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Abstract

In this chapter, we provide a brief overview of the stochastic frontier analysis (SFA) in

the context of analysing healthcare, with a focus on hospitals, where it has received most at-

tention. We start with the classical SFA model of Aigner, Lovell and Schmidt (1977) and

then consider many of its popular extensions and generalizations in both cross-sectional and

panel data (mainly published in Journal of Econometrics, Journal of Business & Economic

Statistics and Journal of Productivity Analysis). We also briefly discuss semi-parametric and

non-parametric generalizations, spatial frontiers, and Bayesian SFA. Whenever possible, we

refer the readers to various applications of these general methods to healthcare, and for hos-

pitals in particular. Finally, we also illustrate some of these methods for real data on public

hospitals in Queensland, Australia, as well as provide practical guidance and references for

their computational implementations via R.

Keywords: Stochastic frontier analysis, R, healthcare, hospital, Queensland

*Department of Economics, Rice University, Houston, TX 77251-1892, USA
†School of Economics, University of Queensland, Brisbane, Qld 4072, Australia
‡School of Economics and Centre for Efficiency and Productivity Analysis, University of Queensland, Brisbane,

Qld 4072, Australia

1



1 Introduction

Stochastic frontier analysis (SFA) has become one of the most important methods of efficiency

measurement since it was introduced by Aigner et al. (1977). With the many stochastic frontier

models (SFMs) developed, SFA has been widely applied in various fields of research in the last

few decades. This popularity is also vivid in most reviews of efficiency analysis, where SFA and

Data Envelopment Analysis (DEA) are usually referred to as the two main paradigms, in general

and for healthcare in particular, e.g., Lampe and Hilgers (2015) for general studies, as well as

Hollingsworth (2008); See et al. (2021); Rosko (2022) for a specific field (i.e., healthcare).

In SFMs, the (in)efficiency of production (or cost, profit, etc.) of units is evaluated according

to the estimated frontier. However, the approaches of the frontier and (in)efficiency estimation in

different model specifications differ from each other. For a more comprehensive discussion, the

readers can refer to Sickles and Zelenyuk (2019, Chapter 11-16) and Kumbhakar et al. (2022a,b)

for details. In this chapter, we aim to provide a brief overview of the wide range of SFMs from the

basic to the recently developed ones. Following the development route, we present representative

models for different scenarios and their demonstrations in R (R Core Team, 2022). This chapter

is also an update of the SFA part of Sickles et al. (2020) and Nguyen et al. (2022), calibrated and

fine-tuned to the context of healthcare.

In the following chapter, we start from the basic form, on which, most models were developed.

We then turn to two main streams of further developments, i.e., pursuing the advancements in solv-

ing panel data scenarios and accounting for environmental determinants of (in)efficiency. We also

briefly introduce the recent development of SFMs in semi- and non-parametric generalizations, as

well as the spatial and Bayesian SFMs in the context of healthcare. Alongside this, we provide

demonstrations of the representative SFMs with an example of public hospitals in Queensland,

Australia.
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2 Basic SFM

The key feature of SFM is its composed error term of statistical noise and an additional non-

negative error term.1 The randomness and measurement error are accounted for in the ordinary

noise term, while the additional error term accounts for the technical inefficiency, which is the

reduced output with respect to the frontier output (therefore non-negative) (Sickles and Zelenyuk,

2019). The advancement in distinguishing the inefficiency (as a discrete error term) from the

noise is usually at the cost of parametric assumptions. Yet, the more interpretable estimators of

both the production function and inefficiency (and potentially the determinant factors) may be

worth the constraints and computational difficulty, according to many arguments in the literature.

Alternatively, non-parametric methods (e.g., DEA) can be considered to eliminate the parametric

assumptions, or instead, the semi-parametric approaches may be applied to avoid the dilemma,

which we will discuss later in this chapter.

Specifically, in an example context of the Cobb-Douglas production function, the basic SFM

can be formulated as

Yi = β0

p

∏
j=1

β jX j,i exp(vi)exp(−ui), i = 1, . . . ,n, (1)

where X ∈ ℜ
p
+ is a vector of input variables and Y ∈ ℜ+ is the corresponding output. The

vector of parameters to be estimated is represented by β , while exp(vi) and exp(−ui) stand for

the statistical noise and technical efficiency, respectively. Equation (1) can be rewritten in a linear

form via logarithmic transformation as

yi = a+
p

∑
j=1

β jx j,i + vi −ui, i = 1, . . . ,n, (2)

in which x j,i = ln(X j,i), yi = ln(Yi), a= ln(β0) and so ui represents the technical inefficiency, the

gap between the maximum potential output and the actual output in logarithm format. Accordingly,

1The discussion hereafter is based on the (in)efficiency of production function.
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different SFMs propose different assumptions on the production function and the error terms, as

well as different techniques for their estimation, which we will cover in more detail in the following

sections.

2.1 Aigner et al. (1977)

Aigner et al. (1977) (hereafter ALS77) and Meeusen and van den Broeck (1977) independently

proposed the canonical SFM at about the same time. The ALS77 model can be formulated as

yi = a+
p

∑
j=1

β jx j,i + εi, i = 1, . . . ,n, (3)

where the composed error term εi can be derived as

εi = vi −ui i = 1, . . . ,n. (4)

The random error term vi and the inefficiency term ui in the ALS77 model are assumed to be

independently and identically distributed (iid) with normal and half-normal distribution, respec-

tively, i.e.,

vi ∼ iidN(0,σ2
v ),

ui ∼ iidN+(0,σ2
u ).

(5)

Therefore, the ALS77, and many other variants of SFM assuming the distributions of error

terms, can be estimated with the maximum likelihood estimator (MLE) using the likelihood func-

tion. After obtaining the estimated parameters, the expected level of inefficiency (E(u)) can be

further estimated as E(u) =
√

2/πσu, and the level of efficiency (E[exp(−u)]) can be approxi-

mately derived as E[exp(−u)]≈ 1−E(u).

Furthermore, the level of (in)efficiency of the individual unit can be estimated with the estima-

tors of error terms, e.g., following the most popular practice in the literature introduced by Jondrow

et al. (1982) (hereafter JLMS), where the expected inefficiency term (ui) is estimated conditionally

on the composed error (εi). To be more concrete, the inefficiency can be estimated as
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ûi =E(ui|εi)

=ui∗+σ∗
φ(−ui∗/σ∗)

1−Φ(−ui∗/σ∗)
,

(6)

where
σ

2 = σ
2
v +σ

2
u ,

σ∗ =
√

σ2
v σ2

u/σ2,

ui∗ =−σ
2
u εi/σ

2,

(7)

and φ(·) and Φ(·) are the pdf and cdf of the specified distribution, respectively. To derive a more

intuitive percentage indicator, one may compute the efficiency level (exp(−ui)) as per Equation

(1), and then the inefficiency score ũi = [1− exp(−ûi)]∗100%.

The ALS77 model has been applied in multiple economic sectors after it was introduced to the

literature. It also has been developed into more advanced models for a wider range of empirical

purposes. The analysis by Wagstaff (1989) appears to be the first application for the efficiency of

hospitals using ALS77, followed by Zuckerman et al. (1994); Rosko (1999); Chirikos and Sear

(2000); Farsi and Filippini (2008) for example, as well as studies in other healthcare sectors, e.g.,

Vitaliano and Toren (1994); Farsi et al. (2005) for the efficiency of nursing homes.

2.2 Application of ALS77

In the context of R, one can construct some SFMs with packages for general use, e.g., the lm func-

tion by R Core Team (2022) and the plm package for panel data estimators by Croissant and Millo

(2008). It is also convenient to conduct SFMs with the powerful user-written packages specifically

for SFA, i.e., the frontier package by Coelli and Henningsen (2020), which is flexible for several

SFMs, the sfaR package by Dakpo et al. (2021), allows for multiple types of distributions of error

term, as well as the function sfa in the package Benchmarking by Bogetoft and Otto (2020), etc.

One feasible approach to apply the ALS77 model in R is by using the frontier package as

illustrated in the snippet of code in Box 1. The model can be estimated using the function sfa with
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1 ########################## ALS77 ##########################

2 # Cross -sectional data frame "data" and formula of production "form" have

been pre -defined

3 library(frontier)

4 attach(data)

5 # Model estimation

6 als77 <- sfa (form , data = data , ineffDecrease = T, truncNorm = F,

timeEffect = F)

7 summary(als77)

8 # Individual inefficiency by JLMS

9 # Coefficients

10 als77coef <- coef(als77 , which = "mle", extraPar = T)

11 # epsilon from fitted values

12 fals77 <- fitted(als77 , asInData = T)

13 ei = lAggout - fals77

14 # E(ui|ei)

15 us2 = (als77coef [["sigmaU"]])^2

16 vs2 = (als77coef [["sigmaV"]])^2

17 sigmastar = sqrt((vs2*us2)/(vs2+us2))

18 ustari = (-us2*ei)/(vs2+us2)

19 uals77 = (( sigmastar*dnorm(ustari/sigmastar))/(pnorm(ustari/sigmastar)))

+ustari

20 inals77 = 1 - exp(-uals77)

21 summary(inals77)

Box 1: R code snippet for ALS77

the defined production relationship, data source and distributions, etc. The individual technical

inefficiency can then be estimated by the function efficiencies. Alternatively, in this example

for ALS77, we follow the JLMS method as in Equation (6) and (7) and obtain the estimators

incorporating the function coef and fitted to extract the coefficients estimation and fitted value of

the production function.

