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Abstract

Sustainable production requires that firms produce good outputs in ways that min-
imise the production of bad outputs (e.g., produce electricity in ways that minimise
greenhouse gas emissions). Many decision-makers would like statisticians to measure
changes in productivity in a way that will reflect well on firms that adopt sustainable
production practices. In this paper I describe an approach to building so-called sus-
tainable productivity indexes. This necessarily involves assigning weights to different
inputs and outputs. I assign these weights in such a way that the indexes satisfy a set
of basic axioms from index theory. I illustrate the properties of different indexes using
a toy data set. I discuss ways in which statisticians can assess the sensitivity of index
numbers to the choice of weights. Finally, I compute sustainable productivity index

numbers for sixteen sectors of the Australian economy.

IT acknowledge the helpful comments received from participants in the 7th meeting of the OECD
Network on Agricultural TFP and the Environment, held on 5-6 December, 2022. All errors are my own.



1. Introduction

According to the (OECD) (2001, p.11) “productivity is commonly defined as a ra-
tio of a volume measure of output to a volume measure of input use ...there is no
disagreement on this general notion”. Many decision-makers are concerned about the
production of bad outputs (e.g., heavy metals, non-biodegradable plastics, greenhouse
gases). Consequently, they would like statisticians to measure productivity in such a
way that if inputs and good outputs are unchanged, then measures of productivity will
increase as bad outputs fall. Most, if not all, of the measures that have been developed
to date have serious shortcomings. The measures I propose in this paper overcome these
shortcomings.

Pittman| (1983) was one of the first to incorporate bad outputs into measures of
productivity change. The productivity index he developed has the same form as the
multilateral index of (Caves et al.| (1982b) except that bad outputs are valued at shadow
prices instead of (nonexistent) market prices. The Pittman index has two shortcomings.
First, it does not satisfy a proportionality axiom. This axiom says, for example, that if
firm B used twice as much of every input to produce the same outputs as firm A, then
the productivity index must say that firm B is half as productive as firm A. The Pittman
index will generally say something else. Second, like most multilateral indexes, the
Pittman index was designed to make comparisons of productivity across space; it cannot
be used to also make comparisons across time (e.g., it cannot tell us whether a firm was
more or less productive in period 3 than it was in period 1).

More than a decade later, |Shaik| (1998) introduced bad outputs into the Malmquist
productivity index of Caves et al. (1982ad). His so-called Malmquist environment-
adjusted productivity index also has two shortcomings. First, except in very restrictive
special cases (e.g., input and output sets are homothetic and production frontiers exhibit
constant returns to scale), Malmquist productivity indexes cannot be written as mea-
sures of output volume change divided by measures of input volume change (i.e., they
are not, in fact, measures of productivity change). Second, even in special cases where
they are measures of productivity change, they do not satisfy a transitivity axiom. In
a cross-section context, for example, this axiom says that a direct comparison of the
productivity of two firms should yield the same index number as an indirect comparison
through a third firm. For example, if an index says that firm A is twice as productive as
firm B, and that firm B is three times more productive than firm C, then it must also say
that firm A is six times more productive than firm C.

More recently, Burgess and Heap| (2012)) constructed a productivity index by com-

bining a social index, an economic index and an environment index. The social index



is a measure of changes in years of adult schooling, expected years of child schooling,
and life expectancy. The economic and environment indexes are measures of changes
in GDP per capita and greenhouse gas (GHG) emissions per capita. Again, this index
has two shortcomings. First, the life expectancy variable is transformed using common
logarithms before being standardised to have a mean of one and a standard deviation of
one-third, while the two schooling variables are merely standardised. This means the
social index (and therefore the productivity index) does not satisfy a commensurability
axiom. This axiom say that the value of the index must be invariant to changes in units
of measurement (e.g., it says that if years of schooling and life expectancy are measured
in months instead of years, then the index numbers must not change). Second, both the
economic index and the environment index ignore inputs of capital. This means that the
productivity index will measure the benefits of new capital investments (i.e., increases
in good outputs and decreases in bad outputs) but will not account for the costs. This
incentivises decision-makers to overinvest in capital.

Most recently, Cardenas Rodriquez et al. (2018) use a growth accounting methodol-
ogy to develop a measure of environmentally-adjusted multifactor productivity growth.
This measure is equal to the rate of growth in good outputs minus a weighted sum of
rates of growth in bad outputs and inputs. Again, this measure has two shortcomings.
First, the weight attached to the inputs is estimated in a regression framework and is gen-
erally not equal to one (in their empirical application, it is equal to 0.7ﬂ This means
their measure does not satisfy the proportionality axiom. If in a given period a firm used
twice as much of every input to produce the same outputs it had produced in the previous
period, then we would want all measures of productivity growth to say that productivity
had fallen by 50%. However, because it fails the proportionality axiom, the (Cardenas
Rodriquez et al. (2018]) measure will say something else (if the weight attached to inputs
is 0.7, then it will say that productivity had fallen by only 1 - 1/2%7 = 38%). Second,
growth rates are only suitable for making comparisons over time; they cannot be used
to make comparisons across space (e.g., they cannot be used to say whether firm A is
more or less productive than firm B).

Other attempts to include bad outputs in measures of productivity change are similar
to the ones just described, and they have similar shortcomings. In this paper I overcome

these shortcomings by defining a sustainable productivity index (SPI) to be any variable

2See their equation (8) and the first row of numbers in their Table 2.



of the form:

GIl—ap[—«
SPI = 7 (D

where GI is an index that measures changes in the volume of good outputs, Bl is an
index that measures changes in the volume of bad outputs, X/ is an input volume index,
and a € [0,1] is a parameter that measures the extent to which we want to account for
bad outputs. If o = 0, then bad outputs are ignored and the index collapses to a total
factor productivity index (TFPI). If @ = 1, then good outputs are ignored and the index
collapses to a measure of changes in input use and the production of bad outputs.

The structure of the paper is as follows. In Section 2 I discuss different types of vol-
ume indexes. I focus on indexes that are proper in the sense that they satisfy a set of six
axioms from index theory, including proportionality, transitivity and commensurability.
In Section 3 I argue that there is no such thing as a ‘correct’ volume index. Rather, the
choice of index is a matter of taste. I then show how to assess the sensitivity of index
numbers to the choice of index. In Section 4 I discuss methods for choosing the value
of . One method involves estimating shadow output prices and associated average
shadow revenue shares. Another method involves regressing the logarithm of a TFP
index on a function of good and bad outputs. In Section 5 I discuss a practical method
that can be used by statisticians to assess the sensitivity of SPI numbers to the choice
of a. In Section 6 I demonstrate how national accounts data can be used to implement
some of these methods. I compute SPI numbers for the sixteen sectors of the Australian
economy and find that accounting for bad outputs generally leads to lower estimates of
productivity growth. For example, if I ignore bad outputs, then I find that productivity
in the agriculture, forestry and fishing sector increased by 26% between 1995 and 2005.
However, if I account for GHG emissions, then I find that productivity in the sector fell
by 6.2% in that period.

2. Proper Volume Indexes

Computing measures of output and input volume change involves assigning numbers
to baskets of outputs and inputs. Measurement theory says that so-called index numbers
must be assigned in such a way that the relationships between the numbers reflect the
relationships between the baskets (see, for example, Tal, 2016, Section 3). To illustrate
this basic principle, consider the baskets of maple syrup and Vegemite and the five
associated sets of volume index numbers presented in Table|l} These numbers have been

computed as ratios of weighted averages: the Lowe index numbers have been computed



as ratios of weighted arithmetic averages using average market prices as weights; the
geometric Young (GY) numbers have been computed as ratios of weighted geometric
averages using average value shares as weights; the additive data envelopment analysis
(ADEA) numbers have been computed as ratios of weighted arithmetic averages using
averages of data envelopment analysis (DEA) estimates of shadow prices as weights;
the multiplicative data envelopment analysis (MDEA) numbers have been computed as
ratios of weighted geometric averages using averages of DEA estimates of shadow value
shares as weights; and the benefit-of-the-doubt (BOD) numbers have been computed as
ratios of weighted arithmetic averages using weights that vary from one basket to the
next. Technical details concerning each of these indexes can be found in |(O’Donnell
(2018, Chs. 3, 6). More important than the way they have been computed is the fact
that they are all consistent with measurement theory: in any given column, the number
assigned to basket W is twice as large as the number assigned to basket A, reflecting
the fact that basket W contains twice as much syrup and Vegemite as basket A; and the
number assigned to basket M is the same as the number assigned to basket R, reflecting
the fact that both baskets contain the same amounts of the two products.

The Lowe, GY, ADEA, MDEA and BOD indexes are examples of what O’Donnell
(2016, 2018) calls ‘proper’ indexes. They are proper in the sense that they satisfy the six
axioms listed in (O’ Donnell (2018, Ch. 3): weak monotonicity, homogeneity, commen-
surability, proportionality, time-space reversal, and transitivityE] These six axioms only
say something about volumes. This means they are weaker than many of the axioms
that are described elsewhere in the index literature: those axioms say something about
prices as well as volumes and, because they cannot all be satisfied simultaneously, they
are often referred to as tests; for more details, see, for example, Eichhorn| (1976) and
Funke et al.[(1979). Importantly, all volume indexes that satisfy the O’Donnell axioms
(i.e., all proper volume indexes) yield numbers that are consistent with measurement
theory.

