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Abstract

When analyzing productivity and efficiency of firms, stochastic frontier models are
very attractive because they allow, as in typical regression models, to introduce some
noise in the Data Generating Process. Most of the approaches so far have been using
very restrictive fully parametric specified models, both for the frontier function and
for the components of the stochastic terms. Recently, local MLE approaches were
introduced to relax these parametric hypotheses. However, the high computational
complexity of the latter makes them difficult to use, in particular if bootstrap-based
inference is needed. In this work we show that most of the benefits of the local MLE
approach can be obtained with less assumptions and involving much easier, faster and
numerically more robust computations, by using nonparametric least-squares methods.
Our approach can also be viewed as a semi-parametric generalization of the so-called
“modified OLS” that was introduced in the parametric setup. If the final evaluation
of individual efficiencies requires, as in the local MLE approach, the local specification
of the distributions of noise and inefficiencies, it is shown that a lot can be learned
on the production process without such specifications. Even elasticities of the mean
inefficiency can be analyzed with unspecified noise distribution and a general class of
local one-parameter scale family for inefficiencies. This allows to discuss the variation
in inefficiency levels with respect to explanatory variables with minimal assumptions
on the Data Generating Process. Our method is illustrated and compared with other
methods with a real data set.
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1 The Background and The Basic Model

In productivity and efficiency analysis, researchers are primarily interested in two aspects:

(i) the estimation of a function characterizing the production frontier and its characteristics

(marginal productivity, elasticities, etc.), and (ii) the explanation of variation in inefficiency.1

One of the most popular approaches for studying these aspects is referred to as stochastic

frontier analysis (SFA), introduced by Aigner, Lovell and Schmidt (1977) and Meusen and

van den Broek (1977) (henceforth ALSMB). The SFA paradigm has a very appealing feature

relative to other methods—it allows the presence of both an inefficiency term modeling the

distance of an observation to the optimal frontier and the more traditional error term (as in

most regression models) allowing for noise. In this paper we work in this paradigm but in a

non-parametric context.

Specifically, we consider a set of i.i.d. random variables (Xi, Yi, Zi), for i = 1, . . . , n where

Xi ∈ R
p are the inputs, Zi ∈ R

d represent a set of heterogeneous conditions (these could be

environmental or regulatory conditions that are not inputs in the usual sense but that may

influence the production process and that are not necessarily controlled by the producer) and

Yi ∈ R is the output that can be produced. The joint pdf of (X,Z, Y ) can be decomposed

into a joint marginal for (X,Z) and a conditional pdf for Y given (X,Z). The conditional

of Y given X = x and Z = z is characterized through

Y = m(x, z) − U + V, (1.1)

where m(x, z) is the production frontier, U |X = x, Z = z ∼ D+(µU(x, z), varU (x, z)) with

D+(·, ·) being a positive random variable with mean µU(·, ·) and variance varU(·, ·), and

V |X = x, Z = z ∼ D(0, varV (x, z)) with D(0, ·) being a real random variable with mean

zero and variance varV (·, ·). We also assume that, conditionally on (X,Z), U and V are

independent random variables, where V has a symmetric distribution around zero, while U

is a positive random variable whose skewness will be of central interest.

As in parametric SFA models, the observation of Y is adjusted by some possible ineffi-

ciency level U and by some statistical noise V . The two components U and V are unobserved

random variables which may vary with the inputs X as well as with the other variables Z.

The particular and very common case where the variables Z do not influence the technology

but only the inefficiency or noise corresponds to the so-called “separability condition” de-

1We focus the presentation in the output oriented case, where we search for the maximal level of the

output, given the level of the inputs, but we could have a similar approach when we try to model a cost

function that would search for the minimal costs given the level of the outputs.
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scribed in Simar and Wilson (2007). In our set-up, this would correspond to the particular

case where m(x, z) = m(x), which we do not impose.

By contrast with parametric approaches, we assume that the production frontier m(·, ·)

is completely unknown to the researcher. The general goal of estimation is to obtain infor-

mation about the production technology (scale elasticities, marginal productivity of inputs,

etc.), and about inefficiency (whether it is present and how it is related to various factors

amongst (x, z)), given the sample of i.i.d. observations Sn = {(Xi, Zi, Yi) | i = 1, . . . , n}.

Note that if we assume a particular distribution for U and V , with homoskedasticity of

both terms, and if we impose a parametric specification form, then we obtain the parametric

SFA setup sparked by ALSMB. This classical, fully parametric, homoskedastic SFA setup

is a good start for explorations, yet might be very restrictive, imposing a lot of structure

which is hardly possible to check in practice. Typical specification is a log-linear model for

the production function m, normal distribution N(0, σ2
V ) for the noise and some specified

one-sided distribution for U , such as Expo(λ) or |N(0, σ2
U)| (see Kumbhakar and Lovell, 2000

for a nice survey on these fully parametric models). Various extensions have been developed

in recent years to reduce various restrictions. Among the earliest of such extensions is the

work by Kneip and Simar (1996), who used Nadaraya-Watson estimator, and by Fan, Li and

Weersink (1996) who used the quasi-likelihood method by replacing the true production func-

tion relationship m(x), in ALSMB-type likelihood formulation, with its Nadaraya-Watson

estimate.

One of the most recent non-parametric extensions of ALSMB is due to Kumbhakar et al.

(2007), who proposed using local MLE for estimating (1.1) without a parametric assumption

onm, yet still using semi-parametric assumptions about U and V . Typically, they use a local

parametric stochastic assumption on U and V , like e.g. U |X = x, Z = z ∼ |N(0, σ2
U(x, z))|

and V |X = x, Z = z ∼ N(0, σ2
V (x, z)), but keeping the variance functions σ2

U (x, z) and

σ2
V (x, z) as unspecified functionals. Their approach has appealing theoretical properties and

impressive MC performances, even when the parametric stochastic part of the assumptions

about U and V are misspecified. However, the high computational complexity, due to the

need to optimize the local likelihood function in many parameters, makes the local MLE

rather disadvantageous, especially when bootstrap-based inference is needed.

In our work, we show that much of positives from the local MLE approach of Kumb-

hakar et al. (2007) can be obtained with less assumptions and, more importantly, involving

much easier, faster and more robust estimation. Our approach can be viewed as a non- or

semi-parametric version of the “modified OLS” (MOLS) method that was introduced as an
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alternative to MLE method for SFA in parametric setups. The basic idea of the method is

to first estimate an average production function and some moments of the convoluted error

term. We show then how we can, under rather wide assumptions, identify the local asym-

metry of this error allowing to analyze the local presence of inefficiency. In particular we

will see that elasticities of µU(x, z) can be analyzed with unspecified noise distribution and

for inefficiencies belonging to a general class of local one-parameter scale family. Then, upon

adding appropriate local, and so flexible, parametric assumptions on the moments of U and

V , we can identify the frontier itself. These assumptions will provide estimators of the fron-

tier that are more robust than the one obtained with the local likelihood approach, because

we use only local moment restrictions on U and V and not their full local distribution.

At this point it is useful to note that the interests of researchers in production efficiency

measurement can be more broadly classified into, at least, four different problems: (i) the

estimation and inference for production relationship (output vs. inputs), (ii) the inference

on existence of inefficiency, (iii) the estimation and inference of the stochastic frontier level

and/or of efficiency scores for particular observations (e.g., firms) and/or the corresponding

efficiency ranking, and (iv) the analysis of determinants of inefficiency. Only the problem

(iii) will require some localized parametric assumptions (especially for the cross-sectional

data) while the problems (i) and (ii) can be done non-parametrically, and problem (iv) can

be handled with unspecified noise distribution and inefficiencies belonging to a general class

of local one-parameter scale family. Analogously to the case when one needs to dress a black

tuxedo only for some special occasions while he can dress what is most comfortable (although

not so glamorous) on others, our strategy will be to impose any local parametric assumptions

only when we cannot do otherwise, while we will try to do the rest non-parametrically.

