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Abstract. Artificial neural networks have offered their share of econometric insights, given their

power to model complex relationships. One area where they have not been readily deployed is the

estimation of frontiers. The literature on frontier estimation has seen its share of research comparing

and contrasting data envelopment analysis (DEA) and stochastic frontier analysis (SFA), the two

workhorse estimators. These studies rely on both Monte Carlo experiments and actual data sets

to examine a range of performance issues which can be used to elucidate insights on the benefits

or weaknesses of one method over the other. As can be imagined, neither method is universally

better than the other. The present paper proposes an alternative approach that is quite flexible in

terms of functional form and distributional assumptions and it amalgamates the benefits of both

DEA and SFA. Specifically, we bridge these two popular approaches via Bayesian artificial neural

networks while accounting for possible endogeneity of inputs. We examine the performance of this

new machine learning approach using Monte Carlo experiments which is found to be very good,

comparable to, or often better than, the current standards in the literature. To illustrate the new

techniques, we provide an application of this approach to a data set of large US banks.
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2 DEA AND SFA

1. Introduction

Neural networks constitute a set of powerful machine learning tools to tackle myriad data-

supported real world problems. However the uncertainty associated with predictions stemming

from these methods is often challenging to quantify. Bayesian statistics offers a formalism to

quantify the uncertainty associated with deep neural network predictions. There are many in-

teresting uses of deep learning methods in economics, each potentially having their own specific

implementation. Here we will focus on adapting these methods to the area of production frontier

estimation and efficiency analysis, which to the best of our knowledge is novel to this extensive

field of research. In particular, here we study how Bayesian neural networks can be used, coupled

with the construction of robust priors, to make predictions about firm level characteristics.

Frontier methods continue to have a pronounced impact through myriad of applications in

various fields of economics/econometrics and management science/operations research. They have

been deployed for analyzing performance of airlines, banks, energy generation and distribution,

farms, fisheries, hotels, healthcare providers, universities, etc.1 Aside from their frequent use in

academia, they have also become part of the standard toolbox used by regulators and econom-

ics/management consultants when crafting policies and strategies aimed at improving performance.

Currently, the two main approaches are stochastic frontier analysis (SFA) and data envelopment

analysis (DEA). Since the inception of SFA and DEA, there have been robust and lively debates

on the merits of each method relative to the other. On the one hand, DEA can estimate a multi-

output multi-input production technology in a fully nonparametric fashion, enforcing axioms of

production and identify firm level efficiency. On the other, parametric SFA does not run into

dimensionality issues that can potentially plague reliable inference of DEA and is robust to the

presence of stochastic noise that is likely to exist in economic production environments. Both

methods have their supplicants and detractors.2

While the relative merits of one method over the other can be debated, what is less contro-

versial is the importance of understanding and quantifying firm efficiency. These methods have

1See various examples provided in Kumbhakar, Parmeter and Zelenyuk (2021a).
2This language may seem harsh, however, many empirical applications studying efficiency commonly use one (but
not both of the methods) behaving as though the other method does not exist. In our view this does a crippling
disservice to the field as both methods have been shown to have tangible benefits (Badunenko, Henderson and
Kumbhakar, 2012) and can offer useful empirical insights.
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enjoyed widespread adoption across a range of economic milieus, seeing deployment for a host

of analyses related to regulation and benchmarking and determining frontier individuals, firms,

states, governments and countries. Still, the debate rages within this area, should one use DEA,

which assumes that no stochastic noise is present in the production process or SFA, which usually

requires rigid parametric assumptions. As it turns out the answer is complicated. Both methods

have seen a wide variety of improvements since their initial incarnations. Parmeter and Zelenyuk

(2019) have recently reviewed and compared a range of methods that embrace the benefits of both

DEA and SFA, demonstrating that such a binary choice (SFA or DEA) is no longer an empirically

relevant question. What is relevant is how best to combine or embrace the virtues of both methods.

There still exists a widespread lack of consensus on a go to, practical approach that researchers

can deploy to tackle the important issue of frontier efficiency analysis.

Here, taking insights from the extant DEA literature, using its axiomatic underpinnings and

linear programming apparatus, we try to improve traditional Bayesian estimation of the stochastic

frontier model (e.g. see van den Broeck et al. 1994; Griffiths and Hajargasht 2016). Standard

parametric SFA, for example, assumes that the frontier is linear in the parameters, the two-sided

error term is Normally distributed, while the one-sided error component (which stands for ineffi-

ciency) is distributed according to the Half Normal, Truncated Normal or Gamma distributions

(for example). Clearly, this involves many assumptions which policy and decision makers may be

uncomfortable with. To make things worse, these assumptions are rarely tested in practice.

This limitation of strict reliance on potentially fragile parametric assumptions suggests that

the use of SFA can benefit from the inclusion of some of the best virtues of DEA. In particular, here

we use DEA to benchmark a good “prior” for the parameters of inefficiency and/or the frontier

parameters themselves, although we do not make distributional assumptions about the one-sided

error term. We show how to impose monotonicity and curvature conditions (if desired). Central

to our framework is the notion of a “smooth mixtures of Normals” (SMN), developed by Geweke

and Keane (1997, 2007) and Villani et al. (2009). The use of SMN has been shown to have

excellent asymptotic properties (Norets, 2010) and the notion of heterogeneity in the data that

can be captured using endogenously determined groups based on SMN. To our knowledge this

approach has yet to be applied to the frontier literature. Further, our ability to combine DEA
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constructed priors inside of SMN is a novel approach to further enhance the appeal of the approach

for practitioners of efficiency and productivity analysis.

The use of DEA priors within a stochastic frontier setting may seem nonstandard. However,

our aim to use a “robust” prior when informing the stochastic frontier model. As an alternative

to direct use of DEA priors we also rely on a least favorable prior (LFP) setup that, under mild

conditions, is known to be minimax. Specifically, a conditional expectation (optimal Bayes esti-

mator) evaluated with a LFP distribution is also a minimax estimator. Finding least favorable

distributions can be challenging due to the inherent optimization over the space of probability

distributions, which is infinite-dimensional. To reduce the dimensionality we only consider priors

constructed from both classic DEA and SFA settings. Other types of alternatives for robust Bayes

approaches exist as well (see Giacomini and Kitagawa, 2021 and Kline and Tamer, 2016), though

we leave discussion and analysis of this for future research.

Our results from the Monte Carlo experiments show that the new techniques perform well in

the presence of endogeneity. An accompanying appendix also demonstrates that the new estimator

is competitive to alternative nonparametric SFA approaches and in some cases behaves better in

terms of root mean-squared error. The new method seems to perform well with nearly non-

informative or, practically, flat priors.

The question of how to combine DEA and SFA (certainly, an old one) is addressed via

the use of both strict DEA-based priors and LFPs and then the assessment of model weights in

optimal predictive pools (Geweke and Amisano, 2011 a,b). To illustrate, we provide an empirical

application of the proposed approach to a data set of large US banks. The main findings show that

the new SMN models receive, practically, the lion’s share in such predictive analyses. This suggests

that these two approaches, once thought to be in conflict, can actually work together in empirical

settings to produce useful insights. Our empirical application also illustrates the usefulness of

the newly proposed approach and, in particular, the importance of accounting for endogeneity in

frontier estimation. Inter alia, it also hints that some of the findings from earlier frontier studies

about efficiency and economies scale in the US banking (or, in fact, any other industry) that did

not account for endogeneity might need revisiting. Such revisiting may confirm or change our

understanding of the banking sector.
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2. Model

Our main interest is the benchmark stochastic frontier model (SFM):

(1) yi = f(xi) + vi − ui, i = 1, . . . , n,

where xi ∈ RK is the vector of inputs, yi = log Yi is log output, f : RK → R is the production

frontier, vi represents noise (a random variable supported in R), and ui is a random variable

supported on R+ representing technical inefficiency.3 Moreover, cost frontiers can be considered

using +ui instead of −ui in (1). For ease of exposition straightforward. Moreover, in model (1) it

is assumed that the inputs and output are in log terms, and xi may contain functions of the inputs

as well (for example, squared terms and interactions terms as in the case of a translog production

function).

In addition, suppose there is a vector zi ∈ Rdz of “environmental” variables. These variables

are commonly thought of as only influencing inefficiency but for our purposes they could also be

a subvector of xi or influence vi through heteroskedasticity. These add minimal complications to

our discussion below.4 We denote wi = [x′i, z
′
i]
′ ∈ Rdw .

There are five fundamental issues in the estimation of the SFM: (i) Specification of the

structure of ui; (ii) Specification of the structure of vi; (iii) Specification of the functional form

f(·); (iv) Possible endogeneity of the covariates xi; and (v) Imposition of smoothness constraints

to enforce axioms of production.

The literature studying the SFM has offered proposals attempting to lessen the impact of

some of these points, either simultaneously or individually. For example, numerous authors have

studied how to estimate the production technology in a nonparametric fashion (see Parmeter and

Zelenyuk, 2019 for a review) but only Simar and Zelenyuk (2011), Parmeter and Racine (2012) and

Kuosmanen and Kortelainen (2013) have sought to enforce axioms of production. Other authors

have turned their attention to dispensing with distributional assumptions on u. Papers by Hall and

Simar (2002), Tran and Tsionas (2009), Horrace and Parmeter (2011) and Parmeter, Wang and

Kumbhakar (2017) fully dispense with distributional assumptions on inefficiency. For endogeneity,

3This formulation nests input and output-oriented distance functions with appropriate redefinition of the covariates.
4The existence of such predetermined or environmental variables is assumed in place. With panel data a time
trend and lags of inputs and outputs can be used along with any other available environmental variables. With
cross-sectional data, one can proceed using artificial instruments as in Lewbel (1996).
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only recently has the literature started to devote attention to solving this pernicious problem.

