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Abstract

This paper provides new identification results for panel data models with
contextual and endogenous peer effects. Contextual effects operate through
individuals’ time-invariant unobserved heterogeneity. Identification hinges on
a conditional mean restriction requiring exogenous mobility of individuals
between groups over time. Some networks governing peer interactions
preclude identification. For these cases we propose additional conditional
variance restrictions. We conduct a Monte-Carlo experiment to evaluate the
performance of our method and apply it to surgeon-hospital-year data to study
take-up of minimally invasive surgery. A standard deviation increase in the
average time-invariant unobserved heterogeneity of other surgeons in the same
hospital leads to a 0.12 standard deviation increase in take-up. The effect is
equally due to endogenous and contextual effects.

Key words: Peer effects, panel data, networks, identification, innovation, health-
care

1. Introduction

This paper provides new identification results for panel data models of peer effects.
We consider contextual peer effects, through which outcomes depend on peers’
time-invariant unobservable (to the researcher) heterogeneity, and endogenous peer
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effects through which outcomes are simultaneously determined. Our framework
also allows for correlated effects, modelled as unobserved peer group heterogeneity
which is permitted to be correlated with individual heterogeneity in an unrestricted
manner. This permits, for example, that high outcome individuals be systematically
located in high outcome peer groups. We derive identification results which
can be applied to general network structures governing peer interactions and are
straightforward to verify in practice. Identification hinges primarily on a conditional
mean restriction requiring exogenous mobility of individuals between groups over
time. Not all patterns of mobility suffice to identify the peer effects, and we
provide identifying and non-identifying examples. If there are both contextual and
endogenous effects, our identification results show that for some networks there
do not exist identifying mobility patterns.1 For these cases we propose additional
conditional variance restrictions.

We conduct a Monte-Carlo experiment to compare the performance of the
conditional mean based fixed-T consistent non-linear least squares estimator of
the contextual effects (Arcidiacono et al., 2012) with the fixed-T consistent non-
linear least squares estimator of the endogenous and contextual effects resulting
from the conditional variance restrictions. Both estimators perform well if there
are contextual effects only but the conditional mean estimator (in addition to
requring weaker identifying assumptions) is more efficient. With endogenous
effects the conditional mean estimator does not accurately estimate the reduced
form parameters, whereas the conditional variance estimator accurately estimates
both endogenous and contextual effects. Increasing the number of time periods,
the rate of mobility and the richness of the network data (e.g. social network data)
improves the performance of both estimators.

We use the matched surgeon-patient-hospital-year data construced by Barrenho
et al. (2019) to illustrate our method by studying surgeons’ take-up of minimally
invasive (keyhole) surgery for colorectal cancer surgery in the English National
Health Service. Colorectal cancer is the third most common cancer worldwide
(Arnold et al., 2017). In England, it accounts for 10% of cancer deaths and is the
most expensive cancer to treat (Laudicella et al., 2016). Our empirical innovation
is to allow for contextual effects operating through surgeons’ latent propensity to
take up the technique (i.e. their time-invariant unobserved heterogeneity). We find
positive and statistically significant endogenous and contextual effects in take-up.
Our results suggest that a standard deviation increase in the average latent take-
up of other surgeons in the same hospital leads to a net increase in take-up of
0.12 standard deviations. Endogenous and contextual peer effects each make up

1We consider a model of endogenous effects in which outcomes are simultaneously determined,
which is appropriate for our empirical application.
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approximately half of the net effect.
Our work contributes to the literature on identification of peer effects. To date,

research has largely focussed on settings in which contextual effects operate through
exogenous observable individual characteristics. That is, in addition to endoge-
nous and correlated effects, outcomes depend on individual and peers’ exogenous
observables (Manski, 1993; Moffitt et al., 2001; Lee, 2007; Bramoullé et al., 2009;
Calvó-Armengol et al., 2009; Davezies et al., 2009; De Giorgi et al., 2010; Goldsmith-
Pinkham and Imbens, 2013; Blume et al., 2015; De Paula, 2017; Cohen-Cole et al.,
2018; Bramoullé et al., 2019). This strand of the literature focuses on cross-section
data, for which identification prospects depend on cross-sectional variation in peer
groups and the extent to which exogenous individual characteristics determine
outcomes. If there is sufficient variation in peer groups, the exogenous characteris-
tics of peers-of-peers can be used as instrumental variables for peers’ outcomes. In
contrast, our panel data allow us to capture contextual effects operating through
individual unobserved heterogeneity and to identify endogenous effects without
needing to observe exogenous characteristics. Our method can be applied with a
panel comprising only outcome and group membership data. Another strand of
the literature considers peer effects operating through individual unobservables
using cross-section data. The most closely related papers are Graham (2008) and
Rose (2017). Our conditional variance restrictions are panel data counterparts of
those of Rose (2017). Relative to these papers, we allow for unobserved group level
heterogeneity to be arbitrarily correlated with individual heterogeneity, and, though
our results can be applied to any network structure, we show that panel data can
be used to identify endogenous peer effects for the linear-in-means network which,
in the absence of additional restrictions, precludes identification using cross-section
data (Manski, 1993; Rose, 2017; Bramoullé et al., 2009).2

The most closely related strand of the literature focuses on panel data models of
peer effects. Key contributions are Mas and Moretti (2009) and Arcidiacono et al.
(2012), both of which study models of contextual peer effects comprising the average
unobserved time-invariant heterogeneity of the other members of the peer group.
We allow additionally for a general network structure (e.g. a social network), for
simultaneously determined outcomes (endogenous effects) and for peer group level
unobserved heterogeneity (correlated effects). Arcidiacono et al. (2012) consider a
variant of endogenous effects through which outcomes depend on the expected (as
opposed to realised) outcomes of others. This implies that there is no simulataneity
in outcomes, which is appropriate for the authors’ application to peer effects in
education. Arcidiacono et al. (2012) show that identification and fixed-T consistent

2The linear-in-means network is one through which peer effects are constructed using the group
average.
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estimation can be attained based on an instrumental variables approach which
requires that there exist observable exogenous individual characteristics which vary
over time and determine an individual’s own outcome but not those of their peers.
In our empirical application we expect that surgeons directly observe and base their
take-up on the take-up of other surgeons in the same hospital, leading to a model
of endogenous effects with simultaineity, for which the estimator of Arcidiacono
et al. (2012) cannot be shown to be consistent (Arcidiacono et al., 2012). Instead, we
propose a fixed-T estimator based around conditional variance restrictions which
does not require exogenous instrumental variables. This approach is in the same
spirit as Graham (2008) and Rose (2017).

Beyond the peer effects literature our work can be viewed as extending the
canonical worker-firm fixed effects framework of Abowd et al. (1999) in labour
economics to allow for within-firm interactions of workers. That is, in addition to
worker and firm heterogeneity, wages may depend on the composition of other
workers in the firm as well as their wages. Such spillovers would be expected to
operate in firms in which workers work in teams Mas and Moretti (2009).

We proceed as follows. In Section 2, we present our baseline model. In Section 3
we provide identification results based on a conditional mean restriction and apply
them to two examples. In Section 4 we consider endogenous effects and provide
additional identification results based on a conditional variance restriction. In
Section 5 we consider a more general form of correlated effect, which is permitted
to be group-year specific as opposed to group specific. In Sections 6-7 we conduct a
Monte-Carlo experiment and apply our method to the NHS data. In Section 8 we
conclude. All proofs are provided in the Appendix.

1.1. Notation

If A is a strictly positive integer, we denote by [A] = {1, 2, ..., A}. If A and B
are M × P and M × Q matrices, we denote the M × (P + Q) matrix obtained
by concatenating A and B by (A, B). If element ij of A is Aij, we write A =
(Aij)i∈[M],j∈[P]. We use IM for the M dimensional identity, ιM for the M× 1 vector
of ones and 0 to denote a matrix of zeros. If its dimensions are ambiguous we
write 0M,P to denote a M× P matrix of zeros. We use 1(·) to denote the indicator
function.

2. Model

We first present the model and identification results with contextual effects only.
Endogenous effects are considered in Section 4. There are N individuals and M

4



groups observed for T years. In each year, every individual is in exactly one group.
Every group has at least one individual in at least one year. For individual i ∈ [N]
in year t ∈ [T] in group g(i, t) ∈ [M] of size Ng(i,t), the outcome yit is

yit = αi + ρ
N

∑
j=1

Gijtαj + γg(i,t) + εit, (2.1)

and hence comprises an individual effect, a contextual effect, a group level corre-
lated effect and a disturbance. Stacking by individual in year t yields

yt = (IN + ρGt) α + Ctγ + εt (2.2)

where yt and εt are N × 1, Ct is the N ×M matrix of group membership indicators
in year t and Gt = (Gijt)(i,j)∈[N]2 . The matrix Gt summarises the structure of
interactions governing the peer effect, and can evolve over time as individuals move
between groups. Unless otherwise stated Gt is unrestricted and can be interpreted
as the adjacency matrix of a weighted, directed network linking N individuals. In
particular, it need not be the case that Gijt = 0 when g(i, t) 6= g(j, t), nor when
i = j, nor when Gjit = 0. A typical example of Gt is the linear-in-means network

Gt =
(

1(g(i, t) = g(j, t))N−1
g(i,t)

)
(i,j)∈[N]2

.

