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Abstract

Evaluating the performance of public service providers is often complicated by the

fact that they must choose input levels before demands for their services are known. We

consider an even more complicated situation in which service providers have no opportunity

to directly influence demands. This means that their predetermined inputs may be more

than what is required to meet realised demands. In such cases, conventional measures of

revenue efficiency used in the operational research literature will generally mis-classify

rational and efficient managers as inefficient. We develop a more appropriate measure of

revenue efficiency that accounts for exogenously-determined demands. We explain how

data envelopment analysis (DEA) methods can be used to estimate our measure, and

also how they can be used to assess the consequences (if any) of providers having to

choose input levels before demands are known. The methodology is applied to hospital

and health service (HHS) providers in Queensland (Australia). We obtain estimates of

revenue efficiency that are quite different from estimates obtained using a conventional

approach. Our results also indicate that HHS providers were not disadvantaged by having

to choose input levels before demands were known.
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1 Introduction

A public service is any service provided to members of a community by government. Examples

include education, electricity, fire, hospital, military, paramedic, police, public transport

and waste management services. Evaluating the performance of public service providers is

complicated by the fact that demands for services are generally unknown at the time input

decisions are made. The managers of public hospitals, for example, must make choices about

the types of equipment to purchase and staff to employ without knowing the numbers and

types of patients who will need treatment. Models of input choice in the face of demand

uncertainty have been developed by De Witte and Geys (2011) and H. N. Nguyen and

O’Donnell (2021). Those authors develop measures of how well managers choose their inputs.

This paper goes a step further and develops measures of how well managers use their inputs.

If inputs have already been chosen, then it is common to assume that managers use them

to maximise revenue. Associated measures of how well they do that include various output-

and revenue-oriented measures of efficiency. In the operational research (OR) literature on

public service efficiency, there have been many studies that take the output-oriented approach;

most of them use measures of output-oriented technical efficiency, which is largely due to the

unavailability of data on output prices (e.g., Bradley, Johnes, & Millington, 2001; Johnes,

2006; Ancarani, Di Mauro, & Giammanco, 2009; Mitropoulos, Talias, & Mitropoulos, 2015).

Unfortunately, conventional measures of efficiency ignore the fact that public service managers

are often unable to influence demands for services. The managers of public hospitals, for

example, cannot easily influence the number of people who come through the door requiring

emergency surgery. This means that their predetermined inputs may be more than what is

required to meet realised demands. In such cases, conventional measures of revenue efficiency

(RE) will generally mis-classify rational and efficient managers as inefficient.

This paper makes four contributions to the literature. First, we develop a measure of RE

that accounts for the fact that public service outputs cannot be stored and cannot exceed

exogenously-determined demands (i.e., output levels are constrained). This is not generally

done in the OR literature. Second, we develop data envelopment analysis (DEA) estimators

that can be used to estimate our measure. Third, we develop DEA estimators that can be

used to measure the revenue effects (if any) of managers being required to choose inputs

before demands for services are known. Finally, our empirical contribution is to use our

methodology to assess the performance of hospital and health service (HHS) managers in
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Queensland, Australia.

The structure of the paper is as follows. Section 2 explains how period-and-environment-

specific output distance functions can be used to represent the production technologies that

exist in a given period. These particular output distance functions are more general (and

realistic) than the output distance functions that are found elsewhere in the economics or OR

literature because they explicitly recognise the importance of environmental variables (i.e.,

variables that are physically involved in the production process but never within the control

of managers). Section 3 describes the revenue maximisation problems faced by managers in

the presence of demand constraints. With a view to our empirical application, we allow for

the possibility that output prices depend on the outputs supplied by the firm (i.e., that firms

are price-setters in output markets). In Section 4 we look at how well managers solve their

revenue maximisation problems. Among other things, we define a measure of RE and explain

why it cannot generally be decomposed into measures of technical and allocative efficiency, as

is common in the OR literature. In Section 5 we define a revenue-oriented demand uncertainty

effect (RDUE). The RDUE is a measure of the revenue effects (if any) of managers being

required to choose inputs before demands for services are known. In Section 6 we list the

assumptions underpinning standard DEA estimators. We then develop new DEA estimators

for estimating our measure of RE and the RDUE. In Section 7 we describe the Queensland

HHS data used in the empirical work. Among other things, we describe how observed outputs

and measures of “service delivery effectiveness” have been used to construct measures of

demands for services. In Section 8 we present the empirical results. Among other things, we

find that our estimates of RE are quite different from the estimates obtained using a standard

approach that ignores demand constraints. In Section 9 we summarise the paper and discuss

some of the shortcomings of our work.

