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Abstract

Kao (2012) proposed a method to decompose DMU efficiency into sub-unit efficiencies

for parallel production systems. We provide a numerical example showing that the proposed

method can yield negative sub-unit efficiency scores under variable returns to scale, against

common sense and standard postulates requiring this score to be non-negative. As a solution,

we propose a decomposition based on the directional distance function that does not suffer

from this problem and can be also applied to non-convex technologies, therefore providing

a more general method to implement such a decomposition. Given the connection between

the directional distance function and slack-based efficiency measurement, the method can

easily be extended to this case as well.

Keywords: DEA; FDH; Networks; Directional Distance Function; Inefficiency.

In a recent series of papers Professor Chiang Kao proposed a method to assess the efficiency

of DMUs that are composed by a parallel network structure, and decompose this efficiency

into sub-unit efficiencies (see Kao (2009, 2012, 2013) and see also Kao (2018, 2019, 2020) for

extensions). In this note we shall refer to the formulas as proposed in Kao (2012) for the sake

of clarity and simplicity. The method has the advantage of measuring the overall efficiency of

the DMU by taking into account potential inefficiencies arising from mis-allocation of resources

across the various nodes of the network, thus improving on models that do not account for these

effects (in the tradition of Fare et al. (2007)). On the other hand, the method of decomposing

efficiency into sub-units inefficiency under variable returns to scale (VRS) technologies fails

the basic postulate that efficiency scores should be non-negative. Moreover, since the method

is based on dual shadow pricing of inputs and outputs, it is not applicable to non-convex

technologies, such as the free disposal hull (FDH). Below we provide a numerical counter-

example that returns a sub-unit efficiency score that is negative. This invalidates the Kao’s

approach to efficiency decomposition under VRS. In a recent working paper (see Peyrache

and Silva (2021)) we proposed a method that can retain the advantages of the Kao model,

∗We thank two anonymous referees for rejecting one of our papers on EJOR, where the numerical example

here discussed was first introduced. The comment by the two anonymous referees that a negative efficiency score

was “impossible” prompted us to look deeper into this issue and make our argument sharper and more direct.
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without being affected by negative efficiency scores at the sub-unit level. The method has

also the advantage of distinguishing between sub-unit technical inefficiencies and reallocation

inefficiencies, as well as being applicable to non-convex technologies. We provide a brief account

of this alternative decomposition using the numerical example and show that all efficiency scores

are indeed non-negative. Given the connection between the directional distance function and

slack-based efficiency measurement, the method can easily be extended to this case as well.

1 Kao’s Approach

Consider an industry (or system or network) composed of a group of decision making units

(DMUs) j = 1, . . . , J and the production process components (or sub-DMUs) within each DMU

p = 1, . . . , P . Production processes use i = 1, . . . , I inputs to produce r = 1, . . . , R outputs. The

quantity of input i of sub-unit p in unit j is denoted by xpij , and the quantity of output r of sub-

unit p in unit j is denoted by yprj . The overall quantity of input i available to DMU j is indicated

with a capital letter and is equal to the sum across processes: Xij =
∑P

p=1 x
p
ij . Similarly, the

overall quantity of output r produced by DMU j is Yrj =
∑P

p=1 y
p
rj . We assume that the dataset

satisfies weak essentiality of inputs:
∑

i x
p
ij > 0, ∀j, p. This is the only requirement on the data,

and it states that at at least one input must be strictly positive for each process in each DMU.

Kao (2012) proposed the following model to assess the efficiency of the DMU under con-

stant returns to scale (CRS) of the underlying process technologies (after eliminating redundant

constraints and slack variables):

min
λp
j ,θ

θ

s.t.
∑

p

∑
j λ

p
jx

p
ij ≤ θXio ∀i∑

p

∑
j λ

p
jy

p
rj ≥ Yro ∀r

λp
j ≥ 0

(1)

where Xio =
∑

p x
p
io is the total sum of input i available to DMU o and Yro =

∑
p y

p
ro is the

total sum of output r produced by DMU o. This model is also discussed in Kao (2009, 2012,