The paper is organized as follows: Section 2 discusses the estimation of the average

production function and of the moments of the corresponding error terms. Section 3 gives

the basis of the semi-parametric version of the MOLS approach, describing what we need to

specify in order to recover the frontier level and the individual inefficiencies. Section 4 focuses

on the analysis of determinants of inefficiency levels in a robust and flexible nonparametric

setup, providing a test of significancy of the covariates on the efficiency level. Section 5

illustrates the estimation procedure with a real data example and Section 6 concludes. The

technical details (asymptotic properties of the nonparametric estimators used in Section 3

and 4) are described in an heuristic way in the Appendix A.
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2 Average Production Function

A relatively easy task is to estimate the so-called “average production function” relationship

(i.e., when the presence of inefficiency term U is simply ignored), and this can be done in a

fully non-parametric way. Indeed, letting ε = V − U + µU(x, z), and r1(x, z) = m(x, z) −

µU(x, z) we can rewrite (1.1) as

Y = r1(x, z) + ε. (2.1)

Now, we note that E(ε|x, z) = 0, and V ar(ε|x, z) = varU(x, z) + varV (x, z) ∈ (0,∞), where

varU(x, z) (varV (x, z)) is a function of (x, z) that represents the conditional variance of

U |x, z (of V |x, z), resp.).

2.1 Nonparametric estimation of r1(x, z)

With model (2.1) we are back to a standard nonparametric regression problem and we can use

standard methods to estimate r1(x, z) = E(Y |x, z) from the sample Sn. Our preference falls

onto the local polynomial least squares (LPLS) estimator, which is a fully non-parametric

approach with good asymptotic properties and is relatively easy and fast to compute (e.g.,

when compared to the local MLE approach). One of the useful features of the LPLS is

that, similarly as in the local MLE, in one estimation this approach can produce consistent

and asymptotically normal estimates of r1(x, z), which we will denote here as r̂1(x, z), and

estimates of its kth-order partial derivatives (if the order of the polynomial is chosen to be

at least of order k). If we are interested in estimation of partial derivatives of the average

production relationship (e.g., for estimating marginal productivity of inputs, scale elasticity,

etc.), then it might be worth using the local quadratic or cubic fit, but for notational sim-

plicity we will focus our discussion on the local linear and local constant fits that usually

can do the job very well.

It is important to emphasize here that r̂1(x, z) will be an estimate not of the production

frontier m(x, z) but of r1(x, z) = m(x, z)−µU (x, z), which we refer to as the average produc-

tion function. Since µU(x, z) ≥ 0, we have r1(x, z) ≤ m(x, z), ∀(x, z) ∈ R
p+d. Thus, clearly,

r1(x, z) = m(x, z), ∀(x, z) ∈ R
p+d, if and only if µU(x, z) = 0, i.e., if and only if there is no

inefficiency. Hence, if there is some inefficiency, then r̂1(x, z) would be a downward-biased

estimator of m(x, z) at any level of inputs. Moreover, the bias is given exactly by µU(x, z),

and so the bias is varying with (x, z) unless µU(x, z) is a constant equal to E(U). We will see

below that if U |x, z belongs to a local one parameter scale family, µU(x, z) can be estimated

non-parametrically at a multiplicative constant. This would allow to test if µU(x, z) is con-

4



stant or if some of the covariates are significant, but also to analyze non-parametrically its

elasticities, and this, without specifying neither the particular scale family nor the distribu-

tion of the noise. In the case of constant µU(x, z), most of the characteristics of r1(x, z) are

directly transferred to m(x, z), except its level.2

Indeed, from a sample of i.i.d. data {(Yi, Xi, Zi) : i = 1, ...n} we can estimate the local

linear estimate of r1(x, z) by solving, for any given value (x, z)

(αx,z, βx,z) = argmin
α,β

n∑

i=1

[Yi − (α+ β ′((Xi, Zi)− (x, z)))]
2
Kh

(
(Xi, Zi)− (x, z)

h

)
,

where Kh

(
((Xi, Zi)− (x, z))/h

)
stands (with some abuse of notations) for a product kernel

for the p+ d components of (X,Z) with h denoting the p+ d bandwidths. Then we have

r̂1(x, z) =αx,z (2.2)

∇̂r1(x, z) =βx,z, (2.3)

where the second equation provides an estimate of the gradient of r1(x, z) at (x, z). Usually,

the bandwidths are selected by least-squares cross validation. The interesting feature is

that these estimators do not require any nonlinear optimization procedure, they can be

obtained by simple linear algebra (see Fan and Gijbels, 1996 or Li and Racine, 2007). Under

mild regularity conditions and appropriate choice of the bandwidths, these estimators have

nice properties (consistency, asymptotic normality, etc.), see e.g. Theorems 3.5 and 3.6 in

Pagan and Ullah (1999) for local constant case and Theorem 2.7 in Li and Racine (2007) for

local linear case. Fan and Gijbels (1996) describe in details the general properties of local

polynomial modeling.

2.2 The conditional moments of ε

Importantly, even without specifying a particular choice for the local distributions of U and

of V , we can also rather easily estimate the conditional moments of ε. To summarize, under

the symmetry assumption on V , we have

E(ε|x, z) = 0, (2.4)

E(ε2|x, z) = varU(x, z) + varV (x, z) > 0, (2.5)

E(ε3|x, z) = −E
[(
U − µU(x, z)

)3
|x, z

]
. (2.6)

2Note however, that even in the most general case, some important information about the average

production relationship (e.g., marginal average productivity of inputs, average scale elasticity, etc.) is still

contained in r1(x, z) and so can be inferred from r̂1(x, z).
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We will extend the idea of the Modified OLS (MOLS), originated in the full parametric,

homoskedastic stochastic frontier models (see Olson et al., 1980) for our semi-parametric

setup. The idea is to exploit the fact that the residuals in (2.1) may help estimating the

conditional moments of ε. Note that for most of the distributions of U |x, z on the real

positive line have a positive skewness and so E(ε3|x, z) ≤ 0 in most of the cases. However it

is not necessarily the case for all distributions; we will come back to this later.

Let us denote for j = 2 and 3, rj(x, z) = E(εj |x, z). From the estimation of r1(x, z) =

E(Y |x, z) above we obtain the residuals. In particular, at any data point we have

ε̂i = Yi − r̂1(Xi, Zi), i = 1, ..., n. (2.7)

Now by using appropriate nonparametric techniques (e.g., local constant or local linear), the

regression functions r2(x, z) and r3(x, z) can be consistently estimated from the sets of data

points {(ε̂2i , Xi, Zi)|i = 1, ..., n} and {(ε̂3i , Xi, Zi)|i = 1, ..., n}, respectively. So we define

r̂2(x, z) =
n∑

i=1

Wi,h(x, z) ε̂
2
i =

n∑

i=1

Wi,h(x, z)
(
Yi − r̂1(Xi, Zi)

)2
(2.8)

and

r̂3(x, z) =

n∑

i=1

Wi,h(x, z) ε̂
3
i =

n∑

i=1

Wi,h(x, z)
(
Yi − r̂1(Xi, Zi)

)3
(2.9)

where Wi,h(x, z) depends on the chosen method (local linear or local constant) and on the

vector of bandwidths h. For the Nadaraya-Watson estimator (local constant) the expression

is as follows3

Wi,h(x, z) =
K
(
Xi−x
hx

, Zi−z
hz

)

∑n
j=1K

(
Xj−x

hx
,
Zj−z

hz

) , (2.10)

where again, with some abuse of notations, K
(
Xi−x
hx

, Zi−z
hz

)
represent a product kernel with

the p factors for X and the d factors for Z, hx, hz being the p+ d individual bandwidths for

these components.