Amsler, Prokhorov and Schmidt (2016, 2017) are two of the most prominent, but they do not

focus on any of the other issues which impact the estimation of SFMs. To date, there does not

yet exist an approach that can handle all of these important assumptions in a direct manner. In

what follows, we will consider each of these issues within the confines of the approach we develop.

3. Estimation Issues of the Stochastic Frontier Model

Estimation of the benchmark SFM is by now well known and well understood (Kumbhakar,

Parmeter and Zelenyuk, 2021a,b). Here we will detail the salient estimation issues as they pertain

to five points above and how our framework can accommodate these important issues.

3.1. Modelling Inefficiency.

3.1.1. Deterministic Inefficiency. As ri ≡ e−ui ∈ (0, 1] is technical efficiency, it is reasonable to

parameterize ri = Φ(w′iδ) for w′iδ ∈ R, where Φ(·) is a cumulative distribution function (the

standard Normal in this study), and δ ∈ Rdδ . Note that in this setup, inefficiency is treated as

deterministic instead of random. The benefit is that this switch eliminates the need for distribu-

tional assumptions; the obvious downside is that the selected w variables fully explain inefficiency

so an omitted variable bias may arise.

The roots of this formulation go back to at least Simar et al. (1994) and were further

elaborated on from various vantages, more recently by Paul and Shankar (2018) and Tsionas and

Mamatzakis (2019). This formulation can be adapted to a semiparametric context by constructing

a weighted average of these CDFs across G distinct groups. Naturally, as G increases the weighted

average takes on more variation, but also reduces bias due to the assumed parametric form of the

CDF. More specifically we have

(2) ri =
G∑
g=1

Φ(w′iδg,1)δg,2 ⇒ −ui = log
G∑
g=1

Φ(w′iδg,1)δg,2, i = 1, . . . , n,

where δg,2 ∈ R, g ∈ G = {1, . . . , G}; δg,1 ∈ Rdw are unknown parameters and the number of

groups, G, and the weights δg,2 are also unknown. We redefine δ = [δ′g,1, δg,2]′ for g ∈ G.

From the approximation theory surrounding artificial neural networks (ANN) (e.g., see

Hornik, 1993 and Hornik et al., 1994), the formulation in Equation (2) can approximate arbitrarily
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well the unknown functional form between efficiency and the covariates wi. This specification can

help alleviate any biases arising due to estimation of the SFM with one of the usual distributional

assumptions commonly deployed, viz. that the one-sided error term follows a specific distribution

like the Half Normal, Truncated Normal or Gamma, for example. In our formulation G is selected

in a data-driven fashion, making the proposed approach adaptive.

3.1.2. Stochastic Inefficiency. If one were uncomfortable making the distinctation that technical

inefficiency were purely deterministic with respect to a set of covariates, and alternative would be

to use the transformation si = ln 1−ri
ri

where ri = e−ui ∈ (0, 1) represents technical efficiency, and

it is defined in R unlike ri which is between zero and one. We assume

(3) ln 1−e−ui
e−ui

|µi, σ ∼ N (µi, σ
2), i = 1, . . . , n,

where µi and σ are, respectively, location and scale parameters.

An alternative to (3) is to use the environmental variables in wi:

(4) ln 1−e−ui
e−ui

|wi,γ ∼ N (w′iγ, σ
2
u), i = 1, . . . , n,

where γ ∈ Rdw is a parameter vector and σu is a scale parameter. This setup is close in spirit to

the deterministic setup in Equation (2), but allows for omitted variation.

3.2. Specification of the Noise Distribution. The unknown distribution of noise can be pa-

rameterized, generically, using smooth mixtures of Normal distributions (Geweke and Keane, 1997,

2007; Villani et al., 2009; Norets, 2010).5 To adapt this interesting and novel approach to our con-

text, we assume there are M groups in the data and

(5) yi|wi, ui ∼ N
(
x′iβm − ui, σ2

vim(wi;νm)
)
,with probability pim(wi;ηm),

where m ∈ M = {1, . . . ,M}, with M denoting the number of groups, while βm ∈ RK and

νm ∈ Rdνm contain unknown parameters, which we denote as a vector ν = [ν ′1, . . . , ν
′
M ]′ ∈ Rdνm .

Notice that the variance in each group and the probability that observation i is in this group are

both functions of the covariates with respective parameters νm and ηm (m ∈M).

5Alternatively, one could try other approximation devices, provided they integrate to one to preserve the construction
of a density.
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We specify

pim(wi;ηm) = ew
′
iηm∑

m0∈M
ew
′
i
ηm0

, m ∈M,

using, without loss of generality, η1 = 0.6 Furthermore, we denote β = [β′1, . . . ,β
′
M ]′ ∈ Rdβ ,

γ = [γ ′1, . . . ,γ
′
M ]′ ∈ Rdγ , and η = [η′1, . . . ,η

′
M ]′ ∈ Rdη , while for the variances, we assume

(6) σ2
vim(wi;νm) = ew

′
iνm , m ∈M,

where δm ∈ Rdνm is a vector of parameters.7 As pointed out by Norets (2010), these are special

cases of so-called “mixtures of experts” models in statistics and computer science.

3.3. Unknown functional form. The framework in Equation (5) allows for adaptive estimation

of the production frontier through the number of groups M . As M is allowed to increase, this will

increase the ability of the smoothed mixture of Normals to detect local curvature of the frontier.

The key to allow for full flexibility for the estimation of the frontier is to allow M to grow as n

increases. This will ensure that the frontier is treated akin to a fully nonparametric framework. The

approach here is to select M using the marginal likelihood. To explain the marginal likelihood,

suppose we have data Y , parameters θ ∈ Θ ⊆ Rdθ , a likelihood function L(θ;Y ) and a prior

p(θ). By Bayes’ theorem the posterior is p(θ|Y ) ∝ L(θ;Y )p(θ). The marginal likelihood is the

normalizing constant of the posterior, viz. M(Y ) =
∫

Θ
L(θ;Y )p(θ)dθ. Given two models say “1”

and “2” with different parameters, likelihoods and priors, the Bayes factor in favor of model “1”

and against model “2”, given the same data, when the prior odds are 1:1, is BF1:2 = M1(Y )
M2(Y )

, also

known as the posterior odds ratios.8 The marginal likelihood can be estimated using the so-called

“candidate’s formula” which is an identity for all θ ∈ Θ, viz. M(Y ) = L(θ;Y )p(θ)
p(θ|Y )

. The numerator is

easy to compute at, say, the posterior mean. As the denominator is unknown it can be evaluated

using the Laplace approximation (DiCiccio et al., 1997).

The rate of growth of M as n increases is a theoretical construction as we have a given n so

we need to select the best value of M using some criterion (the marginal likelihood in our case).

6Our approach here is not reliant on a logit specification and could be deployed, alternatively, with a probit or any
other flexible function that is bounded between 0 and 1.
7Here, it is worth recalling that Parmeter and Zelenyuk (2019, section 2.3) put special emphasis on heteroskedasticity
in the one-sided error term although they do discuss heteroskedasticity of vi as well, and here we will also look at
these from different angles.
8See Zellner (1971, chapter 10, in particular p. 293); and Kass and Raftery (1995).
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As noted in Fong and Holmes (2020) marginal likelihood can be demonstrated to be equivalent

to a near exhaustive leave-p-out cross-validation framework, provided this leave-p-out procedure

is averaged over all values of p and all hold out prediction sets. Doing so allows the use of the

log posterior model predictive probability to operate as a scoring rule. Further, Fong and Holmes

(2020) show that this log posterior predictive score is the only coherent scoring rule under data

exchangeability. Our use here of their implementation offers new insights into nonparametric

Bayesian applications by formally linking the marginal likelihood (a Bayesian construct) to cross-

validation (a Frequentist construct).

Lastly, we end by noting that the number of smoothed Normals that we have assumed can

differ between the estimation of the frontier and the estimation of the distribution of v. While we

have implicitly left the number of smooth Normals as M , in practice we would have M1 mixtures

for the frontier and M2 mixtures for the unknown noise distribution. This introduces some subtle

notational complexities but does not impact the overall construction or use of the estimator.

3.4. Endogeneity. Although endogeneity is not the main focus in the vast majority of SFA and

DEA studies (including Parmeter and Zelenyuk, 2019), in practice, it is an important issue if one

is concerned with obtaining consistent and reliable estimates. To understand the importance of

endogeneity, we write (5) as follows

(7) yi = x′iβm − ui + σvim(wi;νm)ξim, with probability pim(wi;ηm), m ∈M,

where ξim are mutually independent for all i and m with zero (conditional) mean and unit (con-

ditional) variance (assuming wi contains an intercept) but not necessarily independent of xi.

The endogeneity of inputs is well known in the production economics literature and has

received a lot of attention over the years, see Gandhi, Navarro, and Rivers (2020) and the references

cited therein for a recent discussion. Only recently has the efficiency community embraced the

importance of endogeneity.9 Our approach is to couple Equation (7) with a reduced form

(8) xi = Π(qi;$) + Vi,

9See Kutlu (2015), Amsler, Prokhorov and Schmidt (2016, 2017), Griffiths and Hajargasht (2016) and the special
issue of Journal of Econometrics (Kumbhakar and Schmidt, 2016) on this topic.
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where Π(·;$) : Rdq → RK , $ ∈ Rd$ is a vector of parameters, and Vi is an error term supported

in RK . The reduced form relates the endogenous variables xi to the predetermined variables qi via

a possibly nonlinear form.10 To account for endogeneity, it is not enough to relate the xis to the

qis. In fact, we need to account for dependence between Vi and ξi = [ξi1, . . . , ξiM ]′.11 If, in fact, zi

in (6) does not contain an intercept then the problem is simplified as we do not have to assume

that the elements of ξi have unit variance. This is convenient as we can now assume:

[V ′i , ξ
′
i]
′ ∼ NK+M(0,Σ),

where Σ is a covariance matrix whose M ×M southeastern submatrix is diagonal to take into

account the mutual independence of elements of ξi. In general we have

Σ =

 ΣV V ΣV ξ

Σ′V ξ Σξξ

 ,
where the submatrix ΣV ξ accounts for correlations between elements of Vi and ξi, and Σξξ is

diagonal with elements σ2
ξ1, . . . , σ

2
ξM . These are, of course, unknown. In modeling endogeneity, the

elements of ΣV ξ are essential.

