequality than the outputs per student. For instance, Brazer’s CV

is approximately 1.5 time greater for spending per student than it is for the reading

test score per student and 1.88 times greater than it is for the math test score per

student. Similarly, the Gini coefficient is twice as large for spending per student as

it is for the reading score per student and 2.6 times larger for spending per student

than for the math score per student. We also find greater inequality in the actual

level of reading scores (y1) than in math scores (y2).

As Table 4 illustrates policies that reduce school inefficiency tend to enhance

equality. For instance, comparing actual reading scores (y1) with potential reading

scores (y1 + β) every measure of inequality is reduced if technical inefficiency is

reduced and output is expanded. The same is true for math scores except for the

CV which increases slightly from 0.113 to 0114. When comparing actual reading

scores with potential reading scores (y1 + δ) if technical efficiency is reduced and

if school resources are allocated efficiently we find all measures of inequality are

reduced. The same is true for math scores. This pattern suggests that inefficiency

is an important source of outcomes’ inequality.
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Table 4: Inequality Measures for 2709 Schools-All Variables per Student

95 to 5 pct.
Variable CV Gini Theil Range Ratio

wx 0.212 0.139 0.021 23082 1.76
wxwsf 0.188 0.086 0.012 8429 1.68

Reading scores

y1 0.142 0.061 0.0062 66.70 1.43
y1 + β 0.134 0.048 0.0046 66.70 1.36
y1 + δ 0.130 0.051 0.0041 46.26 1.34
y1 + β(wsf) 0.132 0.056 0.0055 48.63 1.40
y1 + δ(wsf) 0.127 0.052 0.0045 45.61 1.36

Math scores

y2 0.113 0.053 0.0037 47.39 1.32
y2 + β 0.114 0.046 0.0034 38.81 1.31
y2 + δ 0.113 0.048 0.0037 47.38 1.32
y2 + β(wsf) 0.112 0.050 0.0043 49.95 1.35
y2 + δ(wsf) 0.107 0.045 0.0034 42.38 1.31

Table 5: Inequality Measures for Houston Independent School District-210 Schools,
All Variables per Student

95 to 5 pct.
Variable CV Gini Theil Range Ratio

$/stud 0.165 0.0947 0.0239 20744 1.54
$/stud(wsf) 0.170 0.0703 0.0079 4448 1.53

Reading scores

y1 0.148 0.0647 0.0065 28.66 1.47
y1 + β 0.122 0.0498 0.0040 26.52 1.33
y1 + δ 0.125 0.0498 0.0040 26.10 1.33
y1 + β(wsf) 0.127 0.0520 0.0044 31.97 1.35
y1 + δ(wsf) 0.121 0.0510 0.0043 31.58 1.34

Math scores

y2 0.142 0.0567 0.0051 29.34 1.38
y2 + β 0.136 0.0539 0.0047 25.84 1.39
y2 + δ 0.130 0.0531 0.0045 25.84 1.36
y2 + β(wsf) 0.115 0.0493 0.0042 31.25 1.34
y2 + δ(wsf) 0.122 0.050 0.0043 31.51 1.34
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Table 6: Inequality Measures for Dallas School District-xxx Schools, All Variables
per Student

95 to 5 pct.
Variable CV Gini Theil Range Ratio

$/stud 0.217 0.1183 0.0407 20313 1.84
$/stud(wsf) 0.066 0.0367 0.0036 3214 1.24

Reading scores

y1 0.157 0.0710 0.0104 36.13 1.57
y1 + β 0.138 0.0567 0.0063 34.57 1.39
y1 + δ 0.148 0.0579 0.0064 34.57 1.39
y1 + β(wsf) 0.150 0.0583 0.0067 35.53 1.40
y1 + δ(wsf) 0.131 0.0541 0.0057 32.14 1.37

Math scores

y2 0.133 0.0552 0.0078 39.51 1.36
y2 + β 0.134 0.0526 0.0069 31.90 1.34
y2 + δ 0.140 0.0534 0.0059 31.90 1.32
y2 + β(wsf) 0.132 0.0518 0.0053 30.86 1.36
y2 + δ(wsf) 0.122 0.0453 0.0039 23.48 1.27

Tables 5, 6, and 7 examine spending per student and performance for three large

school districts in the three metro areas: the Houston Independent School District

(ISD), the Dallas ISD, and the San Antonio ISD. The Dallas ISD has the greatest

inequality in spending per student except for the Range which is greatest for the

Houston ISD. The San Antonio ISD exhibits the least inequality for all five measures

for spending per student. However, our simulation indicates that if the Dallas ISD

moved to a system of weighted-student funding it would have the lowest level of

inequality in spending per student except for the Range which would be lowest at

the San Antonio ISD. Dallas also has the highest inequality in reading test scores

and San Antonio has the lowest inequality in both reading and math scores.