2 Production Technologies

A production technology is a technique, method or system for transforming inputs into outputs

(O’Donnell, 2018, p.2). Production technologies can be represented by various types of output

and input sets. In this paper, we focus on period-and-environment-specific output sets. A

period-and-environment-specific output set is a set of outputs that can be produced using

given inputs and the technologies that are available in a given period in a given production

environment. For example, the set of outputs that can be produced using the input vector x
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and the technologies that are available in period t in a production environment characterised

by the vector z is:

P t(x, z) = {q : x can produce q in period t in environment z}. (1)

This set can be found in O’Donnell (2018, eq. 2.1). If there is no technical or environmental

change, then it reduces to the more common output set defined by Shephard (1970, p. 179).

In this paper, we make two assumptions that are common in the OR literature: (i) output

sets are bounded, and (ii) outputs are strongly disposable. If these assumptions are true, then

P t(x, z) can be represented by the following period-and-environment-specific output distance

function:

Dt
O(x, q, z) = inf{ρ > 0 : q/ρ ∈ P t(x, z)}. (2)

This function gives the reciprocal of the largest factor by which it is possible to scale up q when

using x in period t in an environment characterised by z. It is equal to the output distance

function defined by O’Donnell (2018, eq. 2.8). If there is no technical or environmental change,

then it reduces to the more common output distance function defined by Färe and Primont

(1995, eq. 2.1.7). By construction, Dt
O(x, q, z) is nonnegative and linearly homogeneous in

outputs. The strong disposability assumption means it is also nondecreasing in outputs. This

is one of several assumptions that underpin the DEA linear programs described in Section 5

below.

3 Revenue Maximisation

We assume that characteristics of production environments are known and that inputs have

already been chosen by the time output decisions are made. In these cases, it is common in

the OR literature to assume that firm managers use their predetermined inputs to maximise

revenues (see, e.g., Keh, Chu, & Xu, 2006). In a departure from common practice, this paper

accounts for the fact that outputs cannot be stored and cannot exceed exogenously-determined

demands. The exact mathematical form of the revenue maximisation problem depends on

whether firms are price-setters or price-takers in output markets. We consider both cases. For

clarity, let us now introduce firm and time subscripts into the notation so that, for example,

xit now represents the input vector of firm i in period t.
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First, if firms are price-setters in output markets, then the revenue maximisation problem

of manager i in period t is:

max
q
{p(q, sit)′q : q ≤ dit, Dt

O(xit, q, zit) ≤ 1}, (3)

where sit is a vector of nonnegative exogenous variables, dit is a vector of exogenous demands,

and p(q, sit) is a vector of nonnegative inverse demand functions. There may be more than

one output vector that solves this problem. Let q∗it ≡ qt(xit, sit, dit, zit) denote one such

vector. Note that if consumer demand is sufficiently weak and/or the demand constraints are

sufficiently restrictive, then it is possible that this output vector will lie inside the boundary

of the output set (i.e., Dt
O(xit, q

∗
it, zit) < 1). In any event, the associated maximum revenue

is Rt(xit, sit, dit, zit) = p(q∗it, sit)
′q∗it. Also note that if we completely ignore the demand

constraints, then (3) reduces to:

max
q
{p(q, sit)′q : Dt

O(xit, q, zit) ≤ 1}. (4)

This relatively simple problem can be found in O’Donnell (2018, eq. 4.9). Again, there may be

more than one output vector that solves this problem. Let q̈it ≡ qt(xit, sit, zit) denote one such

vector. Again, if consumer demand is sufficiently weak, then it is possible that this output

vector will lie inside the boundary of the output set (i.e., Dt
O(xit, q̈it, zit) < 1); see O’Donnell

(2016, p.331). In any event, the associated maximum revenue is Rt(xit, sit, zit) = p(q̈it, sit)
′q̈it.

Second, if firms are price-takers in output markets, then ∂p(q, sit)/∂q = 0 and problem

(3) reduces to:

max
q
{p′itq : q ≤ dit, Dt

O(xit, q, zit) ≤ 1}, (5)

where pit ≡ p(sit) is an exogenous output price. Again, there may be more than one output

vector that solves this problem. In a slight abuse of notation, let q∗it ≡ qt(xit, pit, dit, zit) denote

one such vector. Again, if the demand constraints are sufficiently restrictive, then it is possible

that this output vector will lie inside the boundary of the output set (i.e., Dt
O(xit, q

∗
it, zit) < 1).