In Appendix A we give an heuristic proof of the consistency and asymptotic normality

of these estimators in the local constant case, under similar regularity properties and appro-

priate choice of the bandwidths as the ones required for estimating r1(x, z). To summarize

we obtain for the local constant case

(nhp+d)1/2
(
r̂2(x, z)− r2(x, z)

) L
−→ N(0, s22(x, z)) (2.11)

3For the local linear case, the expressions for the estimation of the regression along with its gradients is

easier to present in matrix notation as soon as p+ d > 1, see e.g. Li and Racine (2007), p.81.
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and

(nhp+d)1/2
(
r̂3(x, z)− r3(x, z)

) L
−→ N(0, s23(x, z)) (2.12)

where for the asymptotic developments we assume, as it is often the case, that all the band-

widths hx, hz have the same order as h and where the variances are given in the appendix.

Similar results could be obtained through the same lines for local linear estimators but at a

cost of notational complexity.

Remark 2.1. If we want to impose that U |x, z is positively skewed then we have r3(x, z) ≤ 0.

We can impose this restriction on our nonparametric estimator r̂3(x, z) without affecting its

asymptotic properties.4 Indeed as n → ∞, the probability of having these constraints active

converges to zero. In finite samples however, it may matter as illustrated in our empirical

example. So imposing such restriction is not without practical effects. Using local exponential

estimators, see Ziegelmann (2002), is an alternative but here we would lose the numerical

flexibility of local constant and local linear estimators. See also footnote 7.

Now from (2.5)–(2.6), we see the link of r2(x, z) and r3(x, z) with the conditional moments

of U and V , so plugging these estimates in the equations will provide information on the

moments of U and V . But for this we must add some information on their local distributions.

We will see that in order to identify the frontier level and some important parameters of

the model, e.g., m(x, z), E(U |x, z), varU(x, z) and varV (x, z) we will need to select a local

parametric model for both the density of U |x, z and of V |x, z.

However, if explanation of efficiency levels by the elements of x and/or of z is our main

concern, or if we want to test if µU(x, z) is a constant with respect to any of the components

of x, z, then we do not need to specify the distribution of V |x, z and we only have to assume

that the density of U |x, z belongs to a one-parameter scale family, without specifying which

member of the family is chosen. This is interesting since this approach is robust not only

to complex (and usually unknown) regression functions but also to different (and usually

unknown) distributional assumptions about the inefficiency term and the noise term in the

SFA model.

4If we use local constant estimator, it means censoring at zero (as e.g. in (3.8) below), but for local linear

estimators, it would be, in cases where r̂3(x, z) > 0, a constrained optimization when deriving the fit and

the gradients. So we impose only that α ≤ 0 and we let the β free when minimizing the local least-squares

criterion and only for those (x, z) where the constraint on α is violated.
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3 Estimation of Frontier and of Individual Inefficiency

Our goal now is to go beyond the average production function estimation and tackle the

problem of estimation and inference for the stochastic frontier itself, and about efficiency

scores measured with respect to this frontier for particular observations. From our discussion

above it must be clear that for implementing this task we need to have information on

µU(x, z) = E(U |x, z) and this is where (for the cross-sectional data framework) we need to

make local parametric assumptions on the types of distributions of U |x, z and V |x, z.

Since the introduction of ALSMB model, the standard way to disentangle the effect of

inefficiency and noise in cross-sectional frontier estimation is to make some assumptions

about distribution of V and distribution of U . After agreeing to make such assumptions,

we face a variety of choice problem: there are many distributions that could be used for

the inefficiency and the noise terms. A natural choice will be to select the most popular

choices made by ALSMB, where they assumed homoskedastic centered Normal for V and

either exponential or half-normal (and homoskedastic) for U . The choice of one parameter

density for U is flexible enough and avoids some of the identification problem encountered

with two-parameters densities, such as the Gamma (Greene, 1990) or the truncated-normal

(Stevenson, 1980), which happen when the two parameters are fully free in variation. The

main identification issue is that for some combination of values of these 2 parameters, the

density of U is hard to distinguish from a Gaussian, and in this case, the noise cannot be

easily identified from the efficiency level (see Ritter and Simar, 1997, for details).

Because of its dominance in empirical research, we chose here to present the results for

the case of a convolution of a Normal and Half-normal that was first considered by Olson

et al. (1980) in parametric homoskedastic context (similar results can also be obtained by

using the convolution of a Normal and an Exponential distribution as well as other suitable

convolutions). This is the same paradigm as the one used in Kumbhakar et al. (2007). We

assume that

V |x, z ∼ N(0, σ2
V (x, z)), (3.1)

U |x, z ∼ |N(0, σ2
U(x, z))|, (3.2)

where we also assume that, conditionally on (x, z), U and V are independent. The flexibility

of the model comes from its nonparametric localization, because we let the variance functions
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unspecified (unknown functionals). As a result, we would have

µU(x, z) = E(U |x, z) =

√
2

π
σU(x, z) (3.3)

r2(x, z) = E(ε2|x, z) = σ2
V (x, z) +

(π − 2

π

)
σ2
U(x, z) (3.4)

r3(x, z) = E(ε3|x, z) =

√
2

π

(
1−

4

π

)
σ3
U(x, z) ≤ 0. (3.5)

Rearranging the system of equations given in (3.4)-(3.5), and solving it first for σ3
U (x, z) and

σ2
V (x, z) we get

σ3
U (x, z) =

√
π

2

( π

π − 4

)
r3(x, z), (3.6)

σ2
V (x, z) = r2(x, z)−

(π − 2

π

)
σ2
U(x, z). (3.7)

The consistent nonparametric estimates r̂2(x, z) and r̂3(x, z) derived above can be plugged

in these equations to provide consistent estimates of the two variance functions at each point

of interest (x, z). Specifically, we have

σ̂U (x, z) = max

{
0,

[√
π

2

( π

π − 4

)
r̂3(x, z)

]1/3}
≥ 0, (3.8)

σ̂2
V (x, z) = r̂2(x, z)− σ̂2

U(x, z)
(π − 2

π

)
. (3.9)

The max operator in (3.8) is needed if we do not impose the non-positivity constraint of

r̂3(x, z) (see Remark 2.1 above).5 Using these estimates, we can also obtain the estimates

of the efficiency scores for each observation, for example, by using the method of Jondrow

et al (1982)—after generalizing it to the heteroskedastic case, by estimating E(Ui|εi, xi, zi)

instead of E(Ui|εi). However, one must be cautious in interpreting such efficiency scores,

as they are “predicted values” that are based on unobserved εi replaced with its estimate

for one particular realization i. As a result, their confidence intervals are usually fairly wide

(see Simar and Wilson, 2010, for more discussion on it).

Another useful information can also be inferred from a consistent estimate of the condi-

tional mean of inefficiency term, conditional on (x, z), given by

µ̂U(x, z) =

√
π

2
σ̂U (x, z). (3.10)

5Note that if homoskedasticity of the variance functions is assumed, we can estimate the constant variance

functions e.g. by averaging σ̂2

U
(Xi, Zi) and σ̂

2

V
(Xi, Zi) over all the observations.
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Estimates of µ̂U(x, z) at every combination of interest (x, z) can then be used to recover a

consistent estimate of the stochastic frontier, m(x, z), via

m̂(x, z) = r̂1(x, z) + µ̂U(x, z). (3.11)

Note that asymptotic properties of m̂(x, z), µ̂U(x, z), σ̂
2
U(x, z) and σ̂

2
V (x, z) are obviously

inherited from the asymptotic properties of r̂1(x, z), r̂2(x, z) and r̂3(x, z) described above.