Unfortunately, most economists and statistical agencies use volume indexes that are
not proper. This means they assign volume index numbers in ways that are not consis-
tent with measurement theory. To illustrate, consider the baskets of syrup and Vegemite
and the six associated sets of volume index numbers presented in Table |2 The numbers

in this table were computed using indexes that are widely used in economics: the Fisher

30’Donnell (2018, Ch. 3) refers to commensurability as homogeneity type II. O’ Donnell (2016) also
lists an identity axiom and a circularity axiom. Identity is a special case of proportionality corresponding
to a factor of proportionality equal to one. Identity and transitivity together imply circularity. Thus, the
six axioms in (O’ Donnell (2018, Ch. 3) are satisfied if and only if the eight axioms in /O’ Donnell| (2016)
are satisfied.



Table 1: Proper Volume Index Numbers

Basket Contents Lowe GY ADEA MDEA BOD
A @ z T 1 1 1
M @ ESE 202 1779 2103 1892 2048
R @ EESE 2032 1779 2103 1892 2048
W ¢ ¢ g8 > 2 2 2 2

Source: The Lowe, GY and BOD numbers are from |O’Donnell{ (2018), Tables 1.3 and 3.1).

index is a type of “superlative” index that uses market prices as weights; the Tornqvist
index is another type of superlative index that uses value shares as weights; the chained
Fisher (CF) and chained Tornqvist (CT) indexes treat the observations in the dataset
as a time series and chain together adjacent pairs of Fisher and Tornqvist index num-
bers; and the Elteto-Koves-Szulc (EKS) and Caves-Christensen-Diewret (CCD) indexes
treat the observations as a cross-section and take geometric averages of sets of Fisher
and Tornqgvist index numbers. Again, technical details concerning these indexes can
be found in |O’Donnell (2018, Ch. 3). Importantly, none of them are proper indexes
and, consequently, none of them yield numbers that are consistent with measurement
theory: observe, for example, that the Tornqvist index number assigned to basket M
differs from the number assigned to basked R, even though both baskets contain the
same amounts of the two products; the CT index number assigned to basket R is 4.914
times larger than the number assigned to basket A, even though basket R contains less
than three times as much syrup and Vegemite as basket A; and the EKS index number
assigned to basket W is 2.027 times larger than the number assigned to basket A, even
though basket W contains exactly twice as much syrup and Vegemite as basket A. This
is nonsense. The basic problem is that the Fisher and Torngvist indexes do not satisfy
the transitivity axiom, and the CF, CT, EKS and CCD indexes do not satisfy the propor-
tionality axiom. It would be reasonable to ask why statisticians and economists continue
to use these indexes when so many proper alternatives are available. There are several
(poor) reasons.

First, the easiest way to construct proper volume indexes is to use constant weights.
Fisher (1922, pp. 274, 275) claims that “the only formulae [that satisfy transitivity]
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Table 2: Other Volume Index Numbers

Basket Contents Fisher Tornqvist CF CT EKS CCD
A a @ 1 1 1 1 1 1
M @ @@@ 1.892  1.879 2389 4.068 1.942 2.088
R “} @@@ 1.893  1.880 2.854 4914 1.943 2.089
W @ Q @@ 2 2 3.642 6.734 2.027 1.971

Source: |(O’Donnell| (2018}, Tables 1.3 and 3.2).

are index numbers that have constant weights ... But, clearly, constant weighting is not
theoretically correct”. |Frischl (1936, p.6) backs him up by claiming that “it is absurd to
assume constant [weights]”. Today’s economists continue to parrot these claims (e.g.,
Diewert and Fox|, 2017, p.279; Fare and Zelenyuk, 2021, p.113). The problems with
these claims are that: (a) we do not, in fact, need constant weights in order to satisfy
transitivity, as evidenced by the fact that BOD indexes are transitive and use variable
weights; (b) there are no economic or statistical theories that say different sets of weights
must be used for different comparisons; and (c) there is nothing absurd about someone
making up their mind about the relative importance of different outputs/inputs and not
changing their mind as they look from one output/input bundle to the next.

Second, the US Bureau of Economic analysis (BEA) once measured changes in
real GDP by updating the weights in a fixed-weight index every 5 years. However, in
1996 the BEA switched to using a CF index. |Landefeld et al.| (1995, p.31) defended
this switch by saying “[the] use of fixed-weighted measures of real GDP ...causes
an overstatement of growth for periods after the base year and an understatement of
growth for periods before the base year ... [the] BEA’s alternative chain-type measure

..provides unbiased estimates of growth [and] will eliminate the inconvenience and
confusion associated with ...rewriting economic history ...every 5 years”. The prob-
lems with these arguments are that: (a) economists only need to change the weights in
fixed-weight indexes if they change their minds about the relative importance of differ-
ent outputs/inputs; (b) proper fixed-weight measures of volume change may overstate
or understate growth in values (something they are not designed to measure), but, unlike

most variable-weight indexes, they will never overstate or understate growth in volumes,
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as evidenced by the numbers in Tables (1| and [2; and (c) changing the weights might
change the way we view historical input and output bundles, but it does not change
those bundles (e.g., today’s economists may view nineteenth-century electricity-GHG
production plans very differently to the way economists viewed them at the time, but
that doesn’t change the volumes of electricity produced and GHGs emitted then or at
any time before or since).

Third, (Caves et al. (1982a) have a theorem that is often used to justify the use of
(variable-weight) Tornqvist indexes. Their Theorem 2 states that if (i) firms are price
takers in output markets, (ii) all firms successfully maximise revenue (i.e., they are
always technically and allocatively efficient), (iii) the period-1 and period-2 output dis-
tance functions are nondecreasing in outputs, and (iv) the period-1 and period-2 out-
put distance functions are translog functions with identical second-order coefficients,
then the Tornqvist index that compares outputs in period 1 with outputs in period 2 is
equivalent to a Malmquist index. Economists love this theorem because it means they
can effectively compute Malmquist indexes without having to estimate distance func-
tions. The problems are that: (a) there are few, if any, empirical studies that allow
for inefficiency and then go on to find that al/ firms are always technically and alloca-
tively efficient; (b) except in very restrictive special cases (i.e., homotheticity, etc.), the
Malmquist index is not a proper index, so no-one should care that a Tornqvist index
might sometimes be equal to a Malmquist index; and (c) if output distance functions
are nondecreasing in outputs, then they cannot be translog functions (O’Donnell, 2018,
p-100, fn. 17), so the theorem relies on assumptions that simply cannot be true.

Most recently, Rao (2022, pp. 803, 805) argues that “the Lowe index can lead
to strange ordering of output quantity vectors ...[and] may lead to counter-intuitive
conclusions”. To demonstrate, he considers a case where (i) a technically efficient firm
uses the same inputs to produce two outputs in two different periods, (ii) it is possible
to produce more outputs in period 2 than in period 1 due to technical progress, and (iii)
the firm produces more of output 2 and less of output 1 in period 2 than it did in period
1. The carefully-crafted case he considers is one where an increase in productivity due
to technical progress is exactly offset by a decrease in productivity due to diseconomies
of output substitution (i.e., the loss in productivity due to a change in the output mix).
Consequently, the Lowe index plausibly says there has been no output change, and
therefore no productivity change. Rao| (2022, p. 806) exclaims that “a shift in the
frontier should imply productivity change driven by technical change. However, the

"’

Lowe index shows no productivity change!” Interestingly, Rao could have used the same

argument to criticise indexes that are not proper indexes (e.g., the Laspeyres index, the



Paasche index, and, if there is no price change, the Fisher index). However, the main
problem with his argument is that he appears not to understand that the problem of
measuring productivity change (where measurement theory is relevant) is quite different
to the problem of explaining productivity change (where economic theory and statistical
methods are relevant). Relatedly, he fails to account for the fact that that economies
of substitution (i.e., changing the input mix and/or output mix) are important drivers
productivity change: livestock producers, for example, find that a one-bull-nine-cow
input mix is generally more productive than a nine-bull-one-cow input mix; and aircraft
component manufacturers generally find that a two-wings-one-tail output mix is better
than a one-wing-two-tails output mix.

Finally, some statisticians and economists may not be using proper indexes because
(a) they are not fully aware of the practical consequences of using indexes that are not

proper, (b) they may face bureaucratic inertia, or (c) they are incorrigible.

3. Assessing the Sensitivity of Volume Index Numbers to the Choice of Index

Countless proper volume indexes are available. The differences between them are
often due to the choice of weights. Growth accountants often argue that value shares
should be used as weights, while profit-maximising business owners often argue that
market prices should be used as weights. In the absence of data on value shares or
market prices, a production economist might argue that shadow prices should be used
as weights, while a government minister might argue that the weights should reflect
social or community values (e.g., willingness to pay for ecosystem services). In the
absence of any of this information, regression methods can be used to identify weights
that minimise the amount of variation in the log-index numbers, and linear programming
methods can be used to identify observation-varying weights that make each firm look
as productive as possible (i.e., weights that give managers the “benefit of the doubt”).
In practice, the choice of weights (and associated proper index) is a matter of taste.
Writing in a consumption context, [Samuelson and Swamy| (1974)) put it nicely when
they wrote that “we cannot hope for one ideal formula for the index number: if it works
for the tastes of Jack Spratt, it won’t work for his wife’s tastes” (p.568). In a production
context, we cannot hope for a correct set of weights or a correct volume index: a set
of weights and an index that works for the growth accountant may not work for the
business owner, the production economist, or the government minister.