2013, 2018) as the parallel network model. The dual of this program returns the multiplier

model which is here reported for completeness:

max
ur,vi

∑
r urYro

s.t.
∑

r ury
p
rj −

∑
i vix

p
ij ≤ 0 ∀p, j∑

i viXio = 1

ur, vi ≥ 0

(2)

where ur is the weight (shadow price) assigned to output r and vi is the input weight (shadow

price) assigned to input i. Kao (2012) proposes to use the optimal shadow prices from the dual

problem to decompose the overall efficiency of the DMU into sub-unit efficiencies. In formulas:

ep =

∑
r ury

p
ro∑

i vix
p
io

(3)
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The computation of sub-unit efficiencies in this way allows a decomposition of the DMU

efficiency:

E =
∑
r

urYro =
∑
p

wpep (4)

with weights

wp =

∑
i vix

p
io∑

i viXio
=

∑
i

vix
p
io, ∀p (5)

where the last equality is due to the normalization constraint:
∑

i viXio = 1. Notice that

since the shadow prices (vi, ur) are non-negative, sub-unit efficiencies are always non-negative.

The efficiency scores are not larger than unity, since the constraints
∑

r ury
p
rj −

∑
i vix

p
ij ≤ 0

implies that the numerator is always lower or equal to the denominator. Therefore the sub-units

efficiency scores are contained in the unit interval: 0 ≤ ep ≤ 1. These sub-units efficiency scores

are well-defined, since at the optimal solution there is always at least one input which is strictly

positive with a strictly positive shadow price for each process (thus the denominator is strictly

positive).

Kao (2012) proposes the following model under variable returns to scale (VRS) of the un-

derlying process technologies:

min
λp
j ,θ

θ

s.t.
∑

p

∑
j λ

p
jx

p
ij ≤ θXio ∀i∑

p

∑
j λ

p
jy

p
rj ≥ Yro ∀r∑

j λ
p
j = 1 ∀p

(6)

with the only difference with respect to the CRS case being the constraint on the intensity

variables (
∑

j λ
p
j = 1). The dual of this envelopment form is:

max
ur,vi

∑
r urYro +

∑
p zp

s.t.
∑

r ury
p
rj −

∑
i vix

p
ij + zp ≤ 0 ∀p, j∑

i viXio = 1

ur, vi ≥ 0

(7)

where zp are a set of free variables. Sub-unit efficiencies are computed as:

ep =

∑
r ury

p
ro + zp∑

i vix
p
io

(8)

The weights for the aggregation into the DMU efficiency score are the same as in the CRS

case, and given in equation (5). The DMU efficiency under VRS is:

E =
∑
r

urYro +
∑
p

zp =
∑
p

wpep (9)

Notice that because of the set of constraints
∑

r ury
p
rj −

∑
i vix

p
ij + zp ≤ 0, the sub-unit

efficiency scores in (8) are always lower or equal to unity. Unfortunately there is no guarantee
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that these efficiency scores are actually non-negative, since the dual shadow prices vi, ur are

non-negative but the free variables zp can have negative values. None of the constraints in the

dual program implies that
∑

r ury
p
rj + zp ≥ 0, and since zp is a free variable a negative efficiency

score can be obtained for some of the processes. The numerical example in the next sub-section

settles this issue in a conclusive and indisputable way.

Note that the procedure of using optimal DMU weights to assess the efficiency of sub-units

has also been proposed by Kao (2013) in the context of dynamic Data Envelopment Analysis

models, meaning that the above mentioned problem is not only present in VRS models of

parallel network systems but also in VRS versions of dynamic systems. In Kao (2018) the

author proposes a multiplicative aggregation of sub-units efficiencies into a DMU efficiency

following the above described procedure for a variety of network configurations. However, VRS

versions of the models are not shown in this latest paper.

1.1 Numerical Example

We use a numerical example with 4 DMUs each composed of 3 subunits, each using a single

input to produce two outputs. Table 1 shows the data for this example.

DMU Xj Y1j Y2j PROC 1 PROC 2 PROC 3

x1
j y11j y12j x2

j y21j y22j x3
j y31j y32j

1 120 75 100 30 40 60 60 25 20 30 10 20

2 100 57 85 40 25 20 40 22 25 20 10 40

3 130 84 215 40 30 65 30 14 20 60 40 130

4 260 128 170 45 30 60 200 90 100 15 8 10

Table 1: Numerical Example

Computing sub-unit efficiencies under the VRS model using the formulas just introduced

will return a negative efficiency score for process 3 of DMU 4. This invalidates the proposed

decomposition (dis-aggregation) method. The application of model (7) gives rise to the optimal

shadow prices reported in Table 2.