In any event, the associated maximum revenue is Rt(xit, pit, dit, zit) = p′itq
∗
it. Also note that if
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we completely ignore the demand constraints, then (5) reduces to:

max
q
{p′itq : Dt

O(xit, q, zit) ≤ 1}. (6)

This relatively simple problem can be found in O’Donnell (2018, eq. 4.12). If there is no

technical progress or environmental change, then it reduces to an even simpler problem that

can be found in Sickles and Zelenyuk (2019, p.50). Again, there may be more than one output

vector that solves (6). In another slight abuse of notation, let q̈it ≡ qt(xit, pit, zit) denote one

such vector. This revenue-maximising vector will always lie on the boundary of the output

set (i.e., Dt
O(xit, q̈it, zit) = 1). The associated maximum revenue is Rt(xit, pit, zit) = p′itq̈it.

To illustrate the relationship between problems (5) and (6), Figure 1 depicts the revenue

maximisation problem for firm i in period t in the simple case where there are only two

outputs and the demand constraint is not binding. In this figure, the (piecewise) frontier

passing through point V represents the boundary of the set of outputs that can be produced

using the input vector xit in period t in an environment characterised by zit. The dashed lines

are iso-revenue lines with slopes of −p1it/p2it. Point D represents the demand constraints.

Point A represents the observed output vector of the firm. The associated observed revenue is

Rit = p′itqit. Point V represents the output vector that maximises revenue. The associated

maximum revenue is Rt(xit, pit, dit, zit). Observe that revenue at point A is lower than the

maximum revenue, i.e., Rit < Rt(xit, pit, dit, zit). Also observe that the demand constraint

q ≤ dit is not binding (i.e., point V is the revenue-maximising point with or without the

demand constraint). In this case, the solution to problem (5) is the same as the solution to

problem (6).

To further illustrate the relationship between problems (5) and (6) , Figure 2 depicts the

revenue maximisation problem in the case where the demand constraint is binding. In this

figure, the lighter frontier passing through point V is the same frontier that was depicted

earlier in Figure 1: it represents the boundary of the set of outputs that can be produced

using the input vector xit in period t in an environment characterised by zit. Point D now

represents a set of demand constraints that are more restrictive than those depicted in Figure

1. The dark frontier passing through point K is the boundary of the set of outputs that can

be produced using the input vector xit in period t in an environment characterised by zit

when the demand constraint q ≤ dit is binding. Point K represents the output vector that

maximises revenue. The associated maximum revenue is Rt(xit, pit, dit, zit). Observe that
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Figure 1: Revenue maximisation problem with non-binding demand constraint

Rt(xit, pit, dit, zit) < Rt(xit, pit, zit) (i.e., the binding demand constraint has reduced revenue).

In this case, the solution to problem (5) differs from the solution to problem (6) .

4 Measures of Efficiency

Measures of efficiency can be viewed as ex post measures of how well managers have solved

different optimisation problems (O’Donnell, 2018). This section defines four measures of

efficiency associated with the four revenue maximisation problems described in Section 3. It

also defines a measure of technical efficiency and a measure of allocative efficiency. All of

these measures take values in the closed unit interval.

First, if firms are price-setters in output markets, then the revenue efficiency (RE) of

manager i in period t is defined as

REt(xit, qit, sit, dit, zit) =
Rit

Rt(xit, sit, dit, zit)
, (7)

where Rit = p(qit, sit)
′qit is the observed revenue of the firm and Rt(xit, sit, dit, zit) is the

maximum revenue that can be obtained using xit in period t in an environment characterised

by zit when the demand market is characterised by sit and outputs cannot exceed dit. This

measure of efficiency can be viewed as a measure of how well the manager has solved problem
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Figure 2: Revenue maximisation problem with binding demand constraint

(3).

Second, if firms are price-setters in output markets and we naively ignore the demand

constraints, then what we call the naive revenue efficiency (NRE) of manager i in period t is

defined as

NREt(xit, qit, sit, zit) =
Rit

Rt(xit, sit, zit)
, (8)

where Rt(xit, sit, zit) is the maximum revenue that can be obtained using xit in period t in

an environment characterised by zit when the demand market is characterised by sit. This

measure of RE can be found in O’Donnell (2018, eq. 5.14). It can be viewed as a measure of

how well the manager has solved problem (4).

