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Abstract

In this paper I propose a method for constructing an enlargement of a variable returns

to scale (VRS) data generated production technology that will satisfy homotheticity. The

method can be used both with convex and non-convex technologies and both in the single

output and multiple output setting. The method is computationally fast, therefore it pro-

vides a tool that can be used on large datasets. An empirical illustration is provided based

on a dataset of Italian courts of justice.
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1 Introduction

In this paper I address the problem of building a data generated technology1 that satisfies

input (and/or output) homotheticity. In particular, I am interested in understanding if it is

possible to define an appropriate enlargement of the VRS hull which is able to satisfy input

(and/or output) homotheticity. I show that in the single output-multiple input (single input-

multiple output) case it is possible to build such an enlargement easily by using the constant

returns to scale (CRS) reference technology (the conical extension of the VRS hull). A similar

∗Centre for Efficiency and Productivity Analysis (CEPA), School of Economics, The University of Queensland,
Australia.

1Russell and Schworm (2009) called production sets that are based on axioms and use the minimum extrapo-
lation principle (i.e. they contain a given set of observations) Data Generated Technologies. This includes both
the data envelopment analysis (DEA) and the free disposal hull (FDH) models. I follow Russell and Schworm
(2009) in calling these technologies Data Generated Technologies.



simple and direct procedure is not available in the general multiple output-multiple input case.

In such a case I propose a method that provides an enlargement of the CRS cone that satisfies

both input and output homotheticity and use it to provide an enlargement of the VRS hull that

will satisfy input and/or output homotheticity. The method has the advantage of being easy

to implement and computationally fast with similar computational time as standard convex

(DEA) or non-convex (FDH) models. Moreover, the fact that a CRS reference set is used in

building the homothetic extension of the VRS hull, implies that the conical extension of the

VRS and homothetic VRS technologies coincide with the CRS technology.

Olesen (2014) introduced a method to find an enlargement of the VRS hull that satisfies

homotheticity (the author extends an idea presented in Hanoch and Rothschild (1972)). The

method proposed in Olesen (2014) is limited to the single output-multiple input case and the

convex technology, while the method proposed here extends to multiple outputs technologies and

non-convex technologies. Additionally, Olesen (2014) mentions potential computational issues

in large datasets, a problem that does not arise with the model presented here. Moreover, if one

is interested in imposing other regularity conditions such as the regular ultra passum law (see

Olesen and Ruggiero (2014)), it is useful to have a method that can be used with non-convex

technologies.

The simplicity and computational effectiveness of the method here proposed vindicates Ole

Olesen original intuition that homotheticity can indeed be used as an additional axiom in

building nonparametric production models (especially so in sinlge output technologies). Homo-

theticity may play an important role in allowing other properties of the graph of the technology

to be imposed, such as direct estimation of economies of scale in the graph of the technology

(Olesen and Ruggiero (2022)).

The method is illustrated by using data on courts of justice in Italy, first analyzed in Peyrache

and Zago (2016). This illustration is intended to show in which way the method can be useful
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to the applied researcher (in particular how one can use it to obtain better estimates of input

and output substitution possibilities).

The paper is organized as follows. In section 2 a numerical example is provided to show the

main results and give an intuition of the proposed method. Section 3 introduces the notation

and the definitions used. Section 4 describes the method for the single output-multiple input

case. Section 5 extends to the case of multiple output-multiple input. Section 6 provides the

empirical application and section 7 concludes.

2 Numerical Example

In table 1 I provide a numerical example of the proposed method to illustrate the basic

concepts and strategy that are used in order to impose homotheticity onto the data. This is

illustrated in the single output case, since this will provide the basic model and also because

in this case there is a quite straightforward way of imposing homotheticity. There are 7 DMUs

that are indicated by letters and produce three different output levels. Since there are only three

output levels (0.5, 1.8, 3), there are associated with these levels three different input isoquants.

The table also reports the ratio of inputs to output, the value of the aggregate input (described

below) and the output oriented efficiency scores for the VRS, CRS and Homothetic-VRS (H-

VRS) technologies.

DMU Y X1 X2 X1/Y X2/Y XAgg VRS CRS H-VRS

A 0.5 1 3 2 6 1 1 0.5 1
B 0.5 3 2 6 4 1.5 1 0.33 0.43
C 1.8 3 3 1.67 1.67 2 1 0.9 1
D 1.8 4.5 2.75 2.78 1.53 2.13 1 0.85 0.92
E 3 9 3 3 1 3 1 1 1
F 3 3 9 1 3 3 1 1 1
G 3 4.5 4.5 1.5 1.5 3 1 1 1

Table 1: Numerical Example: output oriented efficiency scores.
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Under the assumptions of convexity and variable returns to scale (VRS) these three isoquants

are shown in picture 1(a). Notice that two more points are included here: H and I. These are

obtained as, respectively, the convex combinations: (0.48A+0.52F ) and (0.48B+0.52E). These

two points form part of the isoquant at the output level y = 1.8. The VRS isoquants are clearly

non-homothetic (they are not ”parallel”, i.e. it is not possible to obtain the shape of one as a

scaling of the shape of another one). Moreover all the 7 observations are lying on the frame of

the VRS technology, therefore all of them are efficient. Each isoquant is indicated by the letter

L, so LV RS(y = 0.5) will represent all the input combinations that are able to produce output

level y = 0.5. In panel 1(b) both the VRS and the CRS isoquants are reported, with the CRS

isoquants highlighted in red. Notice that the CRS technology is obtained as the conical extension

of the VRS technology. Under the CRS assumption only three of the seven observations are

efficient: E, F and G. For output level y = 3 the CRS and VRS isoquants coincides (this is not

in general true, but it is for this example).