In this context, decision-makers may want to know how sensitive volume index
numbers are to the choice of index and weights. The easiest way forward is to compute

many sets of index numbers and see how they vary. In practice, this can be done in



several ways. If, for example, market prices (or shadow prices) are available, then we
can compute at least as many sets of index numbers as there are observations in the
dataset. To illustrate, I used artificial (or ‘toy’) volume and market price data on five
firms in five periods (i.e., 25 observations) to compute 50 sets of volume index num-
bers. The data were the good-output data reported in Appendix A. The indexes were 25
additive indexes and 25 multiplicative indexes. Additive indexes are ratios of weighted
arithmetic means, while multiplicative indexes are ratios of weighted geometric means;
for more details, see |O’Donnell (2018, Ch. 3). Descriptive statistics for selected index
numbers are reported in Table[3] The interpretation of these statistics is straightforward:
the statistics in row M, for example, reveal that the 50 additive and multiplicative index
numbers that compare the good outputs of firm 3 in period 3 with the good outputs of
firm 1 in period 1 have a mean of 1.905 and a standard deviation of 0.363. Some index
numbers are evidently more sensitive than others to the choice of index and weights.
The degree of sensitivity largely depends on whether the output mix of the comparison
firm/period is close to the output mix of firm 1 in period 1 (the reference firm/period).
Some of the standard deviations in Table [3|are zero because the output mixes are identi-
cal. Histograms and density plots can be used to convey similar information. Figure
for example, presents a histogram and density plot for the index number that compares
the outputs of firm 3 in period 3 with the outputs of firm 1 in period 1. For comparison
purposes, this figure also reports the Lowe and GY index numbers (2.032 and 1.779
respectively). Note from Appendix A that the outputs of firm 3 in period 3 are the same
as the outputs of firm 2 in period 4. Thus, Figure[]is also the histogram and density plot
for the index number that compares the outputs of firm 2 in period 4 with the outputs of
firm 1 in period 1.

Many proper volume indexes are constructed using weights that have been estimated
using some type of statistical procedure. ADEA indexes, for example, are constructed
using non-parametric estimates of shadow prices, BOD indexes are constructed using
non-parametric estimates of observation-varying weights, and it is possible to construct
multiplicative indexes using weights that have been estimated econometrically. Stan-
dard errors and other measures of reliability associated with these estimates can be used
to measure the reliability of the associated index numbers. To illustrate, I used the good-
output data in the toy dataset to compute a set of BOD volume index numbers. I then
used the dea.boot function in the software of Bogetoft and Otto (20135) to generate
10,000 sets of index numbers. Table 4 reports descriptive statistics for selected index
numbers. Figure [2] presents a histogram and density plot for the index number that

compares the outputs of firm 3 in period 3 with the outputs of firm 1 in period 1. For
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Table 3: Descriptive Statistics for 50 Sets of Additive and Multiplicative Index Numbers

Percentiles
Row Firm Period Mean SD 25% 25% 50% 5% 97.5%
A 1 1 1 0 1 1 1 1 1
B 2 1 1 0 1 1 1 1 1
C 3 1 2.37 0 237 237 237 237 237
D 4 1 2.11 0 2,11 211 211 2.11 2.11
E 5 1 2.665 0.329 1.870 2.483 2.674 2901 3.175
M 3 3 1.905 0.363 1.066 1.674 1952 2.137 2.507
A% 1 5 2.778 0.767 1.137 2.247 2941 3.320 4.139
W 2 5 2 0 2 2 2 2 2
X 3 5 1 0 1 1 1 1 1
Y 4 5 1 0 1 1 1 1 1
V4 5 5 2.665 0.329 1.870 2.483 2.674 2901 3.175
<
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Figure 1: Distribution of 50 Additive & Multiplicative Index Numbers That Compare
the Outputs of Firm 3 in Period 3 With the Outputs of Firm 1 in Period 1
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comparison purposes, this figure again presents the values of the Lowe and GY indexes.
Note that the density in Figure[I]is reasonably symmetric, while the density in Figure 2]
is right-skewed. However, the modes of the two densities are similar.

Table 4: Descriptive Statistics for 10,000 Sets of BOD Index Numbers

Percentiles

Row Firm Period Mean SD 25% 25% 50% T75% 97.5%
A 1 1 1 0 1 1 1 1 1
B 2 1 1 0 1 1 1 1 1
C 3 1 2.37 0 237 237 237 237 2.37
D 4 1 2.11 0 2,11 211 211 2.11 2.11
E 5 1 2.846 0.186 2554 2.735 2.810 2926 3.328
M 3 3 2.199 0.201 1.897 2.059 2.162 2299 2.711
\Y 1 5 3.664 0.402 3.032 3.382 3.600 3.899 4.638
\\% 2 5 2 0 2 2 2 2 2
X 3 5 1 0 1 1 1 1 1
Y 4 5 1 0 1 1 1 1 1
Z 5 5 2.846 0.186 2.554 2.735 2.810 2.926 3.328

4. Choosing the Value of o

Any volume indexes can be used to build the SPI defined by equation |1} If the vol-
ume indexes satisfy the six axioms listed in |O’Donnell (2018, Ch. 3) (i.e., if they are
proper indexes), then the SPI will satisfy five axioms: weak monotonicity, commensura-
bility, proportionality, time-space reversal, and transitivityE] Formal definitions of these
axioms are provided in Appendix B. The weak monotonicity axiom says, among other
things, that productivity doesn’t fall when a firm uses fewer inputs to produce more good
outputs and/or fewer bad outputs. The commensurability axiom says that the value of
the index is invariant to changes in units of measurement. The proportionality axiom
tells us what happens to productivity if all outputs and inputs are scaled up or down;
whether productivity rises or falls depends on the value of a. The time-space-reversal

axiom says that the SPI number that compares firm i in period ¢ with firm k in period s is

41t will also satisfy an homogeneity axiom that is analogous to the one listed in O’ Donnell (2018, Ch.
3). However, the homogeneity axiom is implied by the proportionality and transitivity axioms.
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Figure 2: Distribution of 10,000 BOD Index Numbers That Compare the Outputs of
Firm 3 in Period 3 With the Outputs of Firm 1 in Period 1.

the reciprocal of the number that compares firm & in period s with firm i in period 7 (i.e.,
when the reference and comparison observations are flipped). Finally, the transitivity
axiom says that a direct comparison of the productivity of two firms/periods must yield
the same index number as an indirect comparison through a third firm/period.

In practice, we need to choose the value of a. Again, there is no correct value — the
choice is a matter of taste. If a decision-maker does not prescribe the value of o, then
there are at least two ways we could proceed. First, if bad outputs are freely disposable,
then we could estimate the shadow prices of good and bad outputs, and then set & to the
average estimated shadow value share of bad outputs. The problem with this approach
is that bad outputs are generally not freely disposable. Second, whether or not bad
outputs are freely disposable, we could set & to the value that minimises the amount of
variation in the log-SPI numbers. This involves rewriting equation (IJ) in the form of the

following regression model:
InGI —InXI = a[InGI+1nBI| +e (2)

where e = InSPI is an unobserved variable that in any other context would be inter-
preted as statistical noise. The dependent variable in this model is the logarithm of a
proper TFP index. The explanatory variable is the logarithm of a measure of change in
total output. Estimates of & can be obtained using least squares methods. However, in
many empirical applications the associated confidence intervals will extend beyond the

unit interval. The most satisfactory way of solving this problem is to estimate ¢ in a
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Bayesian framework using a prior that assigns zero probability to any value of « that
lies outside the unit interval (or, for that matter, any subinterval of the unit interval that
reflects the views of decision-makers).

To illustrate, I considered the toy dataset and an SPI comprising a GY good-output
volume index, an MDEA bad-output volume index, and a GY input volume index. I then
used Bayesian methods to estimate the value of ¢ in equation (2)). I assumed that the
unobserved “noise” variables in the model were independent normal random variables
with mean zero and constant variance, and I used a prior that assigned zero probability
to values of a outside the unit interval. I generated an MCMC chain of length 5,000
using the sampling package of Plummer (2019). The mean of the 5,000 MCMC draws
was 0.336. Selected SPI numbers computed using & = 0.336 are reported in Table [5]
For convenience, this table also reproduces the volume data from Appendix A — this
makes it easier to confirm that the SPI numbers are sensible. Observe, for example,
that the SPI number in row B is 1/0.56 = 1.786, reflecting the fact that firm 2 used
1 —0.56 = 44% fewer inputs than firm 1 to produce the same outputs. Also observe that
the SPI number in row W is 2/0.919 = 2.176, reflecting the fact that, in period 5, firm
2 used 1 —0.919 = 8.1% less input to produce twice as much good output and half as
much bad output as firm 1 in period 1. As a final example, observe that the SPI number
in row Z is half as large as the number in row E, reflecting the fact that, in period 5,
firm 5 used twice as much input to produce exactly the same outputs it had produced in

period 1.