Reducing technical inefficiency would reduce inequality in reading scores Hous-

ton and Dallas, but increase inequality for the CV and Gini in reading scores in

San Antonio. The same pattern holds for math scores except for an increase from

0.133 to 0.134 for the CV in Dallas and an increase in inequality for all five mea-
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Table 7: Inequality Measures for San Antonio Independent School District-85
schools, All Variables per Student

95 to 5 pct.
Variable CV Gini Theil Range Ratio

$/stud 0.146 0.063 0.0072 4508.59 1.48
$/stud(wsf) 0.117 0.053 0.0047 3099.17 1.39

Reading scores

y1 0.146 0.0648 0.0070 32.07 1.46
y1 + β 0.197 0.0670 0.0069 25.62 1.44
y1 + δ 0.196 0.0646 0.0066 23.65 1.43
y1 + β(wsf) 0.226 0.0818 0.0119 37.80 1.66
y1 + δ(wsf) 0.179 0.0591 0.0054 22.73 1.40

Math scores

y2 0.094 0.0424 0.0031 22.27 1.28
y2 + β 0.175 0.0546 0.0046 24.04 1.37
y2 + δ 0.146 0.0503 0.0039 20.84 1.31
y2 + β(wsf) 0.154 0.0653 0.0072 26.91 1.53
y2 + δ(wsf) 0.113 0.0411 0.0026 17.43 1.25

sures of inequality in San Antonio. Relative to actual test scores, reducing both

technical inefficiency and allocative inefficiency would reduce inequality in reading

scores and math scores in Houston, would reduce inequality in reading scores in

Dallas, and reduce inequality in math scores in Dallas for all measures except the

CV. In San Antonio, reducing both technical inefficiency and allocative inefficiency

would increase inequality the CV measure of inequality, but reduce the other 4 mea-

sures of inequality. For math scores, reducing would increase inequality except when

inequality is measured by the Range, which would decrease.

Next, we turn to examining inequality in reading and math scores with a move

toward weighted-student funding Comparing actual reading (y1) and math scores

(y2) with simulated reading (y1 +δwsf ) and math scores (y2 +δwsf ) if both technical

and allocative inefficiencies are reduced we see a decline in all five measures of

inequality for reading and math scores in Houston and Dallas, and a decline in

inequality for reading and math scores except for the CV in San Antonio.
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We further examine the effects of the simulated move toward weighted-student

funding in Table 8 and Figure 4. Table 8 reports the number of winners and losers un-

der weighted-student funding. Comparing the actual indirect production possibility

set, IP (w/c, F ), with the indirect production possibility set that would exist under

weighted-student funding, IP (w/cwsf , F ), we see that among all 2,709 schools, 668

schools (24.6%) would see their potential outputs expand, 1,351 schools (49.9%)

would see their potential outputs contract, and 690 schools (25.5%) would see no

change in their potential outputs. Elementary schools have both the largest number

of schools which would gain under weighted-student funding, 445 (26.3%), but also

have the largest number of schools that would lose under weighted-student funding,

944 (55.7%). The average gain for all 2,709 schools is 0.81 points on the reading and

math tests while the average loss is 1.84 points. For elementary, middle, and high

schools the potential gains average between 0.79 to 0.82 points, while the potential

loss in the two outputs averages 1.66 for elementary schools, 2.24 for middle schools,

and 2.07 for high schools.

Table 8: Winners and Losers under Weighted Student Funding

N=2709 N=1694 N=618 N=387 N=10
All Schools Elementary Middle High Schools Mixed

# of winners β̂ < β̂wsf 967 657 251 58 1
# of losers β̂ > β̂wsf 1419 866 267 280 6
# no change β̂ = β̂wsf 323 171 100 49 3
Average gain 1.23 1.28 1.04 1.46 1.28
Average loss 2.12 1.81 2.24 3.16 14.42
# of winners δ̂ < δ̂wsf 668 445 148 74 1
# of losers δ̂ > δ̂wsf 1351 944 231 170 6
# no change δ̂ = δ̂wsf 690 305 239 143 3
Average gain 0.81 0.82 0.81 0.79 1.89
Average loss 1.84 1.66 2.24 2.07 10.02

To further illustrate Figure 4 plots the budget-constrained output distance func-

tion estimates (δ) for the status quo budget (vertical axis) against the distance
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function estimates for the simulated budget under weighted-student funding (hori-

zontal axis). There were 229 out of 2,709 schools that produced on the frontier of

IP (w/c, F ) for the status quo budget and those schools lie along the horizontal axis.