The linear-in-means network implies that the contextual effect is the average in-
dividual effect over all individuals in the same group. This is a natural choice
when only group membership indicators are available, which we use to illustrate
our identification results. If more detailed data on the structure of within-group
or between-group interactions are available, this information can be incorporated
into Gt. Stacking (2.2) by year yields y = (J + ρG) α + Cγ + ε, where y and ε
are NT × 1, C = (C′1, C′2, . . . , C′T)

′, J = (IN, IN, . . . , IN)
′ and G = (G′1, G′2, . . . , G′T)

′.
Since ∑N

i=1 Jki = ∑M
f=1 Ck f = 1 for k = 1, ..., NT, α and γ are only separately

identifiable up to a normalization. Using the normalization γM = 0, we obtain

y = (J + ρG) α + Dγ + ε

where, D comprises the first M− 1 columns of C and from this point forwards
γ = (γ1, γ2, . . . , γM−1)

′. Our identification results depend on three sources of
variation of variation in J, G and D:
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(i) Mobility between groups over time

∃(i, j, s, t) ∈ [N]2 × [T]2 : Gijs 6= Gijt;

(ii) Heterogeneous intra-group interactions

∃(i, j, k, l, t) ∈ [N]4 × [T] : g(i, t) = g(j, t) = g(k, t) = g(l, t), Gijt 6= Gklt;

(iii) Existence of inter-group interactions

∃(i, j, t) ∈ [N]2 × [T] : g(i, t) 6= g(j, t), Gijt 6= 0

Mobility serves to separate the individual and correlated effects (Abowd et al., 1999)
but also to separate these from the contextual effect. This is because, if an individual
moves from one group to another she ceases to be a peer of others in her previous
group and becomes a peer of others in her new group. Heterogeneous intra-group
interactions lead to within-group variation in the contextual effect, separating it
from the correlated effect. Existence of inter-group interactions also separates the
contextual effect from the correlated effect.

3. Identification

We first study identification of α, γ, ρ based on the moment condition

E[y|G, D, α, γ] = (J + ρG) α + Dγ, (3.1)

which implies exogenous mobility of individuals between groups over time (Abowd
et al., 1999). Since (3.1) is non-linear in the parameters, establishing identification
is non-trivial, depending both on the properties of the NT × 2N + M− 1 matrix
(J, G, D) and on the values of α and ρ. For example, it is clear that ρ is not identified
when α = 0. Moreover, if the rows of G sum to one (e.g. the linear-in-means
network), α is not identifed when ρ = −1, as explained below. That identification is
non-uniform over the parameter space is common in models of peer effects. For
example, in models with endogenous and contextual effects, identification fails
whenever these exactly offset one another such that there is no net peer effect
(Bramoullé et al., 2009; Rose, 2017). As in Abowd et al. (1999) and Arcidiacono
et al. (2012), mobility of individuals between groups over time is necessary for
identification. In the absence of mobility, (J, G, D) has rank at most N, so (3.1)
yields N linearly independent equations in N + M unknowns. For the same reason,
we also require T ≥ 2. The formal identification result below makes use of the
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within-group annihilator for the correlated effects, given by

W = INT −D(D′D)−1D

and a decomposition of vectors V = (V′1, V′2)
′ which lie in the null-space of

(WJ, WG) such that V1 and V2 are both N × 1.

Proposition 1
ρ is identified if there also does not exist a vector V = (V′1, V′2)

′ in the null-space of
(WJ, WG) and scalars δ1 and δ2 6= 0 verifying δ1V1 + δ2V2 = α. Otherwise ρ is not
identified. α, γ are identified if additionally (J + ρG, D) has full column rank.

Notice that we do not require that (J, G, D) has have full column rank since there is
no requirement that V = 0 be the only vector in the null-space of (WJ, WG). This
is because (J, G, D) has 2N + M− 1 columns but there are only N + M unknowns.
Requiring (J, G, D) to have full column rank is too strong an assumption because
it rules out T = 2 if M > 1. Proposition 1 shows that ρ is not identified for some
values of α. Clearly, the identification condition for ρ cannot be verified in practice
because α is not observed. Instead, the researcher can ask how ‘large’ is the set of
values of α for which ρ is not identified. This is the notion of generic identification
(see Lewbel (2019)). For this purpose we can use the following Corollary.

Corollary 1.1
If rank(WJ, WG) ≥ N + 1 the set of α for which ρ is not identified is a measure zero
subset of RN.

Corollary 1.1 means that ρ is generically identified if rank(WJ, WG) ≥ N + 1.
This is because V lies in a subspace of R2N of dimension at most N − 1, hence
δ1V1 + δ2V2 lies in a subspace of RN of dimension at most N − 1. In practice, if
rank(WJ, WG) ≥ N + 1 the researcher can be confident that ρ is identified because
it is overwhelmingly ‘unlikely’ that the identification condition in Proposition 1
is violated. Given identification of ρ, the second part of Proposition 1 establishes
identification of α, γ using the standard rank condition for linear models.

We now consider two concrete cases with a view to making explicit which
values of α preclude identification of ρ. Since V = 0 is always in the null-space of
(WJ, WG), ρ is not identified when α = 0. If (WJ, WG) (or equivalently (J, G, D))
has full column rank, then V = 0 is the only possibility and we have the following.

Corollary 1.2
ρ, α and γ are identified when (J, G, D) has full column rank and α 6= 0.

A common empirical setting arises when the rows of G sum to one (e.g. the
linear-in-means network), implying that (J, G, D) cannot have full column rank. If
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there are no further linear relationships among the columns of (J, G, D) then one
can apply the following Corollary.

Corollary 1.3
If GιN = ιNT, α, ρ and γ are identified if rank(J, G, D) = 2N + M − 2, there exists
(i, j) ∈ [N]2 such that αi 6= αj and ρ 6= −1.

Corollary 1.3 can be shown using the decomposition (WJ, WG) = SR where S is
the NT × 2N − 1 full rank matrix formed by concatenating WJ and the first N − 1
columns of WG and

R = (S′S)−1S′(WJ, WG) =

(
IN 0N,N−1 ιN

0N−1,N IN−1 −ιN−1

)
From the structure of R, it is immediate that vectors V in the null-space of (WJ, WG)
are of the form V1 = κιN, V2 = −V1 for κ ∈ R. Applying Proposition 1 yields
identification of ρ if there exists (i, j) ∈ [N]2 such that αi 6= αj. If this condition is
violated then α = aιN for some a ∈ R, and (J+ ρG)α = (1+ ρ)aιNT, so only (1+ ρ)α
is identifiable. The reason for this is that there is no variation in the individual
effects, implying no variation in any weighted average of peer individual effects.
Identification of α, γ requires that rank(J + ρG, D) = N + M− 1. This is violated
only when ρ = −1, in which case it has rank N − 1. Hence α, γ is identified when
also ρ 6= −1. If ρ = −1 then for any a ∈ R one has (J + ρG)(α + aιN) = (J + ρG)α,
implying that only αi − αj is identified for (i, j) ∈ [N]2.

To further demonstrate Proposition 1, consider the following simple examples
with N = M = T = 2 using the linear-in-means network. The linear-in-means
network does not exhibit heterogeneous intra-group interactions nor between group-
interactions, hence identification depends only on mobility of individuals between
groups over time.

3.1. Example 1: An Identifying Mobility Pattern

Suppose that individuals one and two are respectively in groups A and B in the
first year. In the second year, individual one remains in group A and individual two
moves from group B to group A. Under the linear-in-means network, this mobility
pattern yields

(J, G, D) =


1 0 1 0 1
0 1 0 1 0
1 0 1/2 1/2 1
0 1 1/2 1/2 1

 , (WJ, WG) =


1/3 −1/3 1/3 −1/3

0 1 0 1
1/3 −1/3 −1/6 1/6
−2/3 2/3 −1/6 1/6


8



which respectively have rank 4 and 3. Since rank(J, G, D) = 2N + M − 2,
by Corollary 1.3, α, ρ and γ are identified if α1 6= α2 and ρ 6= −1. Since
rank(WJ, WG) = N + 1, Corollary 1.1 states that ρ is generically identified. This
is because the subset of R2 such that α1 = α2 has measure zero. For the intuition,
consider the underlying system of equations

E[y11|G, D, α, γ] = α1 + ρα1 + γ1 E[y21|G, D, α, γ] = α2 + ρα2
E[y12|G, D, α, γ] = α1 + ρ(α1 + α2)/2 + γ1 E[y22|G, D, α, γ] = α2 + ρ(α1 + α2)/2 + γ1

When individual two moves groups, individual one obtains a new peer, hence the
contextual effect on individual one changes from ρα1 in the first year to ρ(α1 + α2)/2
in the second year, whilst the individual and correlated effect are unchanged. The
change in the contextual effect is given by the expected change in the outcome of
individual one between the first and second year

E[y11|G, D, α, γ]−E[y12|G, D, α, γ] = ρ(α1 − α2)/2

To identify ρ we need to identify α1 − α2. We can use year two, in which both
individuals are in the same group, hence have the same correlated and contextual
effects. This means that any difference in their expected outcomes is due to
differences in their individual effects, so

E[y12|G, D, α, γ]−E[y22|G, D, α, γ] = α1 − α2

If α1 6= α2 we can divide the first equation above by the second to identify ρ. If
ρ 6= −1 the remaining parameters are identified by

γ1 = (E[y22|G, D, α, γ]−E[y21|G, D, α, γ])− (E[y11|G, D, α, γ]−E[y12|G, D, α, γ])