4 Robust Analysis of Determinants of Inefficiency

Note that in the traditional SFA setup, when statistical noise is symmetric while inefficiency

term is asymmetric, all the information about the inefficiency is essentially contained in the

skewness of the composite error. Therefore, studying inefficiency boils down into studying

the conditional skewness with respect to (x, z), which can be done via a fully non-parametric

regression approach.

Indeed we show now that to perform such analysis, we do not need to specify the dis-

tribution of V |x, z and we can use any one-parameter scale family for the density U |x, z,

without specifying which member of the family is chosen. To be precise, the density of U |x, z

belongs to the one parameter scale family if it can be written as

fU(u|x, z) =
1

σU (x, z)
g
( u

σU (x, z)

)
, (4.1)

where g(·) is any density on R+ and σU (x, z) ∈ (0,∞) is the local shape parameter. Examples

of this are the Exponential, the Half-normal, the Gamma with fixed shape parameter and

the Weibull with fixed shape parameter.6 In this family it is easy to show that for all j ≥ 1

E(U j |x, z) = σjU (x, z)kj , (4.2)

as long as the jth moment of g, kj =
∫∞

0
tj g(t) dt, exists. As a result, we also have

E(ε3|x, z) = −E
[(
U − µU(x, z)

)3∣∣ x, z
]
= −cσ3

U (x, z). (4.3)

where c = (k3 − 3k2k1 + 2k1) is a constant that can be computed if g is known.7

6Note that for the Gamma and the Weibull, the shape parameter does not need to be known, but it has

to be a constant w.r.t. (x, z).
7Note that for the Exponential, the Half-normal and the Gamma cases, c > 0 and so U |x, z is positively

skewed. However for the Weibull, as pointed by Carree (2002), the c becomes negative when the shape

parameter is bigger than 3.60235. Since we restrict our one-parameter scale family to a fixed (unknown)

shaped parameter, this fix the skewness of U |x, z.
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Often, practitioners are actually more interested in the determinants of the inefficiency

rather than the inefficiency or the frontier per se. Sometimes, researchers are even satisfied

with at least the direction (sign) of the influence, although perhaps ideal information would

be about the elasticities of the inefficiency w.r.t. certain variables, since they do not depend

on units of measurement of the variables involved. To facilitate our further discussion, let

ψℓ denote an element of (x, z),

4.1 Estimation of the elasticity of µU(x, z) w.r.t. ψℓ

The (partial) elasticity measure of µU(x, z) w.r.t. ψℓ, which we denote by ξψℓ
(x, z), is given

by

ξψℓ
(x, z) =

∂µU (x, z)

∂ψℓ

ψℓ
µU(x, z)

(4.4)

assuming that µU(x, z) 6= 0. Using (4.2) with j = 1 we immediately get

ξψℓ
(x, z) =

∂σU (x, z)

∂ψℓ

ψℓ
σU (x, z)

(4.5)

provided that σU (x, z) 6= 0 (i.e., that there is some inefficiency at (x, z)). Although ∂σU (x, z)/∂ψℓ

is not directly estimable, an advantage of the one parameter scale family is that we can still

recover it from estimate of E(ε3|x, z). Indeed, using (4.2) when j = 3 we get

∂E(ε3|x, z)

∂ψℓ

ψℓ
E(ε3|x, z)

= 3c σ2
U(x, z)

∂σU (x, z)

∂ψℓ

ψℓ
c σ3

U(x, z)
(4.6)

= 3 ξψℓ
(x, z)

Therefore,

ξψℓ
(x, z) =

1

3

∂E(ε3|x, z)

∂ψℓ

ψℓ
E(ε3|x, z)

(4.7)

and so, a consistent non-parametric estimate of ξψℓ
(x, z) can be obtained by replacing the

true moment E(ε3|x, z) and its partial derivative ∂E(ε3|x, z)/∂ψℓ with their non-parametric

estimates. So we have

ξ̂ψℓ
(x, z) =

1

3

∂̂r3(x, z)

∂ψℓ

ψℓ
r̂3(x, z)

(4.8)

where r̂3(x, z) and ∂̂r3(x, z)/∂ψℓ, ℓ = 1, ..., p+ d are the estimates provided in Section 2. Of

course, we need that r̂3(x, z) 6= 0 for the particular combination of interest (x, z).8

8Note that in practice it may indeed happen that r̂3(x, z) = 0 (no inefficiency) at some combination

of (x, z), causing the elasticity at that combination to be undefined and possibly an error message in a

computing software.
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In Appendix A, we provide a proof of consistency and asymptotic normality of the esti-

mator ξ̂ψℓ
(x, z) when using the local constant estimator (Nadaraya-Watson). To be specific,

under similar regularity conditions as in Section 2 and under appropriate choice of the size

of the bandwidths, we have

(nhp+d+2)1/2
(
ξ̂ψℓ

(x, z)− ξψℓ
(x, z)

) L
−→ N(0, s2ξℓ(x, z)), (4.9)

where the expression of the variance and the required assumptions are described in the

appendix. We remark that we have lost a power 2 in the rate of convergence, to get rid of

the bias term.

It is worth noting here that the estimator in (4.8) depends on the estimate of r3(x, z)

and on its first partial derivative w.r.t. the variable of interest only. These were obtained

in Section 2 where no parametric assumptions were made on the distributions of U |x, z

and V |x, z (except for symmetry and zero mean for the latter). We observe also that the

expression of the estimate is generally valid under the assumption that U |x, z belongs to the

one-parameter scale family defined in (4.1), but we do not need to know to which member it

belongs for estimating the elasticities. This provides a formidable robustness of the resulting

estimation (4.8).

In general, estimation results may reveal that inefficiency is pertinent for some particular

ranges of (x, z) and insignificant for others. To verify such questions, one can estimate

asymptotic confidence intervals, using the knowledge about the asymptotic distribution of

the estimator for the regression function and its partial derivatives and using bootstrap

methods for evaluating the variances.

4.2 Testing significance of ψℓ’s on µU(x, z)

If we want to test if some elements of x, z are independent of E(U |x, z), we can, as suggested

in Racine (1997), test if the elements of the vector of partial derivatives of µU(x, z) are equal

to zero. We see by (4.2) that in the local one-parameter scale family this happens if and only

if the corresponding partial derivatives of r3(x, z) are equal to zero. Suppose, without loss of

generality that we want to test that the first q ≥ 1 elements ψℓ, ℓ = 1, . . . , q are significant.

Racine (1997) suggests the use of the test statistics

T =
1

n

n∑

i=1

q∑

ℓ=1

[
∂̂r3(Xi, Zi)

∂ψℓ

]2
. (4.10)

We reject the null hypothesis when T is too large. The asymptotic distribution of ∂̂r3(x, z)/∂ψℓ

is normal and is given in the Appendix A (see equation (A.8)) and the test is consistent,
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but the sampling distribution of T under the null is complicated so the bootstrap is used to

approximate the p-value. In our case of heteroskedasticity, the wild bootstrap would rather

be used. The algorithm is given in details in Racine (1997), where an option to build a

pivotal test statistics by using a double bootstrap is also described.

5 Empirical Example

The goal of this section is to illustrate and compare several approaches for a real data set.