As the specification of (8) is important, we consider two strategies: (i) a linear reduced form

(LRF) and a nonlinear reduced form (NLRF). The LRF can be modeled as:

(9) xi = Πqi + Vi.

This setup follows the common convention in the majority of applied economic work. An alternative

is to use an ANN which we can write as follows

(10) xki = q′i$k0 +
G∑
g=1

ψ(q′it$kg1)$kg2 + Vik, k = 1, . . . , K,

where $k0 and $kg1 ∈ Rdq , $kg2 ∈ R (g = 0, 1, . . . , G) are unknown parameters, and the “ac-

tivation function” is ψ(s) = 1
1+e−s

for s ∈ R. An assumption that G = 0 means that only the

linear component is present in (10). We redefine $ ∈ Rd$ to include all parameters in the set of

10Notice that if the relationship were linear we would have Π(qi;$) = Πqi, where the reduced form parameters
Π ∈ Rdq×dq .
11On this point, see Kleibergen and van Dijk (1993).
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equations in (10). Finally, Vik is the kth element of Vi. For simplicity in implementation, we keep

the same number of ANN nodes (G) throughout, although assuming different values is possible.

Of course, there are certain issues12 with the reduced form that arise in implementation,

whether linear or not. The first issue is whether we have “weak instruments” which can result

in erratic behavior of parameter estimates and posterior densities in finite samples (Kleibergen

and van Dijk, 1993). The second issue is whether the instruments (qi) are correlated with the

endogenous variables (xi), viz. whether they are “relevant”. These issues are taken up in Appendix

A.3. Finally, we note that we could also allow elements of z to be endogenous as well. We leave

this as an extension for future research and refer the reader to Amsler, Prokhorov and Schmidt

(2017) for further details in a parametric, frequentist setup.

3.5. Imposing shape constraints. With the setup described above we can fully estimate the

stochastic production frontier without distributional assumptions on v or u13 and we can estimate

the unknown frontier in a nonparametric fashion. However, even with this flexibility, we still

face the potential that our estimated frontier may not respect traditional axioms of production

(monotonicity/convexity of a given input). Thus it is imperative to focus on how to impose these

types of constraints on the estimated frontier.

The average frontier is given as

(11) E (yi|xi, zi) =
∑
m∈M

pim(wi;ηm) (x′iβm − ui) ,

where ui is given by (2), and E(·) denotes expectation (and E(·|·) denotes conditional expecta-

tion). One important class of models is when, in fact, pim(wi;ηm) depends only on zi (a form of

separability). In this case, if x′iβm satisfies monotonicity and concavity, then the average frontier

in (11) will automatically satisfy these properties as well. Using the convention that yi and xi

are in logs, the simplest possible choice is a Cobb-Douglas production function with coefficients

βm (m ∈ M). Although this choice is convenient it can, potentially, result in a large number of

groups (M) especially with big (wide) data. Therefore, we explore a more general formulation – a

12See Staiger and Stock (1997) and Stock et al. (2002).
13Technically we require a parametric mixture, but allowing G to grow effectively mutes this.
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translog functional form:

f(xi;β) = β0,m + β′1,mxi + 1
2
x′iBmxi, ∀m ∈M,

where β0,m ∈ R, β1,m ∈ RK and Bm ∈ RK×K is a symmetric matrix. All these parameters14 are

subsumed in the definition of β ∈ B ⊂ Rdβ .

For the translog setup the parameter space B depends on the monotonicity and curvature

restrictions, and our approach will seek to impose the desired constraints on a selected grid of

points, using rejection sampling within our MCMC.15 That is, we select a set X = [xι, ι = 1, . . . , Ī]

from which to check the requisite curvature conditions of our translog functional form. One of the

points is the component-wise mean of the data, and the other Ī − 1 points are randomly selected.

Furthermore, for simplicity we proceed on the assumption that pim(wi;ηm) and the variances in

(6) depend only on zi. At each draw of the chain, we check if the curvature conditions are satisfied

everywhere on the grid. If the constraints are satisfied, this set of parameters is kept, otherwise it

is discarded.

The choice of a translog within a group is convenient because: (i) the translog is a second-

order approximation to arbitrary functions;16 (ii) groups are relatively homogeneous with monotone

– concave frontiers which (locally, at least) the translog can approximate very well; (iii) with the

translog it is relatively straightforward to impose monotonicity and concavity at a specified number

of points.17

4. The Use of DEA in Estimation

As we have seen above, an estimation methodology exists that allows us to circumvent many

of the unpopular or contentious assumptions that are levied against the stochastic frontier model.

Even with these impediments removed (or mitigated), one may still prefer DEA to our proposed

14It is, of course, possible to include firm- and time-specific effects or a time trend when we have panel data. The
time trend should be included along with its square and interaction with all other xis.
15Flexibility of the algorithm will be compromised if we make the grid too fine.
16At a substantial increase in (computational/notational) complexity due to the number of interactions needed to
truly approximate a multivariate problem. alternative functional forms could be deployed. Moreover, Sickles and
Zelenyuk (2019, pg. 181) discuss the approximation powers of the translog functional form.
17When the log data are in deviations from their means, then monotonicity holds if the first order coefficients are
non-negative. For imposition of concavity, see Diewert and Wales (1987).
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model. Rather, we advocate that DEA can be used to craft robust priors for the stochastic frontier

estimator just described. This avenue offers a best-of-both worlds appeal.

To construct these DEA based priors, we need to estimate inefficiency from a baseline deter-

ministic frontier model. The obvious route is either FDH or DEA. Specifically, the deterministic

frontier estimator of the Farrell output oriented technical efficiency for an observation (xo, Y o) is

given by

ÔTE(xo, Y o) = max
λ,%1,...,%n

{λ :
n∑
i=1

%iYi ≥ λY o;
n∑
i=1

%ixi ≤ xo; λ ≥ 0; (%1, . . . , %n) ∈ Z},(12)

where Z is the set of restrictions on the intensity variables (%1, . . . , %n), which can be used to impose

various shape constraints on the production relationship. In particular, if Z = {(%1, . . . , %n) : κ1 ≤
n∑
i=1

%i ≤ κ2, %i ≥ 0,∀%i} and if κ1 = 0 and κ2 = ∞ (i.e., unbounded) then the assumption of

constant returns to scale (CRS) is imposed on the estimated production relationship. Meanwhile,

if κ1 = 0 and κ2 = 1 then non-increasing returns to scale is assumed, while if κ1 = 1 and κ2 = 1

then variable returns to scale (VRS) is assumed. Finally, if in addition to requiring κ1 = κ2 = 1, we

require %i ∈ {0, 1} ∀i, convexity is relaxed leading to the FDH estimator (Deprins et al., 1984).18

Our use for these estimates is to calibrate a prior for the coefficients in (2). As we use the same

data for calibrating the prior and performing posterior analysis, this is, at best, an empirical Bayes

procedure. Our intention is to compare results across priors computed using various deterministic

frontier estimators. Our benchmark prior is

(13) p(θ) ∝ IB(β) ·
M∏
m=1

σ−1
%,m · |Σ|−(M+K+1)/2 · p(θ∗),

where θ ∈ Θ ⊂ Rdθ is the entire parameter vector, Θ is the parameter space (mainly affected by B),

θ∗ is the parameter vector excluding β, γ, its prior is p(θ∗), and the scale parameters, IB(β) = 1

if β ∈ B, and zero otherwise. The prior for all other parameters (γ, δ,η,ν,$) is flat, and the

prior for the scale parameters is improper and (relatively) uninformative (see Zellner, 1971, p. 225,

equation (8.9) for Σ).

To craft the DEA-based prior, we estimate the functional form in (2) using r̂i(j) from DEA to

obtain estimates γ̂(j) and their covariance matrix V̂(j), where (j) corresponds to the jth sub-sample

18For the statistical properties of the DEA and FDH estimators see the review of Simar and Wilson (2015).
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from J = {1, . . . , J} where J is the total number of subsamples that we consider to calibrate a

DEA prior.19 Let γ̂∗ = [γ(1), . . . ,γ(J)]
′. Our prior is then

(14) γ ∼ Ndγ (aγ̂, hV̂ ),

where γ̂ = ω′γ̂(j), ω ∈ S = {ω ∈ RJ
+ : ω′1J = 1}, 1J is a J × 1 vector of ones, S is the boundary

of the unit simplex in RJ , ω is a vector of weights to reflect the importance of each different

method, a ∈ R and h > 0 are parameters whose selection will be defined below, and V̂ = ωV̂∗ω
′,

V̂∗ = diag[V̂(j), j ∈ J].