5. Assessing the Sensitivity of SPI Numbers to the Choice of «.

Decision-makers may want to know how sensitive SPI numbers are to the choice
of ar. Again, the easiest way forward is to choose many values for & and see how the
associated sets of index numbers vary. These many values could be chosen in at least
three ways. First, since the choice of « is a matter of taste (or politics), one possibility
is to simply ask a small number of decision-makers what values they would choose.
Second, if we used the average estimated shadow value share of bad outputs as an
estimate of &, we could use each estimated share that was used in the calculation of
the average. Finally, if we used Bayesian methods to estimate ¢, and if we estimated
the posterior pdf using MCMC sampling, then we could use each of the MCMC draws.

To illustrate, I used the toy dataset and the 5,000 MCMC draws described in the pre-
vious section to estimate the posterior pdfs of SPI numbers that compare the productivity
of each firm in each period with the productivity of firm 1 in period 1. Characteristics

of selected pdfs are reported in Table [f] Observe that some of the estimated pdfs are
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Table 5: SPI Numbers Computed Using a Bayesian Estimate of o

Row Firm Period g1 2 by by X1 X2 SPI

A 1 1 1 1 1 1 1 1

B 2 1 1 1 1 1 056 056 1.786
C 3 1 237 237 1 1 1 1 1.770
D 4 1 211 211 04 04 105 07 2693
E 5 1 1.81 362 03 04 105 0.7 3.299
M 3 3 1 3 14 16 1354 1 1.133

1 5166 18 1.5 1 1 1.490
2 2 05 05 0919 0919 2.176
1 1 3 27 1464 0215 1.446
1 1 1 1 074 074 1351
81 362 03 04 21 1.4 1.649

N=<X=E<-
DA W =
VTV

1.

degenerate. For example, and for reasons given earlier, the estimated pdf of the SPI
number that compares firm 2 in period 5 with firm 1 in period 1 has support only at
2/0.919 = 2.176. More information can sometimes be obtained from posterior density
plots. For example, Figure 3| plots the estimated posterior density for the SPI number
that compares firm 3 in period 3 with firm 1 in period 1. This figure and the results
reported in row M of Table [ indicate that there is a better than 75% chance that firm 3
in period 3 was more productive than firm 1 in period 1 (the area under the density to
the right of 1.0 is slightly greater than 0.75).

6. Productivity Change in the Market Sectors of the Australian Economy

The Australian economy comprises sixteen market sectors that use different types
of capital, labour and other inputs to produce a wide range of products and services. Im-
portantly, the types of inputs that are used in any one sector are generally quite different
from the types of inputs that are used in any other sector: the tractors and other types
of capital used in the agriculture sector, for example, are quite different from the rock
drills and other types of capital used in the mining sector, and the types of labour used in
the transportation sector are quite different from the types of labour used in the arts and
recreation services sector. For this reason, it is not meaningful to compare levels of pro-
ductivity across sectors (e.g., it is not meaningful to compare tonnes of coal per miner

with the number of concertos per orchestra). Consequently, I measured productivity
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Table 6: Characteristics of Estimated Posterior Densities of SPI Numbers

Percentiles
Row Firm Period Mean SD 25% 25% 50% T75% 97.5%

A 1 1 1 0 1 1 1 1 1
B 2 1 1.786 0 1.786 1.786 1.786 1.786 1.786
C 3 1 1.770 0.200 1.389 1.635 1.755 1.899 2.184
D 4 1 2.693 0.060 2.581 2.652 2.694 2732 2.820
E 5 1 3.299 0.064 3.178 3.255 3.299 3.340 3.434
M 3 3 1.133 0.142 0.865 1.036 1.121 1.224 1.429
A% 1 5 1.490 0.271 1.003 1.302 1.461 1.658 2.074
\%% 2 5 2.176 0 2176 2.176 2.176 2.176 2.176
X 3 5 1.446 0.201 1.071 1.308 1.428 1.574 1.868
Y 4 5 1.351 0 1.351 1.351 1.351 1.351 1.351
Z 5 5 1.649 0.032 1.589 1.627 1.650 1.670 1.717

0 |

N

o |

N

w ]

o |

© |

o

o

T T | | 1
0.8 1.0 1.2 1.4 16

Figure 3: Estimated Pdf of the SPI Number That Compares Firm 3 in Period 3 With
Firm 1 in Period 1.
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change in each sector separately.

The dataset contained twenty-five observations on the volume of one good output
(market goods and services), the volume of one bad output (direct GHG emissions) and
the volumes and cost shares of three inputs (capital, labour and other inputs) for each
market sector over the financial years from 1995 to 2019. The good output and input
data were compiled from national accounts data published by the Australian Bureau
of Statistics (ABS). The bad output data were compiled from data published by the
Australian Department of Industry, Science, Energy and Resources (ADISER).

The first step in constructing an SPI involves choosing the good output, bad output
and input volume indexes. There was only one good output and one bad output in each
sector, so all good and bad output volume indexes yield the same numbers. Thus, I
only needed to choose the input volume index. I chose the GY input volume index
over other indexes because the Australian government appears to have a preference
for using cost shares as measures of input value, as evidenced by the fact that most
Australian government agencies currently compute measures of input volume change
using Tornqvist, CT or CCD indexes. All of those indexes use cost shares as weights.
However, they are not proper indexes. The GY index is a proper index that uses average
cost shares as weights.

The second step in constructing an SPI involves choosing the value of «. I chose to
set o in each sector to the value that minimises the amount of variation in the log-SPI
numbers. [ again estimated equation (2)) in a Bayesian framework under the assumption
that the unobserved noise variables were independent normal random variables with
mean zero and constant variance. However, my knowledge of Australian politics led me
to believe that any value of o less than 0.1 would be unacceptable to many members
of the Australian community (and parliament), and any value greater than 0.5 would
“scare the horses”. I therefore used a prior that assigned zero probability to values of
o outside the interval from 0.1 to 0.5. For each sector, I generated an MCMC chain
of length 10,000 using the sampling package of Plummer (2019). Figure ] summarises
the results for (a) the agriculture, forestry and fishing sector and (b) the mining sector.
Figures that summarise the results for other sectors are presented in Appendix C. The
left-hand panels in these figures plot the evolution of the MCMC chains; they indicate
that the chains are stationary. The right-hand panels are the estimated posterior pdfs for
o. In the case of the agriculture, forestry and fishing sector (resp. mining sector), the
mean and standard deviation of the estimated posterior pdf were 0.426 and 0.055 (resp.
0.112 and 0.012).

For each sector, I used the 10,000 MCMC draws to estimate the posterior pdfs of

17



0.5

0.3 0.4

0.2

0.14 0.18 0.22

0.10

0

T T T T T
2000 4000 6000 8000 10000

Iterations

(a) Agriculture, Forestry and Fishing: Mean

40 50 60

30

20

10

0

T T T T T
2000 4000 6000 8000 10000

Iterations

(b) Mining: Mean = 0.112; St.

\ \ \ \ \
0.1 0.2 0.3 0.4 0.5

N =10000 Bandwidth =0.00925

= 0.426; St. Dev. = 0.055.

T T T
0.10 0.15 0.20

N =10000 Bandwidth =0.001591

Dev. = 0.012.

Figure 4: MCMC Chains and Estimated Posterior Pdfs.
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SPI numbers that compare productivity in each year with productivity in 1995. Charac-
teristics of estimated posterior pdfs (i.e., means, standard deviations and percentiles) for
each sector are reported in tabular form in Appendix D. Figure [5|summarises the results
for (a) the agriculture, forestry and fishing sector and (b) the mining sector. Figures that
summarise the results for other sectors are presented in Appendix E. The solid lines in
these figures are the means of the posterior pdfs. The shaded areas are 95% highest
posterior density intervals (the Bayesian equivalents of confidence intervals). For com-
parison purposes, Figure[5]also presents TFPI numbers (i.e., the numbers obtained when
a is set to zero and GHG emissions are ignored). The TFPI numbers in panel (a) of Fig-
ure [5] indicate that productivity in the agriculture, forestry and fishing sector increased
by 26% between 1995 and 2005. However, the SPI numbers indicate that productivity
in the sector fell by 6.2% in that period. The TFPI numbers in panel (b) indicate pro-
ductivity in the mining sector fell by 15% between 1995 and 2019. However, the SPI
numbers indicate that productivity in the sector fell by 28.7%.

7. Conclusion

My aim in this paper was to build productivity indexes in such a way that if volumes
of inputs and good outputs remained unchanged, then productivity numbers would in-
crease as volumes of bad outputs fell. The first step involved measuring changes in
volumes of inputs, good outputs and bad outputs. Many volume indexes are available,
and the choice of index is a matter of taste. Unfortunately, most economists and statisti-
cal agencies have a taste for indexes that produce nonsensical numbers. When choosing
a volume index, the overriding consideration should be whether the index produces
numbers that are consistent with measurement theory (i.e., whether the patterns in the
numbers mirror the patterns in the volumes). Only proper indexes can do this. For no
good reason, the volume indexes that are most widely chosen by economists and statis-
tical agencies are not proper indexes, and they do not yield numbers that are consistent
with measurement theory. As tasty as economists and statisticians may find them, they
are bad for economics and should be taken off the menu.