α1 = (1 + ρ)−1(E[y11|G, D, α, γ]− γ1), α2 = (1 + ρ)−1E[y21|G, D, α, γ]

3.2. Example 2: A Non-identifying Mobility Pattern

Now modify Example 1 such that both individuals move in the second year. This
means that the individuals are in different groups in the first year and swap groups
in the second year, implying that G = J. The null-space of (WJ, WG) comprises
any vector V = (V′1, V′2)

′ = (U′,−U′)′ for U ∈ R2. For any value of α ∈ R2,
there clearly exists U ∈ R2 and scalars δ1 and δ2 6= 0 such that (δ1 − δ2)U = α,
so by Proposition 1, ρ is not identified. Note also that the generic identification
condition in Corollary 1.1 is violated since (WJ, WG) has rank 2 < N + 1 = 3,
and the identification condition in Corollary 1.3 is violated since (J, G, D) has rank
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3 < 2N + M− 2 = 4. For the intuition, consider the underlying system of equations

E[y11|G, D, α, γ] = α1 + ρα1 + γ1 E[y21|G, D, α, γ] = α2 + ρα2
E[y12|G, D, α, γ] = α1 + ρα1 E[y22|G, D, α, γ] = α2 + ρα2 + γ1

The correlated effect γ1 is identified by individual one moving groups (γ1 =
E[y11|G, D, α, γ]−E[y12|G, D, α, γ]) but the remaining equations are only sufficient
to identify (1 + ρ)α. The reason for this is that there is no variation in the peers
of either individual because the individuals are never in the same group in the
same year. Mobility of individuals between groups over time is insufficient for
identification in this example because it does not induce changes in peers. This
contrasts with Abowd et al. (1999), for which group-swapping would be sufficient
to identify α1, α2, γ1 because ρ = 0 is imposed.

3.3. Estimation

The conditional mean restriction (3.1) suggests the non-linear least squares estimator
obtained by solving

min
α,ρ,γ

(y− (J + ρG)α−Dγ)′(y− (J + ρG)α−Dγ). (3.2)

Arcidiacono et al. (2012) study (3.2) under the linear-in-others’-means network

G̃t =
(

1(g(i, t) = g(j, t), i 6= j)(Ng(i,t) − 1)−1
)
(i,j)∈[N]2

and with a slightly different specification of the correlated effect, which is al-
lowed to vary over time but is restricted to be the same across multiple groups.3

Under additional assumptions, including E[εitεjs] = 0 for all i 6= j, t 6= s,
E[ε2

it|g(i, t)] = E[ε2
jt|g(j, t)] for all i, j, t : g(i, t) = g(j, t), E[εitαj] = 0 for all i, j, t and

ρ < mini,t Ng(i,t), Arcidiacono et al. (2012) show that the non-linear least squares
estimator of ρ is consistent and asymptotically normal for fixed T ≥ 2. The authors
also provide a computationally tractable algorithm which is feasible for large N.
The algorithm iterates between estimation of α, ρ and γ, and exploits the fact that
the model is linear in its remaining parameters when either α or ρ is fixed. With
suitable modifications, their estimator could be applied for other network structures
and specifications of the correlated effect. We do not pursue this theoretically
because, as pointed out by Arcidiacono et al. (2012), it is unclear how to obtain a
fixed-T consistent estimator in models with endogenous effects in which outcomes

3We consider a time-varying correlated effect in Section 5.
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are simulataneously determined, which is relevant for our application.4 We now
consider such a model of endogenous effects.

4. Endogenous effects

With endogenous effects, the outcome equation is

yit = αi + ψ
N

∑
j=1

Gijtyjt + ρ
N

∑
j=1

Gijtαj + γg(i,t) + εit,

or in stacked form

y = ψFy + (J + ρG)α + Dγ + ε,

where ψ is a scalar parameter and F is a NT×NT block diagonal matrix with blocks
G1, G2, ..., GT. Throughout this section we suppose that the rows of G sum to one
(GιN = ιNT), that there are no inter-group interactions (Gijt = 0 if g(i, t) 6= g(j, t))
and |ψ| < 1. These are standard assumptions maintained in almost all papers
concerning identification of peer effects, and are made to ensure that the reduced
form exists and the reduced form correlated effect is proportional to the structural
correlated effect. The reduced form is

y = (INT − ψF)−1(J + ρG)α + D(1− ψ)−1γ + (INT − ψF)−1ε.

with conditional mean E[y|G, D, α, γ] = (INT − ψF)−1(J + ρG)α + D(1− ψ)−1γ.
We now modify Proposition 1 to allow for endogenous effects, making use
of H = ((G2

1)
′, (G2

2)
′, ..., (G2

T)
′)′ vectors V = (V′1, V′2, V′3) in the null-space of

(WJ, WG, WH) such that V1, V2, V3 are all N × 1.

Proposition 2
ψ and ρ are identified if ψ+ ρ 6= 0 and there does not exist a vector V = (V′1, V′2, V′3) in the
null-space of (WJ, WG, WH) and scalars δ1, δ2, δ3, δ4 satisfying δ1V1−V2 = (δ1− δ2)α,

4Consistency hinges on the reduced form error being uncorrelated across individuals, which is
violated if outcomes are simultaneously determined. Arcidiacono et al. (2012) consider an alternative
specification of endogenous effects more suited to their application to peer effects in education, in
which outcomes depend on the expected (as opposed to realised) outcome of others conditional on
observable characteristics and α, but not on ε. In this model, yit depends on εit but not on εjt for
j 6= i. This means that the reduced form errors are uncorrelated across individuals (assuming that
the structural errors are uncorrelated), so that the reduced form can be consitently estimated for
fixed T by non-linear least squares. Given an instrumental variable zit which determines yit but not
yjt for j 6= i, Arcidiacono et al. (2012) give an example in which both ρ and the endogenous effect
can be recovered from the reduced form.
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δ3V1 + V3 = (δ3 − δ4)α and either δ1 6= δ2 or δ3 6= δ4. Otherwise, ψ and ρ are not
identified. α, γ are identified if additionally (J + ρG, D) has full column rank.

The identification conditions are similar in form to those of Proposition 1. The
additional requirement that ψ + ρ 6= 0 is needed because ψ + ρ = 0 implies
E[y|G, D, α, γ] = Jα + D(1− ψ)−1γ, such that ψ and ρ are not separately identi-
fiable. This is because the endogenous effect exactly offsets the contextual effect,
yielding no net peer effect. Similar conditions are used throughout the literature,
and can be found in Bramoullé et al. (2009) and Rose (2017), among others. With
endogenous effects, generic identification of ρ and ψ is attained whenever V lies in
a subspace of RN of dimension strictly less than N. A sufficient condition which
can be verified in practice is that (WJ, WG, WH) has rank at least equal to 2N + 1.

Under the linear-in-means network ρ and ψ are not separately identifiable
without additional restrictions. This is because H = G. In this case the conditional
mean is

E[y|G, D, α, γ] =

(
J +

ψ + ρ

1− ψ
G
)

α + D
γ

1− ψ

so that only (ψ + ρ)(1− ψ)−1 and γ(1− ψ)−1 are identifiable.5 To solve the identi-
fication problem, one could use an instrumental variables approach, supposing that
there exists a time-varying instrument zit which is uncorrelated with εit and directly
determines yit but not yjt for all (i, j) ∈ [N]2, j 6= i (Arcidiacono et al., 2012). Even if
such an instrumental variable is available, there remains the fixed-T estimation for
models with simultaneity discussed in Section 3.3. We now consider an alternative
based on the conditional variance

V[Wy|G, D] =W(INT − ψF)−1(J + ρG)V[α|G, D](J + ρG)′(INT − ψF′)−1W

+W(INT − ψF)−1V[ε|G, D](INT − ψF′)−1W

and the restrictions

COV[εit, εjs|G, D] =

{
σ2(g(i, t)) i = j, t = s
0 otherwise

COV[αi, αj|G, D] =

{
σ2

α i = j
0 otherwise

. (4.1)

5The conditional mean takes the same form as (3.1), hence the results of Section 3 can be applied
to establish identification of (ψ + ρ)(1− ψ)−1, α and γ(1− ψ)−1. In Example 1, α, (ψ + ρ)(1− ψ)−1

and γ(1− ψ)−1 are identified if ρ 6= −1 and α1 6= α2. In Example 2, one is only able to identify
(1 + ρ)(1− ψ)−1α and γ(1− ψ)−1.
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Our approach is similar in spirit to Graham (2008) and Rose (2017), which consider
cross-section data. The restriction on the variance of ε requires that the transitory
shocks experienced by individuals in the same group be uncorrelated and have
equal variance. Uncorrelatedness implies that outcomes are correlated only due
to the correlated effect and peer effects, whereas equality of variance implies
that within a group, no individuals are subject to systematically larger shocks than
others. Importantly, COV[αi, γg(j,t)|G, D] is unrestricted for all i, j and t. This allows
for sorting of individuals to groups based on their time-invariant heterogeneity.
The assumption on the variance of α is used so as to avoid estimating α. The
conditional variance restriction facilitates identification, does not require exogenous
instrumental variables, has computational advantages relative to the non-linear least
squares estimator in (3.2),6 and permits fixed-T estimation with endogenous effects.
For brevity, we present only the identification result for the linear-in-means case. In
the Appendix we derive an identification result which applies to general network
structures and under weaker conditional variance restrictions. In general, we
require only that COV[εit, εjs|G, D] = 0 if g(i, t) 6= g(j, t). The stronger restriction
in (4.1) is necessary for the linear-in-means network, which is well known to be the
most challenging case (Manski, 1993; Bramoullé et al., 2009).