Parameters a and h are introduced to improve the fit of the model along with the weights

ω as follows. We randomly take 10,000 draws for ω from S and 10,000 draws for a and h, and

we select the set of weights that maximizes the marginal likelihood or “evidence” of the model

(see our earlier discussion of the marginal likelihood). We draw a from a Normal distribution with

mean one and diagonal covariance matrix whose diagonal elements are all equal to 104; for h we

draw from log h ∼ N (0, 104). Regarding the selection of G, we specify G = Gmax = 10.20 This

procedure produces optimal values for a, h and weights ω which are used to calibrate our prior in

(14). Regarding θ∗, which includes only δ and η, we assume the following prior:

(15) θ∗ ∼ Ndim(θ∗)

(
θ̄∗, h

2
∗Idim(θ∗)

)
,

where θ̄∗ is the prior mean vector, the prior covariance matrix is a diagonal matrix with all diagonal

elements equal to h2
∗, and Id denotes the d× d identity matrix. In our benchmark prior, we have

θ̄∗ = 0dim(θ∗) and h∗ = 104, but we intend to perform posterior sensitivity analysis with respect to

these prior parameters including a, h and ω (see Appendix A.4 where we also take up the issue of

weak instruments and the validity of instruments in relation to (9) and (10)).

Alternatively, instead of conducting estimation separately for DEA- and SFA-based priors

we may combine the two priors:

(16) p(·) = φpDEA(·) + (1− φ)pSFA(·),

19In the simulations and application we set J = 20% of the total number of observations.
20This is necessitated by the fact that in our MCMC procedure we try different values of G in the interval
{1, . . . , Gmax} to finally select the optimal value of G. For this reason we need to have a prior for γ that is
fully defined for all G.
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where φ ∈ [0, 1], and the arguments are the same as in (14) and (15). We can treat φ as a parameter

with a uniform distribution in the unit interval. We denote this prior as DEA/SFA. Values of φ

will be useful in assessing whether DEA or SFA based priors are more useful.

4.1. Constructing a Least Favorable Prior. Ideally we would seek to use a more general prior,

preferably a robust or least favorable prior. To make our discussion more precise, and in a more

general notation, suppose θ ∈ Θ ⊂ Rp is a parameter vector and we are interested in estimating

a function g(θ). Moreover, d(y) is a decision rule that depends on the observation y = {yi}ni=1,

D is the set of feasible decision rules, {Pθ : θ ∈ Θ} denotes a set of prior distributions on the

parameter, and the distribution of the observation given the parameters is denoted by p(y; θ). Let

dQπ(y, θ) = dPθ(y) dπ(θ) and S = {Qπ : π ∈ Γ} where Γ is a set of “reasonable” or “relevant”

distributions on Θ. The estimation problem is

(17) min
d∈D

max
θ∈Θ

∫
(g(θ)− d(y))2 dPθ(y).

Alternatively, it is

(18) min
d∈D

max
π∈Γ

∫
(g(θ)− d(y))2 dPθ(y) dπ(θ).

The interpretation is that “nature” chooses a least-favorable prior π of Γ and the researcher

determines a decision rule (an estimator) which makes the maximum risk as small as possible. We

consider a finite set of prior distributions {π1, . . . , πJ} and take Γ to be the convex hull

Γ =

{
J∑
j=1

δjπj : 0 ≤ δj ≤ 1, j = 1, . . . , J,
J∑
j=1

δj = 1

}
.

Similarly, we work with a grid {θ1, . . . , θJ} ⊂ Θ, Qj = Pθj and S being the convex hull of

{Q1, . . . , QJ}. If the set of decision rules D is unrestricted, then, via Bayes rule, the posterior

mean of g is:

(19) dδ(y) =
∑J
j=1 g(θj)p(y;θj)δj∑J
j=1 p(y;θj)δj

,
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with πj assigning unit mass to θj. The risk of this estimator is

(20) r(Qδ, d) =
J∑
j=1

δjr(Pθj , d),

where δjs are least-favorable prior probabilities, and r(Pθ, d) =
∫

[g(θ)− d(y)]2 p(y; θ) dy. We

can use Monte Carlo simulation to estimate r(Pθ, d). If {υ(θ, s)}Ss=1 is a set of independent and

identically distributed draws from p(y; θ), we obtain

(21) r(Pθ, d) ' S−1

S∑
s=1

[g(θ)− d(υ(θ, s))]2 .

In turn, we compute ρ(δ) = r(Qδ, dδ) from (19) and (20). Therefore, the maximizing value δo will

be the least-favorable prior, and ρ(δo) gives the minimax value for risk, relative to {θ1, . . . , θJ}.

Suppose the DEA inefficiency estimates are ûi (i = 1, . . . , n). We use these estimates along

with, say, the specification in Equation (3) to construct a least-favorable prior inefficiency distri-

bution. Let

(22) µi = a+ bûi, σ
2 = h2S2,

where S2 is the sample variance of ln 1−e−ûi
e−ûi

, where a, b and h are parameters. The meaning of this

prior is that in (22) we use DEA estimates ûi but we adjust them through the parameters a, b,

and h. Parameter a stands for an overall bias correction, parameter b for a slope correction, while

parameter h adjusts the variance of the DEA estimates. If the DEA estimates provide a least-

favorable approximation we expect that a = 0, b = 1 and h = 1. Otherwise, the least-favorable

prior has to be defined through an appropriate adjustment of the DEA inefficiency estimates.

5. Monte Carlo Simulations

A benefit of our Bayesian ANN approach is that it can easily accommodate endogeneity if

instruments are available. For our simulation framework we use the DGP of Amsler, Prokohorov

and Schmidt (2017, APS hereafter).21 APS proposed two ways for estimating their model with

endogeneity: IV and MLE. They acknowledged that both approaches are not simple “. . . because

a specific copula must be assumed to model the correlation of uoi with the endogenous variables,

21For performance when endogeneity is not present see Appendix A.1.
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and because simulation methods are necessary to form the IV criterion function or the likelihood.”

Given that the current menu of semi- or nonparametric stochastic frontier estimators does not

explicitly deal with endogeneity, we only focus on our proposed estimator.

The DGP of APS is as follows. They consider the baseline SFM with the scaling property

invoked

yi = β0 + x′iβ + vi − ui, ui = uoi e
q′iδ,

where the basic inefficiency term (Wang and Schmidt, 2002) uoi is distributed as Half Normal,

N+(0, σ2
u), and vi is distributed as N (0, σ2

v). To introduce endogeneity, APS partition both x and

q into exogenous and endogenous components

xi =

 x1i

x2i

 qi =

 q1i

q2i

 ,
where x1i and q1i are exogenous and x2i and q2i are endogenous. The instruments are termed

zi = [1, x1i, q1i, wi]
′, where wi are the outside instruments. Finally, the endogenous variables are

generated as

x2i =Π′xzi + ηi

q2i =Π′qzi + τi.

Endogeneity is introduced by allowing vi, τi and ηi to be correlated with each other, defined as

ρ. Relative to APS we have a different model as, among other things, our reduced form estimator

is more flexible but we avoid the use of copulas which places certain limitations on the type of

dependence we can model. Moreover, from our point of view, in terms of inefficiency, our approach

is broader as we do not anchor to a particular model but we couple it with efficiency priors that

can, potentially, deliver better results in finite samples.

For our simulations we use the small variations of the “base case” of APS which consists of

setting β0 = 0, β = (0.61, 0.61)′, and Πx = Πq = (0, α, α, α, α) where α ∈ {0, 0.116, 0.316}. We

generate our exogenous covariates, x1i and q1i along with the instruments w1i and w2i as N (0, 1)

marginals and correlation equal to 0.5. The errors, η, τ and v are all distributed N (0, 1) with

correlation ρ ∈ {0, 0.25, 0.50}. We select δ1 ∈ {0.0, 0.5, 1.0}, define δ = (δ1, δ2) where we always
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Table 1. Mean RMSE of conditional frontier across 200 simulations.

α n ↓ δ = 0 δ = 0.5 δ = 1.00
ρ→ 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
100 0.251 0.289 0.31 0.333 0.394 0.42 0.479 0.51 0.699

0.288 0.303 0.325 0.33 0.329 0.351 0.557 0.368 0.402
200 0.182 0.209 0.224 0.248 0.294 0.313 0.348 0.37 0.507

0 0.214 0.226 0.242 0.242 0.242 0.258 0.395 0.26 0.285
400 0.13 0.149 0.16 0.175 0.208 0.221 0.25 0.266 0.364

0.159 0.168 0.18 0.173 0.172 0.184 0.28 0.184 0.202
800 0.09 0.103 0.111 0.123 0.146 0.156 0.177 0.189 0.258

0.114 0.12 0.128 0.119 0.119 0.127 0.195 0.129 0.141
100 0.387 0.394 0.421 0.498 0.504 0.623 0.666 0.706 0.76

0.338 0.392 0.466 0.625 0.465 0.531 0.73 0.581 0.714
200 0.29 0.295 0.316 0.374 0.379 0.467 0.5 0.53 0.57

0.116 0.253 0.293 0.349 0.46 0.342 0.39 0.554 0.441 0.543
400 0.21 0.214 0.229 0.271 0.275 0.343 0.363 0.389 0.419

0.185 0.215 0.256 0.33 0.246 0.281 0.417 0.332 0.408
800 0.15 0.153 0.162 0.194 0.194 0.244 0.256 0.277 0.298

0.136 0.157 0.187 0.235 0.175 0.2 0.295 0.235 0.289
100 0.423 0.458 0.474 0.494 0.508 0.525 0.762 0.771 0.91

0.349 0.51 0.467 0.433 0.624 0.536 0.478 0.659 0.659
200 0.32 0.348 0.359 0.375 0.384 0.409 0.578 0.6 0.708

0.316 0.269 0.392 0.36 0.336 0.485 0.417 0.37 0.51 0.51
400 0.241 0.263 0.27 0.283 0.29 0.307 0.437 0.451 0.532

0.204 0.298 0.273 0.243 0.35 0.301 0.276 0.38 0.38
800 0.171 0.189 0.192 0.203 0.206 0.222 0.314 0.325 0.384

0.15 0.219 0.201 0.176 0.253 0.218 0.202 0.278 0.278

Notes: Numbers in regular font correspond to the LRF specification while numbers in bold
represent the NLRF specification.

have δ1 = δ2 and fix σ2
u = π/(π − 2). The results are presented for sample sizes 100, 200, 400 and

800.