Third, if firms are price-takers in output markets, then the RE of manager i in period t is

defined as

REt(xit, qit, pit, dit, zit) =
Rit

Rt(xit, pit, dit, zit)
, (9)

where Rit = p′itqit is the observed revenue of the firm and Rt(xit, pit, dit, zit) is the maximum

revenue that can be obtained using xit in period t in an environment characterised by zit

when the output price vector is pit and outputs cannot exceed dit. This measure of efficiency
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can be viewed as a measure of how well the manager has solved problem (5). That problem

was depicted earlier in Figures 1 and 2. Observe that the iso-revenue lines passing through

the revenue maximising points in those figures (i.e., point V in Figure 1 and point K in Figure

2) have an intercept of Rt(xit, pit, dit, zit)/p2it, and the iso-revenue line passing through point

A has an intercept of Rit/p2it. The measure of RE defined by (9) is simply the ratio of these

intercepts.

Fourth, if firms are price-takers in output markets and we ignore the demand constraints,

then the NRE of manager i in period t is defined as

NREt(xit, pit, qit, zit) =
Rit

Rt(xit, pit, zit)
, (10)

where Rt(xit, pit, zit) is the maximum revenue that can be obtained when using xit in period t

in a production environment characterised by zit. This measure of efficiency can be found

in O’Donnell (2018, eq. 5.15). It can be viewed as a measure of how well the manager

has solved problem (6). That problem was depicted earlier in Figure 2. Observe that the

iso-revenue lines passing through points A and V in that figure have intercepts of Rit/p2it

and Rt(xit, pit, zit)/p2it. The measure of RE defined by (10) is the ratio of these intercepts.

Finally, it is common to decompose measures of RE into two components: a measure

of output-oriented technical efficiency (OTE) and a measure of output-oriented allocative

efficiency (OAE). This decomposition is only meaningful if revenue-maximising points lie on

the boundary of the output set; if revenue-maximising points lie inside that boundary, then

measures of OAE may lie outside the unit interval and will have no meaningful interpretation.

Recall that if consumer demand is sufficiently weak and/or the demand constraints are

sufficiently restrictive, then the solutions to problems (3), (4) and (5) may lie inside the

boundary of the output set. Consequently, it is generally only meaningful to decompose the

NRE measure defined by (10). The OTE component is simply the value of the output distance

function:

OTEt(xit, qit, zit) = Dt
O(xit, qit, zit). (11)

The OAE component is an output-oriented measure of economies of output substitution (i.e.,
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the benefits associated with changing the output mix) and is defined as:

OAEt(xit, pit, qit, zit) =
Rit/D

t
O(xit, qit, zit)

Rt(xit, pit, zit)
. (12)

This is equivalent to the measure of OAE defined in O’Donnell (2018, eq. 5.17). Equations

(10) to (12) imply that OAE can also be computed as

OAEt(xit, pit, qit, zit) = NREt(xit, pit, qit, zit)/OTE
t(xit, qit, zit).

Thus, OAE can be viewed as the component of NRE that remains after accounting for technical

inefficiency.

5 The Effect of Demand Uncertainty

This paper assumes managers use predetermined inputs to maximise revenues. This is the

second stage of a two-stage optimisation problem. The first stage involves choosing inputs in

the face of uncertainty about demands for services, and the second stage involves choosing

outputs to maximise revenues. H. N. Nguyen and O’Donnell (2021) considered the first stage.

They assumed that public service managers choose inputs to minimise the cost of producing

output targets (e.g., minimum service levels, or predicted maximum demands). Importantly,

if output targets are less than realised demands, then managers who have successfully solved

their first-stage cost minimisation problems will have chosen fewer inputs than are required to

meet those demands. On the other hand, if output targets are greater than observed outputs,

then managers who have successfully solved their first-stage cost minimisation problems

will have chosen inputs that are more than enough to produce those outputs. This section

considers the revenue effects (if any) associated with public service managers having been

forced to choose inputs before demands for services are known.