Proposition 3
If G = G, ψ, ρ, σ2

α are identified if W, WJJ′W, W(JG′ + GJ′)W, WGG′W and WFW
are linearly independent.

In contrast to Proposition 2 there is no requirement that ψ + ρ 6= 0. This is because
the endogenous effect operates through the outcomes, and hence propagates varia-
tion both in α and ε, whilst the contextual effect operates through α alone. Since
they operate through different channels, the peer effects can be separated under
restrictions on the within-group variance of ε such as those in (4.1). The identifi-
cation condition in Proposition 3 fails if T = 1. In this case F = G = G′ = GG′

and J = IN so that W(JG′ + GJ′)W = 2WGG′W = 2WFW. This is in agreement
with Rose (2017), which shows that the conditional variance restrictions in (4.1) are
insufficient for identification with cross-section data.7

Due to their simplistic nature, the identification condition in Proposition 3 fails
in both Example 1 and Example 2. However, it typically holds in more realistic
examples. For example, identification is restored in Example 1 if a third individual
is added and individual three is in group B in both years.

6In contrast to (3.2), there is no need to minimize over the N-dimensional parameter α.
7Graham (2008) shows that contextual effects can be identified with cross-section data under

additional restrictions, including on COV[αi, γg(j,t)|G, D].

13



4.1. Estimation

For estimation, we modify the approach of Rose (2017). For simplicity of exposition
we discuss estimation for the linear-in-means network and suppose that σ2(m) = σ2

for all m ∈ [M].8 In this case we have

V[Wy|G, D] = σ2W +
σ2ψ(2− ψ)

1− ψ
WFW + σ2

αWJJ′W

+
σ2

α(ψ + ρ)

1− ψ
W(JG′ + GJ′)W +

σ2
α(ψ + ρ)2

(1− ψ)2 WGG′W. (4.2)

If the identification condition in Proposition 3 is satisfied, the five reduced form
parameters in (4.2) can be consistently estimated for fixed T ≥ 2 by regressing the
lower-triangular elements of WyWy′ on the lower triangular elements of the five
matrices on the right-hand side. One can then solve to obtain consistent estimators
of ψ, ρ, σ2

α and σ2. An alternative which we find works better in practice is to use
non-linear least squares to estimate the structural parameters directly.9

5. Time-varying Correlated Effects

If correlated effects are time-varying, then γg(i,t) is replaced by γg(i,t)t, in which
case C is a NT×MT block diagonal matrix with blocks C1, C2, ..., CT, D comprises
the first MT− 1 columns of C and γ is (MT− 1)× 1. All Propositions then apply
as stated. The parameters are not identifiable under the linear-in-means network
because the peer effect varies only at the group-year level and cannot be separated
from the correlated effect. In the absence of further restrictions, identification can
be attained only when there are heterogenous intra-group interactions or there exist
inter-group interactions.

6. Monte-Carlo Experiment

We study the performance of the non-linear least squares estimators based on
conditional mean and conditional variance restrictions. We consider the cases
with contextual effects only and with both contextual and endogenous effects.
Arcidiacono et al. (2012) prove that the conditional mean estimator is consistent

8 If σ2(m) is unrestricted the first two terms on the right-hand side of (4.2) become group-specific..
See the proof of Proposition 3 for the derivation of (4.2).

9It is possible that non-linear least squares obtains a local minimum. We did not encounter
this problem in our Monte-Carlo experiment nor in our empirical application. In practice we use
least-squares estimation of (4.2) to obtain starting values for non-linear least squares.
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and asymptotically normal for ρ when T is fixed, there are no correlated effects,10

it is known that ψ = 0 and the network is linear-in-others’-means. Our experiment
also studies its properties with correlated effects, for networks other than linear-in-
others’-means, and when ψ 6= 0. The design is tailored to our empirical application,
with N = 500, M = 100, T = 8 and annual mobility rate p = 0.05 (see summary
statistics in Table 3). We use the parameter values ρ = 0.3, ψ = 0.2 and σ2

α/σ2 = 3/2,
which are taken from our estimates for the linear-in-others’-means network with
correlated effects (see the final column of Table 4). We also consider designs with
T = 2, ψ = 0 and p = 0.1.

The data generating process is as follows. In the first year, all individuals are
randomly assigned to groups of size five. In each subsequent year, each individual
moves group with probability p, in which case she draws a new group with uniform
probability over all groups. The expected group size is five for all groups in all
years. The networks we consider are the linear-in-means network, the linear-in-
others’-means network and a social network in which links are formed as follows.
In the first year, each individual draws two links uniformly over other individuals
in the same group. In each subsequent year, links persist whilst individuals remain
in the same group. If an individual loses a link(s) due to mobility, a replacement
link(s) is drawn uniformly over the other individuals in the group with whom
there is not already a link. If there are three or fewer individuals in the group,
each individual is linked to all other individuals. Links need not be reciprocal.11 If
there exists a link between i and j in year t then Gijt is equal to the inverse of the
number of links that i has in year t. Otherwise Gijt = 0. We take αi ∼ N (0, 1) and
εit ∼ N (0, 3/2) to be i.i.d., and consider cases in which γ = 0 is imposed and in
which γm is the mean of (αj)t∈[T],g(j,t)=m for m ∈ [M− 1]. We simulate 500 datasets
for each experiment. Every dataset verifies the relevant identification condition.

Table 1 considers a design with contextual effects only. The conditional mean
and conditional variance estimators perform well in estimating the contextual effect,
though the conditional mean estimator is more efficient in all cases other than for
the social network with correlated effects. As is the case in the empirical application,
the endogenous peer effect is more precisely estimated than the contextual effect.
Including correlated effects decreases the precision of both. For the conditional
variance estimator, the reduced form effect is estimated with higher precision than
the contextual effect. This is because the estimators of ψ and ρ are negatively
correlated with one another. Comparing network structures we observe that the pa-
rameters are best estimated for the social network and worst for the linear-in-means

10The authors argue that time-varying correlated effects could be incorporated provided that the
effect is common across multiple peer groups.

11If an individual is in a group of size 1 they have no link. As in the empirical application,
observations with no links are omitted from the estimation sample.
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Table 1: Monte-Carlo Results (ψ = 0, ρ = 0.3)

Linear-in-means Conditional Mean Conditional Variance
Endogenous peer effect (ψ = 0) -0.0011 -0.0049

(0.0357) (0.0432)
Contextual peer effect (ρ = 0.3) 0.2982 0.3040 0.3048 0.3321

(0.1230) (0.1686) (0.1439) (0.3353)
Reduced form peer effect (= 0.3) 0.3017 0.3184

(0.1187) (0.2807)
Linear-in-others’-means
Endogenous peer effect (ψ = 0) -0.0008 -0.0024

(0.0288) (0.0295)
Contextual peer effect (ρ = 0.3) 0.3004 0.3024 0.3018 0.3033

(0.0943) (0.1265) (0.1064) (0.2063)
Reduced form peer effect (= 0.3) 0.3003 0.2991

(0.0896) (0.1902)
Social network
Endogenous peer effect (ψ = 0) -0.0011 0.0007

(0.0387) (0.0340)
Contextual peer effect (ρ = 0.3) 0.3008 0.2365 0.3020 0.3076

(0.0662) (0.1841) (0.0712) (0.0898)
Correlated Effects No Yes No Yes
Individuals (N) 500 500 500 500
Groups (M) 100 100 100 100
Years (T) 8 8 8 8
Mobility Rate (p) 0.05 0.05 0.05 0.05

Notes: For each parameter and design we report the mean and standard deviation (in parenthesis)
over 500 datasets. If there are no correlated effects this information is treated as known to the
researcher. For the conditional mean estimator we impose γ = 0. For the conditional variance
estimator we use W = INT . The reduced form peer-effect for the linear-in-means network is

(ψ + ρ)(1− ψ)−1 = 0.3. The counterpart for the linear-in-others’-means network is
(ψ + ρ)(1− ψ(ψ + Ng(i,t) − 2)/(Ng(i,t) − 1))−1 for individual i in year t in group g(i, t). We report
simulation results for Ng(i,t) = 5, which is the mean group size, with true value equal to 0.3. We do
not report a reduced form effect for the Social Network because it is individual-specific, depending

on the network structure in their group. Correlated effects are time-invariant.

network. This is because the social and linear-in-others’-means networks exhibit
heterogeneous intra-group interactions, whereas linear-in-means relies entirely on
mobility between groups for identification. Though Arcidiacono et al. (2012) only
establish fixed-T consistency and asymptotic normality of the conditional mean
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Table 2: Monte-Carlo Results (ψ = 0.2, ρ = 0.3)

Linear-in-means Conditional Mean Conditional Variance
Endogenous peer effect (ψ = 0.2) 0.1993 0.1944

(0.0297) (0.0411)
Contextual peer effect (ρ = 0.3) 0.7559 0.8937 0.3037 0.3401

(0.1819) (0.2430) (0.1454) (0.3853)
Reduced form peer effect (= 0.6250) 0.6260 0.6501