For ALS77 and more SFMs, including the representative models that we will discuss later,

one can also use the functional commands in Stata for the estimations. For more details, one can

refer to Nguyen et al. (2022), where a wide spectrum of SFMs were introduced and instructive

implementations for them were provided with the Stata code and illustrative examples. As sum-

marized in their chapter, one can use the command sfcross by Belotti et al. (2013) or the step-wise

commands in Kumbhakar et al. (2015) for flexible model specifications. Meanwhile, as introduced

therein, we can also use Matlab to solve the MLE for SFMs, e.g., following the code provided in
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Sickles and Zelenyuk (2019).2

3 SFMs with Panel Data

3.1 Schmidt and Sickles (1984)

An important direction of the extension based on the basic SFM is to formulate the model in panel

data settings. One of the seminal models in the literature that extended the framework of SFM

from cross-sectional data to panel data was introduced by Schmidt and Sickles (1984) (hereafter

SS84) as

yit = a+ x′itβ + vit −ui, i = 1, . . . ,n; t = 1, . . . ,T, (8)

where yit ∈ ℜ+ represents the output of unit i in time t. To save space, we omit the notation of

different input variables and use vector xit ∈ ℜ
p
+ for the p inputs noted by unit and time, and we

use vector β for their corresponding parameters. The one-side error term ui (ui ≥ 0, i = 1, . . . ,n)

represents the inefficiency of unit i, and is assumed to be independent from the random error vit ,

while the latter error term vit is assumed uncorrelated with the input vector xit .

With simple transformation, we can rewrite Equation (8) into a common formation of the panel

data model as
yit = a∗+ x′itβ + vit −u∗i ,

= ai + x′itβ + vit ,

(9)

where
a∗ = a−E(ui),

u∗i = ui −E(ui),

ai = a−ui,

= a∗−u∗i .

(10)

Consequently, Equation (9) can be estimated with the general methods for panel data models, e.g.,

2For interested readers, the code can be downloaded at: https://sites.google.com/site/

productivityefficiency/home.
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estimators by ordinary least squares and generalized least-squares, as well as the within estimators,

the Hausman-Taylor estimators and MLE (Schmidt and Sickles, 1984). Therefore, one advantage

of SS84 over the classical ALS77 and most other SFA models is the relaxed assumption on the

distributions of the error terms (i.e., vit and ui), which allows more estimators than MLE alone

during the model estimation. On the other hand, one constraint of SS84 is that the inefficiency

represented by ui is then assumed time-invariant, which is a limit especially in modeling panel

data.

With the estimated parameters for the standard panel data model, we can obtain an estimator

of the technical inefficiency (ûi) as proposed in Schmidt and Sickles (1984) as

ûi = max
i
(âi)− âi, i = 1, . . . ,n. (11)

As a seminal model for SFA in panel data framework, the SS84 model also has been applied

in numerous studies, e.g., it was also discussed in the efficiency analysis of Spanish hospitals by

Wagstaff (1989), as well as in Li and Rosenman (2001) for the hospitals in Washington, the US

and in Farsi et al. (2005) for the nursing homes in Switzerland. Moreover, many models have been

developed based on SS84 and more applications using them have been conducted in various fields

of study.

3.2 Application of SS84

An application of the SS84 model is illustrated in the snippet of R code in Box 2. We first estimate

the panel data model in Equation (9) with the plm function, using the within estimator for fixed

effect in this example. Then the fixed effect is extracted using function fixef to calculate the

estimated inefficiency term in Equation (11).
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1 ########################## SS84 ##########################

2 # Panel data frame "paneldata" and formula of production "form" have been

pre -defined

3 library(plm)

4 attach(paneldata)

5 # Fixed effects for ui , specifying unit id and time

6 ss84 <- plm(form , data = paneldata ,

7 model = "within", index = c("HOSID","Yeardummy"), effect = "

individual")

8 summary(ss84)

9 # ai and uihat

10 ai = as.numeric(unname(fixef(ss84)))

11 uss84 = max(ai) - ai

12 inss84 = 1 - exp(-uss84)

13 summary(inss84)

Box 2: R code snippet for SS84

3.3 Pitt and Lee (1981)

The relaxed assumption of the error term distributions is one of the most notable features of the

SS84 model. An example that is also in the form of a standard panel data model, is the Pitt and Lee

(1981) model (hereafter PL81), which can be expressed the same as Equation (9), while adding

assumptions on the distributions of vit and ui that

vit ∼ iidN(0,σ2
v ),

ui ∼ iidN+(0,σ2
u ).

(12)

Therefore, the MLE is required for the model estimation, using the results of the standard panel

regression as the initial values. Meanwhile, the JLMS approach is also available to estimate the

individual inefficiency with the estimated parameters.

One may notice that the normal and half normal distributions of the noise and inefficiency term

in Equation (12) are similar to the assumptions in Equation (5) for the ALS77 model. Yet there is

some promotion in regard to the panel data framework on the statistical noise term (i.e., vit instead

of vi), though the inefficiency term ui is still assumed to be time-invariant.

As a result, although the application of PL81 in the healthcare sector appears to be sparse (e.g.,

Comans et al. (2020) for the aged care in Australia), it is still usually considered an important node
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1 ########################## PL81 ##########################

2 # Panel data frame "paneldata" and formula of production "form" have been

pre -defined

3 library(plm)

4 library(frontier)

5 attach(paneldata)

6 # Random effects , specifying unit id and time

7 pl81f <- plm(form , data = paneldata ,

8 model = "random", index = c("HOSID","Yeardummy"), effect = "

individual")

9 summary(pl81f)

10 # Extract initial values

11 sigmau2 = as.numeric(ercomp(pl81f)[["sigma2"]][2])

12 sigmav2 = as.numeric(ercomp(pl81f)[["sigma2"]][1])

13 sigmasq = sigmau2+sigmav2

14 gamma = sigmau2/sigmasq

15
16 init_para = c(as.numeric(pl81f$coefficients), sigmasq , gamma)

17 # MLE with initial values

18 pl81 <- sfa (form , data = paneldata , ineffDecrease = T, truncNorm = F,

timeEffect =F,

19 startVal = init_para)

20 summary(pl81)

21
22 # Estimate individual inefficiency with user -written functions

23 inpl81 <- 1-efficiencies (pl81 , asInData = T, logDepVar = T, minusU = T)

24 summary(inpl81)

Box 3: R code snippet for PL81

in the development routine of SFMs in panel data (e.g., Gong and Sickles (1992)).

3.4 Application of PL81

As illustrated in Box 3, the PL81 model can first be estimated with panel regression, using the plm

function and assuming random effect. The estimated parameters are then used as the initial values

in the Maximum Likelihood Estimation with function sfa. Consequently, the individual level of

efficiency can be obtained via the efficiencies function with the specified estimated model.

3.5 Cornwell et al. (1990)

As indicated in Equation (9), the SS84 model and the alike PL81 model assume the inefficiency

term ui as time-invariant, which is not “perfect” in the panel data framework (though no model
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can be perfect in a sense). One solution to estimate time-variant inefficiency, while sharing the

advantages (e.g.., more flexible in estimator options and an easier computed inefficiency term)

under the SS84 framework is the model introduced by Cornwell et al. (1990) (hereafter CSS90).

Under the framework of SS84 as in Equation (9), the CSS90 model assumes the intercept as

time-variant, i.e.,

yit = ait + x′itβ + vit , i = 1, . . . ,n; t = 1, . . . ,T, (13)

where ait is a parameterized function of time t, i.e.,

ait = λ0i +λ1it +λ2it2. (14)

Consequently, the ait as estimated in Equation (13) can be regressed in Equation (14). Fol-

lowing the method in Schmidt and Sickles (1984), the individual inefficiency at time t can then be

obtained with the fitted value of Equation (14) as

ât = max
j
(â jt),

ûit = ât − âit , i = 1, . . . ,n; t = 1, . . . ,T.
(15)

To the best of our knowledge, the CSS90 approach has not been applied in the context of

hospital, yet the reader can see Comans et al. (2020) for an application of the aged care.

3.6 Application of CSS90

A snippet of R code for the CSS90 model is illustrated in Box 4. Following the same procedure

of SS84, the standard panel regression with fixed effect is firstly estimated with plm function.