When scaling back the inputs and the output from the input isoquant LCRS(y = 3) we then

obtain all the isoquants associated with the CRS cone technology. In particular the two that

are of interest here are LCRS(y = 0.5) and LCRS(y = 1.8). Notice that the main characteristic

of the red CRS isoquants is that now they are ”parallel” shifts of each other, thus it is possible

to obtain one isoquant as a scaling of the other one. This means that the CRS technology (only

in the one output case) is also homothetic. Another feature of this numerical example is that

observations A, B, C, D are lying in the non-decreasing returns to scale portion of the VRS

technology. This is evidenced by the fact that the CRS technology makes use of less inputs to

produce the same level of output compared to the VRS technology. It is now possible to use

the fact that the CRS technology is homothetic to build an enlargement of the VRS technology

that will satisfy homotheticity. This is done in panel 1(c) by considering in blue the homothetic

VRS isoquants (H-VRS). This isoquants will have the same ”shape” as the CRS ones, but will
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(a) VRS (b) VRS and CRS (in red)

(c) CRS (in red) and H-VRS (in blue) (d) VRS and H-VRS (in blue)

(e) CRS and H-VRS in Aggregate
Space

Figure 1: Input Isoquants for VRS, CRS and Homothetic VRS Technologies

lie at a different point on the graph. To obtain them, one has to ”envelope” the data points

under the constraint that the shape of the isoquant is given by the CRS isoquant. Therefore,
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for example, LH−V RS(y = 0.5) will have to envelope points A and B as tightly as possible.

Clearly this is done in the picture and since the ”shape” of the isoquant is given, DMU A will

sit on the frame of this new technology and be efficient, but DMU B will sit inside the frame

and be inefficient. A similar argument applies to the other two isoquants. In particular, since

the isoquant LCRS(y = 3) is scale efficient, the H-VRS technology isoquant LH−V RS(y = 3) will

coincide with it at the scale efficient size. It is important to notice here that if one were to take

the conical extension of the H-VRS technology, then this would return the CRS technology. This

is an important feature of this method, since it guarantees that the homothetic enlargement of

the VRS technology is contained in the CRS technology and therefore the conical extensions

of the VRS and H-VRS technologies coincide. In panel 1(d) the VRS and H-VRS technologies

are contrasted. As it can be clearly seen from this picture, the H-VRS provides a minimal

enlargement of the VRS technology that will satisfy homotheticity. DMUs B and D that were

efficient under VRS, will now be inefficient if benchmarked against the H-VRS technology. This

means that the H-VRS technology will have more discrimination power compared to the VRS

technology, as expected. In the last panel 1(e) the technology is represented by using the input

aggregates. To obtain these aggregates one picks one input isoquant of the H-VRS technology

and then measures the distance of each DMU input vector from this isoquant. In this example,

isoquant LH−V RS(y = 0.5) is chosen as a reference. Since DMU A lies on this isoquant the

input aggregate for this DMU will be equal to XAgg = 1. For DMU F, for example, the

radial distance from this basic isoquant is OF/OA, therefore the input aggregate for DMU F is

XAgg = 3. The other DMUs input aggregates can be obtained similarly by measuring the radial

distance from this base isoquant. It should also be noted that the choice of the base isoquant is

innocuous, since picking a different isoquant will be equivalent to a unit of measurement change

(multiplication by a scalar) of the input aggregates. In panel 1(e) all the combinations of input

aggregates and output are plotted. The CRS and H-VRS technologies are represented here and
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the associated scale economies can easily be checked via this scatter plot. Notice that there is

no such an aggregate space representation for the VRS technology, since in general the VRS

technology will not satisfy input homotheticity and therefore it is deprived of an aggregate space

representation.

It is interesting to note that the previous method also provides a way of determining the set

of points that will constitute the frame of the homothetic VRS technology. Table 2 provides a

reference set of observations that, if used, will generate a VRS hull that is input homothetic. If

the efficiency of the original set of observations were to be measured against this new reference

set, the efficiency score obtained for each observation would be the same as the one obtained in

the aggregate space of figure 1(e). Moreover, the fact that a dataset satisfying homotheticity

can be built, implies that further analysis of the data can be conducted directly on this dataset,

therefore enforcing homotheticity on any subsequent result. It should also be noted here that

imposing homotheticity is equivalent to building input aggregates. In other words, any set of

input aggregates will imply an input homothetic structure and viceversa. Although this example

has been carried out using the convexity assumption, nothing prevents from using a non-convex

model. As one would expect, the convex homothetic VRS technology will be equal to the convex

closure of the non-convex homothetic VRS technology, a fact that will be used later in section

5 in the building of a homothetic structure for the multiple output case.

DMU Y X1 X2

A’ 0.5 1 3
B’ 0.5 3 1
C’ 0.5 1.5 1.5
D’ 1.8 2 6
E’ 1.8 3 3
F’ 1.8 6 2
G’ 3 9 3
H’ 3 3 9
I’ 3 4.5 4.5

Table 2: Observations that will Generate a Homothetic Frame
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3 Definitions and Assumptions

Before extending the computational aspects described in the numerical example to the gen-

eral case, it is important to recall some theoretical notions and definitions that will help and

inform the subsequent computational strategy. To this purpose, consider a production process

where inputs x ∈ RP
+ are used to produce outputs y ∈ RQ

+ and let T denote the production

possibilities set or technology (see O’Donnell (2018)):

T = {(x,y) ∈ RP
+ × RQ

+ | x can produce y}.