The second step in building a so-called sustainable productivity index (SPI) involved
combining the good output and bad output volume indexes into a total output index. In
turn, this involved choosing the value of a parameter, o € [0, 1], that measured the extent
to which the total output index accounted for bad outputs. In practice, the choice of « is
again a matter of taste (or politics). If a decision-maker does not prescribe a value for o,
then one possibility is to set & to the value that minimises the amount of variation in the

log-SPI numbers. This can be done using regression methods. In this paper, I suggested
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that o be estimated in a Bayesian framework using a prior that assigns zero probability
to any value of o that lies outside the unit interval, or, for that matter, any subinterval
of the unit interval that reflects the views of decision-makers. One of the advantages of
estimating o in this way is that it is possible to compute measures of reliability for SPI
numbers.

To illustrate the methodology, I used data from the Australian system of national
accounts and the Australian national inventory of greenhouse gas (GHG) emissions to
compute SPI numbers for sixteen sectors of the Australian economy. I found that SPI
numbers were generally lower than total factor productivity index (TFPI) numbers (i.e.,
measures of productivity change that ignore bad outputs). For example, the SPI numbers
indicate that productivity in the mining sector fell by 28.7% between 1995 and 2019,
whereas the TFPI numbers indicate that productivity fell by only 15%.

Measuring changes in productivity is one thing. Explaining those changes is an
entirely different matter. |(O’Donnell| (2022) used stochastic production frontier mod-
els to explain variations in the TFPI numbers reported in this paper. The same models
can be used to explain the SPI numbers. If this were done, then the estimated rates
of technical progress, environmental change and technical efficiency change would be
exactly the same as those reported in|O’Donnell (2022). The only driver of productivity
change that would differ would be the measure of scale and mix efficiency change (i.e.,
the measure of economies and diseconomies of scale and substitution). Interestingly,
some authors define productivity change in way that deliberately ignores this compo-
nent. For example, rather than define productivity change to be a measure of output
volume change divided by input volume change, Diewert (1992, p.228) writes that “a
change in productivity is taken to be a shift in the production function” (i.e., a measure
of technical change), while Fare et al. (1994, p.72) “define productivity growth as the
product of [technical] efficiency change and technical change”. This suggests that the
first step in building a productivity index should, in fact, be defining what is meant by

the terms ‘productivity’ and ‘productivity change’
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Appendix A

Toy Data’
Volumes Prices
Goods Bads Inputs Goods Inputs
Row Firm Period g1 &2 b 1 bz X1 X2 P1 )2 w1 wo

A 1 1 1 1 1 1 1 1 0.57 041 0.28 1.91
B 2 1 1 1 1 1 056 056 026 025 0.22 0.58
C 3 1 237 237 1 1 1 1 0.57 041 0.28 1.91
D 4 1 211 211 04 04 105 07 0.58 0.53 0.16 0.41
E 5 1 1.81 3.62 03 04 1.05 0.7 0.26 026 0.07 1.02
F 1 2 1 1 1.6 2.8 099 0316 0.59 0.76 0.24 0.29
G 2 2 1.777 3503 1.7 1.6 1472 0546 0.63 0.65 0.16 0.16
H 3 2 09 094 1.1 1.3 0.017 0346 034 031 0.17 0.70
I 4 2 5.82 0.001 09 0.7 4545 001 046 058 0.27 0.39
J 5 2 6.685 0.001 09 13 445 0.001 0.61 143 0.29 0.79
K 1 3 1.381 4732 1.1 1.8 1 1 0.57 041 0.28 1.91
L 2 3 0.566 4.818 2.8 2.5 1 1 049 0.65 0.21 0.56
M 3 3 1 3 14 1.6 1.354 1 0.51 046 0.16 0.74
N 4 3 0.7 0.7 09 2 033 0.16 052 023 0.24 2.30
(0) 5 3 2 2 1.1 2 1 1 037 0.17 0.24 0.15
P 1 4 1 1 24 4.6 0.657 0479 041 076 0.26 0.61
R 2 4 1 3 26 2.1 1 1 0.53 048 0.16 0.22
S 3 4 1 1 14 19 1933 0283 0.53 037 0.19 0.62
T 4 4 1.925 3722 2 13 1 1 091 053 0.17 0.26
U 5 4 1 1 1.2 1.5 1 031 031 1.03 0.27 0.91
v 1 5 1 5166 1.8 1.5 1 1 0.47 0.08 0.29 0.78
W 2 5 2 2 05 05 0919 0919 0.57 027 0.39 0.81
X 3 5 1 1 3 27 1464 0215 031 051 0.21 0.31
Y 4 5 1 1 1 1 074 074 031 067 0.23 0.69
Z 5 5 1.81 3.62 03 04 2.1 1.4 042 0.69 0.31 0.22
T The good-output and input volume and price data are from |O’Donnell| (2018} Tables 1.1, 1.4 and 1.5).

24



Appendix B

Sustainable Productivity Indexes

Let g; € Rf, by € Rﬂ_ and x;; € Rﬁ denote the volumes of of good outputs, bad outputs
and inputs of firm i in period . An SPI that compares the productivity of firm i in period

t with the productivity of firm & in period s is defined as any variable of the form

GI(gxs, gir)' ™ *BI (bis, bir) ™
Xl(xksaxit)

SPI(Xks, 8ks» ks Xir» &ir bir) 3)
where GI(.) is a proper good-output index, BI(.) is a proper bad-output index, X1(.) is
a proper input index, and « € [0, 1] measures the extent to which we want to account
for bad outputs. For more details on the construction and properties of proper volume
indexes, see (O’Donnell, 2018, Ch. 3). If all inputs and outputs are positiveE] then all
SPIs of the form given by equation (3)) satisfy the following axioms:

SI1 Weak monotonicity: g,; > gir, b1 < bjr and x,; < xiy = SPI(Xks, 8ks» Dis> Xr1: 8r15br1)
> SPI(xksvgksakaaxitagitabit);

SI2 Commensurability: SPI(5ka, Agks; Qbks, 5xi,,7tg,~,, Obit) = SPI(ka,ng7 bks,x,-,, gitabit)

for (A,0,0) > 0;

SI3 Proportionality: SPI(xy, 8ks» s, OXks, A&ks, Obrs) = (A1 ~%07%/8) for A >0, 8 >
0 and 0 > 0;

S14 Time'space reversal: SP](xksagksabks:xitagitabil) = 1/SPI(xil:gitabitvxksagksabks);
and

SI5 Transitivity: SPI(kavgksvbksaxitvgit’bil) = SPI(ka?gksabksaxrhgrl?brl)
X Spl(xrlagrlabrlaxitagitybit>~

SIf some outputs or inputs are zero, then some SPIs may be either zero or mathematically undefined
and may therefore not satisfy some axioms.
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Appendix C
MCMC Chains and Estimated Posterior Pdfs
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Appendix D

Characteristics of Estimated Posterior Densities of SPI Numbers

(a) Agriculture, Forestry and Fishing

Percentiles

Year Mean SD 25% 25% 50% T75% 97.5%
1995 1 0 1 1 1 1 1

1996 1.024 0.005 1.017 1.020 1.023 1.027 1.037
1997 1.023 0.011 1.009 1.014 1.021 1.029 1.050
1998 1.066 0.007 1.057 1.060 1.064 1.069 1.082
1999 1.061 0.013 1.044 1.051 1.058 1.068 1.092
2000 1.035 0.018 1.012 1.021 1.032 1.045 1.079

2001 0.982 0.026 0.949 0962 0.977 0997 1.046
2002 0.980 0.028 0.945 0958 0974 0.995 1.047
2003 0.969 0.016 0.949 0.957 0.966 0978 1.008
2004 0.995 0.026 0.963 0975 0990 1.009 1.057
2005 0.938 0.033 0.896 0912 0931 0.956 1.019
2006 0.962 0.033 0.920 0.936 0.956 0.980 1.044

2007 0.944 0.026 0910 0.923 0.939 0.958 1.008
2008 1.004 0.024 0.974 0985 0.999 1.017 1.061
2009 1.072  0.026 1.039 1.052 1.067 1.086 1.134
2010 1.115 0.021 1.088 1.098 1.111 1.127 1.167
2011 1.163 0.017 1.142 1.150 1.160 1.172 1.203
2012 1.140 0.020 1.115 1.125 1.136 1.151 1.188
2013 1.145 0.018 1.121 1.131 1.141 1.155 1.190
2014 1.147 0.018 1.124 1.133 1.144 1.157 1.191
2015 1.238 0.010 1.225 1.230 1.236 1.243 1.262
2016 1.287 0.001 1.284 1.286 1.287 1.288 1.289
2017 1.320 0.000 1.320 1.320 1.320 1.320 1.320
2018 1.248 0.008 1.237 1.241 1.246 1.252 1.267
2019 1.343 0.011 1.318 1337 1.345 1351 1.357
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(b) Mining