The residuals are then regressed in Equation (14) by unit i. Finally, the inefficiency term can be

estimated by the approach in Equation (15).
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1 ########################## CSS90 ##########################

2 # Panel data frame "paneldata" and formula of production "form" have been

pre -defined

3 library(plm)

4 attach(paneldata)

5 # Fixed effects for ui

6 c90ori <- plm(form , data = paneldata ,

7 model = "within", index = c("HOSID","Yeardummy"), effect =

"individual")

8 summary(c90ori)

9 # Vectors for regression with t

10 ai = as.numeric(c90ori [["residuals"]])

11 t = c(1, 2, 3, 4)

12 t2 = t^2

13 ait = numeric ()

14 # Regression by unit

15 for (i in 1: length(unique(HOSID))){

16 aittemp = lm(ai[(4*(i-1)+1):(4*(i-1) +4)] ~ t2 + t)$fitted.values

17 aittemp = as.numeric(unname(aittemp))

18 ait = c(ait , aittemp)

19 }

20 c90 = cbind(ait , t)

21 # cthat for each year

22 ajtyear = aggregate(ait ~ t, data = c90 , max)

23 # Compute uithat

24 c90 = as.data.frame(cbind(c90 , ajtyear [,2]))

25 colnames(c90) <- c("ait","t","ajt")

26 uc90 = c90$ajt - c90$ait

27 summary(uc90)

28 inc90 = 1 - exp(-uc90)

29 summary(inc90)

Box 4: R code snippet for CSS90
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3.7 Kumbhakar (1990) and Battese and Coelli (1992)

An extension to the PL81 model would be to consider the time-variant inefficiency (i.e., uit instead

of ui) in the panel data framework, while keeping the feasible distribution assumptions on the error

terms. Kumbhakar (1990) (hereafter K90) and Battese and Coelli (1992) (hereafter BC92) are two

widely applied models in this context, which can be formulated similar to PL81 as

yit = a+ x′itβ + vit −uit , i = 1, . . . ,n; t = 1, . . . ,T,

vit ∼ iidN(0,σ2
v ),

uit = h(t)ui,

ui ∼ iidN+(µ,σ2
u ),

(16)

where component h(t) in K90 is assumed as

h(t) = [1+ exp(bt + ct2)]−1, (17)

and in BC92 as

h(t) = exp[−d(t −T )], (18)

where T is the end time of the period.3 As a result, h(t) is identical for every unit i in both

cases.

Consequently, with the constraints of parametric assumptions, K90 and BC92 need to be esti-

mated via MLE, and the inefficiency could then be estimated with the JLMS method.

The K90 and BC92 models are meaningful attempts in modeling time-variant inefficiency in

SFA. In the context of hospital efficiency analysis, they were considered, for example, in Linna

(1998); Besstremyannaya (2011).

3Another akin model is Kumbhakar and Wang (2005), where the component influencing the inefficiency is assumed
as h(t) = exp[−g(t − ṫ)], where ṫ is the beginning time of the period.
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1 ########################## BC92 ##########################

2 # Panel data frame "paneldata" and formula of production "form" have been

pre -defined

3 library(frontier)

4 attach(paneldata)

5 # Model estimation

6 bc92 <- sfa (form , data = paneldata , ineffDecrease = T, truncNorm = T,

timeEffect = T)

7 summary(bc92 , effic = F, logDepVar = T, effMinusU = T)

8
9 # Estimate individual inefficiency with user -written functions

10 inbc92 <- 1-efficiencies (bc92 , asInData = T, logDepVar = T, minusU = T)

11 summary(inbc92)

Box 5: R code snippet for BC92

3.8 Application of BC92

Taking BC92 as an example, a snippet of R code is illustrated in Box 5. The model can be esti-

mated using function sfa with predefined distributions and time effect. Accordingly, the individual

inefficiency can be then estimated with function efficiencies.

3.9 ‘True fixed effect’ models

In the effort of introducing the time-variant inefficiency term in SFMs, whether the improvement

of CSS90 over SS84 or that of BC92 over PL81, the individual inefficiency is not indeed separated

from the time-invariant individual heterogeneity. One advanced model for such purpose is the

so-called ‘true fixed effect’ model proposed by Greene (2005) (hereafter G05) as

yit = ai + x′itβ + vit −uit , i = 1, . . . ,n; t = 1, . . . ,T,

vit ∼ iidN(0,σ2
v ),

uit ∼ iidN+(0,σ2
u ).

(19)

To estimate the G05 model, Greene (2005) also proposed the maximum likelihood dummy

variable estimators. Eventually, the inefficiency estimation of each unit i can vary across time,

while is also insensitive to the outliers in the sample. However, G05 is usually computationally
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1 ########################## G05 (True fixed)##########################

2 # Panel data frame "paneldata" and formula of production (with "true fixed

effect ") "formt" have been pre -defined

3 library(frontier)

4 attach(paneldata)

5 # Model estimation

6 g05 <- sfa (formt , data = paneldata , ineffDecrease = T, truncNorm = F,

timeEffect = T)

7 summary(g05 , effic = F, logDepVar = T, effMinusU = T)

8
9 # Estimate individual inefficiency with user -written functions

10 ing05 <- 1-efficiencies (g05 , asInData = T, logDepVar = T, minusU = T)

11 summary(ing05)

Box 6: R code snippet for G05

intensive, especially when the number of units (i.e., n) is large, and is often accompanied with the

incidental parameters problem (Greene, 2005; Nguyen et al., 2022). Nevertheless, the G05 model,

as a recent development to distinguish transitory inefficiency, has been applied in the studies of

healthcare efficiency, e.g., Herr (2008) for the hospitals in Germany, and Comans et al. (2020) for

the cost efficiency of Australian aged care.

3.10 Application of G05

An illustration of the G05 model is provided in Box 6. In addition to the panel data and distribution

settings in function sfa, the factor for dummy variables needs to be specified in the formula in

advance.4 The function efficiencies is also capable of estimating the individual inefficiency of the

G05 model afterwards.

3.11 Kumbhakar et al. (2014)

Based on G05, another more recently developed model that includes both transitory and persistent

inefficiency components was introduced by Kumbhakar et al. (2014) (hereafter KLH14),5 which

4For more details including the formula settings in this chapter, see Appendix A.
5In comparison, G05 considers transitory inefficiency only.
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can be modeled as

yit = a+ x′itβ + vit −uit + si −ηi, i = 1, . . . ,n; t = 1, . . . ,T,

vit ∼ iidN(0,σ2
v ),

uit ∼ iidN+(0,σ2
u ),

si ∼ iidN(0,σ2
s ),

ηi ∼ iidN+(0,σ2
η),

(20)

where uit is transitory inefficiency now and ηi represents the persistent inefficiency of unit i, si

is the separated individual heterogeneity, while vit still represents the random error. Similar to the

transformation for SS84, KLH14 can be rewritten into

yit = a∗+ x′itβ +ai + εit , i = 1, . . . ,n; t = 1, . . . ,T, (21)

in which
a∗ = a−E(ηi)−E(uit),

ai = si −ηi +E(ηi),

εit = vit −uit +E(uit).

(22)

Consequently, one can first estimate ai and εit with the standard panel data model in Equation (21).

Then we can estimate the persistent inefficiency of unit i (i.e., E(ηi)) and the transitory inefficiency

of unit i at time t (i.e., E(uit)) with the estimated âi and ε̂it applying in a standard stochastic

frontier analysis, respectively. Colombi et al. (2014) (hereafter CKMV) proposed the same model

as KLH14 in their study, while they suggested a single-stage MLE method for estimation. In

comparison, the two-stage KLH14 model is usually easier in implementation and computation.

Yet, to distinguish the persistent and transitory inefficiency, the two models also come with the

cost of four distributional assumptions on error terms.

To the best of our knowledge, these recently developed approaches that separate transitory and

persistent inefficiency (i.e., KLH14 and CKMV) have not been applied in the context of healthcare.
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Yet, the four-component error term framework inspired many latter works for this topic, e.g., the

model designed by Colombi et al. (2017) based on the framework of CKMV, which was applied

in the analysis of hospital efficiency in Italy, and the maximum simulated likelihood estimator

proposed by Filippini and Greene (2016), which was later used in an analysis of nursing home

efficiency in Switzerland by Filippini et al. (2021).

3.12 Application of KLH14

The two-step procedure of KLH14 can be illustrated as in Box 7. The standard panel regression is

first estimated with function plm, and ai and εit are then estimated from the production model. In

the second stage, standard stochastic frontier technique is applied to the estimated âi and ε̂it with

function sfa, respectively.

4 SFMs with Determinant of Inefficiency

Aside from the extensions of incorporating panel data analysis in SFMs, another notable question

is how the exogenous variables (i.e., those usually referred to as ‘environmental factors’) influence

the (in)efficiency of the production units. More importantly, identifying the determinant factors

and their influencing patterns to the (in)efficiency term would be meaningful for realistic practice.

4.1 Kumbhakar et al. (1991), Battese and Coelli (1995) and Caudill et al.

(1995)

The model introduced in Kumbhakar et al. (1991) (hereafter KGM91) is a classical solution in

the literature that includes determinants by defining the inefficiency term uit with parameterized
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1 ########################## KLH14 ##########################

2 # Panel data frame "paneldata" and formula of production "form" have been

pre -defined

3 library(plm)

4 library(frontier)

5 attach(paneldata)

6 # Fixed effects for alphai and epsilonit

7 klh14ori <- plm(form , data = paneldata ,

8 model = "within", index = c("HOSID","Yeardummy"), effect = "

individual")

9 summary(klh14ori)

10 # alphai

11 alphai = as.numeric(unname(fixef(klh14ori)))

12 # epsilonit

13 epsiloni = as.numeric(klh14ori [["residuals"]])

14 summary(alphai)

15 summary(epsiloni)

16 # Constant for sfa estimation

17 constant = 1

18 # Persistent inefficiency

19 klh14per = as.data.frame(cbind(alphai ,constant))

20 klh14p <- sfa(alphai~constant -1, data = klh14per , ineffDecrease = T,

truncNorm = F, timeEffect = F)

21 summary(klh14p , effic = F, logDepVar = T, effMinusU = T)

22
23 # Estimate individual inefficiency with user -written functions

24 inklh14p <- 1-efficiencies (klh14p , asInData = T, logDepVar = T, minusU

= T)

25 summary(inklh14p)

26
27 # Transitory inefficiency

28 klh14tran = as.data.frame(cbind(epsiloni ,constant))

29 klh14t <- sfa(epsiloni~constant -1, data = klh14tran , ineffDecrease = T,

truncNorm = F, timeEffect = T)

30 summary(klh14t , effic = F, logDepVar = T, effMinusU = T)

31
32 # Estimate individual inefficiency with user -written functions

33 inklh14t <- 1-efficiencies (klh14t , asInData = T, logDepVar = T, minusU

= T)

34 summary(inklh14t)

Box 7: R code snippet for KLH14
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determinant variables, which can be modeled as

yit = a+ x′itβ + vit −uit , i = 1, . . . ,n,

vit ∼ iidN(0,σ2
v ),

uit ∼ iidN+(τit ,σ
2
u ),

τit = z′itγ,

(23)

where the mean of inefficiency uit , compared to the half-normal distribution in ALS77, is

assumed as τit , which is ‘determined’ by zit ∈ ℜm, a vector of m environmental variables, and γ ,

the vector of corresponding parameters.