The output attainable set is the set of possible outputs y producible using input vector x

and it can be defined as

P (x) = {y ∈ RQ
+ | (x,y) ∈ T}.

The output isoquant is then defined as: IP (x) = {y ∈ RQ
+ | (x,y/θ) /∈ T, θ < 1}. Similarly,

for any y ∈ RQ
+ the input requirement set L (y) can be defined as the set of all input vectors

which yield at least y:

L(y) =
{
x ∈ RP

+ | (x,y) ∈ T
}
.

and the input isoquant is then defined as: IL(y) =
{
x ∈ RP

+ | (x/λ,y) /∈ T, λ > 1
}
. The

conical extension of the production set T is defined as:

TC = {(αx, αy) : (x,y) ∈ T, α ≥ 0}

The technology satisfies CRS if and only if T = TC . Note that, in general, even if T does

not satisfy CRS, the conical extension TC can be defined as an enalrgement of T according to
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the previous formula. This will imply some restrictions on the production set T in order for TC

to be a strict subset of the positive orthant2.

3.1 Data Generated Technologies

In order to give empirical meaning to the previous definitions consider the production

possibilities set generated by a set of data points or decision making units (DMUs) (xk,yk)

(∀k = 1, . . . ,K), where the input and output vectors are column vectors. In the spirit of

Podinovski (2022), I make the following assumptions on the technology set:

A1. Feasibility of observed DMUs: the observed data points belong to the production set

((xk,yk) ∈ T ).

A2. Free Disposability : ∀(x,y) ∈ T , if x′ ≥ x, y′ ≤ y, then (x′,y′) ∈ T .

A3. Convexity : (x1,y1) ∈ T and (x2,y2) ∈ T =⇒ [γx1 + (1− γ)x2, γy1 + (1− γ)y2] ∈

T, 0 ≤ γ ≤ 1.

Notice that this minimal set of axioms implies that L(y) is closed and P (x) is compact.

The convexity assumption is not necessary in any of the results presented below, but it is

here introduced because of its widespread use. One can apply the method proposed in this

study to both convex and non-convex settings, therefore there is no harm in dispensing of this

assumption. The numerical example above makes use of convexity for illustrative purposes and

in the empirical computations below both the convex and the non-convex technology results

will be presented. Notice that homotheticity and convexity are two separate properties and one

should, ideally, be able to impose them separately on the technology (as I shall propose in this

paper). The first two assumptions are, on the contrary, maintained throughout, although one

may relax free disposability and use the weak disposability axiom (this would perhaps involve

2Since the technology is generated by a set of given data points, what is required is that there are no obser-
vations that produce strictly positive output using a zero input vector. This is also known as the no free lunch
assumption: ∄k : xk = 0P andyk > 0.
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maintaining convexity to obtain sensible results). The production technology implied by this

set of axioms in conjunction with the observed data points is:

T =

{
(x,y) :

∑
k

λkxk ≤ x,
∑
k

λkyk ≥ y,
∑
k

λk = 1

}
(1)

This technology is known as the VRS technology and it is possible to add the binary con-

straint (λk ∈ {0, 1}) to allow for a non-convex technology. The non-convex technology is known

as the free disposal hull (FDH) technology. Since the convexity assumption can be dispensed of

without affecting any of the results, I will refer simply to T as the data generated technology

under VRS and this should be intended as including both the convex and non-convex case. The

CRS conical extension of this set is:

TC =

{
(x,y) :

∑
k

λkxk ≤ δx,
∑
k

γkyk ≥ δy,
∑
k

λk = 1, δ ≥ 0

}
(2)

It should be noted that under the binary constraint (λk ∈ {0, 1}), the conical extension of

the set is a non-convex cone. This non-convex cone technology has been studied in Kerstens

and Eeckaut (1999), Podinovski (2004). Briec and Kerstens (2006) show that computation

of distance functions using a non-convex cone technology can be accomplished by using an

enumeration algorithm, as opposed to a linear program (LP) for the convex technology. This

makes computation over large datasets for the non-convex case feasible and fast; in fact, orders

of magnitude faster than in the convex case.

3.2 Distance Functions, Efficiency and Homotheticity

The technical efficiency of any given point (x,y) ∈ T is determined by the distance of the

point to the boundary of the attainable set. Input and output distance functions measure the

technical efficiency in the input and output direction respectively and are defined as:
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DI (x,y) = sup {λ > 0 | (x/λ,y) ∈ T} (3)

and

DO (x,y) = inf {θ > 0 | (x,y/θ) ∈ T} . (4)

Under our assumptions on the data generated technology, the input and the output distance

functions will satisfy a number of properties. For the results presented in this paper, it is

important to point out that, by definition, the input distance function is linearly homogeneous

in the input vector and the output distance function is linearly homogeneous in the output

vector. For any given dataset, these quantities can be therefore computed as a linear program

in the case of a convex technology and using an enumeration algorithm in the case of a non-

convex technology.