Out of the 229 frontier schools 41 of those schools are to the right of the origin and

under weighted-student funding would receive a budget that would allow them to

expand their production of math and reading test scores if they could use the new

funds efficiently. The 103 schools to the left of the origin would see their budgets

shrink under weighted-student funding, and, given their initial efficient level of pro-

duction, the smaller budget would cause a decline in math and reading test scores.

The remaining 85 frontier schools would receive the same budget under weighted-

student funding. The 2,480 schools that are inefficient given the status quo budget

lie above the horizontal axis. To compare the potential performance of the ineffi-

cient schools under the status quo budget and their potential performance under

weighted-student funding we draw a 45o line from the origin as a reference. To the

right of the 45o line lie 627 schools which would experience an increase in their bud-

get (and production possibilities) under weighted-student funding. Along the 45o

line (but excluding the origin) lie 605 inefficient schools which would receive the

same budget under weighted-student funding as they do under the status quo. To

the left of the 45o line lie the remaining 1,248 schools which would receive a smaller

budget under weighted-student funding.

Our simulation predicts one thing with relative certainty. To the extent that

school resources matter in the production of value added test scores, the efficient

schools under the status quo allocation of inputs and associated budget which lie to

the left of the origin (103 schools) would see their production possibilities shrink.

We are less certain about the following: for the 41 efficient schools that receive more

inputs and a larger budget under weighted-student funding outputs can possibly

expand if the resources are used efficiently. Given that these schools were efficient

to begin with, it seems reasonable to think that these schools can efficiently use the
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extra resources to expand output.

For the 2,480 schools that were inefficient under the status quo several possibil-

ities emerge with a change to weighted-student funding. First, those schools remain

inefficient and the change toward weighted-student funding only redistributes in-

puts with no change in value-added test scores. Second, those schools that were

inefficient under the status quo somehow become efficient under weighted-student

funding policy. For the 627 schools that lie to the right of the 45o line a change to-

ward weighted-student funding and greater efficiency would result in enhanced test

scores. This possibility seems much less certain. Now, consider the inefficient schools

that lie between the vertical axis and the 45o degree line. These 1,168 schools would

see their production possibilities shrink under weighted-student funding, but they

were inefficient for the status quo budget. In fact, their inefficiency was great enough

so that even though their budgets shrink under weighted-student funding, enhanced

efficiency could more than offset their smaller budgets. Perhaps the declining bud-

gets and resources would refocus administrator and teacher efforts on getting the

most out of the now smaller set of inputs. Finally, 80 schools are inefficient given

their status quo budgets and lie to the left of the vertical axis. These 80 schools

would see their production possibilities shrink to the extent that even if they were

to become fully efficient they would still experience a decline in value-added test

scores.
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Figure 4: Budget Inefficiency Under the Status Quo versus Weighted-student Fund-
ing

7 Conclusions

Policy makers have long sought to foster equity in public school funding. Although

equalizing per pupil expenditures was once the goal, differences in the marginal cost

of educating students has caused researchers to shift their focus toward equalizing

school outcomes. One such policy under consideration is weighted-student funding

where school funding formulas would take account of differences in the costs of

educating different students. Under weighted-student funding schools would receive

larger allocations of money for students with disabilities, students who come from

disadvantaged socio-economic backgrounds, or students who do not speak English

as their native language.
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We simulate a policy move toward weighted-student funding for three Texas

metropolitan areas-Dallas, Houston, and San Antonio-which together account for

approximately half of all students in Texas. Our model compares potential value

added on reading and math scores with what might be achieved by the various

schools if they were to adopt the best-practice technology from the sample of ob-

served schools. In addition, our simulation indicates that weighted-student funding

would generate both winners and losers. Under weighted-student funding 668 schools

would gain resources be able to increase value added test scores by 0.81 points if

they use those resources efficiently. However, 135 schools would lose resources and

be subject to a potential loss of 1.84 points.