The specification of the KGM91 model may be more well-known as the Battese and Coelli

(1995) model (hereafter BC95) in the panel data framework. Meanwhile, another similar specifi-

cation is the Caudill et al. (1995) model (hereafter CFG95), where the distribution of ui is assumed

as
ui ∼ iidN+(0,σ2

ui
),

ln(σ2
ui
) = z′iγ,

(24)

that the environmental factors zi influence the inefficiency via the assumed variance σ2
ui

.6

The KGM91/BC95 models provide a convenient framework of modeling the determinant fac-

tors of inefficiency in SFA, which is an attractive feature for efficiency analysis. As a result,

numerous studies have applied them in various fields of research, e.g., Rosko (2001, 2004); Herr

(2008); Vitikainen et al. (2010); Varabyova and Schreyögg (2013); Wang and Zelenyuk (2022) for

the hospital performance, and Comans et al. (2020) for the cost efficiency of aged care.

4.2 Application of KGM91/BC95

In this illustration, we provide an example of the KGM91/BC95 models in Box 8. In the param-

eter estimation by function sfa, one needs to specify the environmental factors in the formula in

6For further extension in this vein, see e.g., Wang and Schmidt (2002), where the truncated mean in BC95 and
variance in CFG95 are both modeled in the inefficiency distribution.
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1 ########################## BC95 ##########################

2 # Panel data frame "paneldata" and formula of production (with

environmental variables) "formz" have been pre -defined

3 library(frontier)

4 attach(paneldata)

5 # Model estimation

6 bc95 <- sfa(formz , data = paneldata , ineffDecrease = T, truncNorm = T,

timeEffect = F)

7 summary(bc95 , effic = F, logDepVar = T, effMinusU = T)

8
9 # Estimate individual inefficiency with user -written functions

10 inbc95 <- 1-efficiencies (bc95 , asInData = T, logDepVar = T, minusU = T)

11 summary(inbc95)

Box 8: R code snippet for KGM91/BC95

advance.7 Then, the individual inefficiency can be estimated with the efficiencies function.

5 Semi-parametric SFMs

The parametric assumptions in SFMs of both the production function and error terms are widely

concerned as a source of limitation in the literature. So far, we have introduced models trying to

relax the assumptions on the error term (i.e., the SS84 and CSS90 models), while effort has also

been devoted to exploring the relaxation of the parametric assumption on the production function,

or on both of them simultaneously.

One stream of the so-called ‘semi-parametric’ approach was first introduced by Fan et al.

(1996), where the non-parametric kernel regression is incorporated with the parametric MLE in

estimating the production relationship and frontier. In a more recently developed non-parametric

framework introduced by Kumbhakar et al. (2007), the local maximum likelihood estimator (LMLE)

was suggested to replace MLE, where the weight of likelihood is based on a kernel function of the

local variables. Furthermore, Simar et al. (2017) (hereafter SVKZ) proposed using non-parametric

least squares instead of LMLE to further reduce the assumption requirements. We will focus on

the SVKZ algorithm to illustrate the semi-parametric paradigm in the following subsection.

7For more details including the formula settings, see Appendix A.
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5.1 Simar et al. (2017)

The SVKZ model formulates output yi ∈ ℜ+, inputs vector xi ∈ ℜ
p
+ and vector of m influential

variables, zi ∈ ℜm as

yi = g(xi,zi)+ vi −ui, i = 1, . . . ,n, (25)

where g(xi,zi) represents the production frontier, the random error vi is assumed as a real ran-

dom distribution that vi ∼ D(0,σ2
vi
(xi,zi)), and the inefficiency term ui is assumed as a positive

random distribution that ui ∼ D+(µui(xi,zi),σ
2
ui
(xi,zi)). Meanwhile, vi and ui are assumed as inde-

pendent random variables conditionally on (xi,zi). Specially, when defining εi = vi−ui+µui(xi,zi)

and r1(xi,zi) = g(xi,zi)−µui(xi,zi), Equation (25) can be rewritten as

yi = r1(xi,zi)+ εi, (26)

while based on distribution assumptions of vi and ui above, it can be derived that

E(εi|xi,zi) = 0, (27)

E(ε2
i |xi,zi) = σ

2
vi
(xi,zi)+σ

2
ui
(xi,zi), (28)

E(ε3
i |xi,zi) =−E[(ui −µui(xi,zi))

3|xi,zi]. (29)

Consequently, if we define r j = E(ε j
i |xi,zi), according to Equation (26), we can then estimate

r1 through nonparametric methods, such as local least squares, and then estimate r2 and r3 with

nonparametric methods using r1, based on the relationship in Equation (26) that εi = yi− r1(xi,zi).

To estimate the inefficiency of individual unit i, assumption on the distribution of inefficiency

ui is required as ui ∼ N+(0,σ2
ui
(xi,zi)), while the assumption on the distribution of error term vi is
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not needed. Accordingly, we can further derive Equation (28) and (29) as

r2(xi,zi) = σ
2
vi
(xi,zi)+(

π −2
π

)σ2
ui
(xi,zi), (30)

r3(xi,zi) =

√
2
π
(
π −4

π
)σ3

ui
(xi,zi), (31)

so that with the estimated r̂3(xi,zi), we can obtain an estimation of σui as

σ̂ui
3
(xi,zi) =

√
π

2
(

π

π −4
)r̂3(xi,zi), (32)

and further estimate σvi with the estimated r̂2(xi,zi) and σ̂ui(xi,zi). Finally, the conditional

mean of inefficiency µui(xi,zi) can be derived by

µ̂ui(xi,zi) =

√
2
π

σ̂ui(xi,zi). (33)

In addition, with the definition of r1 above, the stochastic frontier can be estimated as

ĝ(xi,zi) = r̂1(xi,zi)+ µ̂ui(xi,zi). (34)

For further developments, interested readers can find more discussions of various routines for

statistical tests of SVKZ and other semi- and non-parametric models in Parmeter and Zelenyuk

(2019).

One application of this recently suggested semi-parametric method is in the context of aged

care by Comans et al. (2020). Nevertheless, the class of semi-parametric models has a great po-

tential in the further development of the efficiency analysis in general and for the healthcare field

in particular.
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5.2 Application of SVKZ

In Box 9, we provide a snippet of code to apply the SVKZ algorithm in R, which is modified based

on the programming by Parmeter and Zelenyuk (2019). The non-parametric kernel regression is

computed in function npreg in package np by Hayfield and Racine (2008). Besides, the formulas

need to be specifically defined for Equation (26). Meanwhile, a comprehensive set of implemen-

tation methods in Stata for SVKZ, as well as for the other models in this chapter, can be found in

Nguyen et al. (2022).

6 Empirical Illustration of Selected Popular SFA Models

6.1 Sample Data

In the following section, we apply the series of selected popular SFMs briefly introduced above

to a real-world data set as an empirical illustration. The data comes from Queensland Health,

and contains operational records of 95 public hospitals in Queensland, Australia during the pe-

riod from Financial Year (FY) 2012/13 to FY 2015/16 (i.e., 380 observations). In this preliminary

analysis, following the recent studies of the Queensland hospital efficiency (e.g., Nguyen and Ze-

lenyuk (2021a,b); Wang and Zelenyuk (2022)) as well as the practice for hospitals in other regions

(e.g., Grosskopf and Valdmanis (1987); Rosko (2001) for the US), we select three inputs (i.e., la-

bor, expenditure, beds) and one output (i.e., the aggregated inpatient and outpatient services) for

the production function.8 Besides, we consider three environmental variables for the models con-

sidering determinants of inefficiency, i.e., the location, teaching status and size. The descriptive

statistics of the selected variables are summarized in Table 1.