Here, we use data on GDP (PPP adjusted), labor and capital of 57 countries that were

also used in several recent studies about patterns of economic growth in the world, most

prominently in a study of Kumar and Russell (2002), where more details of the data can be

found.9 Recall that in their seminal work, Kumar and Russell (2002) used an alternative

to ours estimator, referred to as Data Envelopment Analysis (DEA), to estimate the world

frontier and the efficiency levels of individual countries. To its advantage, the DEA is also a

non-parametric estimator, however its key weakness is the assumption of no (or ignorance of)

possible noise in the data—and this is the drawback addressed by our approach, while still

retaining the advantage of being non-parametric. Another weakness of the standard DEA

that we avoid here is the fact that the estimation of the frontier is not taking into account

possible dependency of the inefficiency on some variables that also may (or may not) influence

the frontier. For relating inefficiency to explanatory variables in DEA framework, one can use

approach recently proposed by Simar and Wilson (2007), where efficiency score, estimated

via DEA at the first stage, are then regressed on explanatory variables at the second stage.

The idea is somewhat similar to our approach, yet it is much more restrictive than ours.

Indeed, in addition to allowing for statistical noise in the data, a very important advantage

of our approach is that it does not need an assumption of “separability”, which is crucial in

the approach of Simar and Wilson (2007). It is also worth noting that the work of Simar and

Wilson (2007) originally employed parametric regression at the second stage, while the first

stage was non-parametric. This was relaxed in Park et al. (2008), who developed theory

for local likelihood with truncated regression and illustrated it with analysis of relationship

between DEA estimated efficiency scores of countries, as the dependent variable, and their

capital per worker levels, using the same data from Kumar and Russell (2002). This gives

us an opportunity to make some comparisons of qualitative conclusions from our approach

9Also see Henderson and Russell (2005), Simar and Zelenyuk (2006), Henderson and Zelenyuk (2007),

Badunenko et al. (2008), Park et al. (2008), etc.
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and from the two-stage efficiency analysis in Park et al. (2008).

Formally, we will be estimating the following regression relationship,

Yi = m(Xi) + Vi − Ui, i = 1, . . . , n

where Yi is the natural log of GDP per worker of country i in 1990, Xi is the natural log

of capital per worker of country i in 1990, Vi is the statistical noise term, for which we

assume that E(Vi|Xi) = 0 and V ar(Vi|Xi) ∈ (0,∞) for all i, while Ui ≥ 0 is the inefficiency

term. We also assume that V ar(Ui|Xi) ∈ (0,∞) for all i and that Ui is independent from

Vi, conditionally on Xi. Note also that while in our production model we originally assume

the output (GDP) is produced by two inputs (labor and capital), by dividing all variables

through by one of inputs (labor), we impose assumption of constant returns to scale (CRS)

on the technology. In general, we do not need a CRS assumption for our approach to work

and we do so here only for convenience. Indeed, besides ability to illustrate our results with

simple two-dimensional figures, with CRS assumption our results are then more comparable

to other works in the area, in particular to Kumar and Russell (2002) and Park et al. (2008)

who imposed the same assumption.10

The result of the estimations are shown in four panels of Figures 1. The top left panel

depicts the data points and the estimation results for the average production function and

the frontier from several estimation methods. In this panel, the thin dashed line depicts

results of standard parametric (and homoskedastic) MOLS (a la OSW), which happened

to coincide here with estimates of parametric average production function—because the

parametric estimate of E(Ui) happened to be zero for this data set. In other words, the

standard parametric MOLS approach suggests that there is no inefficiency in the sample,

i.e., suggesting that all countries are efficient and all the deviations are to be attributed

to statistical noise. This is, of course, completely opposite from conclusions of Kumar and

Russell (2002), where all the deviations from frontier (estimated via DEA) were attributed

to inefficiency, which, in turn were then found to play an important role in shaping the

dynamics of distributions of income per worker in the world. For the sake of reference, we

also depict the DEA estimate of the technology frontier with the solid piece-wise linear line

in top left panel of Figure 1.

The same top-left panel in Figure 1 also depicts the non-parametric estimate of the aver-

age production function (with thick dashed line) and semi-parametric estimates of frontier

10Clearly, in a detailed analysis, one may also want to condition for many other potentially important

explanatory variables, yet we will limit our illustration to the case of one continuous variable for the sake

convenience in graphical representation and comparisons.

14



0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6
x 10

4

Capital per Worker

G
D

P
 p

er
 W

or
ke

r

 

 
Observations
Parametric MOLS
Non−Param. Av.Prod.Funct.
Semi−Param. Hom. Frontier
Semi−Param. Het.Frontier

1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

Capital per Worker

es
tim

at
ed

 σ
u a

nd
 σ

v

 

 

Semi−Param. Het.est of σ
u

Semi−Param. Het.est of σ
v

Semi−Param. Hom.est of σ
u

Semi−Param. Hom.est of σ
v

0 1 2 3 4 5

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Capital per Worker

E
la

st
ic

ity
 o

f E
(u

)

 

 
Est. Elasticity of E(u)

6 7 8 9 10 11
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

log(Capital per Worker)

es
tim

at
ed

 ε
i3

 

 

est. ε
i
3

fit of r
3

zero line

Figure 1: Estimation results imposing non-positivity constraint for r̂3(x). On the top left

panel, the solid piece-wise linear line is the traditional DEA estimate. Note that the bottom

right panel as horizontal scale in logs.

under homoskedasticity assumption (dash-dot line) and the one allowing for heteroskedas-

ticity (smooth solid line). Observing these curves, one can see that the shape of the average

production function estimated non-parametrically is similar, yet mostly above the parametric

MOLS (which coincides here with the parametric estimate of average production function).

More importantly, our semi-parametric estimates suggest there is substantial inefficiency

across countries, which is very different conclusion than that from the parametric MOLS.

Indeed, even the semi-parametric approach with assumption of homoskedastic variances of

inefficiency (i.e., assuming E(Ui|Xi) = E(Ui) is a constant) and of the noise suggested the

presence of substantial inefficiency. Also note that our semi-parametric approach that allows

for heteroskedastic variances of inefficiency and of the noise also suggested substantial ineffi-

ciency is present, although yielded usually smaller levels of inefficiency than those suggested

by the homoskedastic semi-parametric approach.11 Thus, despite the similarity of para-

11We obtain our non- and semi- parametric estimates using all observations at the grid of points in the

observed range. The plots are given for all the grid points except for the largest observation in capital per
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metric and non-parametric estimates of the average production function, the frontiers and

inefficiencies are here substantially different between the parametric and semi-parametric

approaches, even in the fully homoskedastic case.

Interestingly, note that the semi-parametric heteroskedastic approach yields similar re-

sults relative to its simplified homoskedastic version for the lower half of the data, but results

are quite different for the upper half of the data, where the heteroskedastic version is showing

more curvature and less inefficiency. These results are somewhat intuitive: the heteroskedas-

tic semi-parametric version is expected to be more adaptive to the changing variation in the

data, and so it is more likely to yield more adequate (or less extreme) results than the ho-

moskedastic semi-parametric approach. Thus, the results from semi-parametric approach,

homoskedastic and heteroskedastic, support the claim of Kumar and Russell (2002) about

substantial differences in inefficiency across countries, unlike the parametric homoskedastic

MOLS that identified no inefficiency. However, unlike in Kumar and Russell (2002), we avoid

the drawback of DEA by allowing for both, the inefficiency and the noise, yet also stay free

from parametrization of the production function, as well as allow for influence of explana-

tory variables onto inefficiency and the output levels. Such differences may imply completely

different distribution of inefficiency across the countries and thus different conclusions about

the impact of efficiency change on patterns of economic growth dynamics than were found

in Kumar and Russell (2002).