(0.1486) (0.3814)
Linear-in-others’-means
Endogenous peer effect (ψ = 0.2) 0.1993 0.1971

(0.0260) (0.0283)
Contextual peer effect (ρ = 0.3) 0.6748 0.7637 0.3014 0.3064

(0.1107) (0.1335) (0.1101) (0.2384)
Reduced form peer effect (= 0.5952) 0.5949 0.5946

(0.1079) (0.2499)
Social network
Endogenous peer effect (ψ = 0.2) 0.1980 0.2034

(0.0391) (0.0419)
Contextual peer effect (ρ = 0.3) 0.5564 0.5340 0.3021 0.3073

(0.0630) (0.1857) (0.0789) (0.0978)
Correlated Effects No Yes No Yes
Individuals (N) 500 500 500 500
Groups (M) 100 100 100 100
Years (T) 8 8 8 8
Mobility Rate (p) 0.05 0.05 0.05 0.05

Notes: For each parameter and design we report the mean and standard deviation (in parenthesis)
over 500 datasets. If there are no correlated effects this information is treated as known to the
researcher. For the conditional mean estimator we impose γ = 0. For the conditional variance
estimator we use W = INT . The reduced form peer-effect for the linear-in-means network is

(ψ + ρ)(1− ψ)−1 = 0.625. The counterpart for the linear-in-others’-means network is
(ψ + ρ)(1− ψ(ψ + Ng(i,t) − 2)/(Ng(i,t) − 1))−1 for individual i in year t in group g(i, t). This lies
between 0.5208 (Ng(i,t) = 2) and 0.6250 (Ng(i,t) → ∞.) We report simulation results for Ng(i,t) = 5,
which is the mean group size, with true value equal to 0.5952. We do not report a reduced form

effect for the Social Network because it is individual-specific, depending on the network structure
in their group. Correlated effects are time-invariant.

estimator for linear-in-others’-means without correlated effects, it also appears to
perform well for the other network structures and with correlated effects. The
exception is for the social network with correlated effects.
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Table 2 considers a design with contextual and endogenous effects. In this
design the best case for the conditional mean estimator is that it accurately recovers
the reduced form parameter. For the linear-in-means network, the reduced form
parameter is (ψ + ρ)(1− ψ)−1 = 0.625. Table 2 suggests upwards bias in estimation
of the reduced form parameter. This conclusion holds across all variations of T and
p, as well as with and without correlated effects (see Table 6 in the appendix). It is
also true for the linear-in-others’-means network, for which the reduced form effect
is group specific, ranging between 0.521 for groups of size two and 0.625 as the
group size grows large.12 Arcidiacono et al. (2012) suggest that this is due to the
dependence in the reduced form errors induced by a model of endogenous effects
with simultaneity. The conditional variance estimator performs similarly to the case
of contextual effects only, though the contextual effect is estimated with marginally
lower precision. Tables 5 and 6 in the appendix respectively report results with
and without endogenous effects for all networks, with and without correlated
effects and all combinations of T ∈ {2, 8} and mobility rate p ∈ {0.05, 0.10}. The
performance of the estimators is better for larger T, larger p, without correlated
effects, and for the social network.

7. Application

We study surgeons’ take-up of minimally invasive (keyhole) surgery for colorectal
cancer in the English National Health Service (NHS). Our data are from Barrenho
et al. (2019), comprising a panel of NHS surgeons and their take-up of keyhole
surgery from 2001 to 2008. The data are obtained by merging Hospital Episodes
Statistics, which provides patient level diagnosis and treatment information for all
patients in the English NHS with NHS Workforce Statistics and the General Medical
Council register. This provides matched patient-surgeon-hospital-year data, which
is collapsed into a surgeon-hospital-year panel. We refer the reader to Barrenho
et al. (2019) for further institutional details and a more detailed description of the
construction of the data.

A surgeon’s take-up in a given year is measured by the fraction of eligible
colorectal cancer sugeries which they performed via keyhole surgery in that year.13

In 2001, only 1% of eligible surgeries were keyhole, increasing to 25% by 2008. We
apply our model for surgeon i in hospital g(i, t) in year t, and consider a surgeon’s
peers to be those other surgeons located in the same hospital in the same year. To

12See the notes under Table 2 for the form of the reduced form effect.
13Keyhole surgery is suitable for some, but not all, patients. The sample of patients considered is

restricted to those for which the surgeon has a choice between keyhole and the alternative open
surgery. We apply our methods to take-up in deviations from the year t mean to control for common
trends over time.
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Table 3: Summary Statistics for Estimation Sample

Year 01 02 03 04 05 06 07 08 All
Surgeons observed 324 339 361 369 374 379 383 358 475

Take-up

Mean 0.01 0.02 0.02 0.04 0.07 0.13 0.17 0.25 0.09
S.D. 0.04 0.04 0.06 0.11 0.14 0.20 0.23 0.26 0.18
Min 0 0 0 0 0 0 0 0 0
Max 0.29 0.31 0.35 1 0.74 1 1 1 1

Moved Mean - 0.13 0.06 0.03 0.03 0.03 0.05 0.03 0.05
Peers changed Mean - 0.59 0.59 0.68 0.72 0.75 0.69 0.53 0.64
Hospitals observed 73 68 67 66 65 64 64 63 81

No. of surgeons

Mean 4.44 4.99 5.39 5.59 5.75 5.92 5.98 5.68 5.45
S.D. 1.99 2.43 2.63 2.57 2.57 2.57 2.59 2.31 2.50
Min 2 2 2 2 2 2 2 2 2
Max 11 12 14 14 13 12 12 12 14

Notes: ‘Take-up’ is the fraction of colorectal cancer surgeries performed by keyhole. ‘Moved’ is a
binary indicator for a surgeon being located in a different hospital in year t than in year t− 1.

‘Peers changed’ is a binary indicator for a surgeons’ peers being different in year t than in t− 1. ‘No.
of surgeons’ is the number of surgeons located in a hospital.

be included in the estimation sample, surgeons must be observed at least twice,
hospitals must be in the largest connected component of the graph of mobility
of surgeons between hospitals,14 and hospital-year pairs must have at least two
surgeons. The resulting unbalanced panel comprises 2, 887 observations of N = 475
surgeons over T = 8 years across M = 81 hospitals. Table 3 summarises the
estimation sample.

Our identification results are applicable if there is exogenous mobility of sur-
geons between hospitals over time. We expect this to be the case because all
hospitals have the required technology for keyhole surgery, the NHS is a public
system with similar working conditions and renumeration nationwide,15 and col-
orectal cancer forms only a small part of surgeons’ workloads. The leading reason
for mobility is to relocate closer to the pre-medical school family home (Goldacre
et al., 2013). These arguments support the conditional moment restriction in (3.1).
We also posit that there is limited correlation in εit for surgeons in the same hospital

14This is because even without peer effects, hospital effects are only identifiable for hospitals in
the connected set. To find these hospitals, we first construct an undirected graph between hospitals
for which there is a (reciprocal) link between two hospitals if a surgeon ever moves from one to the
other between 2001 and 2008.

15There is a small private sector in England that mainly provides care for planned procedures for
which there are long waiting lists. Private sector provision for cancer is limited.
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because patients are allocated to surgeons in a quasi-random fashion due to a two
week waiting time guarantee.16 This argument supports the conditional variance
restriction in (4.1). Since we do not restrict COV[αi, γg(i,t)], we do not rule out high
take-up surgeons being systematically located in high take-up hospitals, though
we do rule out their mobility between hospitals being driven by contemporaneous
take-up shocks.

We now discuss the extent of identifying variation in the data. Each year, around
5% of surgeons move hospitals (see Table 3). Though only a few surgeons move
hospital in any given year, our panel is relatively long, comprising 8 years in total.
Moreover, each move changes the peer groups of all those in the hospital left and
all those in the hospital joined. The median number of surgeons in a hospital-year
pair in our estimation sample is 5, hence a surgeon moving from one median sized
hospital to another changes the peer groups of 10 surgeons. For this reason, despite
only 5% of surgeons moving, 64% of surgeons’ peers change in a typical year (see
Table 3). These changes in peer groups can generate large fluctuations in average
peer take-up because peer groups are small. In sum, though there are few moves,
each one can lead to large changes in average peer take-up for around 10 surgeons.

For every specification we estimate below, our estimation sample verifies the
relevant identification condition. The rank of (WJ, WG) is 720 for the linear-in-
means network and 932 for the linear-in-others’-means network. Since N = 475 <
720, by Corollary 1.1, ρ is generically identified by the conditional mean restriction in
(3.1) when ψ = 0 is imposed. In the presence of endogenous effects the conditional
mean restriction cannot identify ψ and ρ under the linear-in-means network. In
contrast, by Proposition 3, the conditional variance restriction in (4.1) identifies
ψ and ρ because the matrices W, WJJ′W, W(JG′ + GJ′)W, WGG′W and WFW are
linearly independent. Under linear-in-others’-means, the matrix (WJ, WG, WH) has
rank 1268, which exceeds 2N + 1 = 951, so that ψ and ρ are generically identified
by the conditional mean restriction. Moreover, there exists hospital m ∈ [M] such
that all of the matrices in Proposition 4 are linearly independent. This means that
the weaker conditional variance restriction in (A.1) identifies ψ and ρ.