8Similar to the data processing in Nguyen and Zelenyuk (2021a), the input variables of labor and output variables
are aggregated respectively with a Principal Component Analysis (PCA) based approach proposed by Daraio and
Simar (2007).
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1 ########################## SVKZ ##########################

2 library(np)

3 attach(data)

4 # Define factor variables and formulas

5 fTEACH = as.factor(TEACH)

6 fRemote = as.factor(Remote)

7 fSmall = as.factor(Small)

8
9 forms = lAggout ~ lBEDS + lAgglabours + lSUPP + fTEACH + fRemote + fSmall

10 forms3 = ehat3 ~ lBEDS + lAgglabours + lSUPP + fTEACH + fRemote + fSmall

11
12 # Bandwidths selection

13 bws.r1 <- npregbw(forms , regtype="ll", data=data , bwmethod = "cv.ls",

ckertype = "epanechnikov")

14 # Estimate conditional mean and extract fitted values and residuals

15 r1.est <- npreg(bws=bws.r1 , gradients=TRUE)

16 r1hat <- fitted(r1.est)

17 e1hat <- residuals(r1.est)

18 # Generate for r3

19 ehat3 <- e1hat ^3

20
21 # Bandwidths selection for r3 (skewness measures)

22 bws.r3 <- npregbw(forms3 , data=data , regtype="ll", bwmethod = "cv.ls",

ckertype = "epanechnikov")

23 # Estimate conditional mean and extract fitted values and residuals

24 r3.est <- npreg(bws=bws.r3 , gradients=TRUE)

25 r3hat <- fitted(r3.est)

26 e3hat <- residuals(r3.est)

27
28 # Estimate individual inefficiency

29 sigu3.hat <- sqrt(pi/2)*(pi/(pi -4))*r3hat

30 sigu.hat <- apply(cbind(0,sigu3.hat) ,1,FUN=max)^(1/3)

31 muhat <- sqrt(2/pi)*sigu.hat

32 summary(muhat)

33 insvkz = 1 - exp(-muhat)

34 summary(insvkz)

Box 9: R code snippet for SVKZ
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Table 1: Descriptive statistics of Queensland public hospitals, FY 2012/13 to FY 2015/16

Variable Description Mean Std Dev Min Max

Input
Agglabours Aggregated labor input 0.76 1.57 0.01 8.71
SUPP* Consumable expenditure 7.83 19.20 0.03 164.00
BEDS Number of beds 74.92 133.78 3.00 680.00

Output
Aggout Inpatient and outpatient service 0.54 1.03 0.01 5.05

Variable Description Frequency Percentage

Environmental
Remote Located in remote areas 108 28.42%
Non-remote Located in non-remote areas 272 71.58%
Small Small hospitals 300 78.95%
Big Large hospitals 80 21.05%
TEACH Teaching hospitals 70 18.42%
Non-teaching No teaching function 310 81.58%
* AU$1,000,000 in constant price of FY2012/2013

6.2 Estimations of Inefficiency

All the models in this brief illustration are estimated in a linear and logarithmic Cobb-Douglas

production function. Alternative production functions, such as the Translog function, the Leontief

function, the constant elasticity substitution (CES) function, etc. are also optional in the SFA

context. According to the results of the model estimation, the individual level of inefficiency is

then estimated within each model. As a result, the descriptive statistics of the inefficiency level are

summarized in Table 2.

In addition, to visualize the distribution, we plot the estimated densities of the inefficiency level

estimated by each model in Figure 1, using a nonparametric kernel density estimator with Gaussian

kernel, where the bandwidth is selected by cross-validation.9

Intuitively, the estimated inefficiency scores of different models vary dramatically. This phe-

nomenon is as expected since the assumptions on the distributions of error terms and even the

production function of different models are quite different. The variation is still significant even

9Full R code for the analysis and visualization is in Appendix A.
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Table 2: Statistics of the estimated level of inefficiency (%) by different models

Model Mean Std. Dev. 95% CI of mean Min Q1 Median Q3 Max

ALS77 19.97% 6.39% [19.33%, 20.62%] 6.94% 15.63% 18.97% 22.59% 47.37%
SS84 82.22% 24.61% [77.21%, 87.24%] 0.00% 84.55% 92.64% 96.61% 98.71%
PL81 46.45% 22.22% [44.21%, 48.69%] 2.44% 26.35% 44.28% 65.13% 83.75%
CSS90 25.97% 15.94% [24.36%, 27.58%] 0.00% 15.22% 18.99% 37.42% 62.44%
BC92 58.34% 15.78% [56.75%, 59.93%] 4.66% 48.03% 57.37% 69.65% 87.37%
G05 0.86% 1.53% [0.71%, 1.02%] 0.00% 0.00% 0.00% 0.62% 6.08%
KLH14T 0.09% 0.00% [0.09%, 0.09%] 0.08% 0.09% 0.09% 0.09% 0.09%
KLH14P 0.39% 0.00% [0.39%, 0.39%] 0.39% 0.39% 0.39% 0.39% 0.39%
BC95 30.76% 21.10% [28.63%, 32.89%] 3.58% 11.45% 27.28% 47.58% 78.11%
SVKZ 8.78% 10.55% [7.71%,9.84%] 0.00% 0.00% 0.00% 19.66% 33.03%

between some models of similar specifications, e.g., most of the inefficiency levels estimated in

the SS84 model are very high with a mean of 82.22%, while the estimation by the CSS90 model is

relatively lower with an average of 25.97%. Therefore, as indicated in the analysis with different

SFMs in different production functions by Wang and Zelenyuk (2022), selecting the suitable mod-

els and corresponding assumptions for the research question is an important foundation of analysis,

especially in the case of proposing policy suggestions.

In comparison, the results of the PL81 and BC92 models are relatively close to each other,

ranging from around 2% to 84% and 5% to 87%, respectively. The mean inefficiency level esti-

mated by these two models are around 50%, while the standard deviations are relatively high. One

may notice that the standard deviations of several models are also relatively high on the basis of

their means, such as those of CSS90, BC95 and SVKZ. Nevertheless, the confidence intervals of

the mean inefficiency of most models are narrow, benefiting from the relatively large data set.

We also observe that the models separating the inefficiency from the individual heterogeneity

(i.e., the G05 and KLH14 models) estimate a quite high level of efficiency for most observations.

Such a degeneracy phenomenon, again, emphasizes the importance of selecting the appropriate

model in SFA, incorporating the fitted production function and other model specifications.

The inefficiency level estimated in the basic ALS77 model is lower than the majority of other

models, ranging from 7% to 47% with an average of about 20%. Besides, the standard deviation
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of ALS77 is also among the lowest of about 6%, so that one can also observe a smoother tendency

of the kernel density estimation for ALS77.

So far in the literature, several studies have been conducted for the hospital efficiency in

Queensland, especially with the SFA techniques. For example, Nghiem et al. (2011) applied SFA

with Malmquist Productivity Index (MPI) to evaluate the total factor productivity (TFP) of pub-

lic hospitals during 1996 to 2004. O’Donnell and Nguyen (2013) conducted a conventional SFA

model with a wider group of public hospitals during the same period. Moreover, the analysis of

Australian public hospitals between FY 1995/96 and FY 2005/06 by Gabbitas and Jeffs (2009)

may be akin to our illustration here, where PL81 and BC95 were applied for random effects and

SS84 and G05 were applied for fixed effect. In comparison, their estimated mean inefficiency lev-

els for Queensland in particular, are relatively lower than those in our sample, which were reported

as about 20% with the PL81, BC95 and SS84 models, and 8% with the G05 model.

Figure 1: Estimated kernel densities of the inefficiency level of different SFMs
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7 Other SFA Approaches

The goal of this section is to briefly review some of the other SFA approaches that have been

rarely applied to the context of healthcare, yet we believe have good potential for future research

endeavors in this area. These include some of the most recent advances in SFA. Our main focus

will be on spacial SFA models, which we will cover in the first sub-section, while in the final

sub-section we will briefly mention some classic and recent works on Bayesian SFA.

7.1 The Use of Spatial Stochastic Frontier Methods in Modeling Health

Outcomes

In their very recent study “Homelessness on the West Coast: What Role Does Health Play?”

Fuller and Sickles (2022) utilize spatial stochastic frontier methods to analyze the impacts of health

shocks (e.g., the recent COVID pandemic) on homelessness and health. Such methods were intro-

duced into the efficiency and productivity literature in a series of papers by Glass, et al.10 and are

also discussed in Sickles and Zelenyuk (2019). In this section, we use the recent study by Fuller

and Sickles (2022) to highlight various approaches that one can take to introduce health outcomes

into models in which spillovers play an important role, especially when health shocks such as

pandemics display such obvious contagion impacts that have strong spatial dimensions.

Homelessness is a complicated social problem, due to the vast array of socioeconomic factors

that influence housing status. In America, homelessness has been rising since 2017, with this

increase being driven primarily by the growth of unsheltered homeless populations in West Coast

cities such as Los Angeles, San Francisco, and Seattle.

Fuller and Sickles (2022) examine the socioeconomic variables influencing homelessness on

the West Coast in recent years, utilizing panel fixed effects models that explicitly include measures

of healthcare access and availability to account for the additional health risks faced by individuals

who lack shelter. They estimate a spatial error model in order to examine potential geographic

10I.e., Glass et al. (2013), Glass et al. (2014), Glass et al. (2016a) and Glass et al. (2016b).
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dependencies. In light of the dual health and economic threats posed by the recent COVID pan-

demic, their results are then used to test the impact and diffusion of a systemic shock, such as

the pandemic and find evidence of linkages among income inequality, housing supply, healthcare

investment, and homelessness as well as significant and negative spatial relationships.

Their theoretical model predicts that in regions where healthcare access is worse more people

would enter into homelessness over time due to the heightened negative consequences of being

homeless, which leads to a decline in future earnings potential. In order to analyze the relation-

ship between homelessness and measures of healthcare access, income, and demographic traits,

they first examine variations on a general least squares model where the dependent variable (their

measure of homelessness) changes. The second part of their analysis extends this model to include

a spatial component, accounting for potential dependencies between nearby Continuum of Cares

(CoCs) and how that may impact homelessness levels across the West Coast.