Tables 1 and 2 contain basic simulation results when we follow APS and allow for endogeneity

into both the covariates entering the frontier and the scaling function of the inefficiency term,

respectively. We compare the root mean square error (RMSE) of the conditional frontier and the

conditional mean of inefficiency in this setting across 200 simulations.

There are several interesting features stemming from these two tables. First, the performance

of the NLRF specification works as well or better than the LRF for the majority of parameter

combinations, even though the true model for the frontier is linearly specified. Second, we see

reasonable decay in RMSE for both estimators as the sample size increases. We also observe that
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Table 2. Mean RMSE of conditional mean of inefficiency across 200 simulations.

α n ↓ δ = 0 δ = 0.5 δ = 1.00
ρ→ 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
100 0.344 0.383 0.405 0.407 0.424 0.496 0.563 0.661 0.804

0.345 0.383 0.405 0.432 0.449 0.53 0.568 0.586 0.715
200 0.241 0.269 0.284 0.301 0.305 0.367 0.416 0.475 0.578

0 0.258 0.287 0.303 0.317 0.33 0.389 0.421 0.434 0.53
400 0.165 0.184 0.194 0.21 0.219 0.256 0.29 0.341 0.416

0.191 0.212 0.224 0.229 0.238 0.281 0.301 0.31 0.379
800 0.113 0.126 0.133 0.144 0.152 0.176 0.199 0.238 0.289

0.14 0.156 0.164 0.165 0.17 0.201 0.212 0.219 0.267
100 0.356 0.408 0.484 0.568 0.633 0.665 0.684 0.841 1.063

0.42 0.437 0.448 0.457 0.462 0.49 0.636 0.667 0.935
200 0.268 0.303 0.364 0.422 0.464 0.487 0.514 0.625 0.778

0.116 0.317 0.33 0.341 0.348 0.351 0.371 0.484 0.508 0.712
400 0.194 0.221 0.264 0.308 0.334 0.351 0.373 0.456 0.56

0.222 0.231 0.254 0.258 0.259 0.26 0.361 0.373 0.523
800 0.137 0.157 0.186 0.219 0.234 0.246 0.263 0.325 0.394

0.155 0.161 0.181 0.181 0.184 0.187 0.261 0.262 0.368
100 0.415 0.641 0.641 0.725 0.779 0.889 0.963 0.99 1.007

0.478 0.507 0.507 0.53 0.552 0.612 0.665 0.784 0.831
200 0.316 0.477 0.488 0.552 0.58 0.662 0.738 0.759 0.772

0.316 0.362 0.384 0.384 0.39 0.406 0.469 0.489 0.601 0.637
400 0.24 0.35 0.37 0.418 0.426 0.486 0.548 0.563 0.573

0.256 0.272 0.272 0.288 0.299 0.357 0.361 0.458 0.485
800 0.169 0.254 0.261 0.295 0.309 0.353 0.392 0.403 0.41

0.18 0.191 0.191 0.206 0.214 0.258 0.26 0.334 0.354

Notes: Numbers in regular font correspond to the LRF specification while numbers in bold
represent the NLRF specification.

the performance of the estimator degrades as the level of endogeneity increases (ρ increases), the

impact of determinants of inefficiency increases (δ increases) and the strength of the instruments

manifests (the elements of Πx increase). The rate of decay of RMSE also appears to be connected

to the configuration of the parameters. There also does not appear to be a large difference in terms

of RMSE regarding estimation of the frontier versus the conditional mean of inefficiency.

6. Empirical application

6.1. Data and results. We use the same data as in Malikov et al. (2015) where we have five

inputs, five outputs. The data is an unbalanced panel with 2,397 observations for 285 large U.S.

commercial banks (2001-2010), whose total assets were in excess of one billion dollars (in 2005

U.S. dollars) in their first three years in the data. The data come from Call Reports of the Federal
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Reserve Bank of Chicago and are as follows. Outputs are y1 = Consumer Loans, y2 = Real

Estate Loans, y3 = Commercial & Industrial Loans, y4 = Securities and y5 = Off-Balance Sheet

Activities Income. The inputs are: x1 = Labor, number of full time Employees, x2 = Physical

Capital (Fixed Assets), x3 = Purchased Funds, x4 = Interest-Bearing Transaction Accounts and

x5 = Non-Transaction Accounts. We also have Equity Capital and Total Assets (TA) as additional

covariates. All monetary valued inputs and outputs are in thousands of real USD (deflated to 2005

using CPI (all urban consumers)).

We estimate an output distance function of the form

yit1 = f(x̃it;β) + vit − uit,

where x̃ includes all logs of inputs as well as ỹit` ≡ yit` − yit1 (` = 1, . . . , F ), a time trend, the

log of equity, the log of non-performing loans and the log of total assets. All output variables are

in logs as well. We estimate our model using different values for G ∈ {1, . . . , Gmax} and obtain

the marginal likelihood values, MG(S) where S denotes the entire data set. In turn, we obtain

posterior model probabilities

(23) PG(S) =
MG(S)∑Gmax

g′=1 MG′(S)
, for G ∈ {1, . . . , Gmax}.

Next, all measures and quantities of interest can be obtained by combining results for different

values of G using (23). To implement MCMC, we use 150,000 iterations omitting the first 50,000 in

a burn-in phase to mitigate possible start up effects. We report the results for both our benchmark

prior as well as the prior that anchors on DEA or KPST in (14). We also examine the results

under endogeneity of ỹit`. wit, as in (2), includes the log of total assets, the log of equity, the log of

non-performing loans, a time trend and all of their squares and interactions. Sample distributions

of posterior mean estimates of key functions of interest are reported in Figure 1.22

A general important finding is that ignoring endogeneity results in very different estimates

of returns to scale (RTS) and inefficiency.23 For example, in panel (a), we see that the estimates

of RTS are surprisingly low and close to 0.75 for the models that ignore endogeneity and technical

22See Table 4 for the full set of posterior means and standard deviations in Appendix A.2.
23RTS is estimated as the negative of the ratio of the sum of the input elasticities to the sum of the output
elasticities, see Malikov et al. (2016, equation 39).
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Figure 1. Sample distributions of posterior mean estimates. DEA and KPST stand
for Data Envelopment Analysis, and Kumbhakar, Park, Simar and Tsionas (2007,
KPST), respectively. LRF is the linear reduced form in (9) and NLRF corresponds
to the flexible nonlinear specification of the reduced form in (10).
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inefficiency (panel (b)) averages close to 30%. Taking endogeneity into account, the RTS estimates

average slightly above 0.9 for LRF and slightly below 0.9 for NLRF. Meanwhile, estimated technical

efficiency averages around 15% for LRF and 17% for NLRF. We note that for LRF the optimal

G is 3 and for NLRF G is 2. Although one might have expected larger values, one has to keep in

mind that this is a relatively homogeneous data set of US banks. This similarity of the estimates

from LRF and NLRF suggests robustness to the specification of the form of endogeneity.

One important point that comes out of the empirical application is that the behavior of the

new methods does not depend on whether we benchmark the prior in (14) using DEA. In this sense

it appears that it does not matter too much what is the prior of γ provided it can be dominated

by the data/likelihood and this is what happens in our application. This conclusion is supported

by posterior sensitivity analysis which we undertake in Appendix A.4 and is another indication of

robustness.

In Figure 2, we report sample distributions of posterior mean estimates of inefficiency effects

(marginal effects) derived from (2) with respect to total assets (TA) and non-performing loans
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(NPL) using the NLRF setup described above.24 Both variables are in logs and they are normalized

to lie in the interval (0, 1) for visual clarity.

Figure 2. Sample distributions of posterior mean estimates of inefficiency effects
via NLRF.
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The interesting feature of the marginal effects, besides having a positive effect on inefficiency,

is that there are two groups in the data. The first group contains banks with near average values

of total assets and NPL, and the second group contains bank observations with a larger size and

higher values of NPL. This can testify to the conjecture or claim that the larger banks among

the large US banks were more exposed to risk. This is also consistent with the findings on raw

inefficiency scores, where we saw a bimodal distribution (panel (b) in Figure 1 when using NLRF).

We also used two least favorable prior setups to assess the impact that weighting between

DEA and SFA priors would have on the analysis. These results are contained in Appendix A.6.

The main feature of the use of LFPs is that the location parameter a is negative and the rescaling of

DEA scores is based on a scale parameter h that exceeds one with significant probability. Overall,

the LFP results for RTS and inefficiency lead to similar conclusions: average estimated RTS is

near 0.9 while average technical inefficiency is near 16%.

24Similar results were found using the LRF.
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6.2. A bridge too far? Combining DEA and SFA in our context, may or may not be a “bridge

too far”. To decide whether this is the case, we use optimal model pools (Geweke and Amisano,

2011a,b). Given a set of models, say m ∈ M = {1, 2, . . . ,M} whose posterior predictive densities

are pm(So|S), where S is the data that we use for posterior inference and So is an out-of-sample

set of observations that we want to use for prediction and/or model validation.

We consider predictive densities of the form:

(24)
∑
m∈M

wmpm(So|S1:t);
∑
m∈M

wm = 1; wm ≥ 0 ∀m ∈M,

known as linear opinion pools. The data up to and including period t are denoted S1:t. We consider

using the log predictive score function:

(25)
∑
(i)

log

[∑
m∈M

wmpm(So|S(i))

]
,

where S(i) denotes the sample of available observations for posterior inference, indexed by (i). The

index (i) depends on which observations are actually used in-sample.

The log predictive score function is a measure of the out-of-sample prediction record of the

model. Maximizing (25) subject to (24) is quite feasible given nonlinear programming software.