Table 4 reports the estimation results. Beginning with the linear-in-means
network, we find evidence of positive peer effects in take-up. The conditional mean
estimator suggests a reduced form peer-effect of close to one. The conditional
variance estimator finds a similar reduced form effect, which is not statistically
distinguishable from one at any conventional level. Using the conditional variance
estimator we can decompose the reduced form effect into an endogenous and
contextual effect. We find that both are positive and statistically distinguishable

16Cancer patients are allocated to surgeons based primarily on the availability of a surgeon within
two-weeks of urgent referral.
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Table 4: Peer Effects in Take-up of Laparoscopic Resection for Colorectal Cancer

Linear-in-means Conditional Mean Conditional Variance
Endogenous peer effect (ψ) 0.1613 0.1364

(0.0673) (0.0654)
Contextual peer effect (ρ) 1.0009 0.9440 0.6200 0.9673

(0.1677) (0.2580) (0.1716) (0.3554)
Reduced form peer effect 0.9315 1.2781

(0.1966) (0.3551)
Surgeon effect variance (σ2

α) 0.0069 0.0073
(0.0009) (0.0011)

Error variance (σ2) 0.0141 0.0135
(0.0016) (0.0014)

Linear-in-others’-means
Endogenous peer effect (ψ) 0.1714 0.2174

(0.0560) (0.0651)
Contextual peer effect (ρ) 0.7986 0.6454 0.3984 0.2894

(0.0751) (0.1126) (0.1095) (0.2470)
Reduced form peer effect 0.6594 0.6087

(0.1268) (0.2406)
Surgeon effect variance (σ2

α) 0.0090 0.0096
(0.0013) (0.0015)

Error variance (σ2) 0.0148 0.0139
(0.0016) (0.0014)

Correlated Effects No Yes No Yes
Surgeons (N) 475 475 475 475
Hospitals (M) 81 81 81 81
Years (T) 8 8 8 8
Observations 2,887 2,887 2,887 2,887

Notes: Standard errors are reported in parentheses and are clustered by hospital. The reduced form
peer-effect for the linear-in-means network is (ψ + ρ)(1− ψ)−1. The counterpart for the

linear-in-others’-means network is (ψ + ρ)(1− ψ(ψ + Ng(i,t) − 2)/(Ng(i,t) − 1))−1 for surgeon i in
year t in hospital g(i, t). We report this for Ng(i,t) = 5, which is the median number of surgeons in a
hospital-year in our estimation sample. Standard errors for the reduced form effect are obtained

using the Delta method. Correlated effects are time-invariant.

from zero. Though the contextual effect is larger in magnitude than the endogenous
effect, the standard errors are large enough so that we cannot rule out equality.
To interpret the effect magnitude, consider the effect on a surgeon’s take-up of a
standard deviation increase in the average αj in their hospital, which, for the median
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hospital with five surgeons is estimated to be approximately 1×
√

0.007/5 ≈ 0.04.
The the standard deviation of take-up in 2008 is 0.26, hence the effect is a 0.15 of
a 2008 standard deviation increase in take-up. Our conditional variance results
suggest that the majority of this change is attributable to the contextual effect, which
makes up around three quarters of the reduced form effect.

Moving on to the linear-in-others’-means network, we also find positive peer
effects, though of a smaller magnitude and more precisely estimated than linear-
in-means. This is because a surgeon is not treated as their own peer, which is
more natural in settings with small peer groups. Under linear-in-others’-means, the
reduced form peer effect depends on the size of the peer group. Table 4 reports
the reduced form effect for the median hospital with five surgeons. Our estimation
results with correlated effects suggest that the reduced form peer effect is around
0.6. For a surgeon in the median sized hospital, a standard deviation change in the
average αi of the other four surgeons is estimated to lead to 0.6×

√
0.009/4 ≈ 0.03

increase in take-up, which is smaller than for the linear-in-means network, equating
to a 0.12 standard deviation increase. The linear-in-others’-means results point to a
more equal role for the endogenous and contextual effects. With correlated effects,
half of the reduced form effect is due to the endogenous effect. Though all our
estimates are qualitatively similar, we consider the linear-in-others’-means model
with correlated effects to provide the most credible results, which we use to design
our Monte-Carlo experiment.

Barrenho et al. (2019) also find positive endogenous peer effects, with a baseline
estimates ranging between 0.49 and 0.62 (see Table 6 in Barrenho et al. (2019)). The
most comparable specification is that based on the linear-in-others’-means network
with correlated effects at the hospital level, for which we find a smaller endogenous
effect of 0.22 and a reduced form effect of 0.61. Barrenho et al. (2019) do not allow
for contextual effects operating through surgeons’ time-invariant heterogeneity,
which we find to be positive though not statistically significant. This implies that
the authors’ estimate of the endogenous effect, which is similar to our reduced
form effect, might also be picking up the contextual effect.

8. Conclusion

This paper provides new identification results for panel data models with con-
textual peer effects, endogenous peer effects and correlated effects. Our results
suggest that these channels can typically be separated provided either that there
is sufficient mobility in the data or that the network data are sufficiently detailed.
In specific cases, such as for the linear-in-means network, additional conditional
variance restrictions may be necessary to separate the peer effects. In practice, the
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researcher can always specific the linear-in-others’-means network, which has better
identification prospects.
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Appendix

Conditional Variance Restrictions for a General Network Structure

In the general network case identification can be attained without making restric-
tions on the within-group variance of ε. This is in contrast to the linear-in-means
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network.17 One can use

COV[εit, εjs|G, D] = 0 g(i, t) 6= g(j, s),

COV[αi, αj|G, D] =

{
σ2

α i = j
0 otherwise

(A.1)

instead of (4.1), which allows for unrestricted within-group variance of ε. We make
use of the following definition from Rose (2017), reprinted here for convenience.

Definition Consider L matrices of the same dimension A1, ..., AL. The matrix Al (l ∈
{1, ..., L}) is maximally linearly independent of A1, ..., AL if λl = 0 for all λ ∈ RL such
that ∑L

l=1 λlAl = 0.

Note that linear independence of A1, ..., AL is equivalent to each of the L matrices
being maximally linearly independent. In what follows we require only that a
strict subset be maximially linearly independent, which is weaker than linear
independence. Identification hinges on the covariance terms for outcomes of
observations in different groups, which are non-zero provided that there is mobility
between groups. To extract these covariance terms, we use Em ⊆ [NT] to denote
the indices of the observations in group m ∈ [M] and define Em as the matrix
constructed from rows Em of INT. Pre-multiplying any conformable matrix by
Em extracts rows Em, and post-multiplying by E′m extracts columns Em. We also
use E−m to extract the rows in the complement of Em, which are the observations
corresponding to all groups other than m.

Proposition 4
ψ, ρ, σ2

α are identified if ψ + ρ 6= 0 and there exists m ∈ [M] such that
EmWJJ′WE′−m, EmW(JG′ + GJ′)WE′−m and EmW(JH′ + HJ′)WE′−m are maximi-
ally linearly independent from EmWJJ′WE′−m, EmW(JG′ + GJ′)WE′−m, EmW(JH′ +
HJ′)WE′−m, EmW(GH′ + HG′)WE−m, EmWGG′WE′−m, and EmWHH′WE′−m.

Identically to Proposition 2, ψ + ρ 6= 0 is required so that the endogenous and
contextual effects do not exactly offset one another. This contrasts with Proposition
3, which concerns the linear-in-means network, for which ψ + ρ 6= 0 is not required.
The reason for this is that Proposition 3 additionally restricts the within-group
variance of ε because restrictions on the between-group variance alone are
insufficient for identification. Since the endogenous effects operate both through ε
and α, whereas the contextual effects operate only through α, under restrictions on

17See the end of the proof of Proposition 3 for an explanation of why restrictions on the within-
group variance are necessary for the linear-in-means model.
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the within-group variance of ε there are no values of ψ and ρ such that the two
peer effects exactly offset one another in the reduced form variance.

Proofs

Proof of Proposition 1 Denote θ = (α, ρ, γ). Under the conditional moment restric-
tion we have

E[Wy|G, D, α, γ] = WJα + WGρα

Suppose that there is θ satisfying the conditional moment restriction in (3.1). Then
we have

(WJ, WG)

(
α− α

ρα− ρα

)
= 0

Let V = (V′1, V′2) be a vector in the null-space of (WJ, WG). Then for some V we
have

V1 = α− α

V2 = ρα− ρα

which implies ρV1 −V2 = (ρ− ρ)α. If ρ 6= ρ then this is equivalently expressed as

ρ

ρ− ρ
V1 −

1
ρ− ρ

V2 = α

If there does not exist V in the null-space of (WJ, WG) and scalars δ1 and δ2 6= 0
verifying δ1V1 + δ2V2 = α then, by contradiction we have ρ = ρ. If ρ = ρ then we
have

(J + ρG, D)

(
α− α
γ− γ

)
= 0

so α = α, γ = γ if (J + ρG, D) has full column rank.