DMU Efficiency u∗
1 u∗

2 v∗ z∗1 z∗2 z∗3

DMU1 76.70% 0.01172 0 0.00833 -0.21875 0.0755 0.03125

DMU2 75.00% 0 0 0.01 0.3 0.3 0.15

DMU3 100% 0 0.0154 0.0077 -0.6923 -0.077 -1.54

DMU4 73.53% 0.00905 0 0.00385 -0.2466 -0.045 -0.1312

Table 2: VRS results for model (7)

Using these shadow prices to compute sub-unit efficiencies together with the VRS formula

(8) yields the results reported in Table 3, where efficiency scores are reported in percentage

terms. As evidenced in this table, process 3 of DMU 4 is assigned a negative efficiency score.

DMU Proc1 Proc2 Proc3

DMU1 100% 73.7% 59.375%

DMU2 75% 75% 75%

DMU3 100% 100% 100%

DMU4 14.38% 100% -101.96%

Table 3: Subunit Efficiencies under model (7)
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For DMU 2 the weights assigned to outputs are both zero, resulting in the inability of the

model to discriminate the efficiency of its processes.

2 Alternative Method to Decompose DMU Efficiency

In this section we illustrate the method proposed in Peyrache and Silva (2021) to decompose

DMU efficiency into meaningful components that are easy to interpret. We start by re-writing

program (6) in the following way:

max
δ,λp

j

δ

s.t.
∑

p

∑
j λ

p
jx

p
ij ≤ Xio(1− δ) ∀i∑

p

∑
j λ

p
jy

p
rj ≥ Yro. ∀r∑

j λ
p
j = 1 ∀p

(10)

and notice that the optimal solution of program (6) can be obtained trivially as θ = 1− δ.

We also notice that this corresponds to the directional distance function with a direction equal

to gi = Xio, therefore returning the following equivalent program:

max
δ,λp

j

δ

s.t.
∑

p

∑
j λ

p
jx

p
ij ≤ Xio − δgi ∀i∑

p

∑
j λ

p
jy

p
rj ≥ Yro ∀r∑

j λ
p
j = 1 ∀p

(11)

The interpretation is slightly changed here, since the score δ represents the percentage by

which one could reduce the input use, instead of being the reduction factor. This is in line with

the directional distance function interpretation of efficiency. Apart from the interpretation, this

does not change the optimal solution of the program, therefore the decomposition provided here

applies to the optimal solution of the Kao (2012) model.

Program (11) can be written in an equivalent way (by introducing additional decision vari-

ables) that will better emphasize the interpretation of the model. To obtain this program, first

write the DMU problem (11) in standard form by adding slack variables (σi, τr) and introducing

variables αp:

max
αp,λp

j ,σi,τr
δ =

∑
p α

p

s.t.
∑

p

∑
j λ

p
jx

p
ij = Xio − gi

∑
p α

p − σi ∀i∑
p

∑
j λ

p
jy

p
rj = Yro + τr ∀r∑

j λ
p
j = 1 ∀p

(12)

We then define additional new variables σi =
∑

p σ
p
i and τr =

∑
p τ

p
r , and re-arranging terms

we obtain the equivalent program:
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max
αp,λp

j ,σ
p
i ,τ

p
r

δ =
∑

p α
p

s.t.
∑

p

(∑
j λ

p
jx

p
ij + giα

p + σp
i

)
= Xio ∀i∑

p

(∑
j λ

p
jy

p
rj − τpr

)
= Yro ∀r∑

j λ
p
j = 1 ∀p

(13)

Define now new decision variables µp
i =

∑
j λ

p
jx

p
ij + giαp + σp

i and ηpr =
∑

j λ
p
jy

p
rj − τpr and

obtain the equivalent formulation:

max
αp,λp

j ,σ
p
i ,τ

p
r ,µ

p
i ,η

p
r

δ =
∑

p α
p

s.t.
∑

p µ
p
i = Xio ∀i

µp
i − αpgi − σp

i =
∑

j λ
p
jx

p
ij ∀p∑

p η
p
r = Yro ∀r

ηpr − τpr =
∑

j λ
p
jy

p
rj ∀p∑

j λ
p
j = 1 ∀p

(14)

and finally, eliminating slack variables one obtains:

max
αp,λp

j ,µ
p
i ,η

p
r

δ =
∑

p α
p

s.t.
∑

p µ
p
i = Xio ∀i∑

j λ
p
jx

p
ij ≤ µp

i − αpgi ∀p∑
p η

p
r = Yro ∀r∑

j λ
p
jy

p
rj ≥ ηpr ∀p∑

j λ
p
j = 1 ∀p

(15)