Therefore, the problem is:

max{wm,m∈M}
∑

(i) log
[∑M

m=1wmpm(So|S(i))
]
,

subject to∑
m∈Mwm = 1; wm ≥ 0 ∀m ∈M.

The objective is to maximize weighted log predictive scoring (or, equivalently, maximize out-

of-sample performance) subject to the usual portfolio-like constraints on the weights attached to

different models. The models considered do not have to contain the same parameters (or have any

parameters for that matter) so this approach is quite general.25

25In our computations we used the fortran 77 version of library lbfgs in netlib. The problem can be converted

to unconstrained optimization by reparametrizing wm =
exp(−ω2

m)
1+

∑
m0>1 exp(−ω2

m0
)
, and the ωis are defined on the real

line. Convergence was quite fast given any initial conditions and no other local optima were found.
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In our application, we omit 10% of observations randomly and we obtain the posterior pre-

dictive density as follows:

pm(So|S) =

∫
pm(So,θm|S)dθ =

∫
pm(So|θm,S)p(θm|S)dθm ' S−1

S∑
s=1

pm(So|θ(s)
m ,S),

where {θ(s)
m , s = 1, . . . , S} is a set of MCMC draws that converges in distribution to the distribution

whose density is the posterior pm(θ|S) (m ∈M). As we use SMN, pm(So|θ(s)
m ,S) can be evaluated

point-wise as it is available in closed form.

We repeat omitting 10% of the observations, randomly, 1,000 times and use as competing

models (i) our model, (ii) DEA prior, (iii) FDH prior, (iv) KPST prior, and (v) the LFP. We

account for endogeneity using (10).

It remains to consider a prior where the βms and δm as well as the inefficiency parameters

are crafted using the DEA and FDH priors. The procedure has been described at the end of

Section 2. We apply this procedure in 1,000 different sub-samples of the data omitting 10% of

observations randomly, re-applying MCMC and computing the marginal likelihood of the SMN

versus the marginal likelihood of the DEA and FDH priors. We take as a benchmark the FDH

case so its marginal likelihood is normalized to 1. The resulting distributions of Bayes factors

(ratios of marginal likelihood of DEA and SMN to the marginal likelihood of FDH) are reported

in Figure 3.

The marginal likelihood in favor of the SMN model (and against the FDH prior, reported

in panel (a)) ranges from 818 to 826 and has a median value of 819. The marginal likelihood in

favor of the SMN model with the default prior (and against the FDH prior, reported in panel (b))

ranges from roughly from 220 to 1700 and the median is 560. As the Bayes factor in favor of

DEA and against the FDH prior is BFDEA:FDH = BFSMN :DEA

BFSMN :FDH
, the respective density is presented

in panel (c) of Figure 3; it ranges from 0.98 to 3.70 with a median 1.47 which does not provide

strong evidence for or against either model. On the contrary, the posterior odds in favor of the

SMN model and against DEA or FDH priors are overwhelming (Kass and Raftery, 1995).

We also see some evidence that the least favorable prior (LFP-I) has a small preference

against the SMN prior (panel (d)): the Bayes factor ranges from 2 to about 20, with a median of

just under 10. The similarity of the main technological characteristics of the results using DEA and
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Figure 3. Log Bayes factors against alternative priors in 1,000 subsamples using
the NLRF.
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KPST priors, indicates that our core findings are robust across various priors. The results are also

similar whether we account for endogeneity via LRF or NLRF, which are however substantially

different from the results when ignoring the presence of endogeneity. It appears the key is that we

must account for endogeneity, an aspect that many applied efficiency papers (both deterministic

and stochastic) have ignored when studying bank performance with frontier methods.

7. Concluding Remarks

The contrast between DEA and SFA is likely to persist given the distinct differences in the

formal models they estimate; and yet nonparametric methods provide a bridge that can be usefully

deployed in practice based on Bayesian ANN. In this work, we propose a novel flexible model that

(i) does not require distributional assumption on inefficiency; (ii) is based on a flexible functional

form for the frontier using smooth mixtures of Normals which can approximate arbitrarily well

any smooth function; (iii) accounts for endogeneity in a flexible manner; (iv) can incorporate
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information from DEA, SFA, or both, in benchmarking an empirical Bayes prior and (v) has the

ability to enforce axioms of production on the technology. We further supplement the approach

by offering a least favorable prior within a class of frontier models which can be estimated prior to

the Bayesian ANN. This allows the estimator to be minmax over this class of priors and simplifies

the optimization (given the discreteness of the set of priors).

In the stochastic DEA approach (e.g., Simar and Zelenyuk, 2011), Parmeter and Zelenyuk

(2019) demonstrate that one can first filter out the noise from the data using semi- or nonpara-

metric SFA and then apply variants of DEA. We agree that this line of attack can be successfully

implemented in practice and has its advantages although DEA-like methods like stochastic DEA or

concave nonparametric least squares are designed to deliver the same thing. In this study, we have

proposed a different use of DEA (possibly along with other similar methods) to craft an empirical

Bayes prior for the parameters of inefficiency. This method has been found to work acceptably well

in Monte Carlo simulations and the empirical application. However, it seems that our novel model

does not depend critically on this aspect as the prior allows “domination” by the data/likelihood

(despite the fact that it is based on the data themselves). It is in very small samples (close to 100

observations) where this use of DEA is found to be rather useful which is, in itself, an important

point for practitioners.

While there exists a natural conflict between the underlying assumptions of the deterministic

and stochastic frontier models, our use of combinations across model estimates to construct priors

to inform an adaptive and flexible estimator should not be overlooked. We have presented some

evidence and tools that can be used in empirical applications to answer such questions about

how best to combine priors (and if it matters) which clearly extends beyond the field of efficiency

analysis. Our proposal of using optimal model pools is designed to answer precisely such questions

regarding choice of prior.
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Technical Appendices – Not Intended for Publication

A.1. Additional Monte Carlo Results

We use the same simulation designs as in Parmeter and Zelenyuk (2019) and we compare

with the best results in each of the cases reported in their Tables 1-5. We consider five different

data generating processes (DGP). DGP I is a linear frontier with Normal-Half Normal (NHN)

errors generated as yi = x
1/2
i + vi − ui, vi ∼ N (0, σ2

v), ui ∼ N+(0, σ2
u) with σv = 0.2 and λ = σu

σv
∈

{0.5, 1, 2}, and i = 1, . . . , n, where the sample size (n) takes the values 50, 100, 200, and 400. The

covariate xi is generated uniformly in the interval (0.5, 10). In DGP II (to assess the impact of

distribution misspecification), the inefficiency distribution is specified as Gamma with parameters

(1, 5), (9, 5), and (9, 34). In DGP III, inefficiency has a skedastic function σu(x) = 0.95e−0.5x.

DGP IV is a nonlinear frontier with

(A.1) yi = a1xi + a2 sinxi + vi − ui, i = 1, . . . , n,

with a1 = a2 to ensure monotonicity. In DGP V, Parmeter and Zelenyuk (2019) have a nonlinear

frontier (adopted from Martins-Filho and Yao (2015)):

(A.2) yi = b1 + b2 arctan[b3(xi − b4)] + vi − ui, i = 1, . . . , n,

where b1 = 1, b2 = 0.5, b3 = 20, and b4 = 0.5. The two-sided and one-sided error components

are specified as before. We report results for the benchmark FLWDD estimator (“DD” stands

for “data driven”) which relies on plug-in likelihood estimation with least-squares cross-validation

and performs well in the simulations reported in Tables 1-5 of Parmeter and Zelenyuk (2019, pp.

1649–1652). In all of our Monte Carlo experiments we use Ī = 10.

We also use 200 Monte replications, as in their study, and we focus on the more difficult cases,

viz. λ = 0.5, Gamma(9, 5) to save space, although results for other values of λ and the parameters

of the Gamma distribution gave similar conclusions. For all the DGPs, we estimate the frontier at

each data point in each replication and then compute the square root of the mean squared error

(RMSE) over all the data points and take the median over all the replications of Monte Carlo to

be consistent with Parmeter and Zelenyuk (2019). We do not correct for endogeneity using (9) or

(10) as there is none in these DGPs.
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Table 3. RMSE results, Comparison with Tables 1 - 5 of Parmeter and
Zelenyuk (2019), FLWDD method.

I. Linear NHN frontier II. Linear

frontier,

gamma

distribution

of inefficiency

III. Linear

frontier, het-

eroskedastic

inefficiency

IV. Nonlinear

frontier, NHN

distribution(a)

V. Nonlinear

frontier, NHN

distribution(b)

n = 50 0.113 0.417 0.180 0.138 0.120
0.062 0.070 0.035 0.049 0.032
0.113 0.129 0.135 0.135 0.120
0.058 0.065 0.030 0.048 0.030

n = 100 0.096 0.377 0.182 0.114 0.095
0.035 0.055 0.022 0.032 0.011
0.095 0.111 0.132 0.110 0.097
0.039 0.051 0.020 0.030 0.010

n = 200 0.070 0.382 0.171 0.092 0.073
0.025 0.032 0.017 0.025 0.005
0.070 0.097 0.120 0.087 0.072
0.020 0.030 0.015 0.022 0.005

n = 400 0.047 0.376 0.164 0.059 0.059
0.015 0.021 0.011 0.011 0.001
0.047 0.096 0.097 0.049 0.058
0.014 0.020 0.010 0.010 0.001

Notes: (a) This refers to (A.1). (b) This refers to (A.2). Numbers in regular font corre-
spond to root mean squared errors (RMSE) from Tables 1–5 in Parmeter and Zelenyuk
(2019, pp. 1649–1652) and they refer to FLWDD (the Fan et al., 1997 estimator) which
relies on plug-in likelihood estimation with least-squares cross validation. KPST esti-
mates of inefficiency to calibrate the prior in (14). Numbers in italics refer to results of
this study based on using DEA estimates of inefficiency to calibrate the prior in (14).
Underlined figures do not use information from DEA or KPST and are based on our
benchmark prior (13). As FDH priors did not yield better results compared to DEA or
KPST they are omitted. Numbers in bold represent results from a prior anchored on
KPST.