We say that the technology exhibits output homotheticity if the output set satisfies P (x) =

P (1)G(x), with G(x) being a non-decreasing function in its argument; this implies the following

functional separability of the output distance function:

DO (x,y) =
Y (y)

G (x)
(5)

where Y (y) is a linearly homogeneous, non-decreasing function in the output vector. This

function aggregates the output vector into a single index. Notice that this simple fact implies

that the technology can be represented using a production function: Y (y) = θG(x), with

θ = DO(x,y) being the efficiency of production. This means that output homotheticity allows

to separate functionally the outputs from the inputs and express every output vector as a

single valued aggregate number. For example if for two output vectors y1,y2, Y (y1) = Y (y1),

this means that the two vectors are of the same ”size” although they may have a different
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composition: the two vectors lie on the same output isoquant if and only if the two aggregates

have the same value. In other words, the notion of a given ”level” or ”size” of output production

takes a very transparent meaning under output homotheticity, something that is not possible

with multiple outputs under non-homothetic technologies. The output aggreagates Y (y) can

be build, in practice, by choosing a reference input vector, say x = 1P :

Y (yk) = DO(1P ,yk) (6)

where it is clear that due to the separability of the output distance function, the choice of the

reference input vector x = 1P is innocuous, since any other reference input vector would give

rise to the same output aggregates (up to a re-scaling factor). Thus the output aggregates are

uniquely determined up to an innocuous scaling normalization that amounts to the equivalent

of a choice on the unit of measuremet of the output aggregate3. Associated with the output

homothetic structure, I define an alternative representation of the technology based directly on

the output aggregates:

TAOH =

{
(x, Y ) :

∑
k

λkxk ≤ x,
∑
k

λkYk ≥ Y,
∑
k

λk = 1

}
(8)

where Yk = Y (yk) are the output aggregates computed above. One can also consider the

conical extension of this aggregate technology TAOHC . Because of the separability of the output

distance function one can measure efficiency against this aggregate technology, basically reducing

it to a single output technology.

3An alternative approach for the construction of the output aggregates is to choose a different reference input
vector and then measure the distance of each output vector with respect to this isoquant. For example, choosing
P (xj) will return the following output aggregates:

Y (yk) =
DO(xj ,yk)

DO(xj ,y1)
(7)

This is also known as the Malmquist output quantity index. It is worth stressing again that these output
aggregates are the same as the ones obtained before (under output homotheticity), except for a re-scaling. In
other words the ratio between any two output aggregates is the same using the two methods.
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The technology satisfies input homotheticity if the input set satisfies L(y) = L(1)H(y), with

H(y) a non-decreasing function of its argument; this implies the following functional separation

of the input distance function:

DI (x,y) =
X (x)

H (y)
(9)

where X (x) is a linearly homogeneous, non-decreasing function in the input vector. A

similar interpretation holds here for the input aggregate X(x) as discussed previously for the

output aggregate Y (y). In particular by choosing as a reference the unit output vector y = 1Q,

the input aggregates can be obtained as:

X(xk) = DI(xk,1Q) (10)

where due to the separability of the input distance function, the choice of the reference

output vector is innocuous, since any other reference output vector would give rise to the same

input aggregates (up to a re-scaling factor)4. Associated with the input homothetic structure,

I define an alternative representation of the technology based directly on the input aggregates:

TAIH =

{
(X,yk) :

∑
k

λkXk ≤ X,
∑
k

γkyk ≥ y,
∑
k

λk = 1

}
(12)

where Xk = X(xk) are the input aggregates. One can also consider the conical extension

of this aggregate technology T IAHC . Because of the separability of the input distance function,

one can measure efficiency against this aggregate technology.

A technology which jointly satisfies input and output homotheticity has the following rep-

4Similarly to the output case, the input aggregates can also be computed as:

X(xk) =
DI(xk,yj)

DI(x1,yj)
(11)

This is known as the Malmquist input quantity index. Again, we are choosing just a different scaling of the
input aggregates, leaving their relative ratios constant.
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resentation in terms of the output distance function:

DO (x,y) =
Y (y)

F [X (x)]
(13)

where F (·) is a non-decreasing function of its scalar argument. Joint input and output homo-

theticity can also be represented functionally using the input distance function:

DI (x,y) =
X (x)

G[Y (y)]
(14)

where G(·) is a non-increasing function of its scalar argument. Associated with the joint homo-

thetic structure, I define an alternative representation of the technology based directly on the

output and input aggregates:

TAH =

{
(X,Y ) :

∑
k

λkXk ≤ X,
∑
k

γkYk ≥ Y,
∑
k

λk = 1

}
(15)

The previous definitions are applied to T , the VRS hull. It is important to explore how

these notions apply to the conical extesion TC of the VRS set. The input distance function

associated with the conical extension is defined as

DC
I (x,y) = sup

{
λ > 0 | (x/λ,y) ∈ TC

}
(16)

and it will satisfy linear homogeneity in x and homogeneity of degree -1 in y. The output

distance function associated with the conical extension is defined as

DC
O (x,y) = inf

{
θ > 0 | (x,y/θ) ∈ TC

}
. (17)

and it satisfies linear homogeneity in y and homogeneity of degree -1 in x. The only difference

here is that the distance functions are defined over the set TC instead of the set T . Moreover
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for the conical extension TC , DC
O(x,y) = 1/DC

I (x,y). Clearly, if the production set T is output

homothethic, the conical extension TC will inherit output homotheticity and the output distance

function associated with the conical extension will satisfy the following functional restriction:

DC
O (x,y) =

Y (y)

GC (x)
(18)

where Y (y) is the same as in equation (5), but GC(x) is now linearly homogeneous in

its argument. If the production set satisfies input homotheticity, the input distance function

associated with the conical extension will satisfy the following functional restriction:

DC
I (x,y) =

X (x)

HC (y)
(19)

where X (x) is the same as in equation (9), but HC(y) is linearly homogeneous in its argument.