Let us now look closer at the top-right panel of Figure 1, which presents estimates of

σU and σV from semi-parametric approach under the two assumptions: homoskedastic and

heteroskedastic variances for the inefficiency and the noise. From this picture we see that

both variants are able to disentangle the total deviation into σU and σV but they do it quite

differently. An obvious advantage of the heteroskedastic variant is the ability to disentangle

different natures of variability of σU and σV at different values of an explanatory variable

(capital per worker here). Interestingly, for our sample, the heteroskedastic variant suggests

that σU is at zero (no inefficiency) at the very low level of capital per worker, then rapidly

increases and then gradually decreases for countries with very large capital per worker,

indicating less inefficiency.12 So, we remark that the “wrong skewness” problem appears

only for the lowest values of x where the sign-constrained estimator of r̂3(x) gave values of

σ̂U(x) = 0. In fact this corresponds to a region where lies less than 20% of the data points in

worker (Switzerland), which is substantially outlying from others and so the estimated curve, not surprisingly,

passes through that point.
12The estimates and the plot of the conditional expectation of the inefficiency term is different from those

of σU just by the constant
√
2/π ≈ 0.8, for all points, and so we do not present it for the sake of space.
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our sample. This is in accordance with results reported in the literature: with similar sample

sizes, we may observe similar proportions of wrong skewness even in a fully parametric model

when the data are simulated with the Normal-Half normal convolution (see Coelli, 1995 and

Simar and Wilson, 2010 for details). This will be confirmed below, in the top right panel of

Figure 2, where the estimation of r̂3(x) is unconstrained and so the truncation in (3.8) for

defining σ̂U is active.

The heteroskedastic variant of the estimator also suggests that the dependency of σV on

x for our sample is likely to be of quite different nature than the one we observed for σU

w.r.t. x. Indeed, we see that the estimated σV is monotonically decreasing with x, with an

asymptote about zero for observations with largest capital per worker. In a sense, one would

expect that, at least on average, countries that are richer in capital per worker would tend to

have lower uncertainty risk (captured here by σV ) as well as lower inefficiency risk (captured

here by σU) and that is what we see in our estimation results. Interestingly, note that Park

et al. (2008) obtained somewhat similar conclusions, although using different estimation

paradigm: they found that influence of capital per worker onto inefficiency of countries was

pronounced not through the conditional mean but through the conditional variance.

One of the main novelties of our work is a fully non-parametric estimation of the impact of

explanatory variables onto the conditional moment of inefficiency term—via the elasticity—

and these estimates for our data set are depicted in bottom-left panel of Figure 1. Specifically,

one can see that the estimated elasticity starts at about 0.4 for the countries with lowest

capital per worker then monotonically decreases to negative territory, and all the way to

about -0.8 for countries with high capital per worker levels. The decrease is rapid at the

beginning, slows down in the mid range and accelerates to be rapid again at the right end

of the range. Note that negative values imply negative relationship between the (estimated)

conditional mean of inefficiency term, E(U |·), and the explanatory variable experiencing

the change (capital per worker here). Thus, our estimates show that the larger the capital

per worker in a country, the larger is the negative impact of its percentage change on the

percentage change in the inefficiency term (on average, ceteris paribus). While the figure

illustrates the entire sample, one can also obtain and analyze point estimates for particular

countries: e.g., the elasticity estimate for USA in our case is -0.276, which implies that an

increase in capital per worker by 1% for USA is expected to lead to about 0.28% decrease

in the inefficiency term, on average and ceteris paribus, according to 1990 data.13 Similar

13Also recall that −E(U |·) is the first order approximation (around zero) of 1 − E(exp(−U)|·), which is

the percentage measure of inefficiency.
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estimates of elasticities are obtained for most other developed countries, and for eleven

countries they turned out to be undefined (due to E(U |·) = 0) and so not presented on the

figure. Recall that to estimate the elasticity we do not need to make parametric assumptions

about the distribution of U or V , and only need to non-parametrically estimate r3 and assume

the quite general local one-parameter scale family, without specifying which distribution it

is. Bottom-right panel of Figure 1 presents these estimates for our data set, for the case of

constrained estimation—with constraint that r3 is non-positive, as the theory suggests for

most one-parameter scale distributions (see footnote 7).14

With the help of four panels of Figure 2 we now present estimation results for the same

data and the same methods as those described in Figures 1, except that the non-parametric

estimation of r3 is done without non-positivity restriction, with standard local linear least

squares method. Comparing results from Figure 1 with those in Figure 2, one can see

substantial differences. First of all, comparison of bottom-right panels of the two figures

reveals different estimates of r3. Although the positive estimates of r3 depicted in the bottom-

right panel of Figure 2 are then censored to zero, ex post, when computing estimates of σU ,

the resulting estimates are substantially different when comparing to σU obtained using

constrained local least squares to estimate r3. These differences are then reflected in the

estimates of the frontier and, most sensitively, in the estimation of elasticity of E(Ui|·) w.r.t.

Xi, as the differences in left panels of Figure 1 and of Figure 2 suggest. This illustrates that

constrained estimation of r3 may produce, especially in small samples (n = 57), substantially

different results than the non-constrained estimation and so should be preferred if justified

by theoretical reasoning, as in our case.

Concluding our empirical illustration, we would like to note that since our approach ad-

dresses the drawbacks of DEA (allows for statistical noise in the data, etc.) while preserving

its advantages (no or minimal parametric assumptions), many results and conclusions of the

seminal work of Kumar and Russell (2002), as well as many other papers inspired by their

approach, might need to be revisited to understand if qualitative conclusions change due to

using more flexible method as ours. In doing so, one shall of course consider other variables

and aspects that may potentially influence the technology frontier as well as the variances

of the inefficiency and of the statistical noise terms and we leave this for more elaborate

empirical studies to focus on in the future.

14Note that due to the nature of the dependent variable, the observations on this picture are very dispersed

vertically, with many being very close to or at zero and our figure is zoomed such that the estimated curve

is visibly different from zero, which in turn made many observations being beyond the scope of the figure.
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Figure 2: Estimation results with unconstraint sign for r̂3(x). On the top left panel, the solid

piece-wise linear line is the traditional DEA estimate. Note that the bottom right panel as

horizontal scale in logs.

6 Conclusions

In this work we aimed to improve upon the currently popular methods for estimating tech-

nology frontier and (in)efficiency levels. We proposed the semi-parametric generalization

of the so-called “modified OLS” approach as an alternative to the parametric and the lo-

cal MLE approaches. We show that most of the benefits of the local MLE approach can

be obtained in our approach with less assumptions and involving much easier, faster and

numerically more robust computations, by using nonparametric (or local polynomial) least-

squares methods. We illustrated our method and compared it with other methods with a

real data set. We also discuss the vital issue of explaining variation in inefficiency levels with

respect to explanatory variables with minimal assumptions on the Data Generating Process.

In summary, with the approach we propose in this paper, we are able to combine the

advantages of the two competing approaches—the freedom from parametric assumptions

about the technology frontier, similar to DEA, and the ability of decomposing the total

deviation from the frontier into noise and inefficiency, as in the standard SFA, but allowing
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for heteroskedasticity of the inefficiency and of the statistical noise. We still have to use

semi-parametric assumptions about the densities of the noise and inefficiency, to be able to

do the decomposition of variance of inefficiency from variance of statistical noise, yet in our

semi-parametric approach with heteroskedastic inefficiency, this assumption is, in a sense,

localized, allowing inefficiency to be changing with (x, z), similarly to local MLE approach of

Kumbhakar et al (2007), but much easier and much faster in computation. In addition, the

analysis of the determinants of the inefficiency and a test for the significancy of covariates

has been proposed in a model where neither the distribution of the noise nor the ditribution

of the inefficiencies have to be fully specified.

The estimation results we obtained for our real data set illustration are quite interesting

and intuitive, but also reveal information that is not obvious without proper estimation, as

well as different from estimation results of more restrictive standard parametric SFA and

somewhat different from the DEA approach.
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A Appendix: Technical Details

In this appendix we establish the asymptotic properties of r̂2(x, z), r̂3(x, z) and ξ̂ψℓ
(x, z)

described in Sections 2 and 4 when using a local constant estimator for r̂2(x, z) and r̂3(x, z).