They utilize a fixed effect model based on the framework of SS84 and CSS90 (discussed above)

wherein the composed error term contains the idiosyncratic error (vit) and a term that reflects

time-varying heterogeneity (ait) that can be interpreted as a lower bound on homelessness. Data

is largely drawn from the United States Health Resources and Services Administration’s (HRSA)

Area Health Resource File, which is reported for the years 2010-2017.

The general fixed effects model that they estimate is:

HLit = ait +β1Grntit +β2Ginii,t−2 +β3MRit +β4Hi,t−2 +β5Di,t−1 +β6Xit + vit , (35)

where the dependent variable HLit is the number of homeless individuals per 1000 in a CoC in

a given year.11 Grnti,t represents HRSA grant funding per person (in 2010 dollars), Ginii,t−2

represents the Census Bureau’s Gini Index calculation, and MRit is the median rent value for a two-

bedroom housing unit reported by the Department of Housing and Urban Development (HUD) in

the US. Hi,t−2 is a matrix of health and healthcare variables, including physicians per 1000 people,

the percentage of uninsured individuals, and opioid prescriptions per 100 people. Di,t−1 is a matrix

11Three measures are used in Fuller and Sickles (2022), but for this illustration, we will use their first measure.
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of demographic variables, including the number of housing units per 100 people, as well as the

proportions of the population in a CoC that are black, male, and older than 65. Lastly, Xit is a

matrix of interaction terms between the various socioeconomic variables already present in the

regression. These interaction terms are simple products between two variables.

Furthermore, Fuller and Sickles (2022) examine the spatial dependencies between adjacent

CoCs using both spatial autoregressive (SAR) and spatial error (SEM) models. The SAR is formu-

lated as

HLit = ait +β1Grntit +β2Ginii,t−2 +β3MRit +β4Hi,t−2 +β5Di,t−1 +β6Xit +ρ

n

∑
j=1

wi jHLit + vit ,

(36)

while the SEM is

HLit = ait +β1Grntit +β2Ginii,t−2 +β3MRit +β4Hi,t−2 +β5Di,t−1 +β6Xit∗ + vit , (37)

where

vit = λm

n

∑
j=1

wi jv jt +πit . (38)

In this section we focus on the spatial aspects of the health/homelessness nexus. More recent

studies of spatial relationships that focus on general efficiency/productivity impacts in spillover

models are also available.12

The spatial component of the SAR model is a spatially lagged dependent variable. In this con-

text, it evaluates whether homelessness in each CoC is influenced by homelessness in nearby CoCs.

The SEM model includes the spatial term in the error component. This is meant to correct for po-

tential spatial autocorrelation, notwithstanding any underlying spatial relationship between CoCs.

For both models, the way that the spatial weights matrix W is defined will impact the results. They

estimate two different versions: one with the weight matrix formed using a k-nearest-neighbors

approach (k = 5), and the other with the weights matrix formed using the inverse distance-squared

12See, for example, Liu and Sickles (2021); Liu et al. (2022b,a)
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approach. Weighting matrices are row-standardized, and created using GeoDa software.

Both the spatial autoregressive model (SAR) and spatial error model (SEM) produce similar

results. In the SAR model, the spatial component, ρ , is negative and statistically significant in the

cases where total homelessness and unsheltered homelessness per 1000 are the variables of interest.

Rather than implying that homelessness in one region exerts a positive influence on homelessness

in adjacent regions, this negative coefficient suggests that homelessness levels in nearby regions

are dissimilar to one another. This could be due to homeless populations migrating or clustering

in specific cities or regions, but it suggests that rising (falling) homeless populations in one CoC

would not lead to a similar increase (decrease) in neighboring ones.

The finding of negative spatial dependence also suggests that shocks to variables outside of our

model, or outside of the level of homelessness itself, tend to affect homelessness levels in nearby

regions in different ways. Further examination of this conclusion can be analyzed by examining

the spatial effects of unforeseen shocks to SEM error.

In a SEM framework, spatial dependence can be influenced by factors other than the spatially

lagged dependent variable (Glass et al., 2012). In the context of the homeless crisis on the West

Coast, the outbreak of coronavirus across the globe is an example of an unexpected, exogenous

shock. This could influence sudden changes in homelessness across regions, and it is possible

to use the results from the spatial error model to examine the diffusion of such a shock across

geographic regions. To do this, a multiple standard deviation change in the error component for

each CoC is tested to see how that shock would affect homelessness across regions.

Recalling Equation (37) for the SEM model, one can consider impacts on the most recent

counts of homelessness for 2019. The impact is measured as the change in the dependent variable

resulting from a shock to the error term, πit . To represent this shock, a constant term is added to

the error term which takes on one of the two values: 2σ or 5σ . Here, σ is the standard deviation

of the idiosyncratic error term. These two different values are used to illustrate varying degrees of

a shock’s severity. Thus, in the event of a shock, the error term for each CoC takes on the value of

πit +2σ or πit +5σ . The new values of the error terms then are used to determine the new value
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of the dependent variable within every geographic unit. Thus, one can create an (n×n) matrix Y ∗,

where column j of Y ∗ represents the new values of the dependent variable in every CoC resulting

from the shock occurring in the jth CoC.

In order to evaluate the impacts of a shock on each CoC, one can create a matrix D = (Y ∗−Y ),

where Y is a (n× n) matrix such that each column lists the values of the dependent variable for

all n CoCs absent a shock. The contagion effects are constructed by forming a matrix V which

is created by dividing each element of D by the corresponding element of the matrix Y . Thus, in

summary, the following matrix operations are conducted:

Y ∗ = a+βX +(I −λW )−1diag(bσ), (39)

D = Y ∗−Y (40)

= (I −λW )−1diag(bσ), (41)

[V ]i j =
[D]i j

[Y ]i j
. (42)

Note that a is the fixed effects vector, X is the matrix of explanatory variables, W represents

the spatial weights matrix from the spatial error model, and b = 2 or 5, depending upon the size of

the shock. Thus, the values of the matrix V can be interpreted in the following way, as stated by Le

Gallo et al. (2005). The diagonal elements of V represent the direct impact of a shock, occurring

in a CoC, on the CoC itself. Each column of V represents the impact that a shock in one CoC has

on every other CoC, and each row of V represents how each CoC is impacted by shocks in every

other CoC.

Consequently, the simulated shocks in major cities predict a decrease in homelessness in nearby

geographic areas, suggesting that a shock in one area could signal nearby areas to expand outreach

and take preventative action in the face of a crisis.

To conclude this sub-section, it is worth noting that while we have described this type of SFA

approach in the context of analyzing the impacts of health shocks on homelessness and health

(following Fuller and Sickles (2022)), the possible range of other applications of this method to
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healthcare is much wider and we hope this section will encourage such research.

7.2 Bayesian SFA

In 1997, Koop et al. (hereafter KOS97) first introduced Bayesian inferences into unit-specific

efficiency analysis based on SFMs in panel data settings, i.e., under the classical framework in

Equation (8) as

yit = a+ x′itβ + vit −ui, i = 1, . . . ,n; t = 1, . . . ,T. (43)

Two Bayesian frameworks for the fixed and random effect models were developed in KOS97,

respectively. The unit-specific efficiency in the fixed effect models is measured relatively to the

most efficient unit, which is similar to the method in the classical SS84 model as introduced above.

Specifically, they proposed two fixed effect models: the standard individual effects model and the

marginally independent efficiency distribution model, where the prior for ai = a−ui in the second

model is informative on the unit-specific effects. In the random effect models, an informative prior

for ui is considered so that the absolute efficiency rather than the relative efficiency is estimated.

Specifically, two random effect models were proposed: the varying efficiency distribution model

and the common efficiency distribution model, where the priors are determined by the features of

the unit or obtained from a certain distribution, respectively.

Other than the seminal KOS97 models, more effort has been devoted to the Bayesian stochas-

tic frontier analysis during the 1990s, including a series of literature mainly published by Koop,

Osiewalski and Steel (Kim and Schmidt, 2000). For instance, Koop et al. (1994) and Koop et al.

(1995) introduced the Gibbs sampling method for posterior inference in SFMs. Van den Broeck

et al. (1994) suggested the Bayesian inference into SFMs, which is also fundamental to the devel-

opment of KOS97. Also the development by Fernandez et al. (1997) for the panel data problem

and by Osiewalski and Steel (1998) for easier computations of Bayesian SFA.

In the further development of the Bayesian approach in SFA, Griffin and Steel (2004) proposed

33



a semi-parametric Bayesian framework with a non-parametrically defined distribution of ineffi-

ciency, Atkinson and Dorfman (2005) considered the presence of undesirable output. While more

recently, Tsionas and Kumbhakar (2014) used Bayesian inference to gain a robust estimation of

inefficiency in their four error component model, which is in a similar form to the KLH14 and

CKMV model with transitory and persistent inefficiency terms as discussed in the previous sec-

tion. Griffiths and Hajargasht (2016) proposed two models considering the correlations between

the explanatory variables and the error terms to deal with the endogeneity problem in Bayesian

SFA. Liu et al. (2017) introduced a Bayesian framework to estimate variants of the cross-sectional

and time-varying stochastic frontier factor model of Kneip et al. (2012).

In the context of healthcare, Koop et al. (1997) and Griffin and Steel (2004) illustrated their

proposed methods with a data set of hospitals in the US, regarding the cost efficiency. In later

studies, Widmer (2015) analyzed 90 Swiss public hospitals with Bayesian inference of a SFM and

a random parameter frontier model, and found gains of cost efficiency during 2004 to 2009.