We offer several caveats of our study. Fist, although our simulation shows that

a move to weighted-student funding could enhance equity in outcomes as measured

by value-added test scores, schools also produce other outputs that we have not ac-

counted for such as socialization, preparation for the job market, and extracurricular

activities. Second, changes in the school funding formula would likely provide school

administrators an incentive to reclassify some students as having a disability. Third,

our simulation showing enhanced equity in educational outcomes is predicated on

schools reducing various technical and allocative inefficiencies. If inefficient schools

that receive enhanced funding cannot reduce existing inefficiencies the new funding

formula will be for nought.
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Appendix 1

The linear programming problems that define the DEA reference technology and

estimate the directional output distance function relative to the technologies P (x, F )

and IP (w/c, F ) are presented in this appendix. We assume there are k = 1, . . . ,K

observations of schools. Each school produces M outputs, yk = (yk1, . . . , ykM ) using

N variable inputs, xk = (xk1, . . . , xkN ), and J fixed inputs, F = (Fk1, . . . , FkJ). We

let z = (z1, . . . , zK) represent a vector of intensity variables that are used to form

linear combinations of the inputs and outputs of all observed schools. These linear

combinations of inputs and outputs “envelop” the data and form the best-practice

technology. The output possibility set for school “o” is given as

P (xo, Fo) ={y :
K∑
k=1

zkykm,≥ ym,m = 1, . . . ,M,

K∑
k=1

zkxkn ≤ xon, n = 1, . . . , N,

K∑
k=1

zkFkj ≤ Foj , j = 1, . . . , J,

zk ≥ 0, k = 1, . . . ,K}. (5)

In words, the DEA output possibility set consists of the outputs that can be pro-

duced by the variable and fixed inputs such that no more output can be produced

using no less of the fixed and variable inputs than a linear combination of all the

observed school outputs and inputs. To measure performance relative to P (x, F )

we use the directional output distance function. We choose a directional vector

g = (1, . . . , 1) to scale outputs to the frontier of P (x, F ). The directional output
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distance function for school “o” is estimated using DEA as

→
Do(xo, Fo, yo; 1) = max

z,β
β

K∑
k=1

zkykm ≥yom + β,m = 1, . . . ,M,

K∑
k=1

zkxkn ≤xon, n = 1, . . . , N,

K∑
k=1

zkFkj ≤Foj , j = 1, . . . , J,

zk ≥0, k = 1, . . . ,K}. (6)

On the right-hand side of (6) are the observed outputs and inputs of school “o”

and on the left-hand side of (6) is the best-practice DEA technology comprising all

observed schools outputs and inputs.

The budget-constrained output possibility set gives the set of outputs that can

be produced given fixed inputs F and the budget c that a school has to purchase

variable inputs x at input prices w = (w1, . . . , wN ). Here, the school can choose the

variable inputs as long as the choice satisfies the budget constraint:
∑N
n=1wnxn ≤ c.
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The DEA budget-constrained output possibility set for school “o” takes the form:

IP (wo/co, Fo) ={y :
K∑
k=1

zkykm,≥ ym,m = 1, . . . ,M,

K∑
k=1

zkxkn ≤ xn, n = 1, . . . , N,

K∑
k=1

zkFkj ≤ Foj , j = 1, . . . , J,

N∑
n=1

wonxn ≤ co

zk ≥ 0, k = 1, . . . ,K}. (7)

We note that in (5) the observed variable inputs for school “o” enter on the right-

hand side but in (7) the variable inputs, xn n = 1, ..., N , can be chosen so long as

they satisfy the budget constraint.

The budget-constrained directional distance function with directional vector g =

(1, . . . , 1) takes the form:

→
IDo(wo/co, Fo, yo; 1) = max

z,δ
δ

K∑
k=1

zkykm ≥yom + δ,m = 1, . . . ,M,

K∑
k=1

zkxkn ≤xn, n = 1, . . . , N,

K∑
k=1

zkFkj ≤Foj , j = 1, . . . , J,

N∑
n=1

wonxn ≤co

zk ≥0, k = 1, . . . ,K}. (8)
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We recalculate the problems given in (6) and (8) under weighted-student funding.

In (8) we change the budget, c, to cwsf as calculated in (4).

Appendix 2: The Labor Cost Index

The hedonic model is a very simple one, wherein wages are a function of labor

market characteristics, job characteristics, observable teacher characteristics, and

unobservable teacher characteristics. Formally, the specification can be expressed

as:

ln(Widjt) = αi +Ddtδ + Titγ + µj + εidjt (9)

where the subscripts i, d, j, and t stand for individuals, districts, labor markets, and

time, respectively,Widjt is the teacher’s full-time-equivalent monthly salary, Ddt is a

vector of job and labor market characteristics that could give rise to compensating

differentials, Tit is a vector of individual characteristics that vary over time, the µj
are labor market fixed effects and the αi are individual teacher fixed effects. Any

time-invariant differences in teacher quality will be captured by the fixed effects.