The estimators defined in (2.8) and (2.9) are weighted averages with weights given by (2.10)

where the kernel is a product kernel K(s, t) = k(s1) . . . k(sp)k(t1) . . . k(td) with k(·) being

a univariate second order kernel with ||k||22 =
∫
k2(ν)dν < ∞ and (hx, hz) is a (p + d)-

dimensional bandwidth corresponding to each component of (X,Z). For the asymptotic

properties we assume that all the bandwidths have the same order, so we simplify the

notation by denoting each bandwidth by h (in practice, for ℓ = 1, . . . , p + d, hℓ = bℓh for

some constant bℓ). So the weights will be written as

Wi,h(x, z) =
K
(
Xi−x
h
, Zi−z

h

)
∑n

j=1K
(
Xj−x

h
,
Zj−z

h

) .

Throughout the appendix we also assume that fXZ(x, z) > 0, where fXZ(x, z) is the joint

density of (X,Z). Some regularity conditions (smoothness of the functions r2 and r3) will

appear in the proofs below. We will also assume that the conditional moments of ε of order up

to 7 are finite, i.e. rj(x, z) = E(εj|x, z) <∞ for j = 2, . . . , 7. For the asymptotic normality

of r̂2(x, z) and r̂3(x, z) we need to work with a bandwidth h that satisfies nhp+d(logn)−4 → ∞

and nhp+d+4 → 0, whereas for ξ̂ψℓ
(x, z) we require that nhp+d+2 → ∞ and nhp+d+6 → 0.

A.1 Asymptotic normality of r̂2(x, z)

We have

r̂2(x, z) =

n∑

i=1

Wi,h(x, z)(Yi − r̂1(Xi, Zi))
2

=
n∑

i=1

Wi,h(x, z)
[
(Yi − r̂1(x, z))

2

+2(Yi − r̂1(x, z))(r̂1(x, z)− r̂1(Xi, Zi)) + (r̂1(x, z)− r̂1(Xi, Zi))
2
]

= A+B + C. (A.1)

Let us first consider term C above. First note that by Jensen’s inequality,

(r̂1(x, z)− r̂1(Xi, Zi))
2

≤ 3
[
(r̂1(x, z)− r1(x, z))

2 + (r̂1(Xi, Zi)− r1(Xi, Zi))
2 + (r1(Xi, Zi)− r1(x, z))

2
]
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and we know (e.g., fromMasry, 1996) that supx,z |r̂1(x, z)−r1(x, z)| = Op

(
(nhp+d)−1/2 log n+ h2

)

and that
∑n

i=1Wi,h(x, z)(r1(x, z) − r1(Xi, Zi))
2 = O(h2) for second order kernels, provided

that all partial derivatives of r1(x, z) w.r.t. x and z are finite. Hence,

C = Op

(
(nhp+d)−1(log n)2 + h2

)
= op

(
(nhp+d)−1/2

)

provided that (nhp+d)(log n)−4 → ∞ and nhp+d+4 → 0.

Next, we consider the second term B in (A.1). We clearly have

B ≤ 2

n∑

i=1

Wi,h(x, z)|Yi − r̂1(x, z)| × |r̂1(x, z)− r̂1(Xi, Zi)− r1(x, z) + r1(Xi, Zi)|

+ 2

n∑

i=1

Wi,h(x, z)|Yi − r̂1(x, z)| × |r1(x, z)− r1(Xi, Zi)|

= op
(
(nhp+d)−1/2

)
+O(h2) = op

(
(nhp+d)−1/2

)

provided that nhp+d+4 → 0 and that E (|ε| |x, z) <∞. This follows from the fact that

sup
||(x,z)−(x′,z′)||≤h

|r̂1(x, z)− r̂1(x
′, z′)− r1(x, z) + r1(x

′, z′)| = op
(
(nhp+d)−1/2

)
+O(h2).

Finally, consider the first term A in (A.1).

A =

n∑

i=1

Wi,h(x, z)Y
2
i − r̂21(x, z)

=
n∑

i=1

Wi,h(x, z)Y
2
i − r21(x, z) + (r1(x, z)− r̂1(x, z))(r1(x, z) + r̂1(x, z))

=
n∑

i=1

Wi,h(x, z)Y
2
i − r21(x, z)− 2r1(x, z)(r̂1(x, z))− r1(x, z)) + op

(
(nhp+d)−1/2

)

=

n∑

i=1

Wi,h(x, z)Y
2
i + r21(x, z)− 2r1(x, z)

n∑

i=1

Wi,h(x, z)Yi + op
(
(nhp+d)−1/2

)

=
n∑

i=1

Wi,h(x, z)(Yi − r1(x, z))
2 + op

(
(nhp+d)−1/2

)
.

Hence, we finally have from (A.1) that

r̂2(x, z) =
n∑

i=1

Wi,h(x, z)(Yi − r1(x, z))
2 + op

(
(nhp+d)−1/2

)
. (A.2)

Then, as is standard for nonparametric kernel estimators (see e.g. Pagan and Ullah, 1999,

Theorem 3.5), Liapunov’s central limit theorem for triangular arrays can be advocated (see

22



Serfling, 1980, p. 31), under an additional regularity assumption. Here, denoting η = ε2 −

r2(x, z), the conditions are
∫
|k(ν)|2+δdν and E(|η|2+δ) are finite for some δ > 0. So provided

nhp+d+4 → 0 we have

(nhp+d)1/2(r̂2(x, z)− r2(x, z))
L

−→ N(0, s22(x, z)), (A.3)

where

s22(x, z) = E
[
η2|x, z

]
||k||

2(p+d)
2 f−1

XZ(x, z) =
[
r4(x, z)− r22(x, z)

]
||k||

2(p+d)
2 f−1

XZ(x, z).

A.2 Asymptotic normality of r̂3(x, z)

By similar arguments as for r̂2(x, z) above it is easy to show that

r̂3(x, z) =
n∑

i=1

Wi,h(x, z)(Yi − r̂1(Xi, Zi))
3

=

n∑

i=1

Wi,h(x, z)(Yi − r̂1(x, z))
3 + op

(
(nhp+d)−1/2

)
.

Then we develop the leading term as

n∑

i=1

Wi,h(x, z)
[
(Yi − r1(x, z))

3 + 3(Yi − r1(x, z))
2(r1(x, z)− r̂1(x, z))

+3(Yi − r1(x, z))(r1(x, z)− r̂1(x, z))
2 + (r1(x, z)− r̂1(x, z))

3
]
.

So we have using similar arguments as above

r̂3(x, z) =
n∑

i=1

Wi,h(x, z)(Yi − r1(x, z))
3

+ 3

[
n∑

i=1

Wi,h(x, z)(Yi − r1(x, z))
2 − r2(x, z)

]
(r1(x, z)− r̂1(x, z))

− 3 r2(x, z)

n∑

i=1

Wi,h(x, z)(Yi − r1(x, z)) + op
(
(nhp+d)−1/2

)
.

So we obtain at the end

r̂3(x, z) =
n∑

i=1

Wi,h(x, z)
[
(Yi − r1(x, z))

3 − 3r2(x, z)(Yi − r1(x, z))
]
+ op

(
(nhp+d)−1/2

)
.

Again we apply Liapunov’s CLT. Here the regularity conditions are the same as for r2(x, z)

with now η = ε3 − 3r2(x, z)ε − r3(x, z). So provided nhp+d+4 → 0 we have

(nhp+d)1/2(r̂3(x, z)− r3(x, z))
L

−→ N(0, s23(x, z)), (A.4)
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where

s23(x, z) = E
[
η2|x, z

]
||k||

2(p+d)
2 f−1

XZ(x, z)

=
[
r6(x, z)− 6r2(x, z)r4(x, z)− r23(x, z) + 9r32(x, z)

]
||k||

2(p+d)
2 f−1

XZ(x, z).