Overall, in the context of SFA, comparing to the conventional MLE, the flexibility and other

advantages of Bayesian inference lead to it having a great potential in the efficiency analysis of

healthcare and hospitals.

8 Concluding Remarks

In this chapter, we very briefly introduced a group of representative models in the wide spectrum

of SFMs and provided illustrations with corresponding code in R. We mainly followed the de-

velopment routine of three advancements over the basic SFM, where the panel data framework,

determinants of inefficiency and semi-parametric models were considered, respectively. In each

routine, we may find the advantages of the further developed models are usually at the cost of some

new limitations. Generally, a more advanced model is usually conducted with more sophisticated

model specifications, leading to a possibly lower degree of freedom, more assumptions and higher

computational intensity, etc. Hence, choosing a model that is suitable for the research scenario is
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critical for an analysis. Such importance was also emphasized in the empirical illustration regard-

ing the public hospitals in Queensland, Australia, where we may find the estimation of inefficiency

by different models varies dramatically.

Obviously, there are many more variants of SFMs developed in the last several decades than

those aforementioned, such as the spatial SFA and Bayesian SFMs that we briefly introduced.

Moreover, the stochastic frontier paradigm is still expanding by incorporating new techniques.

For more detailed discussions of more functional models and techniques, readers may refer to

Kumbhakar et al. (2015); Sickles and Zelenyuk (2019); Nguyen et al. (2022), to mention a few.
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A Full R code for the empirical illustrations

1 rm(list=ls())

2 graphics.off()

3 # Data Process

------------------------------------------------------------

4 # Read sample data

5 data <- read.csv("QLD.csv")

6 # Convert to panel data

7 library(plm)

8 paneldata <- pdata.frame(data , c("HOSID","Yeardummy"))

9 # Define formulas for different models

10 form = lAggout ~ lBEDS + lAgglabours + lSUPP

11 formz = lAggout ~ lBEDS + lAgglabours + lSUPP | TEACH + Remote + Small

12 formt = lAggout ~ lBEDS + lAgglabours + lSUPP + factor(HOSID)

13 # SFMs

--------------------------------------------------------------------

14 library(frontier)

15 ########################## ALS77 ##########################

16 attach(data)

17 # Model estimation

18 als77 <- sfa (form , data = data , ineffDecrease = T, truncNorm = F,

timeEffect = F)

19 summary(als77)

20 # Individual inefficiency by JLMS

21 # Coefficients

22 als77coef <- coef(als77 , which = "mle", extraPar = T)

23 # epsilon from fitted values

24 fals77 <- fitted(als77 , asInData = T)

25 ei = lAggout - fals77

26 # E(ui|ei)

27 us2 = (als77coef [["sigmaU"]])^2

28 vs2 = (als77coef [["sigmaV"]])^2

29 sigmastar = sqrt((vs2*us2)/(vs2+us2))

30 ustari = (-us2*ei)/(vs2+us2)

31 uals77 = (( sigmastar*dnorm(ustari/sigmastar))/(pnorm(ustari/sigmastar)))

+ustari

32 inals77 = 1 - exp(-uals77)

33 summary(inals77)

34
35 ########################## SS84 ##########################

36 attach(paneldata)

37 # Fixed effects for ui

38 ss84 <- plm(form , data = paneldata ,

39 model = "within", index = c("HOSID","Yeardummy"), effect = "

individual")

40 summary(ss84)

41 # ai and uihat

42 ai = as.numeric(unname(fixef(ss84)))

43 uss84 = max(ai) - ai

44 inss84 = 1 - exp(-uss84)

45 summary(inss84)
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46
47 ########################## PL81 ##########################

48 attach(paneldata)

49 # Fixed effects

50 pl81f <- plm(form , data = paneldata ,

51 model = "random", index = c("HOSID","Yeardummy"), effect = "

individual")

52 summary(pl81f)

53 # Extract initial values

54 sigmau2 = as.numeric(ercomp(pl81f)[["sigma2"]][2])

55 sigmav2 = as.numeric(ercomp(pl81f)[["sigma2"]][1])

56 sigmasq = sigmau2+sigmav2

57 gamma = sigmau2/sigmasq

58
59 init_para = c(as.numeric(pl81f$coefficients), sigmasq , gamma)

60 # MLE with initial values

61 pl81 <- sfa (form , data = paneldata , ineffDecrease = T, truncNorm = F,

timeEffect =F,

62 startVal = init_para)

63 summary(pl81)

64
65 # Estimate individual inefficiency with user -written functions

66 inpl81 <- 1-efficiencies (pl81 , asInData = T, logDepVar = T, minusU = T)

67 summary(inpl81)

68
69 ########################## CSS90 ##########################

70 attach(paneldata)

71 # Fixed effects for ui

72 c90ori <- plm(form , data = paneldata ,

73 model = "within", index = c("HOSID","Yeardummy"), effect =

"individual")

74 summary(c90ori)

75 # Vectors for regression with t

76 ai = as.numeric(c90ori [["residuals"]])

77 t = c(1, 2, 3, 4)

78 t2 = t^2

79 ait = numeric ()

80 # Regression by unit

81 for (i in 1: length(unique(HOSID))){

82 aittemp = lm(ai[(4*(i-1)+1):(4*(i-1) +4)] ~ t2 + t)$fitted.values

83 aittemp = as.numeric(unname(aittemp))

84 ait = c(ait , aittemp)

85 }

86 c90 = cbind(ait , t)

87 # cthat for each year

88 ajtyear = aggregate(ait ~ t, data = c90 , max)

89 # Compute uithat

90 c90 = as.data.frame(cbind(c90 , ajtyear [,2]))

91 colnames(c90) <- c("ait","t","ajt")

92 uc90 = c90$ajt - c90$ait

93 summary(uc90)

94 inc90 = 1 - exp(-uc90)

95 summary(inc90)

96
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97 ########################## BC92 ##########################

98 attach(paneldata)

99 # Model estimation

100 bc92 <- sfa (form , data = paneldata , ineffDecrease = T, truncNorm = T,

timeEffect = T)

101 summary(bc92 , effic = F, logDepVar = T, effMinusU = T)

102
103 # Estimate individual inefficiency with user -written functions

104 inbc92 <- 1-efficiencies (bc92 , asInData = T, logDepVar = T, minusU = T)

105 summary(inbc92)

106
107 ########################## G05 ##########################

108 attach(paneldata)

109 # Model estimation

110 g05 <- sfa (formt , data = paneldata , ineffDecrease = T, truncNorm = F,

timeEffect = T)

111 summary(g05 , effic = F, logDepVar = T, effMinusU = T)

112
113 # Estimate individual inefficiency with user -written functions

114 ing05 <- 1-efficiencies (g05 , asInData = T, logDepVar = T, minusU = T)

115 summary(ing05)

116
117 ########################## KLH14 ##########################

118 attach(paneldata)

119 # Fixed effects for alphai and epsilonit

120 klh14ori <- plm(form , data = paneldata ,

121 model = "within", index = c("HOSID","Yeardummy"), effect = "

individual")

122 summary(klh14ori)

123 # alphai

124 alphai = as.numeric(unname(fixef(klh14ori)))

125 # epsilonit

126 epsiloni = as.numeric(klh14ori [["residuals"]])

127 summary(alphai)

128 summary(epsiloni)

129 # Constant for sfa estimation

130 constant = 1

131 # Persistent inefficiency

132 klh14per = as.data.frame(cbind(alphai ,constant))

133 klh14p <- sfa(alphai~constant -1, data = klh14per , ineffDecrease = T,

truncNorm = F, timeEffect = F)

134 summary(klh14p , effic = F, logDepVar = T, effMinusU = T)

135
136 # Estimate individual inefficiency with user -written functions

137 inklh14p <- 1-efficiencies (klh14p , asInData = T, logDepVar = T, minusU

= T)

138 summary(inklh14p)

139
140 # Transitory inefficiency

141 klh14tran = as.data.frame(cbind(epsiloni ,constant))

142 klh14t <- sfa(epsiloni~constant -1, data = klh14tran , ineffDecrease = T,

truncNorm = F, timeEffect = T)

143 summary(klh14t , effic = F, logDepVar = T, effMinusU = T)

144

47



145 # Estimate individual inefficiency with user -written functions

146 inklh14t <- 1-efficiencies (klh14t , asInData = T, logDepVar = T, minusU

= T)

147 summary(inklh14t)

148
149 ########################## BC95 ##########################

150 attach(paneldata)

151 # Model estimation

152 bc95 <- sfa(formz , data = paneldata , ineffDecrease = T, truncNorm = T,

timeEffect = F)

153 summary(bc95 , effic = F, logDepVar = T, effMinusU = T)

154
155 # Estimate individual inefficiency with user -written functions

156 inbc95 <- 1-efficiencies (bc95 , asInData = T, logDepVar = T, minusU = T)

157 summary(inbc95)

158 ########################## SVKZ ##########################

159 library(np)

160 # Define factor variables and formulas

161 fTEACH = as.factor(TEACH)

162 fRemote = as.factor(Remote)

163 fSmall = as.factor(Small)

164
165 forms = lAggout ~ lBEDS + lAgglabours + lSUPP + fTEACH + fRemote + fSmall

166 forms3 = ehat3 ~ lBEDS + lAgglabours + lSUPP + fTEACH + fRemote + fSmall

167
168 # Bandwidths selection

169 bws.r1 <- npregbw(forms , regtype="ll", data=data , bwmethod = "cv.ls",

ckertype = "epanechnikov")