The data on teacher salaries and individual teacher characteristics come from the

Texas Education Agency (TEA) and Texas’ State Board for Educator Certification

(SBEC). The measure of teacher salaries that is used in this analysis is the total

full-time equivalent monthly salary, excluding supplements for athletics coaching.

The hedonic model includes controls for teacher experience (the log of years of ex-

perience, and the square of log experience) and indicators for the teacher’s gender,

race (black, Hispanic or Asian/Indian), educational attainment (no degree, master’s

degree or doctorate), teaching assignment (math, science, special education, health

and physical education or language arts) and certification status (certified in any

subject, and specifically certified in mathematics, science, special education or bilin-

gual education). Only teachers with complete data who worked at least half time
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for a charter school or traditional Texas school district during the analysis period

are included in the analysis. The hedonic wage analysis covers the five year period

from 2004–05 through 2008–09.

The job characteristics used in this analysis allow for teachers to expect a com-

pensating differential based on student demographics, school size, school type or

district size. The student demographics used in this analysis are the percentage of

students in the district who are economically disadvantaged, limited English pro-

ficient, black and Hispanic. We measure school size as the log of average campus

enrollment in the district. There are three indicators for school type (elementary

schools, middle schools, high schools). The analysis also includes four indicators for

school district size: one indicator variable for very small districts (those with less

than 800 students in average daily attendance), one for small districts (those with at

least 800, but less than 1,600 students), one for midsized school districts (those with

at least 1,600 but less than 5,000 students) and one for very large school districts

(those with more than 50,000 students in average daily attendance.

In addition to the metropolitan area fixed effects, we include three indicators

for local labor market conditions outside of education. We updated the National

Center for Education Statistics’ Comparable Wage Index to measure the prevailing

wage for college graduates in each school district (Taylor and Fowler, 2006). We in-

clude the Department of Housing and Urban Development’s estimate of Fair Market

Rents (in logs) and the Bureau of Labor Statistics measure of the metropolitan area

unemployment rate.

Table 9 presents coefficient estimates and robust standard errors for the hedonic

wage model.
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Table 9: Hedonic Model of Labor Cost

Baseline Coefficient Charter Interaction Term

OE Charter School -0.092**
(0.010)

Years of Experience (log) 0.003** 0.085**
(0.001) (0.010)

Log experience squared 0.037** -0.027**
(0.000) (0.004)

No Degree 0.004** -0.070**
(0.001) (0.016)

MA 0.026** -0.002
(0.000) (0.009)

Ph.D. (0.037** 0.009
(0.004) (0.040)

Math certified 0.005** 0.006
(0.001) (0.016)

Science certified 0.004** 0.034*
(0.002)** (0.016)

Bilingual/ESL certified 0.004** 0.051**
(0.001) (0.010)

Special Education certified 0.004** -0.006
(0.001) (0.015)

Certified teacher 0.005** 0.020**
(0.001) (0.007)

New Hire -0.005** 0.009*
(0.000) (0.004)

Mathematics 0.001** -0.002
(0.000) (0.008)

Science 0.000 -0.009
(0.000) (0.008)

Special Education 0.002** 0.015
(0.000) (0.015)

Health and P.E. 0.005** -0.029**
(0.000) (0.009)

Language Arts -0.000 0.002
(0.000) (0.006)

Coach -0.030** 0.000
(0.001) (0.014)

% Economically Disadvantaged Students 0.003**
(0.001)

% LEP students (0.006**
(0.001)
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Baseline Coefficient Charter Interaction Term

% Special Education students 0.001
(0.003)

Campus enrollment 0.005**
(0.000)

Very small district -0.099**
(0.002)

Small district -0.089**
(0.002)

Mid-sized district -0.046**
(0.001)

Big district 0.015**
(0.001)

Elementary school -0.008**
(0.001)

Middle school -0.003*
(0.001)

Secondary school -0.002
(0.001)

Comparable wage index -0.139**
(0.007)

Fair market rent (log) 0.035**
(0.001)

Unemployment rate 0.001**
(0.000)

Observations 1,183,902
Number of teachers 352,755
R-squared 0.84
Note: Robust standard errors in parentheses. The model also includes individual
teacher fixed effects, metropolitan area fixed effects, and year fixed effects. The
asterisks indicate a coefficient that is significant at the * 5%; **significant at 1%.

Source: Authors’ calculations from PEIMS.
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