A.3 Asymptotic normality of ξ̂ψℓ
(x, z)

The elasticity estimator is defined in (4.8) as ξ̂ψℓ
(x, z) =

1

3

∂r̂3(x, z)

∂ψℓ

ψℓ
r̂3(x, z)

, where ψℓ is

an element in (x, z). We know already that (nhp+d)1/2(r̂3(x, z) − r3(x, z)) converges to a

normal, so r̂3(x, z) − r3(x, z) = Op

(
(nhp+d)−1/2

)
, whereas ∂r̂3(x, z)/∂ψℓ will converge at a

slower rate. Therefore, ξ̂ψℓ
(x, z) behaves asymptotically as

ξ̃ψℓ
(x, z) =

1

3

∂r̂3(x, z)

∂ψℓ

ψℓ
r3(x, z)

.

Now, we have the following relations:

∂

∂ψℓ
r̂3(x, z) =

∂

∂ψℓ

n∑

i=1

Wi,h(x, z)(Yi − r̂1(Xi, Zi))
3 =

n∑

i=1

(
∂

∂ψℓ
Wi,h(x, z)

)
(Yi − r̂1(Xi, Zi))

3

=
n∑

i=1

(
∂

∂ψℓ
Wi,h(x, z)

) [
(Yi − r1(Xi, Zi))

3 + 3(Yi − r1(Xi, Zi))
2(r1(Xi, Zi)− r̂1(Xi, Zi))

+3(Yi − r1(Xi, Zi))(r1(Xi, Zi)− r̂1(Xi, Zi))
2 + (r1(Xi, Zi)− r̂1(Xi, Zi))

3
]

= T1 + T2 + T3 + T4.

We have seen above that supx,z |r̂1(x, z) − r1(x, z)| = Op

(
(nhp+d)−1/2 logn + h2

)
, hence

T2 + T3 + T4 = Op

(
(nhp+d)−1/2 log n+ h2

)
= op

(
(nhp+d+2)−1/2

)
, provided ∂

∂ψℓ
r2(x, z) < ∞

and nhp+d+6 → 0. So we have

∂

∂ψℓ
r̂3(x, z) = T1 + op

(
(nhp+d+2)−1/2

)
. (A.5)

Let us consider T1 −
∂
∂ψℓ

r3(x, z). We obtain

T1 −
∂

∂ψℓ
r3(x, z) =

∂

∂ψℓ

n∑

i=1

Wi,h(x, z)
[
(Yi − r1(Xi, Zi))

3 − r3(x, z)
]

=
∂

∂ψℓ

n∑

i=1

Wi,h(x, z)
[
(Yi − r1(Xi, Zi))

3 − r3(Xi, Zi)
]

+
n∑

i=1

(
∂

∂ψℓ
Wi,h(x, z)

)
r3(Xi, Zi)−

∂

∂ψℓ
r3(x, z)

= T11 + T12.
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Let Kh(s, t) = h−(p+d)K(s/h, t/h). Then, by simple calculations and appropriate change in

variables in the integrals we get successively:

T12 =

∫
∂

∂ψℓ

Kh(s− x, t− z)

f̂XZ(x, z)
r3(s, t)dF̂XZ(s, t)−

∂

∂ψℓ
r3(x, z)

= h−(p+d) ∂

∂ψℓ

∫
K(u, w)

f̂XZ(x, z)
r3(x+ hu, z + hw)dF̂XZ(x+ hu, z + hw)−

∂

∂ψℓ
r3(x, z)

=
∂

∂ψℓ

1

f̂XZ(x, z)

∫
K(u, w)r3(x+ hu, z + hw)f̂XZ(x+ hu, z + hw)dudw −

∂

∂ψℓ
r3(x, z)

=
∂

∂ψℓ
r3(x, z) +Op(h

2)−
∂

∂ψℓ
r3(x, z) = op

(
(nhp+d+2)−1/2

)
, (A.6)

where the last equality holds provided that nhp+d+6 → 0.

Finally we consider T11. For this we define γi = (Yi − r1(Xi, Zi))
3 − r3(Xi, Zi). Then,

T11 =
∂

∂ψℓ

{
n−1

n∑

i=1

Kh(Xi − x, Zi − z)

f̂XZ(x, z)
γi

}

= n−1
n∑

i=1

f̂−2
XZ(x, z)

{
∂

∂ψℓ
Kh(Xi − x, Zi − z)f̂XZ(x, z)−Kh(Xi − x, Zi − z)

∂

∂ψℓ
f̂XZ(x, z)

}
γi

= n−1
n∑

i=1

∂
∂ψℓ

Kh(Xi − x, Zi − z)

f̂XZ(x, z)
γi − n−1

n∑

i=1

Kh(Xi − x, Zi − z)

f̂ 2
XZ(x, z)

γi ×
∂

∂ψℓ
f̂XZ(x, z)

= n−1
n∑

i=1

∂
∂ψℓ

Kh(Xi − x, Zi − z)

fXZ(x, z)
γi + op

(
(nhp+d+2)−1/2

)
, (A.7)

where we used the fact that n−1
∑n

i=1
Kh(Xi−x,Zi−z)

f̂2
XZ

(x,z)
γi = Op

(
(nhp+d)−1/2

)
and ∂

∂ψℓ
f̂XZ(x, z) =

Op(1) provided we assume that ∂
∂ψℓ

fXZ(x, z) <∞. With our assumption that fXZ(x, z) > 0,

the leading term in (A.7) is a sample mean of iid random variables and so shall converge to

a normal. Our next goal is to find the variance of this leading term, which we achieve below:

V = V ar

(
n−1

n∑

i=1

∂
∂ψℓ

Kh(Xi − x, Zi − z)

fXZ(x, z)
γi

)
=

n−1

f 2
XZ(x, z)

V ar

(
∂

∂ψℓ
Kh(X − x, Z − z)γ

)

Now since E(γ|X,Z) = 0 this leads to

V =
n−1

f 2
XZ(x, z)

E

[(
∂

∂ψℓ
Kh(X − x, Z − z)

)2

V ar(ε3|X,Z)

]

=
n−1V ar(ε3|x, z)

f 2
XZ(x, z)

∫ (
∂

∂ψℓ
Kh(s− x, t− z)

)2

fXZ(s, t)ds dt+ o(1)

=
n−1V ar(ε3|x, z)

fXZ(x, z)
h−(p+d+2)||k||

2(p+d−1)
2 ||k′||22 + o(1),
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where V ar(ε3|x, z) = r6(x, z)− r23(x, z).

Hence, from (A.5), (A.6) and (A.7) and provided nhp+d+2 → ∞ and nhp+d+6 → 0, we

have for the derivatives of r3 the following result

(nhp+d+2)1/2
(

∂

∂ψℓ
r̂3(x, z)−

∂

∂ψℓ
r3(x, z)

)
L

−→ N(0, s24(x, z)), (A.8)

where

s24(x, z) =
r6(x, z)− r23(x, z)

fXZ(x, z)
||k||

2(p+d−1)
2 ||k′||22.

Finally, we obtain the asymptotic normality for the elasticities:

(nhp+d+2)1/2
(
ξ̂ψℓ

(x, z)− ξψℓ
(x, z)

)
L

−→ N(0, s2ξ(x, z)), (A.9)

where

s2ξ(x, z) =
ψ2
ℓ

9fXZ(x, z)

(
r6(x, z)

r23(x, z)
− 1

)
||k||

2(p+d−1)
2 ||k′||22.
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