The FLWDD estimator performs well for DGPs I, IV and V (as expected) of Parmeter and

Zelenyuk (2019) although the parametric estimator performs slightly better as expected in DGP

I. The techniques proposed here perform slightly better than FLW in scenarios I, II, and III but

RMSEs are considerably lower for DGPs III and IV. Although DGP V has a nonlinear frontier, it
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can, nevertheless, be approximated globally by a linear function so the parametric SFA estimator

(Parmeter and Zelenyuk, 2020, p. 1652, Table 1) performs well. In this instance, our results are

also the same or slightly better compared to FLW. Our results are considerably better than FLW

in the relatively “difficult” DGP IV. Under misspecification of the inefficiency distribution (DGP

II) our results are, again, slightly better than FLW. The methods proposed here perform rather

well under scenario DGP where inefficiency is heteroskedastic albeit not in the same way that we

model heteroskedasticity. This shows that approximations like (6) are likely to perform very well

in practice. Our method also performs very well under a misspecified Gamma(9, 5) distribution

for inefficiency where the parametric methods perform better than FLW but still they have (like

FLW) large RMSEs.

When we do not use DEA-based information (see underlined figures in Table 1) but instead

we use the prior in (13), RMSEs are larger than RMSEs delivered by the DEA prior, mostly in

scenarios II and III. In III, as we have heteroskedasticity, the RMSEs corresponding to the DEA

prior are significantly lower so, in practice, using DEA to benchmark a prior like (14) may prove

to be beneficial.

Our implementation in scenario III assumes that xi is in the skedastic function (6). We

have experimented with a version where we try zi in the skedastic function, where zi = xi + σzζi,

ζi
iid∼ N (0, 1) (i = 1, . . . , n). For moderate values of σz we find26 that the DEA prior loses its

advantage over (13). Specifically, this happens for values of σz greater than about 0.5 which is,

approximately, 10% of the average value of xi (which is 5.25 in this instance). The RMSEs are still

smaller compared to FLW even when σz exceeds 1 or 2, suggesting that using DEA to benchmark

such prior may prove to be beneficial.

Finally, we also find that in the case of small samples (n is 50 or 100) that the DEA prior is

important in reducing RMSEs. For larger samples, despite the fact that the prior comes from the

data, it seems to be “dominated” by the likelihood.27 Moreover, results for FDH are not reported

as they were always inferior relative to DEA.

The estimated densities (across simulations) of φ are reported in panel (a) of Figure A.1.

In panel (b) of Figure A.1 we report the corresponding estimated distribution functions. From

26These results are not reported here but are available on request.
27Clearly, this “domination” is due to the fact that we allow a very large variance in (15), as h∗ = 104.
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Figure A.1. Distributions of φ for the five models.
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this evidence it turns out that DEA and KPST receive approximately equal weight (as we do not

have first-order stochastic dominance in models I and II). In Models III, IV, and V, again, we do

not have first-order stochastic dominance, although compared to models I and II, φ is likely to be

more concentrated around 0.5. This type of exercise is important as, rarely if ever, do we have the

luxury of dividing the data, using one part to craft the prior and the second to perform posterior

inference.

To conclude this discussion, we note that while the KPST prior is slightly better than the

DEA prior (and both give much better results than the others), obtaining the DEA prior is much

easier/simpler as it does not involve setting a bandwidth, which may be fraught with difficulties,

especially in high dimensions, and for which the results might be sensitive to a particular choice.

On the other hand, DEA might be sensitive if too much noise or outliers are present in the data

(as KPST might be too). Hence, it might be wise to use both and potentially with other priors (or

mix them as described above), to confirm the robustness of results or to identify potential issues

to explore in more details.
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For our proposed estimator we see vast improvements relative to FLW-type estimators for

all sample sizes when we anchor to the KPST results (rather than to DEA to calibrate (14) or

(15) without any information from either DEA and KPST). The reason can be easily attributed

to the fact that the estimation of inefficiency in finite samples is a difficult exercise on its own,

and informative priors, that is priors that carry useful information about inefficiency, can be of

great help in reducing root mean squared errors. A notable feature of such priors is that their

effect does not converge to zero as the sample size becomes arbitrarily large. For example, DEA-

and KPST-based priors remain informative even in large samples, that is DEA and KPST can

be usefully employed to learn about efficiency even in large samples. In this sense, and since the

number of parameters in the inefficiency distribution increases with the sample size, anchoring

priors remain informative.
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Figure A.2. Sample distributions of posterior mean estimates. DEA and KPST
stand for Data Envelopment Analysis, and Kumbhakar, Park, Simar and Tsionas
(2007, KPST), respectively. LRF is the linear reduced form in (9) and NLRF corre-
sponds to the flexible nonlinear specification of the reduced form in (10).
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A.2. Posterior Means and Standard Deviations For Application

Figure A.2 presents the remainder of the estimated posterior means and standard deviations

for various features of the banking technology. Table 4 provides the specific numeric values for all of

these technological features for the both the posterior mean and the posterior standard deviation.
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Table 4. Posterior means and standard deviations of functions of interest.

posterior mean posterior s.d.
Returns to Scale
Benchmark Prior (No Endogeneity) 0.777 0.056
DEA/KPST Prior (No Endogeneity) 0.774 0.055
Benchmark Prior (With Endogeneity, LRF) 0.920 0.025
DEA/KPST Prior (With Endogeneity, LRF) 0.919 0.024
Benchmark Prior (With Endogeneity, NLRF) 0.889 0.032
DEA/KPST Prior (With Endogeneity, NLRF) 0.890 0.030
Inefficiency
Benchmark Prior (No Endogeneity) 0.262 0.055
DEA/KPST Prior (No Endogeneity) 0.260 0.050
Benchmark Prior (With Endogeneity, LRF) 0.144 0.028
DEA/KPST Prior (With Endogeneity, LRF) 0.145 0.030
Benchmark Prior (With Endogeneity, NLRF) 0.170 0.028
DEA/KPST Prior (With Endogeneity, NLRF) 0.167 0.029
Technical Change
Benchmark Prior (No Endogeneity) 0.026 0.023
DEA/KPST Prior (No Endogeneity) 0.025 0.025
Benchmark Prior (With Endogeneity, LRF) 0.0005 0.014
DEA/KPST Prior (With Endogeneity, LRF) 0.0006 0.015
Benchmark Prior (With Endogeneity, NLRF) 0.005 0.030
DEA/KPST Prior (With Endogeneity, NLRF) 0.006 0.031
Efficiency Change
Benchmark Prior (No Endogeneity) 0.0046 0.018
DEA/KPST Prior (No Endogeneity) 0.0051 0.017
Benchmark Prior (With Endogeneity, LRF) 0.0097 0.013
DEA/KPST Prior (With Endogeneity, LRF) 0.0096 0.014
Benchmark Prior (With Endogeneity, NLRF) 0.033 0.017
DEA/KPST Prior (With Endogeneity, NLRF) 0.034 0.019
Productivity Growth
Benchmark Prior (No Endogeneity) 0.0046 0.018
DEA/KPST Prior (No Endogeneity) 0.0051 0.017
Benchmark Prior (With Endogeneity, LRF) 0.0097 0.013
DEA/KPST Prior (With Endogeneity, LRF) 0.0097 0.014
Benchmark Prior (With Endogeneity, NLRF) 0.0033 0.018
DEA/KPST Prior (With Endogeneity, NLRF) 0.0044 0.019
φ 0.112 0.015
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A.3. MCMC methods

We use a recent advance on the Metropolis Adjusted Langevin Algorithm (MALA) called

fast MALA (fMALA), see Durmus et al. (2017). Suppose we have a parameter vector θ ∈ <d, and

we target π(θ) which represents the posterior, omitting the dependence on data to ease notation.

We consider a Langevin diffusion defined by:

(A.3) dθt = 1
2
Σ · O lnπ(θt) + Σ1/2dWt,

where {Wt, t ≥ 0} is a standard d-dimensional Brownian motion, and Σ is a given positive definite

self-adjoint matrix. Under appropriate assumptions on π one can show that the dynamics generated

by (A.3) are ergodic and result in π(θ) as a unique invariant distribution. A standard approach is

to discretize (A.3) using a one step integrator, and sample using the averages over the numerical

trajectories. This approach introduces a bias because the posterior does not coincide in general

with the exact π.

An alternative way of sampling from π exactly, i.e. that is not biased by discretizing (A.3),

is by using the Metropolis-Hastings algorithm (Hastings, 1970). The idea is to construct a Markov

chain {θj}, where at each step j, given θj, a new sample proposal θc is generated from the Markov

chain with transition kernel q(θ, ·). This proposal is then accepted (θj+1 = θc) with probability

α(θj,θ
c) and rejected (θj+1 = θj) otherwise. If we have

(A.4) α(θ,θc) = min

{
1,
π(θc)q(θc,θ)

π(θ)q(θ,θc)

}
,

then the resulting Markov chain {θj} is π-invariant and will, for large j generate samples from π

under mild ergodicity assumptions. In general, a candidate is generated as:

(A.5) θc = µ(θ, h) + S(θ, h)ζ,

where ζ ∼ Nd(0, Id). The specific fMALA proposal has

(A.6) µ(θ, h) = x+ h
2
f(θ)− h2

24
Of(θ) · f(θ) + {Σ : O2f(θ)},

(A.7) S(θ, h) =
(
h1/2Id + h3/2

12
Df(θ)

)
Σ1/2,



38 DEA AND SFA

where f(θ)
M
= Σ · O lnπ(θ), Of(θ) and O2f(θ) are the d × d Jacobian and d × d2 Hessian of

f(θ), respectively, and Σ = S(θ, h). Let O2f(θ) = [H1(θ), . . . ,Hd(θ)] where [Hi(θ)]jk = ∂fi(θ)
∂θk∂θj

.