This also means that for the conical extension TC , HC(y) = ayY (y) and GC(x) = axX(x), i.e.

these functions are linear functions in their respective aggregates (after appropriate normaliza-

tion) and ay = a−1
x . One last property associated with the conical extension of the technology is

important for this discussion. For a single output (y ∈ R+) multiple input (x ∈ Rp
+) technology,

CRS is sufficient for input homotheticity (the reverse is not true and a technology can be input

homothetic without being CRS; this is trivial, otherwise the raison d’être of this paper would

be undermined). Similarly, for a single input (x ∈ R+) multiple output (y ∈ Rq
+) technology,

CRS is sufficient for output homotheticity (the reverse is not true). This result points to the

fact that a simple way of imposing homotheticity for a single output (or single input) data

generated technology is to look at its conical extension: the conical extension will always satisfy

CRS and consequently homotheticity. This result will be used in the next section to build a

homothetic VRS hull. Another fact should be noted here. If a technology satisfies CRS then

input homotheticity will imply output homotheticity and viceversa. In other words, for the
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conical extension, input homotheticity will hold if and only if output homotheticity holds. This

fact implies that:

DC
O (x,y) =

Y (y)

G [X(x)]
⇔ DC

I (x,y) =
X(x)

H [Y (y)]
(20)

and this relationship will be used to deliver a method for imposing homotheticity in the

multiple input-multiple output case. These relationships will be useful in order to inform our

strategy on how to impose homotheticity on an otherwise non-homothetic technology.

In general for any given set of data points (xk,yk), the data generated technology under VRS

will not satisfy homotheticity. The question then arises if it is possible to build an enlargement of

this technology that satisfies homotheticity as an additional production axiom. It is important to

stress that, since the VRS data generated technology does not in general satisfy homotheticity,

the separability conditions on the distance functions discussed in this section will in general

not hold for any particular dataset and its associated data generated technology. The problem

then becomes how to use the theoretical relationships in order to build an enlargement of the

production technology that will satisfy homotheticity, therefore the separability conditions on

the distance functions. The next sections should address such a problem.

4 Single output case

In this section I consider the problem of imposing an input homothetic structure on the

VRS technology (1) for the single output case. The method works in a similar way for the

single input multiple output case. In order to build the input aggregates implied by the input

homothetic structure, the unit input isoquant of the CRS technology TC is chosen as a reference

LC(y = 1). This means solving the program associated with the computation of the following

input distance function X(xk) = DC
I (xk, 1) for all observations in the dataset. For the sake of
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clarity, the program is reported here for a generic observation o = 1, . . . ,K:

min θ

st
∑

k λkxk ≤ θxo∑
k λkyk ≥ 1

(21)

where the optimal value of the objective function will return the input aggregate: X(xo) =

1/θ∗. To obtain the program for the non-convex case, one adds the following two constraints:

λk ≤ Dβk and
∑

k βk = 1, where D is an appropriate large number and βk ∈ {0, 1} are binary

variables. It is interesting to note that by a transformation of variables (µk = λkyk), this

program can be written as:

min θ

st
∑

k µkak ≤ θxo∑
k µk ≥ 1

(22)

where ak =
xk

yk
and this highlights that the base isoquant can be obtained by expressing the

variables in intensive form (x/y). This will provide the reference base isoquant for the building

of the aggregators, and it vindicates the intuition presented in the numerical example of section

2. Given the Xk = X(xk) input aggregates, the output oriented efficiency scores under the VRS

input homothetic technology can be computed using the aggregate input homothetic technology

(TAIH) defined in equation (12) (one can also compute the input oriented or any other type of

orientation):

DH
O (xk, yk) = DAIH

O (Xk, yk) (23)

where DH
O (xk, yk) ≤ DO(xk, yk). The implied program is:
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max θ

st
∑

k λkXk ≤ Xo∑
k λkyk ≥ θyo∑
k λk = 1

(24)

and DH
O (xk, yk) = 1/θ∗. Clearly, the homothetic technology is a single input-single output

technology and the aggregator function X(x) describes the input substitution possibilities of the

technology. There are various ways of determining the frame of the homothetic VRS technology

in the full input-output space, as opposed to the aggregate space. One (very intuitive?) way is

to look at the following enlarged dataset:

(
xk

Xj

Xk
, yj

)
, ∀k, j = 1, . . . ,K (25)

The data generated technology (1) obtained with this enlarged dataset will return a homo-

thetic frame as an enlargement of the VRS technology. Since the input aggregates have been

determined already, the construction of this enlarged dataset does not present any particular

computational burden. The efficiency scores based on this enlarged technology under VRS will

be the same as the ones in equation (23). The problem with this description of the frame is that

it is not parsimonious, requiring K2 data points, therefore making computation of efficiency

scores slow. A much better way of building the frame is to list the observations that form the

base unit isoquant, these can be obtained as the set of efficient observations when efficiency is

benchmarked against the CRS technology. In other words, these are the observations that form

the frame of the CRS technology. Collect these N ≤ K efficient points in the matrix A = [an]

for the unit output level y = 1 (with variables expressed in intensive form, as ratios to their own

output level: an = xn/yn). This matrix is of dimension P ×N and has on the columns the input

vectors that compose the base unit isoquant. Notice, moreover, that one does not need all the
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observations to describe the homothetic frame (as much as one does not need all observations

to describe the CRS or VRS frame), but only observations that are efficient when benchmarked

against the homothetic VRS technology (this can be determined by looking at the efficiency

scores determined in equation (23)). If this number is M < K, then the description of the

homothetic frame can be done using only these M efficient DMUs. Then the following dataset

will return a parsimonious way of determining the frame of the homothetic VRS technology:

 Z

V

 =

 X1A . . . XMA

y11N . . . yM1N

 (26)

where matrices Z and V are, respectively, of dimension P × J and Q × J (1 × J), with