170 # Estimate conditional mean and extract fitted values and residuals

171 r1.est <- npreg(bws=bws.r1 , gradients=TRUE)

172 r1hat <- fitted(r1.est)

173 e1hat <- residuals(r1.est)

174 # Generate for r3

175 ehat3 <- e1hat ^3

176
177 # Bandwidths selection for r3 (skewness measures)

178 bws.r3 <- npregbw(forms3 , data=data , regtype="ll", bwmethod = "cv.ls",

ckertype = "epanechnikov")

179 # Estimate conditional mean and extract fitted values and residuals

180 r3.est <- npreg(bws=bws.r3 , gradients=TRUE)

181 r3hat <- fitted(r3.est)

182 e3hat <- residuals(r3.est)

183
184 # Estimate individual inefficiency

185 sigu3.hat <- sqrt(pi/2)*(pi/(pi -4))*r3hat

186 sigu.hat <- apply(cbind(0,sigu3.hat) ,1,FUN=max)^(1/3)

187 muhat <- sqrt(2/pi)*sigu.hat

188 summary(muhat)

189 insvkz = 1 - exp(-muhat)

190 summary(insvkz)

191
192 # Statistics of results

---------------------------------------------------

193 library(qpcR)
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194 # Combine inefficiency vectors of different length

195 ineffs <- qpcR ::: cbind.na(inals77 , inss84 , inpl81 , inc90 , inbc92 , ing05 ,

inklh14t , inklh14p ,inbc95 , insvkz)

196 # Apply statistical analysis to each model

197 stat = list("mean" = apply(ineffs , 2, mean , na.rm = T),

198 "sd" = apply(ineffs , 2, sd, na.rm = T),

199 "min" = apply(ineffs , 2, min , na.rm = T),

200 "Q1" = apply(ineffs , 2, quantile , probs =0.25, na.rm = T),

201 "Median" = apply(ineffs , 2, quantile , probs =0.5, na.rm = T),

202 "Q3" = apply(ineffs , 2, quantile , probs =0.75, na.rm = T),

203 "max" = apply(ineffs , 2, max , na.rm = T))

204
205 write.csv(stat , file = 'Stats of inefficiency.csv')

206
207 # Kernel densities of estimations

-----------------------------------------

208 require("ggplot2")

209 .df <- na.omit(data.frame(x = inals77))

210 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

211 .als <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

212 # Epanechnikov kernel and CV bandwidth

213 geom_density(

214 kernel = "gaussian",

215 bw = "ucv",

216 alpha = 0.5,

217 #Here for single group: color and fill without aes()

218 color = "brown1", fill = "brown1",

219 #shut the legend

220 show.legend = FALSE

221 ) +

222 scale_y_continuous(expand = c(0.01, 0)) +

223 xlab("ALS77") +

224 ylab("Density") +

225
226 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

227 print (.als)

228 rm(.df , .nbins)

229
230 require("ggplot2")

231 .df <- na.omit(data.frame(x = inss84))

232 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

233 .ss84 <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

234 # Epanechnikov kernel and CV bandwidth

235 geom_density(

236 kernel = "gaussian",

237 bw = "ucv",

238 alpha = 0.5,

239 #Here for single group: color and fill without aes()

240 color = "darkgreen", fill = "darkgreen",

241 #shut the legend

242 show.legend = FALSE

243 ) +

244 scale_y_continuous(expand = c(0.01, 0)) +
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245 xlab("SS84") +

246 ylab("Density") +

247
248 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

249 print (.ss84)

250 rm(.df , .nbins)

251
252 require("ggplot2")

253 .df <- na.omit(data.frame(x = inpl81))

254 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

255 .pl81 <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

256 # Epanechnikov kernel and CV bandwidth

257 geom_density(

258 kernel = "gaussian",

259 bw = "ucv",

260 alpha = 0.5,

261 #Here for single group: color and fill without aes()

262 color = "dodgerblue", fill = "dodgerblue",

263 #shut the legend

264 show.legend = FALSE

265 ) +

266 scale_y_continuous(expand = c(0.01, 0)) +

267 xlab("PL81") +

268 ylab("Density") +

269
270 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

271 print (.pl81)

272 rm(.df , .nbins)

273
274 require("ggplot2")

275 .df <- na.omit(data.frame(x = inc90))

276 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

277 .c90 <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

278 # Epanechnikov kernel and CV bandwidth

279 geom_density(

280 kernel = "gaussian",

281 bw = "ucv",

282 alpha = 0.5,

283 #Here for single group: color and fill without aes()

284 color = "gold", fill = "gold",

285 #shut the legend

286 show.legend = FALSE

287 ) +

288 scale_y_continuous(expand = c(0.01, 0)) +

289 xlab("C90") +

290 ylab("Density") +

291
292 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

293 print (.c90)

294 rm(.df , .nbins)

295
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296 require("ggplot2")

297 .df <- na.omit(data.frame(x = inbc92))

298 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

299 .bc92 <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

300 # Epanechnikov kernel and CV bandwidth

301 geom_density(

302 kernel = "gaussian",

303 bw = "ucv",

304 alpha = 0.5,

305 #Here for single group: color and fill without aes()

306 color = "blueviolet", fill = "blueviolet",

307 #shut the legend

308 show.legend = FALSE

309 ) +

310 scale_y_continuous(expand = c(0.01, 0)) +

311 xlab("BC92") +

312 ylab("Density") +

313
314 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

315 print (.bc92)

316 rm(.df , .nbins)

317
318 require("ggplot2")

319 .df <- na.omit(data.frame(x = ing05))

320 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

321 .g05 <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

322 # Epanechnikov kernel and CV bandwidth

323 geom_density(

324 kernel = "gaussian",

325 bw = "ucv",

326 alpha = 0.5,

327 #Here for single group: color and fill without aes()

328 color = "coral1", fill = "coral1",

329 #shut the legend

330 show.legend = FALSE

331 ) +

332 scale_y_continuous(expand = c(0.01, 0)) +

333 xlab("G05") +

334 ylab("Density") +

335
336 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

337 print (.g05)

338 rm(.df , .nbins)

339
340 require("ggplot2")

341 # Disable scientific notation

342 options(scipen =1000)

343
344 .df <- na.omit(data.frame(x = inklh14t))

345 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

346 .klh14t <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

347 # Epanechnikov kernel and CV bandwidth
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348 geom_density(

349 kernel = "gaussian",

350 bw = "ucv",

351 alpha = 0.5,

352 #Here for single group: color and fill without aes()

353 color = "darkolivegreen1", fill = "darkolivegreen1",

354 #shut the legend

355 show.legend = FALSE

356 ) +

357 scale_y_continuous(expand = c(0.01, 0)) +

358 xlab("KLH14 -Transitory") +

359 ylab("Density") +

360
361 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

362 print (. klh14t)

363 rm(.df , .nbins)

364
365 require("ggplot2")

366 .df <- na.omit(data.frame(x = inklh14p))

367 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

368 .klh14p <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

369 # Epanechnikov kernel and CV bandwidth

370 geom_density(

371 kernel = "gaussian",

372 bw = "ucv",

373 alpha = 0.5,

374 #Here for single group: color and fill without aes()

375 color = "royalblue", fill = "royalblue",

376 #shut the legend

377 show.legend = FALSE

378 ) +

379 scale_y_continuous(expand = c(0.01, 0)) +

380 xlab("KLH14 -Persistent") +

381 ylab("Density") +

382
383 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

384 print (. klh14p)

385 rm(.df , .nbins)

386
387 require("ggplot2")

388 .df <- na.omit(data.frame(x = inbc95))

389 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

390 .bc95 <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

391 # Epanechnikov kernel and CV bandwidth

392 geom_density(

393 kernel = "gaussian",

394 bw = "ucv",

395 alpha = 0.5,

396 #Here for single group: color and fill without aes()

397 color = "khaki3", fill = "khaki3",

398 #shut the legend

399 show.legend = FALSE
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400 ) +

401 scale_y_continuous(expand = c(0.01, 0)) +

402 xlab("BC95") +

403 ylab("Density") +

404
405 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

406 print (.bc95)

407 rm(.df , .nbins)

408
409 require("ggplot2")

410 .df <- na.omit(data.frame(x = insvkz))

411 .nbins <- pretty(range (.df$x), n = nclass.FD(.df$x), min.n = 1)

412 .svkz <-ggplot(data = .df, aes(x = x, y = .. density ..)) +

413 # Epanechnikov kernel and CV bandwidth

414 geom_density(

415 kernel = "gaussian",

416 bw = "ucv",

417 alpha = 0.5,

418 #Here for single group: color and fill without aes()

419 color = "mediumorchid1", fill = "mediumorchid1",

420 #shut the legend

421 show.legend = FALSE

422 ) +

423 scale_y_continuous(expand = c(0.01, 0)) +

424 xlab("SVKZ") +

425 ylab("Density") +

426
427 RcmdrPlugin.KMggplot2 :: theme_simple(base_size = 14, base_family = "

sans")

428 print (.svkz)

429 rm(.df , .nbins)

430
431 library("ggpubr")

432 Inefficiencies <- ggarrange (.als , .ss84 , .pl81 , .c90 , .bc92 , .g05 , .

klh14t , .klh14p , .bc95 , .svkz ,

433 ncol = 2, nrow = 5)

434 Inefficiencies

435 #----------------------END -----------------------------
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