Let x̂∗it (resp. x∗it) denote the input vector that minimises the cost of producing the output

targets (resp. observed outputs) of firm i in period t. If firms are price-setters in output

markets, then the so-called revenue-oriented demand uncertainty effect (RDUE) for firm i in

period t is defined as

RDUEt(x̂∗it, x
∗
it, sit, dit, zit) =

Rt(x̂∗it, sit, dit, zit)

Rt(x∗it, sit, dit, zit)
, (13)
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where Rt(x̂∗it, sit, dit, zit) is the maximum revenue that can be obtained using x̂∗it in period t

in an environment characterised by zit when the demand market is characterised by sit and

outputs cannot exceed dit. On the other hand, if firms are price-takers in output markets,

then the RDUE for firm i in period t is defined as

RDUEt(x̂∗it, x
∗
it, pit, dit, zit) =

Rt(x̂∗it, pit, dit, zit)

Rt(x∗it, pit, dit, zit)
, (14)

where Rt(x̂∗it, sit, dit, zit) is the maximum revenue that can be obtained using x̂∗it in period t in

an environment characterised by zit when output prices are given by pit and outputs cannot

exceed dit. Unlike the measures of efficiency defined in Section 4, the measures of RDUE

defined by (13) and (14) do not always lie in the unit interval. They will generally take values

greater than (resp. less than) one whenever output targets are greater than (resp. less than)

observed outputs.

6 DEA Models

This section discusses DEA models (or estimators) for estimating the measures of efficiency

defined in Section 4 and the uncertainty effects defined in Section 5. The DEA models that are

most widely used in the OR literature are implicitly underpinned by the following assumptions:

(i) all relevant variables are observed and measured without error; (ii) production frontiers

are locally (or piecewise) linear; (iii) inputs, outputs and environmental variables are strongly

disposable; and (iv) production possibilities sets are convex (e.g., O’Donnell, 2018, p.219). If

these assumptions are true, then measures of efficiency and RDUEs can be estimated by solving

various mathematical programs. These programs envelop scatterplots of technically-feasible

input-output combinations in such a way that estimated production frontiers do not violate

any of assumptions (i) to (v). An unusual feature of our empirical application is that managers

are legally required to choose inputs that are capable of producing agreed output targets.

With this in mind, this paper follows H. N. Nguyen and O’Donnell (2021) and assumes that

the set of technically-feasible input-output combinations includes all combinations of observed

inputs and observed outputs as well as all combinations of observed inputs and output targets.

Estimating the measure of RE defined by (7) involves estimating Rt(xit, sit, dit, zit). If

there are I firms in the dataset, then a DEA estimator that allows for technical progress is
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the following:

max
q,λ11,...,λIt,θ11,...,θIt

{p(q, sit)′q : q ≤ dit, q ≤
I∑

h=1

t∑
r=1

(λhrqhr+θhr q̂hr),

I∑
h=1

t∑
r=1

(λhrxhr+θhrxhr) ≤ xit,
I∑

h=1

t∑
r=1

(λhrzhr+θhrzhr) ≤ zit,

I∑
h=1

t∑
r=1

(λhr+θhr) = 1, λhr, θhr ≥ 0 for all h and r},

(15)

where q̂hr denotes the vector of output targets for firm h in period r. This nonlinear program

(NLP) is quite unlike any DEA model we find in the OR literature. It can be solved using

standard NLP packages (e.g., the NlcOptim package in R). The value of the objective

function at the optimum is an estimate of Rt(xit, sit, dit, zit). Dividing observed revenue by

this estimate yields an estimate of REt(xit, qit, sit, dit, zit).

Estimating the measures of NRE defined by (8) involves estimating Rt(xit, sit, zit). Ar-

guably the easiest way to do this is to simply delete the demand constraint q ≤ dit from (15).

The NLP then becomes

max
q,λ11,...,λIt,θ11,...,θIt

{p(q, sit)′q : q ≤
I∑

h=1

t∑
r=1

(λhrqhr+θhr q̂hr),

I∑
h=1

t∑
r=1

(λhrxhr+θhrxhr) ≤ xit,
I∑

h=1

t∑
r=1

(λhrzhr+θhrzhr) ≤ zit,

I∑
h=1

t∑
r=1

(λhr+θhr) = 1, λhr, θhr ≥ 0 for all h and r}.

(16)

The value of the objective function at the optimum is an estimate of Rt(xit, sit, zit). Dividing

observed revenue by this estimate yields an estimate of NREt(xit, qit, sit, zit).

Estimating the measure of RE defined by (9) involves estimating Rt(xit, pit, dit, zit). A
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DEA estimator that allows for technical progress is the following:

max
q,λ11,...,λIt,θ11,...,θIt

{p′itq : q ≤ dit, q ≤
I∑

h=1

t∑
r=1

(λhrqhr+θhr q̂hr),

I∑
h=1

t∑
r=1

(λhrxhr+θhrxhr) ≤ xit,
I∑

h=1

t∑
r=1

(λhrzhr+θhrzhr) ≤ zit,

I∑
h=1

t∑
r=1

(λhr+θhr) = 1, λhr, θhr ≥ 0 for all h and r}.