In this program the variables (µp
i , η

p
r ) represent the optimal allocation of resources across

the P sub-units that would entail the highest level of production for the DMU. If the observed

allocation of resources is (xpio, y
p
io), then (µp

i , η
p
r ) is an alternative allocation of resources that

optimizes the production efficiency of the DMU. The two resource constraints (
∑

p µ
p
i = Xio)

and (
∑

p η
p
r = Yro) will make sure that the total input allocation is equal to the overall input

available to the DMU and the total output production at the DMU level is equal to the observed

level. We call all these potential allocations of resources feasible reallocations.

It is quite natural to ask what happens to this program if one were to constrain the allocation

of resources to the observed one. Setting µp
i = xpoi and ηpr = ypor will return the following program:

max
βp,λp

j

∑
p β

p

st
∑

j λ
p
jx

p
ij ≤ xpio − βpgi ∀i, p∑

j λ
p
jy

p
rj ≥ ypro ∀r, p∑

j λ
p
j = 1 ∀p

(16)

The optimal solution of this program will now differ from program (11) because the alloca-

tion of resources has been constrained to be the observed one. Notice also that the resources

constraints (
∑

p µ
p
i = Xio) and (

∑
p η

p
r = Yro) are trivially satisfied here and therefore can be

6



omitted. The set of intensity variables λp
j is defining process specific technologies that can be

used to assess the efficiency of each process separately. Therefore the set of constraints of this

linear program represents the production possibilities set for each production process. This

program is in all respects a standard directional distance function program, thus the objective

function of (16) provides the technical inefficiency value of each process or sub-unit. This score

will indicate if the sub-unit is lying inside the frontier or not. And it will provide a quantification

of the excess of input that is used in the production process. It is important to stress that since

program (16) has been obtained as a restriction of program (11), the optimal solution of the

first will always be lower or equal to the second: δ ≥
∑

p β
p. The discrepancy between these

two values is given by the fact that in program (11) we allow for reallocation of resources, while

in program (16) this reallocation is prevented.

In order to better understand the link between the process and the DMU programs, we can

eliminate process inefficiencies altogether from the DMU input vector, thus obtaining X∗
io =∑

p(x
p
io − βpgi), where βp are the scores obtained in program (16). In this way all sub-units

will be technically efficient, i.e. they will lay on the production frontier. If we look now at the

reallocation problem, it becomes:

max
ρp,λp

j ,µ
p
i ,η

p
r

γ =
∑

p ρ
p

st
∑

j λ
p
jx

p
ij ≤ µp

i − ρpgi ∀i, p∑
j λ

p
jy

p
rj ≥ ηpr ∀r, p∑

j λ
p
j = 1 ∀p∑

p µ
p
i = X∗

io ∀i∑
p η

p
r = Yro ∀r

(17)

The optimal solution of this program is equal to the difference between the solutions of

programs (11) and (16). This clarifies that the discrepancy between the DMU inefficiency

(δ) and the sub-unit inefficiencies (
∑

p βp) is due to a misallocation of resources across the

different sub-units. If one were to set the allocation variables to the efficient observed level

µp
i = xpio−βpgi and ηpr = ypro, then the solution of program (17) would be γ = 0. In other words,

this portion of inefficiency can only be eliminated by reallocating resources and production across

the different sub-units: without such a reallocation, reallocation inefficiency cannot be removed.

This simple fact was noted as early as the outstanding contribution of Pachkova (2009) (which,

unfortunately, went unjustifiably quite unnoticed in the literature). This means that the DMU

inefficiency can be additevely decomposed as follows (with no weights to be defined):

δ = γ +
∑
p

βp (18)

Clearly, while the technical inefficiency component (
∑

p β
p) has to do with inefficiencies

arising in production at the process level, the reallocation component (γ) has to do with misal-

location decisions made at the DMU level and it is therefore not a type of inefficiency which can

be attributed to the individual processes (since for the processes the allocation of resources is

given). The use of the directional distance function shines its best light in this setting because
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it can be easily aggregated in an additive fashion without requiring weights. It is also easy to

interpret since it is a contribution to the overall inefficiency of the DMU.