Proof of Proposition 2 Denote θ = (ψ, ρ, α, γ). Under the conditional moment
restriction we have

E[yt|G, D, α, γ] = (IN − ψGt)
−1(INα + Gtρα + Dtγ)
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for t ∈ [T]. The inverse of (IN − ψGt) exists because GtιN = ιN and |ψ| < 1.
Since GtιN = ιN and Gijt = 0 if g(i, t) 6= g(j, t) we have (IN − ψGt)−1Dtγ =

Dt(1− ψ)−1γ, hence

E[yt|G, D, α, γ] = (IN − ψGt)
−1(IN + ρGt)α + Dt(1− ψ)−1γ

Suppose that there is θ satisfying the conditional moment restriction. Then we have

(IN − ψGt)
−1(IN + ρGt)α + Dt(1− ψ)−1γ =

(IN − ψGt)
−1(IN + ρGt)α + Dt(1− ψ)−1γ

Pre-multiplying both sides by (IN − ψGt)(IN − ψGt) and rearranging yields

IN(α− α) + Gt
(
(ρ− ψ)α− (ρ− ψ)α

)
+ G2

t
(
−ψρα + ψρα

)
+ Dt

(
(1− ψ)γ− (1− ψ)γ

)
= 0

Stacking for t ∈ [T] yields

J(α− α) + G
(
(ρ− ψ)α− (ρ− ψ)α

)
+ H

(
−ψρα + ψρα

)
+ D

(
(1− ψ)γ− (1− ψ)γ

)
= 0

and applying W on the left yields

(WJ, WG, WH)

 α− α
(ρ− ψ)α− (ρ− ψ)α
−ψρα + ψρα

 = 0

Let V = (V′1, V′2, V′3) be a vector in the null-space of (WJ, WG, WH). Then for
some V,

V1 = α− α

V2 = (ρ− ψ)α− (ρ− ψ)α

V3 = −ψρα + ψρα

Eliminating α yields

(ρ− ψ)V1 −V2 = (ρ− ψ + ψ− ρ)α

ψρV1 + V3 = (ψρ− ψρ)α

If there does not exist V in the null-space of (WJ, WG, WH) and scalars δ1, δ2, δ3, δ4
satisfying δ1V1 − V2 = (δ1 − δ2)α, δ3V1 + V3 = (δ3 − δ4)α and either δ1 6= δ2 or
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δ3 6= δ4 then we have

ρ− ψ + ψ− ρ = 0 (A.2)

ψρ− ψρ = 0 (A.3)

Solving (A.2) for ψ and injecting into (A.3) yields (ρ− ρ)(ψ + ρ) = 0, hence ρ = ρ
provided that ψ + ρ 6= 0. Injecting into (A.2) yields ψ = ψ. If ρ = ρ and ψ = ψ then
we have

(J + ρG, D)

(
α− α
γ− γ

)
= 0

so α = α, γ = γ if (J + ρG, D) has full column rank.

Proof of Proposition 3 Denote θ = (ψ, ρ, σ2
α)
′. We have the reduced form

y = (INT − ψF)−1(J + ρG)α + D(1− ψ)−1β + (INT − ψF)−1ε

Since G = G, we have Gt = G2
t for t ∈ [T] and F = F2, hence (INT − ψF)−1 =

INT + ψ
1−ψ F and

Wy = W
(

J +
ψ + ρ

1− ψ
G
)

α + W
(

INT +
ψ

1− ψ
F
)

ε

with conditional variance

V[Wy|G, D] = σ2
αW

(
J +

ψ + ρ

1− ψ
G
)(

J +
ψ + ρ

1− ψ
G
)

W

+ W
(

INT +
ψ

1− ψ
F
)

Σ
(

INT +
ψ

1− ψ
F
)

W

= σ2
αWJJ′W +

σ2
α(ψ + ρ)

1− ψ
W(JG′ + GJ′)W +

σ2
α(ψ + ρ)2

(1− ψ)2 WGG′W

+ WΣW +
ψ(2− ψ)

(1− ψ)2 WFΣFW

where Σ = V[ε|G, D]. Consider group m ∈ [M] and define Em ⊆ [NT] to be
the indices of the observations in group m. Then we can define Em as the matrix
constructed from rows Em of INT. Pre-multiplying any conformable matrix by Em
extracts rows Em, and post-multiplying by E′m extracts columns Em. Consider first
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the within-group conditional variance for group m, given by

σ2
αEmWJJ′WE′m +

σ2
α(ψ + ρ)

1− ψ
EmW(JG′ + GJ′)WE′m

+
σ2

α(ψ + ρ)2

(1− ψ)2 EmWGG′WE′m + σ2(m)EmWE′m +
σ2(m)ψ(2− ψ)

(1− ψ)2 EmWFWE′m

and the between group conditional variance, given by

σ2
αEmWJJ′WE′−m +

σ2
α(ψ + ρ)

1− ψ
EmW(JG′ + GJ′)WE′−m +

σ2
α(ψ + ρ)2

(1− ψ)2 EmWGG′WE′−m

where E−m extracts the rows E c
m, which denotes the complement of Em. Notice

first that the between-group variance alone is insufficient to identify ψ and ρ. Only
(ψ + ρ)(1− ψ)−1 is identifiable based on COV[εit, εjt|G, D] = 0 for all (i, j, t) ∈
[N]2 × T : g(i, t) 6= g(j, t) alone. However, under the additional restrictions on
the within-group variance in (4.1), we obtain two additional terms which allow
additionally for identification of ψ(2− ψ)(1− ψ)−2. Now suppose that there is θ
satisfying the conditional variance restrictions in (4.1). Then, if W, WJJ′W, W(JG′ +
GJ′)W, WGG′W and WFW are linearly independent then there exists m such that
σ2(m) = σ2(m), σ2

α = σ2
α and

ψ + ρ

1− ψ
=

ψ + ρ

1− ψ

ψ(2− ψ)

(1− ψ)2 =
ψ(2− ψ)

(1− ψ)2

These two equations have two solutions given by ψ = ψ, ρ = ρ and
ψ = 2− ψ, ρ = (2ψ + 3ρ− ψρ− 2)(1 + ψ)−1. Since |ψ| < 1 we have |2− ψ| > 1,
hence the second solution is infeasible. Hence we obtain θ = θ.

Proof of Proposition 4 Denote θ = (ψ, ρ, σ2
α)
′. Under the conditional variance

29



restriction (4.1) we have

V[y|G, D] = σ2
α(INT − ψF)−1(J + ρG)(J + ρG)′(INT − ψF′)−1 +

1
(1− ψ)2 DΣγD′

+ (INT − ψF)−1Σ(INT − ψF′)−1 +
1

1− ψ
(INT − ψF)−1(J + ρG)ΣαγD′

+
1

1− ψ
DΣ′αγ(J + ρG)′(INT − ψF′)−1 +

1
1− ψ

(INT − ψF)−1ΣεγD′

+
1

1− ψ
DΣ′εγ(INT − ψF′)−1

where Σ encodes the conditional variance of ε, Σαγ encodes the conditional covari-
ance terms for α, γ and similarly for Σεγ. Suppose that there is θ satisfying the
conditional variance restriction in (A.1). Then we have

σ2
α(INT − ψF)−1(J + ρG)(J + ρG)′(INT − ψF′)−1 +

1
(1− ψ)2 DΣγD′

+ (INT − ψF)−1Σ(INT − ψF′)−1 +
1

1− ψ
(INT − ψF)−1(J + ρG)ΣαγD′

+
1

1− ψ
DΣ′αγ(J + ρG)′(INT − ψF′)−1 +

1
1− ψ

(INT − ψF)−1ΣεγD′

+
1

1− ψ
DΣ′εγ(INT − ψF′)−1 =

σ2
α(INT − ψF)−1(J + ρG)(J + ρG)′(INT − ψF′)−1 +

1
(1− ψ)2 DΣγD′

+ ε(INT − ψF)−1Σ(INT − ψF′)−1 +
1

1− ψ
(INT − ψF)−1(J + ρG)ΣαγD′

+
1

1− ψ
DΣ′αγ(J + ρG)′(INT − ψF′)−1 +

1
1− ψ

(INT − ψF)−1ΣεγD′

+
1

1− ψ
DΣ′εγ(INT − ψF′)−1

Pre-multiplying both sides by W(INT − ψF)(INT − ψF) and post-multiplying by
(INT − ψF′)(INT − ψF′)W yields

σ2
αW(INT − ψF)(J + ρG)(J + ρG)′(INT − ψF′)W + W(INT − ψF)Σ(INT − ψF′)W =

σ2
αW(INT − ψF)(J + ρG)(J + ρG)′(INT − ψF′)W + W(INT − ψF)Σ(INT − ψF′)W
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Rearranging yields

(σ2
α − σ2

α)WJJ′W + (σ2
α(ρ− ψ)− σ2

α(ρ− ψ))W(JG′ + GJ′)W

+ (σ2
αψρ− σ2

αψρ)W(JH′ + HJ′)W + (σ2
α(ρ− ψ)ψρ− σ2

α(ρ− ψ)ψρ)W(GH′ + HG′)W

+ (σ2
α(ρ− ψ)2 − σ2

α(ρ− ψ)2)WGG′W + (σ2
αψ

2
ρ2 − σ2

αψ2ρ2)WHH′W + W(Σ− Σ)W

+ W(F(ψΣ− ψΣ) + (ψΣ− ψΣ)F′)W + WF(ψ2Σ− ψ2Σ)F′W = 0

Since the within-group variance in ε conditional on G is not restricted by (A.1),
identification hinges on between-group variance in the outcomes. Consider the
covariance terms for the outcomes of group m with those in all other groups, for
which we have the equations