(17)

This is now a linear program (LP) that can be solved using standard LP packages (e.g., the

lpSolve package in R). The value of the objective function at the optimum is an estimate

of Rt(xit, pit, dit, zit). Dividing observed revenue by this estimate yields an estimate of

REt(xit, qit, pit, dit, zit).

Estimating the measure of NRE defined by (10) involves estimating Rt(xit, pit, zit). Again,

we can estimate this value by simply deleting the demand constraint q ≤ dit from (17). The

LP then becomes:

max
q,λ11,...,λIt,θ11,...,θIt

{p′itq : q ≤
I∑

h=1

t∑
r=1

(λhrqhr+θhr q̂hr),

I∑
h=1

t∑
r=1

(λhrxhr+θhrxhr) ≤ xit,
I∑

h=1

t∑
r=1

(λhrzhr+θhrzhr) ≤ zit,

I∑
h=1

t∑
r=1

(λhr+θhr) = 1, λhr, θhr ≥ 0 for all h and r}.

(18)

This is an LP that can be solved using standard DEA packages (e.g., the Benchmarking package

in R). The value of the objective function at the optimum is an estimate of Rt(xit, pit, zit).

Dividing observed revenue by this estimate yields an estimate of NREt(xit, pit, qit, zit).

It is worth noting at this point that the naive estimates of RE obtained by solving (16)

and (18) are still not as naive as estimates that are normally found in the OR literature. In

that literature, estimates of revenue efficiency are normally computed using data on observed

inputs and outputs only (see, e.g., Sahoo, Mehdiloozad, & Tone, 2014, eq. 17). An estimate
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of Rt(xit, sit, zit), for example, would normally be obtained by solving the following NLP:

max
q,λ11,...,λIt,θ11,...,θIt

{p(q, sit)′q : q ≤
I∑

h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrxhr ≤ xit,

I∑
h=1

t∑
r=1

λhrzhr ≤ zit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r}.

(19)

Similarly, an estimate of Rt(xit, pit, zit) would normally be obtained by solving an LP that

can be found in O’Donnell (2018, eq. 6.11):

max
q,λ11,...,λIt,θ11,...,θIt

{p′itq : q ≤
I∑

h=1

t∑
r=1

λhrqhr,
I∑

h=1

t∑
r=1

λhrxhr ≤ xit,

I∑
h=1

t∑
r=1

λhrzhr ≤ zit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r}.

(20)

Dividing observed revenue by these alternative estimates of maximum revenue yield estimates

of what we call “super-naive” revenue efficiency (SNRE).

Estimating the measures of OTE and OAE defined by (11) and (12) involves estimating

Dt
O(xit, qit, zit). A DEA estimator that can be used for this purpose is the following:

max
µ,λ11,...,λIt,θ11,...,θIt

{µ : µqit ≤
I∑

h=1

t∑
r=1

(λhrqhr+θhr q̂hr),

I∑
h=1

t∑
r=1

(λhrxhr+θhrxhr) ≤ xit,
I∑

h=1

t∑
r=1

(λhrzhr+θhrzhr) ≤ zit,

I∑
h=1

t∑
r=1

(λhr+θhr) = 1, λhr, θhr ≥ 0 for all h and r}.

(21)

The value of µ at the optimum is an estimate of the reciprocal of OTEt(xit, qit, zit). Dividing

the estimate of NREt(xit, pit, qit, zit) by the estimate of OTEt(xit, qit, zit) yields an estimate

of OAEt(xit, pit, qit, zit)

Estimating the measures of RDUE defined by (13) and (14) involves estimating x̂∗it and

x∗it. In this paper, we follow H. N. Nguyen and O’Donnell (2021) and partition each input

vector into a vector of predetermined (or fixed) inputs and a vector of variable inputs. To
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be specific, we let x̂∗it = (xfit, x̂
v∗
it ) and x∗it = (xfit, x

v∗
it ) where xfit is a vector of fixed inputs

and x̂v∗it and xv∗it are vectors of variable inputs that solve the variable cost minimisation

problems defined in H. N. Nguyen and O’Donnell (2021, eq. 3 and eq. 4). Estimates of

these cost-minimising variable input vectors can be obtained by solving LPs (12) and (14)

in H. N. Nguyen and O’Donnell (2021). Estimates of Rt(x̂∗it, sit, dit, zit), R
t(x∗it, sit, dit, zit),

Rt(x̂∗it, pit, dit, zit) and Rt(x∗it, pit, dit, zit) can be obtained by replacing xit in (15) and (17)

with x̂∗it and x∗it as appropriate. Estimates of RDUE can then be obtained using (13) and (14).