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 0.999 0.001 0.997 0.999 1.000 1.000 1.000
1997 0.969 0.003 0.962 0.968 0.970 0.971 0.972
1998 0.950 0.004 0.941 0.949 0.951 0.953 0.954
1999 0.945 0.003 0.937 0.944 0.945 0.946 0.947
2000 0.969 0.003 0.960 0.968 0.970 0.971 0.972
2001 0.998 0.004 0.987 0.997 1.000 1.001 1.002
2002 0.992 0.004 0.981 0.991 0.993 0.995 0.996
2003 0.976 0.003 0.967 0.975 0.977 0979 0.980
2004 0.943 0.003 0.934 0941 0.944 0.945 0.946
2005 0.941 0.005 0.928 0.939 0.942 0944 0.945
2006 0.893 0.005 0.880 0.891 0.894 0.896 0.897
2007 0.888 0.006 0.872 0.886 0.890 0.892 0.893
2008 0.856 0.006 0.840 0.854 0.858 0.861 0.862
2009 0.815 0.006 0.798 0.813 0.817 0.820 0.821
2010 0.821 0.007 0.802 0.818 0.823 0.825 0.827
2011 0.782 0.007 0.763 0.779 0.784 0.787 0.789
2012 0.733 0.008 0.712 0.730 0.735 0.738 0.740
2013 0.705 0.008 0.682 0.702 0.708 0.711 0.713
2014 0.705 0.009 0.682 0.702 0.708 0.712 0.714
2015 0.710 0.010 0.684 0.707 0.713 0.717 0.720
2016 0.718 0.011 0.690 0.714 0.722 0.726 0.728
2017 0.718 0.011 0.687 0.713 0.721 0.725 0.728
2018 0.712 0.012 0.679 0.708 0.716 0.721 0.724
2019 0.717 0.013 0.682 0.713 0.722 0.727 0.730
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(c) Manufacturing

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 1.010 0.000 1.009 1.010 1.010 1.010 1.010
1997 1.000 0.001 0.999 1.000 1.000 1.001 1.002
1998 1.001 0.001 0.999 1.001 1.001 1.002 1.003
1999 1.002 0.002 0.998 1.000 1.002 1.003 1.005
2000 1.005 0.002 1.001 1.004 1.005 1.007 1.009
2001 1.018 0.002 1.014 1.017 1.018 1.019 1.022
2002 1.023 0.003 1.018 1.021 1.023 1.025 1.028
2003 1.012  0.004 1.003 1.009 1.012 1.015 1.021
2004 1.010 0.005 1.000 1.007 1.010 1.014 1.021
2005 0.999 0.005 0.989 0.996 0.999 1.003 1.010
2006 0.993 0.005 0.983 0.989 0.993 0.996 1.003
2007 0.984 0.006 0971 0.979 0.984 0.988 0.997
2008 0.982 0.007 0.968 0.978 0.982 0.987 0.997
2009 0.989 0.005 0979 0.986 0.989 0.992 0.999
2010 0.990 0.005 0.979 0.986 0.990 0.993 1.000
2011 0.992 0.005 0981 0.988 0.992 0.995 1.002
2012 1.002 0.005 0.992 0.998 1.002 1.005 1.011
2013 1.003 0.004 0.995 1.001 1.003 1.006 1.011
2014 1.012 0.003 1.005 1.010 1.012 1.014 1.019
2015 1.024 0.002 1.020 1.023 1.024 1.025 1.028
2016 1.029 0.001 1.026 1.028 1.029 1.030 1.031
2017 1.029 0.001 1.027 1.028 1.029 1.029 1.031
2018 1.028 0.001 1.026 1.027 1.028 1.029 1.031
2019 1.026 0.001 1.024 1.026 1.026 1.027 1.029
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(d) Electricity, Gas, Water and Waste Services

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 1.006 0.000 1.005 1.006 1.006 1.006 1.006
1997 1.019 0.001 1.017 1.019 1.019 1.020 1.020
1998 1.016 0.002 1.011 1.016 1.017 1.018 1.018
1999 1.004 0.003 0.997 1.003 1.005 1.006 1.007
2000 0.998 0.003 0.990 0.997 0.999 1.001 1.001
2001 0.991 0.004 0.980 0.989 0.992 0.994 0.995
2002 0.980 0.004 0969 0.979 0.981 0983 0.984
2003 0.974 0.004 0.964 0973 0975 0977 0.978
2004 0.961 0.005 0.949 0.960 0.963 0.964 0.965
2005 0.942 0.005 0.930 0.940 0.943 0.945 0.946
2006 0.929 0.005 0916 0.927 0.930 0.932 0.934
2007 0.919 0.005 0.905 0918 0.921 0.923 0.924
2008 0.897 0.005 0.882 0.895 0.898 0.900 0.902
2009 0.897 0.006 0.881 0.895 0.899 0.901 0.903
2010 0.879 0.006 0.864 0.877 0.881 0.883 0.885
2011 0.877 0.006 0.863 0.875 0.879 0.881 0.882
2012 0.864 0.005 0.850 0.862 0.866 0.868 0.869
2013 0.862 0.005 0.849 0.860 0.863 0.865 0.866
2014 0.850 0.004 0.839 0.849 0.852 0.853 0.854
2015 0.847 0.005 0.834 0.845 0.849 0.850 0.852
2016 0.853 0.006 0.838 0.851 0.855 0.857 0.859
2017 0.852 0.006 0.838 0.850 0.854 0.856 0.858
2018 0.849 0.006 0.834 0.847 0.850 0.853 0.854
2019 0.837 0.005 0.823 0.835 0.839 0.841 0.842
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(e) Construction

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 0.998 0.000 0.998 0.998 0.998 0.998 0.998
1997 0.989 0.000 0.988 0.989 0.989 0.989 0.989
1998 1.001 0.000 1.000 1.001 1.001 1.002 1.002
1999 0.996 0.001 0.994 0.996 0.997 0.997 0.997
2000 0.992 0.001 0.990 0.992 0.993 0.993 0.993
2001 0.969 0.000 0.968 0.969 0.969 0.969 0.969
2002 1.002 0.001 1.001 1.002 1.002 1.003 1.003
2003 0.989 0.001 0.986 0.989 0.990 0.990 0.990
2004 0.977 0.002 0972 0976 0977 0978 0.978
2005 0.970 0.002 0.964 0.969 0.970 0.971 0.972
2006 0.967 0.002 0.961 0.966 0.967 0.968 0.969
2007 0.945 0.002 0.939 0.944 0.946 0.947 0.948
2008 0.934 0.003 0.926 0.933 0.934 0.936 0.936
2009 0.938 0.003 0.931 0.937 0.939 0940 0.940
2010 0.933 0.003 0.926 0.932 0.934 0.935 0.936
2011 0.923 0.003 0915 0.922 0.923 0.925 0.925
2012 0.941 0.003 0.933 0.940 0.942 0.944 0.944
2013 0.942 0.003 0.933 0.941 0.943 0.944 0.945
2014 0.949 0.003 0.940 0.948 0.950 0.952 0.953
2015 0.927 0.003 0918 0.926 0.928 0.930 0.931
2016 0.910 0.004 0.900 0.909 0.911 0913 0913
2017 0.904 0.003 0.895 0.903 0.905 0.906 0.907
2018 0.900 0.004 0.890 0.898 0.901 0.902 0.903
2019 0.887 0.004 0.877 0.885 0.888 0.889 0.890
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(f) Wholesale Trade

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 1.000 0.000 1.000 1.000 1.000 1.001 1.001
1997 1.011 0.000 1.010 1.011 1.011 1.011 1.011
1998 1.005 0.001 1.004 1.005 1.006 1.006 1.006
1999 0.972 0.001 0.969 0971 0972 0972 0.973
2000 0.969 0.001 0.966 0.968 0.969 0.969 0.970
2001 0.983 0.001 0.980 0.982 0.983 0.983 0.984
2002 0.987 0.001 0984 0.986 0.987 0.988 0.988
2003 0.991 0.002 0.987 0.990 0.991 0.992 0.992
2004 1.004 0.002 1.000 1.003 1.005 1.005 1.006
2005 0.982 0.002 0.977 0.981 0.983 0.984 0.984
2006 0.980 0.002 0.975 0979 0.981 0.982 0.982
2007 0.954 0.002 0.948 0.953 0.955 0.955 0.956
2008 0.935 0.002 0.929 0.934 0.935 0.936 0.937
2009 0.929 0.002 0.923 0.928 0.930 0.931 0.932
2010 0.941 0.002 0.935 0.940 0.942 0.943 0.943
2011 0914 0.003 0.907 0913 0915 0916 0917
2012 0.929 0.003 0.922 0.928 0.930 0.931 0.932
2013 0.936 0.003 0.929 0.935 0.937 0.938 0.939
2014 0.931 0.003 0.923 0.930 0.932 0.933 0.933
2015 0.932 0.003 0.924 0931 0.932 0.934 0.934
2016 0.954 0.003 0.946 0.952 0.954 0.956 0.956
2017 0.954 0.003 0.946 0.953 0.955 0.957 0.957
2018 0.959 0.003 0.951 0.958 0.960 0.962 0.962
2019 0.946 0.003 0.938 0.945 0.947 0.948 0.949
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(g) Retail Trade