J = N × M being the number of observations needed to build the homothetic frame. Notice

that here N is the number of points needed to build the base isoquant and M the number of

points needed to shift the base isoquant to the appropriate output level. For example in the

numerical example presented in section 2, the first description of the frame will return a dataset

of 49 observation, but only 9 are necessary to build the homothetic frame: N = 3 points that

form the base isoquant and M = 3 different output levels. The homothetic VRS technology can

then be obtained as follows:

TH =

(x,y) :
∑
j

λjzj ≤ x,
∑
j

λjvj ≥ y,
∑
j

λj = 1

 (27)

where (zj ,vj) are the columns of the associated matrices. The use of this technology will

return a separable input distance function. Since the whole method can be used both in the

convex and non-convex case, the convex homothetic technology will be equal to the convex clo-

sure of the non-convex homothetic technology. This concludes the construction of a homothetic

VRS technology in the single output case (extension to the single input-multiple output case is

trivial, following the same line of reasoning).
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5 Multiple output case

In the multiple input-multiple output case the strategy outlined above will not work, since

the conical closure of T , TC , is in general neither input nor output homothetic (the CRS cone will

be ray-homothetic, but this is of little help in this discussion). Neverthless, by recalling the fact

that output homotheticity will imply input homotheticity (and viceversa) for a CRS technology,

it is possible to reduce the problem to the one of imposing input or output homotheticity (since

this will entail an output or input homothetic structure for the cone CRS technology). In

the multiple output context, since the CRS cone is not homothetic, one needs to look for

an enlargement of the cone itself that will then satisfy homotheticity. Since homotheticity is

implied by a set of input or output aggregates, this means that a strategy must be deployed

to compute either the output aggregator function Y (y) or the input aggregator function X(x)

before proceeding to look at imposing joint homotheticity. The basic intuition here is that the

conical closure of the technology must be enlarged in such a way as to produce a homothetic cone

(the term ”homothetic cone” is here used to mean that the CRS cone technology is both input

and output homothetic, thus joint homothetic). This will be accomplished with an iterative

procedure.

The input aggregates are obtained in the first step using equation (11) like in the previous

section. This uses the conical CRS technology as a benchmark: X (xk) = DC
I (xk,1Q). Contrary

to the single output case, in the multiple output case the choice of the reference output vector

will return alternative input aggregates even under CRS, since the CRS cone is neither input nor

output homothetic in this case5. The output aggregates are obtained, similarly, by computing:

5Thus, in general
DC

I (xk,1)

DC
I

(x1,1)
̸= DC

I (xk,yj)
DC

I (x1,yj)
and the choice of alternative reference output vectors yj will return

different input aggregates. The difference between the two aggregates comes from the different composition
(mix) of the outputs, not the difference in their ”level” or ”magnitude”. Since the CRS technology is used as
a reference, ray-homotheticity makes the two sets of aggregates equal under a re-scaling of the reference output

vector:
DC

I (xk,yj)
DC

I (x1,yj)
=

DC
I (xk,αyj)

DC
I (x1,αyj)

, α > 0. To this purpose, in practice, it is appropriate and recommended the

use of the average output vector in the sample as a reference. To simplify notation, I will use the unit output
vector and assume that the dataset has been normalized by the data mean, therefore returning an average vector
of ones.
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Y (yk) = DC
O (1P ,yk). These output aggregates are also dependent on the choice of the reference

input set.

Notice that because of the theoretical discussion above, the conical extension of the output

homothetic structure induced by the output aggregates will implicitly define a set of input

aggregates (and viceversa). This input aggregates will in general be different from the input

aggregates obtained above. Another way of looking at this, is to say that the CRS cone implied

by the output homothetic structure induced by the aggregates Y (yk) = DC
O(1P ,yk) is not the

same cone as the one implied by the input homothetic structure induced by the input aggregates

X(xk) = DC
I (xk,1P ). This is in contrast to the above theoretical result that states that the

two structures should give rise to the same conical extension. Call TOH the output homothetic

technology under VRS implied by the output aggregates, T IH the input homothetic technology

under VRS implied by the input aggregates and TOHC , T IHC the conical extensions of these two

sets. Then as established in section 3, TOHC = T IHC = THC , but in general these cones will

differ if the aggregates are computed with the method above, in contrast to the theory. To avoid

such an inconsistency an iterative procedure is deployed below. Before doing so, it is necessary

to define the frames of the T IH and TOH technologies. The input base isoquant is determined

as the set of observations that are efficient when benchmarked against the conical extension of

technology (8), the output homothetic aggregate technology TAOH . Say the number of these

observations is N , collected in the matrix A = [an], then the frame of the input homothetic

technology is given by:

 Z

V

 =

 X1A . . . XMA

y11N . . . yM1N

 (28)

Notice that the main difference with respect to the frame in the single output case comes

from the fact that vectors instead of scalars are used for the output. This frame can be used
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to build the input homothetic technology T IH using definition (27). The frame of the input

homothetic technology T IH can be used to build the input aggregates using its conical extension.

These aggreagtes will be the same as the ones obtained using the aggregate output homothetic

technology TAOH conical extension, but different from the ones computed above: DIHC
I (xk,1) =

DAOHC
I (xk, 1) ̸= DC

I (xk,1Q).

The output base isoquant is determined as the set of observations that are efficient when

benchmarked against the conical extension of technology (12), the input homothetic aggregate

technology TAIH . Say the number of these observations is L, collected in the matrix B = [bl],

then the frame of the output homothetic technology is given by:

 Z

V

 =

 x11L . . . xM1L

Y1B . . . YMB

 (29)

This frame can be used to build the output homothetic technology using definition (27). The

frame of the output homothetic technology TOH can be used to build the output aggregates

using its conical extension. These aggreagtes will be the same as the ones obtained using

the aggregate input homothetic technology TAIH conical extension but different from the ones

computed above: DOHC
O (1,yk) = DAIHC

O (1,yk) ̸= DC
O(1P ,yk).