Finally, the DEA LPs and NLPs described above allow production frontiers to exhibit

variable returns to scale (VRS). In the efficiency literature, it is common to assume that

production frontiers exhibit constant returns to scale (CRS). To impose this restriction, the

right-hand sides of the constraints involving the environmental variables must be replaced

with “ρzit”, and all instances of “= 1” must be replaced with “≤ ρ”. For a rationale, see

O’Donnell (2018, Section 6.2.3).

7 Data

The data comprises observations on I = 16 Queensland hospital and health services (HHSs) for

the T = 5 financial years from 2012/13 to 2016/17. We have quantity data on one fixed input

(xf = beds and bed-alternatives), seven variable inputs (xv1 = medical officers, xv2 = nurses,

xv3 = other personal care staff, xv4 = diagnostic and professional staff, xv5 = administrative

staff, xv6 = domestic and other staff, xv7 = non-labour inputs) and six outputs (q1 = acute

inpatient services, q2 = outpatient services, q3 = sub-acute care services, q4 = emergency

department services, q5 = mental health services, q6 = other interventions and procedures).

These data have been used by, and are described in detail in, H. N. Nguyen and O’Donnell

(2021). Importantly, the output quantities are measured in Queensland Weighted Activity

Units (QWAUs); we assume that these measures account for variations in service quality

insofar as they are designed to reflect service complexity and resource intensity. We also

assume that the input measures account for variations in input quality to the extent that

inputs of different quality have been treated as different inputs (e.g., that the nurses input has

been constructed using an index procedure that treats registered nurses and enrolled nurses

as different types of labour input).

This paper supplements the quantity data described above with observations on output

prices and service demands. If the number of QWAUs is below an agreed threshold, then the
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price received by an HHS for each QWAU is a price that is common to all HHSs and is referred

to as the Queensland Efficient Price (QEP). Data on QEPs was sourced from Service Level

Agreements (SLAs) negotiated annually between HHS managers and the relevant government

department, namely Queensland Health. Data on service demands were derived from Service

Delivery Statements (SDSs) reported annually by Queensland Health: the demands for the

first four outputs were computed by dividing the reported number of services delivered by the

HHS by the corresponding percentage of services performed within recommended timeframes

(i.e., services that were not performed with recommended time frames were considered as

excess demand); the demand for the fifth output (mental health services) was computed by

dividing the reported number of services by the rate of community follow-up within 1-7 days

following discharge from an acute mental health inpatient unit; and the demand for the last

output (other interventions and procedures) was constructed by dividing the reported number

of services by the percentage of the Queensland population who engaged in levels of physical

activity for health benefit. Unfortunately, the effectiveness measures reported in the SDSs

were not an exact match for the acute inpatient and outpatient service categories. In this

paper, the percentage of elective surgery patients treated on time was used as a measure of the

percentage of acute inpatients treated on time, and the percentage of specialist outpatients

treated on time was used as a measure of the percentage of all outpatients treated on time.

Descriptive statistics for all variables are reported in Table 1. These statistics reveal that

observed outputs generally fall short of the corresponding demands.

8 Results

This section reports DEA estimates of the measures of efficiency defined in Section 4 and the

demand uncertainty effects defined in Section 5. The specific LPs and NLPs used to generate

these results differed from the LPs and NLPs discussed in Section 6 in two ways: first, we had

no observations on characteristics of the production environment, so all constraints involving

environmental variables were removed; and, second, the data cover a period of only five years,

so we felt it was not necessary to allow for technical progress. To formulate the objective

functions in problems (15), (16) and (19), we needed to specify the vector of inverse demand

functions. The inverse demand functions in this empirical application are unusual in two

respects. First, even though there are six outputs, there is in fact only one inverse demand

function; the reason for this is that all outputs are measured in QWAUs, and the price of one
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Table 1: Descriptive Statistics