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 1.001 0.000 1.000 1.000 1.001 1.001 1.001
1997 0.982 0.000 0.981 0.982 0.982 0.982 0.982
1998 0.979 0.000 0.978 0.979 0979 0.980 0.980
1999 0.969 0.001 0.967 0.969 0.969 0.970 0.970
2000 0.962 0.001 0.960 0.962 0962 0.962 0.963
2001 0.974 0.001 0.971 0973 0974 0974 0.975
2002 0.987 0.001 0.984 0.986 0.987 0.988 0.988
2003 0.990 0.001 0.986 0.989 0.990 0.990 0.991
2004 0.995 0.001 0.991 0.994 0.995 0.996 0.996
2005 0.971 0.002 0.966 0970 0972 0972 0.973
2006 0.965 0.002 0.961 0.965 0.966 0.966 0.967
2007 0.966 0.002 0.961 0.965 0967 0.967 0.968
2008 0.968 0.002 0.963 0.968 0.969 0.970 0.970
2009 0.934 0.002 0.927 0.933 0934 0.935 0.936
2010 0.932 0.002 0.926 0932 0933 0.934 0.935
2011 0.919 0.003 0912 0918 0.920 0.921 0.921
2012 0.936 0.003 0.929 0.935 0.937 0.938 0.938
2013 0.935 0.003 0.927 0.934 0.936 0.937 0.938
2014 0.945 0.003 0.937 0944 0946 0.947 0.947
2015 0.945 0.003 0.937 0944 0.946 0.947 0.948
2016 0.949 0.003 0.941 0948 0950 0.951 0.952
2017 0.944 0.003 0.935 0943 0.945 0.946 0.947
2018 0.947 0.003 0.939 0.946 0.948 0.950 0.950
2019 0.933 0.003 0.924 0932 0.934 0.935 0.936
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(h) Accommodation and Food Services

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1
1996 0.992 0.001 0.991 0.992 0.992 0.992 0.993
1997 0.998 0.001 0.996 0.997 0.998 0.998 0.999
1998 0.992 0.001 0.990 0.991 0.992 0.993 0.995
1999 0.997 0.003 0.992 0.996 0.997 0.999 1.002
2000 0.978 0.003 0972 0.976 0.978 0.981 0.985
2001 0.992 0.003 0.987 0.990 0.992 0.994 0.997
2002 1.010 0.003 1.005 1.009 1.010 1.012 1.015
2003 1.012 0.003 1.007 1.011 1.013 1.014 1.018
2004 1.011 0.003 1.005 1.009 1.012 1.014 1.018
2005 1.014 0.004 1.007 1.012 1.014 1.017 1.021
2006 1.029 0.004 1.022 1.027 1.029 1.031 1.036
2007 1.039 0.004 1.032 1.037 1.039 1.042 1.047
2008 1.031 0.004 1.024 1.028 1.031 1.033 1.038
2009 1.014 0.004 1.006 1.011 1.014 1.016 1.021
2010 0.996 0.004 0.989 0.993 0.996 0.998 1.002
2011 1.003 0.004 0.995 1.000 1.003 1.006 1.011
2012 1.007 0.004 0.999 1.004 1.007 1.009 1.014
2013 0.989 0.004 0981 0.986 0.989 0.992 0.997
2014 0.985 0.005 0.975 0.982 0.985 0.988 0.994
2015 0.989 0.005 0.979 0.986 0.989 0.993 0.999
2016 0.993 0.005 0.982 0.989 0.993 0.997 1.004
2017 0.990 0.005 0.979 0.986 0.990 0.994 1.001
2018 0.982 0.006 0971 0978 0.982 0.985 0.993
2019 0.986 0.005 0.975 0.982 0.986 0.989 0.997
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(i) Transport, Postal and Warehousing

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 0.994 0.001 0.993 0.994 0.994 0.995 0.995
1997 1.026 0.001 1.023 1.025 1.026 1.027 1.027
1998 1.044 0.001 1.042 1.044 1.044 1.045 1.045
1999 1.045 0.001 1.043 1.045 1.046 1.046 1.047
2000 1.031 0.001 1.028 1.030 1.032 1.032 1.033
2001 1.034 0.002 1.030 1.033 1.035 1.036 1.037
2002 1.051 0.002 1.046 1.050 1.051 1.052 1.053
2003 1.058 0.002 1.053 1.057 1.059 1.060 1.061
2004 1.045 0.003 1.038 1.044 1.046 1.047 1.049
2005 1.030 0.003 1.022 1.028 1.031 1.033 1.034
2006 1.017 0.004 1.008 1.015 1.018 1.020 1.022
2007 1.019 0.004 1.009 1.017 1.020 1.022 1.025
2008 1.015 0.005 1.003 1.012 1.016 1.018 1.021
2009 1.008 0.005 0.997 1.006 1.009 1.012 1.014
2010 0.998 0.005 0.987 0.996 0.999 1.002 1.004
2011 0.989 0.005 0976 0.986 0.990 0.993 0.995
2012 0.993 0.006 0.980 0.990 0.994 0.997 1.000
2013 0.992 0.006 0978 0.989 0.994 0.997 1.000
2014 0.984 0.006 0.970 0.980 0.985 0.988 0.991
2015 0.980 0.006 0.965 0.976 0.981 0.984 0.987
2016 0.975 0.006 0.960 0.971 0.976 0.979 0.982
2017 0.975 0.006 0.960 0.971 0.976 0.979 0.982
2018 0.956 0.006 0940 0.952 0.957 0961 0.964
2019 0.945 0.007 0.929 0.941 0.946 0.950 0.953
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(j) Information, Media and Telecommunications

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 0.958 0.000 0.958 0.958 0.959 0.959 0.959
1997 0.951 0.001 0.950 0.951 0.952 0.952 0.952
1998 0.975 0.001 0972 0974 0.975 0975 0.976
1999 0.975 0.001 0971 0974 0.975 0976 0.976
2000 0.955 0.002 0.950 0.954 0.955 0956 0.956
2001 0.941 0.002 0.936 0.940 0.941 0.942 0.942
2002 0.940 0.002 0934 0.939 0.941 0941 0.942
2003 0.951 0.002 0.945 0.950 0.952 0.953 0.953
2004 0.939 0.003 0.930 0.937 0.940 0.941 0.941
2005 0.903 0.004 0.893 0.902 0.904 0.905 0.906
2006 0.884 0.004 0.874 0.883 0.886 0.887 0.888
2007 0.886 0.004 0.875 0.885 0.888 0.889 0.890
2008 0.888 0.004 0.876 0.886 0.889 0.891 0.892
2009 0.883 0.004 0.870 0.881 0.884 0.886 0.887
2010 0.879 0.005 0.866 0.877 0.880 0.882 0.883
2011 0.867 0.005 0.853 0.865 0.868 0.870 0.871
2012 0.852 0.005 0.839 0.850 0.854 0.856 0.857
2013 0.851 0.005 0.837 0.849 0.853 0.855 0.856
2014 0.858 0.005 0.844 0.857 0.860 0.862 0.863
2015 0.873 0.006 0.858 0.871 0.875 0.877 0.879
2016 0.874 0.006 0.858 0.872 0.876 0.878 0.880
2017 0.865 0.006 0.848 0.863 0.867 0.869 0.871
2018 0.874 0.006 0.856 0.871 0.876 0.878 0.880
2019 0.881 0.006 0.864 0.878 0.883 0.885 0.887
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(k) Financial and Insurance Services

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 0.997 0.000 0.996 0.997 0.997 0.997 0.997
1997 1.027 0.001 1.026 1.027 1.027 1.028 1.029
1998 1.031 0.001 1.028 1.030 1.031 1.031 1.033
1999 1.019 0.002 1.016 1.018 1.019 1.020 1.023
2000 1.029 0.002 1.025 1.028 1.029 1.031 1.033
2001 1.004 0.002 1.000 1.003 1.004 1.006 1.008
2002 1.010 0.002 1.006 1.009 1.010 1.012 1.015
2003 1.000 0.003 0.995 0.998 1.000 1.002 1.005
2004 1.005 0.003 0.999 1.003 1.005 1.007 1.010
2005 0.985 0.003 0.979 0.983 0.985 0.987 0.992
2006 0.978 0.003 0972 0976 0.978 0.981 0.985
2007 0.993 0.004 0.985 0.990 0.993 0.995 1.000
2008 0.991 0.004 0.982 0.988 0.991 0.993 0.999
2009 0.981 0.004 0972 0.978 0.981 0.984 0.990
2010 0.992 0.004 0.983 0.989 0.992 0.995 1.001
2011 0.979 0.005 0970 0.976 0.979 0.983 0.989
2012 0.995 0.005 0.985 0.992 0.995 0.998 1.005
2013 1.025 0.005 1.015 1.021 1.025 1.028 1.034
2014 1.012 0.005 1.002 1.009 1.012 1.016 1.023
2015 1.012 0.005 1.002 1.009 1.012 1.016 1.023
2016 1.015 0.005 1.004 1.011 1.015 1.019 1.026
2017 1.008 0.006 0.997 1.004 1.008 1.012 1.019
2018 0.995 0.006 0.984 0.992 0.995 0.999 1.006
2019 0.986 0.006 0.975 0.983 0.986 0.990 0.998