There are two main problems with this initial step and both of them suggest a way of building

the iteration steps below. First, the conical extensions of T IO and TOH should be the same,

but those are in general different after this initial step. Second, if the convex and non-convex

models are applied separately, the frame of the convex technology is not necessarily contained

in the frame of the non-convex technology. In other words, the convex technology may not be

equal to the convex closure of the non-convex technology, and the two may in fact intersect. In

order to obtain a unique conical extension of the two technologies and to obtain the convex sets

as a convex closure of the non-convex sets, the following iterations can be implemented. Call
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the value of the input and output aggregates at step s of the iteration Xs
k and Y s

k respectively

(using as starting values the aggregates just computed). Then, at step s ≥ 2:

1. compute both the convex and non-convex frames (using the convex and non-convex ag-

gregates from the previous step) of technologies T IH and TOH ; call T IH
C and T IH

NC the

convex and non-convex sets respectively for the input homothetic structure (and similarly

TOH
C and TOH

NC for the output homothetic structure); take the union of the convex and

non-convex frames by stacking the respective matrices of data points; call these extended

sets TEIH = T IH
C ∪ T IH

NC and TEOH = TOH
C ∪ TOH

NC ;

2. compute the convex and non-convex input aggregates using the conical extension of TEOH

as a reference: Xs
k = DEOHC

I (xk,1);

3. compute the convex and non-convex output aggregates using the conical extension of TEIH

as a reference: Y s
k = DEIHC

O (1,yk);

4. Repeat steps 1), 2) and 3) until a stopping criterion is reached, and the four sets of

aggregates converge6 (both for the convex and non-convex quantities).

The previous iteration procedure provides a way of computing the four sets of aggregates

consistently with each other7. This means that the CRS cone implied by the input aggregates

will be the same as the CRS cone implied by the output aggregates (TOHC = T IHC = THC).

Moreover, this means that the convex homothetic technology will always be the convex closure

of the homothetic non-convex technology, therefore respecting the principle that the two are

connected. As a consequence, the conical extension of the convex technology will be equal to

6A stopping criterion can be defined by setting tolerance levels on the changes maxk(|Y s
k − Y s−1

k |) and
maxk(|Xs

k −Xs−1
k |).

7This iterative procedure is relatively fast. In the empirical example below, it took about 3 minutes to converge
to a tolerance level set at the 6th decimal digit. The biggest burden in the computational speed is given by the
convex linear programs. One could take the view that it is unnecessary to run the convex models, by relying only
on the non-convex model and then defining the convex model on the frame of the non-convex model. This would
reduce the computational burden drastically, since enumeration can be used on all non-convex models. This is
likely to take a fraction of a second even on large datasets.
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the convex closure of the conical extension of the non-convex technology. It should be noted

that all these relationships hold in the single output case, therefore the iteration procedure

will just be a mean to preserve these theoretical relationships in the multiple output case. An

additional interesting fact is that the convex input aggregates will always be larger or equal to

the non-convex input aggregates and the convex output aggregates will always be smaller or

equal to the convex output aggregates.

The efficiency scores under output, input or joint homotheticity can be determined respec-

tively by using the aggregate technologies TAOH , TAIH and TAH reported in equations (8),

(12) and (15), together with the set of input and output aggregates determined by the previous

iterative procedure. This reduces to computing efficiency scores for: a single output-multiple

input technology in the case of output homotheticity (technology 8); a multiple output-single

input technology for the case of input homotheticity (technology 12); and a single output-single

input technology for joint homotheticity (technology 15). The frame of these three technologies

can be obtained by determining the set of observations that form the input and output base

isoquants. The frames for the input and output homothetic case have been reported above

already. The frame of the joint homothetic technology is determined as:

 Zm

Vm

 =

 XmA . . . XmA

Ym1Nb1 . . . Ym1NbL

 , m = 1, . . . ,M (30)

and then stacking these matrices one obtains the frame:

 Z

V

 =

 Z1 . . . ZM

V1 . . . VM

 (31)

The joint homothetic technology TH can be built using this frame as a reference in definition

(27). Each of these three technologies has a conical extension. Call THC , T IHC , TOHC these

24



conical extensions. Then THC = T IHC = TOHC as implied by the theory summarized above.

This means that the conical extensions of these three technologies coincide. This concludes the

discussion of the multiple output case. One should note that the frame of the various sets is

determined in a very parsimonious way, since in the worst case scenario (joint homotheticity)

one is dealing with J = N ×L×M points: N points will describe the input isoquant, L points

will describe the output isoquant and M points represent the different levels of production. This

number is likely to be much smaller, in practice, than the original dataset with K observations

(although one cannot exclude that this set of observations may actually be bigger).

6 Empirical application

In this section a real data example is used to illustrate the practical use of the homotheticity

assumption. Peyrache and Zago (2016) collected data on the courts of justice system in Italy

and the aim here is to make a robustness check on the findings of the aforementioned paper.

For simplicity, only the data in the year 2003 are considered. Inputs in the production process

are (for each court of justice) the full time equivalent number of judges and number of admin-

istrative staff. These inputs are processing cases and each year the overall number of cases

processed represents the output. Two outputs are considered in order to differentiate between

civil and criminal cases. Therefore a model with 2 inputs and 2 outputs is considered. From

the descriptive statistics reported in Table 3 it can be seen that there is substantial variation in

the quantity of resources used and the number of cases processed each year. Overall the system

processed more than 2.5 million civil cases and 1.2 million criminal cases using 6,547 judges and

16,524 administrative staff.