Then, {Σ : O2f(θ)}i
M
= tr [Σ′Hi(θ)]. The scaling constant has been investigated in Durmus et al.

(2017) and it is related directly to the discretization of (A.3). Durmus et al. (2017) recommend

h = εd−1/5 for some positive constant, ε. The optimal acceptance rate maximizing the first-order

efficiency is very close to the 0.704 predicted in Theorem 3.2 of Durmus et al. (2017). Therefore,

one can calibrate the constant ε (during the burn-in phase) so that the acceptance rate is close to

0.70.

This approach has been found to perform excellently once ε and h are calibrated correctly

during the burn-in phase. All derivatives are computed numerically28 during the burn-in phase,

and they are interpolated29 in the main phase of the MCMC algorithm. This results in dramatic

computational savings and, as a matter of fact, different chains can be run in parallel in computers

with multiple nodes. We run ten different chains starting from randomly selected initial conditions

and we compare the chains after 150,000 iterations with a burn-in phase consisting of 50,000

iterations. Our transition density q(θ,θc) is a d-dimensional Student-t distribution with five

degrees of freedom. We monitor convergence using the standard diagnostics of Geweke (1992).

28We use the Fortran77 subroutines in package NDL of Voglis et al. (2009). Specifically we use ver-
sion 2.0 of Hadjidoukas et al. (2014), https://data.mendeley.com/datasets/j2fhmszg85/1, see also
http://cpc.cs.qub.ac.uk/summaries/AEDG v1 0.html
29We use the Fortran subroutines in finterp by Jacob Williams in
https://github.com/jacobwilliams/finterp/blob/master/README.md Alternatively, we use for compari-
son RBF INTERP ND in https://people.sc.fsu.edu/~jburkardt/f src/rbf interp nd/rbf interp nd.html.
RBF INTERP ND is a Fortan90 library by John Burkardt which defines and evaluates radial basis function (RBF)
interpolants to multidimensional data.
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A.4. Posterior sensitivity analysis

To perform posterior sensitivity analysis, we replace (13) and (14) with the following. Suppose

ϑ ∈ Rdϑ denotes all elements of θ with the exception of scale parameters. Then we assume

(A.8) ϑ ∼ Ndϑ (a, V ) .

We draw the elements of the mean vector (a) from Normal distributions with zero mean and

standard deviation 100. For V we assume it is a diagonal matrix whose elements are draws as

log Vii ∼ N (0, 100). We consider 10,000 prior specifications, viz. 10,000 different draws for a and

V , and we use the Sampling-Importance-Resampling (SIR) approach (Rubin, 1987, 1988; Smith

and Gelfand, 1992) with 20% sub-samples of the original MCMC sample for re-weighting and we

compute posterior moments corresponding to the new priors.

The differences relative to benchmarks are reported in panels (a) and (b) of Figure A.3,

respectively. We report results for parameters (θ), returns to scale (RTS), technical change (TC),

efficiency change (EC) and inefficiency itself. In panel (c) we report Geweke’s (1992) relative

numerical efficiency (RNE) which should be equal to one if one could draw IID samples from the

posterior. In panel (d), we report upper 95% values of Geweke’s (1992) convergence diagnostic

which is asymptotically Normal in the number of draws. As the upper 95% values of this z -test are

less than 1.96 we can be relatively confident that the MCMC chains have converged and, despite

autocorrelation, the RNEs are not extremely low to prevent us from a thorough exploration of the

posterior.
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Figure A.3. Posterior sensitivity relative to benchmark prior
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A.5. Validity and weakness of instruments

We focus on Equation (10) which we repeat here in the interest of clarity:

(A.9) xki = q′i$k0 +
G∑
g=1

ψ(q′i$kg1)$kg2 + Vik, k = 1, . . . , K; i = 1, . . . , n.

We can obtain the linear reduced form (LRF) in (9) using appropriate restrictions. To make

sure (to the extent feasible) we rely on squared correlation coefficients between actual and fitted

values from (A.9). As a matter of fact we can use a single measure, the generalized R-squared,

(A.10) R2
∗ = 1− |ΣV V ||S| ,

where ΣV V is the covariance matrix of Viks and S is the empirical covariance matrix of xkis.

For each MCMC draw, we save the generalized R-squared, say R2
∗(s), and we present its posterior

distribution based on these draws.

The issue of valid instruments is based on ideas from Generalized Method of Moments (GMM)

estimation. Our (A.9) requires the moment conditions

(A.11) 1
n

n∑
i=1

(
xki − q′i$k0 −

G∑
g=1

ψ(q′i$kg1)$kg2

)
qi = 0, k = 1, . . . , K.

We can write these moment conditions compactly as follows:

(A.12) 1
n

n∑
i=1

g(Si;$1,0, $̂∗) = 0,

where the notation is intended to make clear that we fix part of the parameter vector.

We have Kdz moment conditions but the number of parameters is KG[(1 + dz) + 1] so we

need to expand the number of moment conditions or reduce the number of parameters. We decide

to set $kg1 and $kg2 to their posterior means, set $k0 = $1,0 (k = 2, . . . , K) and redo the MCMC

using only a common $1,0 in the moment conditions.30 Then we have only dz parameters.

The test statistic that we use is the Sargan-Hansen test statistic given by

(A.13) Q =

[
1
n

n∑
i=1

g(Si;$1,0, $̂∗)

]
W

[
1
n

n∑
i=1

g(Si;$, $̂∗),

]
d→ χ2

(K−1)dz ,

30$1,0 is estimated with least-squares for each MCMC draw.
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where W =
(

1
n

∑n
i=1 g(Si;$, $̂∗)g(Si;$, $̂∗)

′)−1
with degrees of freedom determined by df =

(K − 1)dz.

The test statistic is distributed as a χ2
df with df degrees of freedom and it, in fact, indexed

Q(s) for each MCMC draw s (s = 1, . . . , S). The test is quite stringent in our case as a large

number of parameters is fixed so, it is not expected a priori that the test will indicate that

the moment conditions are satisfied under these restrictions. To simplify the presentation, as

Q
d→ χ2

(K−1)dz
it follows that Q

df

d→ G (df, df), a gamma distribution,31 whose 95% (90%) critical

value is approximately 1.17 (1.13).

Figure A.4. Diagnostic results via R2
∗ and Q/df.
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The generalized R-squared (R2
∗) whose marginal posterior is reported in panel (a) of Figure

A.4, is substantial for the nonlinear reduced form (NLRF) in (10) but, clearly, quite low for the

linear reduced form (LRF) in (9). In terms of the Sargan-Hansen statistic (Q/df) whose marginal

posteriors for LRF and NLRF are reported in panel (b), the LRF clearly fails the test while the

NLRF clearly passes the test. This is surprising, as we have fixed a large number of parameters in

31This can be shown using a simple change of variables technique.



DEA AND SFA 43

(10) or (A.9) to implement this test, which testifies to the fact that such semiparametric functional

forms perform well.
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A.6. Aspects of the Least Favorable Priors

As discussed in the methodology section, a range of priors could be used to the inform the

ANN that is deployed and one means to adjudged various priors is through implementation of a

LFP. Here we do this by looking at the maximization of ρ(δ) over the (J − 1)-dimensional simplex

is performed using a Nelder-Mead algorithm. We use 10,000 draws for the Monte Carlo part. We

set up a grid of 20 values for a and b in the interval [−2, 2] and another 20 values for h in the

interval (0, 5]. After locating approximate minimax values we use a grid of 50 points for a, b, and

h in the neighborhood of the previously located minimax values. We refer to this as LFP-I.

Our prior for the scale parameter is 0.1
σ2
u
∼ χ2

1. Our prior for γ is

(A.14) γ|a, b, h, {ûi} ∼ N (a+ bγ̂, h2S),

where γ̂ is the least squares estimator of γ from a regression of ln 1−e−ûi
e−ûi

on wi, and S is its

covariance matrix. We will call this LFP-II. The role of a, b, and h is practically the same as

before with the difference that now we adjust the least squares estimates of the parameter vector

γ from DEA.

Aspects of LFP-I are presented in Figure A.5 (using interpolation).

The marginal posterior densities of a, b, and h are reported in panels (g), (h), and (i) of Figure

A.5 while in the other panels of Figure A.5 we report aspects of their joint bivariate densities (using

interpolation). With the exception of the pair (b, h) the bivariate densities are multimodal and

asymmetric with a positive relation between (a, b) and (a, h) near the dominant models. The

relationship between b and h in panel (f) is positive and nearly symmetric.

Using the same minimax procedure as before, aspects of LFP-II for a, b, and h and the results

are reported in Figure A.6.

In Figure A.6 we report the same aspects for the second version, LFP-II. Pairs (a, b) and (a,

h) seem to be nearly independent whereas there is a strong nonlinear relationship between b and h

(panel (f)). As a result, the marginal posterior of h in panel (i) is asymmetric and bimodal while

marginal posteriors of a and b in panels (g) and (h) appear nearly symmetric.

From Figures A.5 and A.6, the location parameter a is negative (averaging, approximately,

-0.38 and -0.75 in the two LFPs), parameter b is close to 0.5 and 2 respectively, while the scale
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Figure A.5. Aspects of the least-favorable prior, LFP-I
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Figure A.6. Aspects of alternative least-favorable prior, LFP-II
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parameter h averages 0.8 and 2, respectively. In both cases, the rescaling of DEA scores is based

on a scale parameter h that exceeds one with significant probability. So, DEA scores are adjusted

in a somewhat complicated manner which is not unexpected.
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