43



(1) Rental, Hiring and Real Estate Services

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 1.008 0.002 1.004 1.007 1.008 1.009 1.009
1997 0.973 0.003 0.966 0.972 0.974 0.975 0.976
1998 0.955 0.004 0944 0.954 0.957 0958 0.959
1999 0.924 0.005 0911 0.922 0.926 0.927 0.929
2000 0.904 0.006 0.888 0.902 0.906 0.908 0.909
2001 0.870 0.006 0.855 0.868 0.872 0.874 0.875
2002 0.867 0.007 0.849 0.865 0.869 0.872 0.873
2003 0.838 0.009 0.815 0.835 0.841 0.845 0.847
2004 0.803 0.009 0.781 0.800 0.806 0.809 0.811
2005 0.765 0.009 0.741 0.762 0.768 0.771 0.774
2006 0.754 0.009 0.729 0.750 0.757 0.760 0.762
2007 0.711 0.009 0.688 0.708 0.714 0.717 0.719
2008 0.677 0.009 0.653 0.674 0.680 0.683 0.685
2009 0.684 0.009 0.660 0.681 0.687 0.691 0.693
2010 0.681 0.009 0.657 0.678 0.684 0.688 0.690
2011 0.658 0.010 0.632 0.655 0.661 0.665 0.668
2012 0.656 0.011 0.627 0.652 0.659 0.664 0.666
2013 0.670 0.011 0.641 0.666 0.674 0.678 0.681
2014 0.673 0.013 0.639 0.668 0.677 0.682 0.685
2015 0.663 0.013 0.629 0.658 0.667 0.672 0.675
2016 0.671 0.014 0.635 0.666 0.676 0.681 0.684
2017 0.670 0.015 0.632 0.665 0.675 0.680 0.684
2018 0.659 0.015 0.621 0.653 0.663 0.669 0.672
2019 0.658 0.015 0.619 0.652 0.662 0.668 0.672
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(m) Professional, Scientific and Technical Services

Percentiles
Year Mean SD 25% 25% 50% 5% 97.5%
1995 1 0 1 1 1 1 1
1996 0.964 0.000 0.963 0.963 0.964 0.964 0.964
1997 0.940 0.001 0.937 0.940 0.940 0.941 0.941

1998 0.950 0.002 0.946 0949 0.950 0.951 0.951
1999 0.923 0.003 0915 0922 0924 0925 0.925
2000 0.903 0.003 0.895 0.902 0.904 0.905 0.906
2001 0.895 0.003 0.887 0.894 0.896 0.898 0.898
2002 0.889 0.003 0.880 0.888 0.890 0.892 0.893
2003 0.881 0.004 0.872 0.880 0.882 0.883 0.884
2004 0.875 0.004 0.864 0.873 0.876 0.877 0.878
2005 0.848 0.004 0.836 0.846 0.849 0.851 0.852

2006 0.837 0.005 0.825 0.835 0.839 0.840 0.842
2007 0.823 0.005 0.810 0.821 0.825 0.827 0.828
2008 0.814 0.005 0.800 0.812 0.815 0.817 0.818

2009 0.810 0.005 0.796 0.808 0.812 0.814 0.815
2010 0.836 0.006 0.820 0.834 0.838 0.840 0.841
2011 0.850 0.006 0.833 0.848 0.852 0.855 0.856
2012 0.852 0.007 0.834 0.850 0.855 0.857 0.859
2013 0.848 0.007 0.829 0.845 0.850 0.853 0.855
2014 0.843 0.007 0.824 0.840 0.845 0.848 0.850
2015 0.849 0.008 0.829 0.846 0.852 0.855 0.857
2016 0.830 0.008 0.809 0.827 0.832 0.835 0.837

2017 0.840 0.008 0.819 0.837 0.843 0.846 0.848
2018 0.830 0.009 0.808 0.827 0.833 0.836 0.839
2019 0.816 0.009 0.793 0.812 0.818 0.822 0.824
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(n) Administrative and Support Services

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 0.972 0.001 0.970 0972 0972 0.972 0.972
1997 1.094 0.013 1.082 1.085 1.090 1.098 1.128
1998 1.473 0.057 1421 1.434 1.456 1.492 1.626
1999 1.171 0.023 1.150 1.156 1.164 1.179 1.231
2000 0.866 0.004 0.855 0.864 0.867 0.868 0.869
2001 0.855 0.003 0.848 0.854 0.856 0.857 0.858
2002 0.836 0.004 0.826 0.835 0.837 0.839 0.840
2003 0.786 0.007 0.768 0.784 0.788 0.791 0.793
2004 0.754 0.007 0.736 0.751 0.756 0.758 0.760
2005 0.780 0.004 0.769 0.778 0.781 0.783 0.784
2006 0.757 0.008 0.737 0.754 0.759 0.762 0.764
2007 0.693 0.011 0.663 0.689 0.697 0.701 0.704
2008 0.674 0.013 0.639 0.669 0.678 0.683 0.687
2009 0.696 0.012 0.664 0.692 0.700 0.705 0.708
2010 0.681 0.011 0.653 0.677 0.685 0.689 0.692
2011 0.659 0.012 0.626 0.654 0.663 0.668 0.671
2012 0.677 0.008 0.654 0.674 0.679 0.683 0.685
2013 0.686 0.007 0.668 0.683 0.688 0.691 0.692
2014 0.692 0.008 0.672 0.689 0.694 0.698 0.699
2015 0.662 0.011 0.634 0.658 0.665 0.670 0.673
2016 0.687 0.009 0.662 0.683 0.689 0.693 0.696
2017 0.699 0.009 0.674 0.695 0.702 0.705 0.708
2018 0.792 0.002 0.788 0.792 0.793 0.794 0.794
2019 0.749 0.008 0.728 0.746 0.751 0.754 0.756

46



(r) Arts and Recreation Services

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 0.968 0.000 0.968 0.968 0.968 0.968 0.968
1997 0.974 0.000 0974 0974 0.974 0974 0.974
1998 0912 0.002 0908 0.912 0913 0913 0914
1999 0.880 0.003 0.872 0.879 0.880 0.882 0.882
2000 0.819 0.005 0.805 0.817 0.820 0.822 0.824
2001 0.760 0.008 0.739 0.757 0.762 0.765 0.767
2002 0.749 0.008 0.728 0.746 0.751 0.754 0.756
2003 0.729 0.009 0.706 0.726 0.731 0.735 0.737
2004 0.719 0.010 0.694 0.716 0.722 0.726 0.729
2005 0.740 0.010 0.714 0.736 0.743 0.747 0.749
2006 0.774 0.008 0.752 0.771 0.777 0.780 0.782
2007 0.798 0.008 0.777 0.795 0.801 0.804 0.806
2008 0.779 0.009 0.756 0.775 0.781 0.785 0.787
2009 0.805 0.009 0.782 0.802 0.808 0.811 0.813
2010 0.776 0.009 0.752 0.773 0.779 0.783 0.785
2011 0.745 0.010 0.719 0.742 0.748 0.752 0.754
2012 0.711 0.011 0.682 0.707 0.715 0.719 0.722
2013 0.700 0.011 0.671 0.696 0.703 0.708 0.710
2014 0.707 0.011 0.678 0.703 0.710 0.715 0.717
2015 0.706 0.011 0.677 0.702 0.710 0.714 0.717
2016 0.687 0.012 0.656 0.683 0.691 0.695 0.698
2017 0.698 0.012 0.667 0.694 0.702 0.706 0.709
2018 0.694 0.012 0.663 0.690 0.698 0.702 0.705
2019 0.710 0.011 0.680 0.706 0.713 0.718 0.721
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(s) Other Services

Percentiles

Year Mean SD 25% 25% 50% 15% 97.5%
1995 1 0 1 1 1 1 1

1996 0.984 0.000 0.983 0.984 0.984 0.984 0.984
1997 0.996 0.001 0.994 0.995 0.996 0.996 0.996
1998 0.977 0.001 0975 0977 0.977 0978 0978
1999 0.985 0.001 0.981 0.984 0.985 0.985 0.986
2000 0.978 0.001 0974 0977 0.978 0978 0.979
2001 1.018 0.001 1.015 1.018 1.019 1.019 1.020
2002 1.001 0.001 0.997 1.000 1.001 1.002 1.002
2003 1.014 0.001 1.010 1.013 1.014 1.015 1.015
2004 1.024 0.002 1.020 1.023 1.024 1.025 1.025
2005 1.003 0.002 0.997 1.002 1.003 1.004 1.004
2006 0.985 0.002 0.980 0.985 0.986 0.987 0.987
2007 0.986 0.002 0.980 0.985 0.987 0.988 0.988
2008 0.954 0.002 0.948 0.953 0.955 0.956 0.956
2009 0.960 0.002 0.953 0.959 0.960 0961 0.962
2010 0.962 0.003 0.955 0.961 0.963 0.964 0.964
2011 0.953 0.003 0945 0.952 0.954 0955 0.955
2012 0.967 0.003 0.958 0.966 0.968 0.969 0.970
2013 0.949 0.003 0941 0.948 0.950 0951 0.951
2014 0.928 0.003 0.920 0.927 0.929 0.930 0.931
2015 0.924 0.003 0915 0.923 0.925 0.926 0.927
2016 0.928 0.003 0919 0.926 0.929 0.930 0.931
2017 0.915 0.003 0.906 0914 0916 0917 0.918
2018 0.900 0.003 0.891 0.899 0.901 0.902 0.903
2019 0.902 0.003 0.892 0.901 0.903 0.904 0.905
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