In what follow, the base isoquant is chosen in such a way that an aggregate input and output

equal to one is represented by a court of justice which uses 8 judges and 20 administrative staff

to process 2,186 civil cases and 589 criminal cases. Since the input and output aggregates
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Civil Criminal Number of Admin
Cases Cases Judges Staff

Mean 15,507 7,538 40 100
Std Dev 24,962 10,069 60 141
Min 1,392 363 6 15
Max 216,210 76,046 492 1,232

Total 2,558,690 1,243,804 6,547 16,524

Table 3: Descriptive Statistics for 165 courts of justice in the year 2003.

are normalized to be equal to one for this observation, we can then use the input and output

aggregates for all other observations to project onto this base level isoquant. Therefore we

consider the adjusted dataset x∗
k = xk/Xk and y∗

k = yk/Yk. Plotting these adjusted data will

show the estimate of the isoquant at all observed points for the given reference level.

In Figure 2 these data are plotted for the two outputs. Since the output isoquants are all

parallel under output homotheticity, the shape of this isoquant is representative of the shape

of the isoquant at all points of the technology set. In the figure the non-convex isoquant is

represented in black and the convex isoquant in red. As it is clear from this picture, there

are large substitution possibilities between the two outputs for a given level of resourcing. For

example, a court processing about 2,200 civil cases and 800 criminal cases, could change the mix

of outputs for a given level of inputs and process up to about 1,700 criminal cases by reducing

the number of processed civil cases down to around 1,200. Notice how, for the convex isoquant,

the substitution possibilities are almost linear.

In Figure 3 the input isoquant is plotted for the base level surface. The convex isoquant

is reported in red and the non-convex isoquant in black. Since under input homotheticity all

isoquants of the technology are parallel, the shape of this isoquant is representative of the input

substitution possibilities. An interesting feature of this input isoquant is that the substitution

possibilities between judges and administrative staff are quite limited, as one would expect. By

looking at the isoquant a reduction from 8 judges to almost 7 judges requires an increase in

the admin staff of about 8 units. Outside these bounds there are no substitution possibilities.
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Figure 2: Output substitution possibilities under joint homotheticity.

Figure 3: Input substitution possibilities under joint homotheticity.
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Clearly, this isoquant is very similar to a Leontief isoquant with an optimal mix of inputs. This

makes sense, since the tasks that a judge can delegate to the administrative staff are quite

limited. We conclude therefore that there exists something like an “optimal” proportion of

judges to administrative staff that is in the range of having between 2.25 and 3.5 administrative

staff for each judge. Any ratio below or above this number will sit on the slack of both the

convex and non-convex isoquant. Interestingly, the aggregate ratio is about 2.5 (considering the

overall number of judges and admin staff for the whole system), well within these bounds. This

suggests that there is a problem with the allocation of the inputs across courts, with too many

courts showing slack inefficiency that could be used to improve the productivity of the system.

In Figure 4 a boxplot of the four sets of efficiency scores is reported. These efficiency scores

are, respectively: the efficiency score under non-convexity and non-homotheticity; the score

under convexity and non-homotheticity; the score under non-convexity and homotheticity; and

the score under convexity and homotheticity. Notice that both homotheticity and convexity, by

enlarging the technology set, will return a higher discrimination power compared to the other

models.

One last piece of evidence is reported in figure 5, which represents a scatter plot of the input

and output aggregates computed both under the convex and non-convex technologies for the

homothetic case (non-convex in black and convex in red). Interestigly, the two sets of aggregates

are not substantially different and the picture clearly shows the sort of economies of scale under

which the court system operates. The black dotted line represents the CRS technology. Both

the convex and the non-convex models point to the fact that there is a portion of constant

returns to scale for small courts of justice, with aggregate input below a value of 15. Since a

unit value of the aggregate input implies 8 judges and 20 administrative staff, the region of

constant returns will be approximately below 150 judges. All courts that operate above this

point will be penalized by decreasing returns to scale. This support the intuition that large
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Figure 4: Comparison of output efficiency scores for the homothetic and non-homothetic case.

courts of justice should be split into smaller ones. It should also be noted that for the non-

convex model, there is a strong non-convexity in the region with aggregate input between 9 and

about 15, pointing to the fact that in this region there could be prevailing variable returns to

scale. Therefore, according to the non-convex model, the size of the court of justice should not

exceed about 72 judges.

7 Conclusion

In this study I considered estimation of a technology which exhibits joint input and output

homotheticity. A method has been provided for enlarging the VRS data generated technology in

order to satisfy the homotheticity assumption. The potential of the method has been illustrated

by using a real dataset on courts of justice in Italy.

Since the method for imposing homotheticity is simple, numerically stable and computa-
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Figure 5: Frontier in the aggregate space under joint homotheticity.

tionally fast, there are various way in which this result can be used. The first possible use is

to impose selective convexity on the technology. This would involve computing the aggregates

using the convex CRS cone, but then, when projecting them on the aggregate space, consider a

non-convex graph. This would give rise to a technology that is convex in terms of the input sub-

stitution possibilities (input isoquants), but it is non-convex in terms of scale economies (clearly

the opposite can be done as well, with a non-convex isoquant, but a convex graph). In fact, one

can go a step further and utilize the fact that a base isoquant exists, to impose some parametric

form for the input (or output) isoquant, therefore reducing the non-parametric dimensionality

of the input isoquant problem, and retaining the non-parametric non-convex structure for the

graph of the technology. This would in fact be a semi-parametric production technology that

satisfies all the aforementioned axioms in addition to having isoquants of a given parametric

functional form.
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