(σ2
α − σ2

α)EmWJJ′WE′−m + (σ2
α(ρ− ψ)− σ2

α(ρ− ψ))EmW(JG′ + GJ′)WE′−m

+ (σ2
αψρ− σ2

αψρ)EmW(JH′ + HJ′)WE′−m

+ (σ2
α(ρ− ψ)ψρ− σ2

α(ρ− ψ)ψρ)EmW(GH′ + HG′)WE′−m

+ (σ2
α(ρ− ψ)2 − σ2

α(ρ− ψ)2)EmWGG′WE′−m

+ (σ2
αψ

2
ρ2 − σ2

αψ2ρ2)EmWHH′WE′−m = 0

where Em and E′−m are defined in the proof of Proposition 3. If there exists m ∈ [M]
such that EmWJJ′WE′−m, EmW(JG′ + GJ′)WE′−m and EmW(JH′ + HJ′)WE′−m are
maximially linearly independent from the other matrices then we have σ2

α = σ2
α and

ρ− ψ + ψ− ρ = 0 (A.4)

ψρ− ψρ = 0 (A.5)

Solving (A.4) for ψ and injecting into (A.5) yields (ρ− ρ)(ψ + ρ) = 0, hence ρ = ρ
provided that ψ + ρ 6= 0. Injecting into (A.4) yields ψ = ψ.
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Table 5: Monte-Carlo Results: Contextual Effects Only (ψ = 0, ρ = 0.3)

Linear-in-means, T = 8 Conditional Mean Conditional Variance
Endogenous peer effect (ψ = 0) 0.00 0.00 0.00 0.00

(0.04) (0.04) (0.04) (0.04)
Contextual peer effect (ρ = 0.3) 0.30 0.30 0.30 0.30 0.30 0.33 0.30 0.31

(0.12) (0.17) (0.09) (0.12) (0.14) (0.34) (0.16) (0.22)
Reduced form peer effect (= 0.3) 0.30 0.32 0.30 0.30

(0.12) (0.28) (0.12) (0.19)
Linear-in-others’-means, T = 8
Endogenous peer effect (ψ = 0) 0.00 0.00 0.00 0.00

(0.03) (0.03) (0.03) (0.03)
Contextual peer effect (ρ = 0.3) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.31

(0.09) (0.13) (0.07) (0.09) (0.11) (0.21) (0.11) (0.15)
Reduced form peer effect (= 0.3) 0.30 0.32 0.30 0.30

(0.09) (0.19) (0.09) (0.13)
Social network, T = 8
Endogenous peer effect (ψ = 0) 0.00 0.00 0.00 0.00

(0.04) (0.03) (0.04) (0.03)
Contextual peer effect (ρ = 0.3) 0.30 0.24 0.30 0.29 0.30 0.31 0.29 0.29

(0.07) (0.18) (0.05) (0.06) (0.07) (0.09) (0.07) (0.08)
Linear-in-means, T = 2 Conditional Mean Conditional Variance
Endogenous peer effect (ψ = 0) -0.01 -0.02 -0.01 -0.02

(0.08) (0.10) (0.09) (0.12)
Contextual peer effect (ρ = 0.3) 0.56 0.23 0.42 0.30 0.24 0.22 0.34 0.30

(1.24) (0.69) (0.67) (0.56) (0.52) (1.14) (0.26) (0.79)
Reduced form peer effect (= 0.3) 0.22 0.16 0.32 0.23

(0.50) (0.96) (0.18) (0.61)
Linear-in-others’-means, T = 2
Endogenous peer effect (ψ = 0) -0.01 -0.02 -0.02 -0.03

(0.07) (0.08) (0.11) (0.13)
Contextual peer effect (ρ = 0.3) 0.40 0.22 0.35 0.29 0.21 0.16 0.32 0.25

(0.56) (0.63) (0.37) (0.52) (0.67) (1.68) (0.40) (0.54)
Reduced form peer effect (= 0.3) 0.20 0.13 0.30 0.21

(0.65) (1.54) (0.32) (0.46)
Social network, T = 2
Endogenous peer effect (ψ = 0) -0.01 -0.01 0.00 0.00

(0.06) (0.06) (0.06) (0.06)
Contextual peer effect (ρ = 0.3) 0.32 0.71 0.31 0.37 0.33 0.34 0.30 0.30

(0.35) (0.50) (0.27) (0.66) (0.18) (0.30) (0.15) (0.22)
Correlated Effects No Yes No Yes No Yes No Yes
Mobility Rate (p) 0.05 0.05 0.10 0.10 0.05 0.05 0.10 0.10

Notes: For each parameter and design we report the mean and standard deviation (in parenthesis) over 500
datasets. If there are no correlated effects this information is treated as known to the researcher. For the

conditional mean estimator we impose γ = 0. For the conditional variance estimator we use W = INT . The
reduced form peer-effect for the linear-in-means network is (ψ + ρ)(1− ψ)−1 = 0.3. The counterpart for the
linear-in-others’-means network is (ψ + ρ)(1− ψ(ψ + Ng(i,t) − 2)/(Ng(i,t) − 1))−1 for individual i in year t in
group g(i, t). We report simulation results for Ng(i,t) = 5, which is the mean group size, with true value equal

to 0.3. We do not report a reduced form effect for the Social Network because it is individual-specific,
depending on the network structure in their group. Correlated effects are time-invariant.
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Table 6: Monte-Carlo Results: Contextual and Endogenous Effects (ψ = 0.2, ρ = 0.3)

Linear-in-means, T = 8 Conditional Mean Conditional Variance
Endogenous peer effect (ψ = 0.2) 0.20 0.19 0.20 0.20

(0.03) (0.04) (0.04) (0.04)
Contextual peer effect (ρ = 0.3) 0.76 0.89 0.76 0.83 0.30 0.34 0.30 0.31

(0.18) (0.24) (0.13) (0.18) (0.15) (0.39) (0.17) (0.24)
Reduced form peer effect (= 0.625) 0.63 0.65 0.62 0.62

(0.15) (0.38) (0.15) (0.24)
Linear-in-others’-means, T = 8
Endogenous peer effect (ψ = 0.2) 0.20 0.20 0.20 0.20

(0.03) (0.03) (0.03) (0.03)
Contextual peer effect (ρ = 0.3) 0.67 0.76 0.67 0.72 0.30 0.31 0.30 0.30

(0.11) (0.13) (0.08) (0.10) (0.11) (0.24) (0.11) (0.16)
Reduced form peer effect (= 0.595) 0.59 0.59 0.59 0.59

(0.11) (0.25) (0.10) (0.16)
Social network, T = 8
Endogenous peer effect (ψ = 0.2) 0.20 0.20 0.20 0.20

(0.04) (0.04) (0.04) (0.03)
Contextual peer effect (ρ = 0.3) 0.56 0.53 0.56 0.56 0.30 0.31 0.29 0.29

(0.06) (0.19) (0.05) (0.05) (0.08) (0.10) (0.08) (0.08)
Linear-in-means, T = 2 Conditional Mean Conditional Variance
Endogenous peer effect (ψ = 0.2) 0.19 0.18 0.19 0.18

(0.07) (0.09) (0.07) (0.10)
Contextual peer effect (ρ = 0.3) 2.00 0.83 1.66 0.93 0.24 0.22 0.34 0.31

(3.28) (0.62) (2.43) (0.36) (0.53) (1.21) (0.27) (0.86)
Reduced form peer effect (= 0.625) 0.53 0.44 0.65 0.54

(0.63) (1.25) (0.23) (0.79)
Linear-in-others’-means, T = 2
Endogenous peer effect (ψ = 0.2) 0.19 0.18 0.19 0.19

(0.06) (0.07) (0.07) (0.07)
Contextual peer effect (ρ = 0.3) 1.11 0.94 1.07 0.97 0.18 0.16 0.31 0.21

(0.64) (0.52) (0.45) (0.28) (0.64) (1.40) (0.28) (0.57)
Reduced form peer effect (= 0.595) 0.48 0.41 0.59 0.46

(0.74) (1.52) (0.27) (0.58)
Social network, T = 2
Endogenous peer effect (ψ = 0.2) 0.19 0.21 0.20 0.20

(0.06) (0.09) (0.06) (0.06)
Contextual peer effect (ρ = 0.3) 0.70 0.67 0.71 0.74 0.33 0.35 0.31 0.29

(0.30) (0.39) (0.23) (0.26) (0.20) (0.39) (0.17) (0.24)
Correlated Effects No Yes No Yes No Yes No Yes
Mobility Rate (p) 0.05 0.05 0.10 0.10 0.05 0.05 0.10 0.10

Notes: For each parameter and design we report the mean and standard deviation (in parenthesis) over 500
datasets. If there are no correlated effects this information is treated as known to the researcher. For the

conditional mean estimator we impose γ = 0. For the conditional variance estimator we use W = INT . The
reduced form peer-effect for the linear-in-means network is (ψ + ρ)(1− ψ)−1 = 0.625. The counterpart for the
linear-in-others’-means network is (ψ + ρ)(1− ψ(ψ + Ng(i,t) − 2)/(Ng(i,t) − 1))−1 for individual i in year t in
group g(i, t). This lies between 0.5208 (Ng(i,t) = 2) and 0.6250 (Ng(i,t) → ∞.) We report simulation results for
Ng(i,t) = 5, which is the mean group size, with true value equal to 0.5952. We do not report a reduced form
effect for the Social Network because it is individual-specific, depending on the network structure in their

group. Correlated effects are time-invariant. In designs with endogenous effects the conditional mean
estimator of ρ diverges on rare occasions. For such designs we report the mean and standard deviation for the

truncated distribution lying between -100 and 100.
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