It should also be stressed that the method does not make use of dual shadow prices, therefore

nothing prevents one from using non-convex technologies. Non-convex technologies do not have

in general a dual formulation, therefore multiplier forms and dual shadow prices cannot be

determined in this setting. To implement the method, the only additional constraint needed in

the previous programs is that the intensity variables are binary: λp
j ∈ {0, 1}, ∀p, j. If one were

to remove the VRS constraint
∑

p λ
p
j = 1 (on the lines explained in Podinovski (2004) and Briec

and Kerstens (2006)), this would allow also for non-convex CRS technologies. The only caveat

here is computational. An enumeration algorithm exists to solve program (16) both under CRS

and VRS with non-convex sets. Such an enumeration algorithm does not exist for program

(11), which means such a program needs to be solved as a MILP, the computational complexity

depending drastically on the number of processes P , more than the number of DMUs J (if

an enumeration algorithm can be determined for this class of non-convex production problems

is beyond the scope of this note). Since in the usual application the number of processes is

low, computational complexity should not represent a big obstacle to the implementation of the

method we are proposing in non-convex settings.

2.1 Numerical Results

Proc 1 Proc 2 Proc 3 Total processes reallocation DMU DMU

inefficiency inefficiency inefficiency inefficiency inefficiency inefficiency Efficiency

DMU1 0 0.1078 0.0995 0.2074 0.0257 0.2331 0.7669

DMU2 0.1 0 0 0.1 0.15 0.25 0.75

DMU3 0 0 0 0 0 0 1

DMU4 0.0577 0 0 0.0577 0.2070 0.2647 0.7353

Table 4: DMU, Reallocation and Process Inefficiencies

Proc 1 Proc 2 Proc 3 Total processes reallocation DMU DMU

inefficiency inefficiency inefficiency inefficiency inefficiency inefficiency Efficiency

DMU1 0 46.3% 42.7% 89% 11% 0.2331 0.7669

DMU2 40% 0 0 40% 60% 0.25 0.75

DMU3 0 0 0 0 0 0 1

DMU4 21.8% 0 0 21.8% 78.2% 0.2647 0.7353

Table 5: Percentage contribution of each component

In table 4 we report the results of the proposed method for the numerical example reported

above. For each DMU and each process we report the inefficiency scores as computed with

program (16) and the DMU inefficiency computed using program (11). The reallocation inef-

ficiency can be either computed solving program (17) or as the difference between the DMU

efficiency and the sum of the process inefficiencies. Finally, the last column reports the input

radial efficiency score as determined by program (6); this score is by definition equal to one

minus the DMU inefficiency reported in the second last column.
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Notice that process 3 of DMU 4 which would be assigned a negative efficiency score according

to the Kao model, is now deemed technical efficient (a DDF score of zero means efficiency). The

bulk of DMU 4 inefficiency is clearly coming from a mis-allocation of resources, with reallocation

inefficiency equal to 0.2070 and representing the largest percentage of inefficiency of the DMU.

This is not surprising if one has a glance at the grossly uneven distribution of resources for

DMU 4 across the 3 processes in this numerical example. Input and output targets that would

implement such a reallocation can be obtained from the optimal solution of the programs.

Naturally, there are various reallocations of inputs and outputs that would support the optimal

solution.

Notice also the process inefficiencies for DMU 2. In the Kao model the sub-units all had the

same efficiency score, while it is clear from this example that processes 2 and 3 are technically

efficient (laying on the frontier) and process 1 is inefficient. Again, for DMU 2 more than half

of the inefficiency is coming from a mis-allocation of resources across the sub-units.

Since the decomposition is additive and does not require weights, one has the opportunity

of looking at the contribution of each component to the total inefficiency of the DMU. This

is done in table 5. For example, for DMU 4, 21.8% of the total inefficiency is contributed by

production inefficiencies at the process level and 78.2% of the total inefficiency is contributed

by a mis-allocation of inptus across the different production processes.
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