Variable Mean St. Dev. Min Max

Input Quantities

xf Beds & alternatives 684.55 605.70 64 2354
xv1 Medical officers 494.28 491.55 10.87 1836.24
xv2 Nurses 1475.83 1334.36 81.65 4961.12
xv3 Other personal care staff 84.06 96.77 0.01 395.61
xv4 Diagnostic & professionals 359.79 395.55 0.00 1457.78
xv5 Administrative staff 491.07 451.92 19.37 1859.83
xv6 Domestic & other staff 442.93 347.81 28.96 1621.26
xv7 Non-labour variable inputs 1869.87 1862.03 63.48 9496.35

Outputs Quantities

q1 Acute inpatients 57943.35 58702.99 1775 267791
q2 Outpatients 14209.53 14810.45 453 72277
q3 Sub-acute 5830.06 6002.38 177 24956
q4 Emergency department 13579.61 10420.77 1037 39962
q5 Mental health 8945.13 10874.08 30 55788
q6 Interventions & prevention 6938.66 8284.98 0 32356

Output prices 4612.34 73.68 4558 4755.66

Demands for Service

d1 Acute inpatients 63167.14 64747.30 1975.52 279562.90
d2 Outpatients 25575.15 29248.33 991.46 124913.01
d3 Sub-acute 6395.76 6735.34 184.42 26246.34
d4 Emergency department 19307.23 15960.87 1047.47 60530.30
d5 Mental health 14045.21 17085.77 46.22 77667.23
d6 Interventions & prevention 11784.02 14258.10 0.00 61513.31

QWAU of acute inpatient services, for example, is the same as the price of one QWAU of any

other service. Second, the inverse demand function is a step function that depends on both

the total of the observed outputs and the total of the output targets specified in the SLAs;

this is because HHSs generally receive no funding for any outputs in excess of the total of the

agreed output targets (see, e.g., Queensland Health, 2019). Mathematically, the price paid to
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HHS i in period t for one QWAU is:

p(qit, sit) =

QEPt if
∑

n qnit <
∑

n q̂nit,

QEPt ×
∑

n q̂nit
/∑

n qnit otherwise,
(22)

where sit = (QEPt, q̂it) and QEPt is the Queensland Efficient Price in period t.

Selected estimates of efficiency are reported in Table 2; results for all HHSs in all periods

are reported in the Appendix. The estimates of RE, NRE and SNRE reported in columns A,

B and C were obtained by solving problems (15), (16) and (19); the estimates of RE, NRE

and SNRE reported in columns D, E and H were obtained by solving problems (17), (18) and

(20); and the estimates of of OTE and OAE reported in columns F and G were obtained by

solving problem (21).

Table 2: Selected Estimates of Efficiency

Price setters Price takers

(A) (B) (C) (D) (E) (F) (G) (H)
Period HHS RE NRE SNRE RE NRE OTE OAE SNRE

1 6 0.9945 0.9945 0.9945 0.8227 0.7543 0.9436 0.7994 0.7543
1 10 0.9912 0.9456 1.0000 0.9912 0.9456 1.0000 0.9456 1.0000
2 11 0.9546 0.9546 0.9546 0.6858 0.4996 0.5725 0.8727 0.4996
3 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 13 1.0000 1.0000 1.0000 0.9956 0.9618 1.0000 0.9618 0.9618
4 10 0.9564 0.8772 0.8847 0.9564 0.8772 1.0000 0.8772 0.8847
5 1 1.0000 1.0000 1.0000 0.9163 0.8042 1.0000 0.8042 0.8042
5 16 1.0000 1.0000 1.0000 0.9931 0.9072 1.0000 0.9072 0.9072

min 1 0.8576 0.8576 0.8800 0.6858 0.4996 0.5725 0.7661 0.4996
mean 0.9928 0.9912 0.9938 0.9512 0.8906 0.9818 0.9064 0.8942
max 16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

The results reported in Table 2 (and the Appendix) seem plausible. The estimates reported

in column A were obtained under our most realistic set of assumptions and so are our preferred

estimates of RE. The fact that they are on average very close to one indicates that most

HHS managers have done a good job of maximising revenue. The fact that most of the OTE

estimates reported in column F are also close to one indicates that most HHSs operated close
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to the production frontier.

Several other things about Table 2 (and the Appendix) are noteworthy. First, the RE

and OTE estimates reported in columns A and F indicate that there were several HHSs that

operated on the production frontier but did not maximise revenue (i.e., OTE = 1 but RE < 1).

This indicates that they did not choose a revenue-maximising output mix (i.e., they were

allocatively inefficient). Recall that all outputs are measured in QWAUs, and the price of a

QWAU of one type of service is the same as the price of a QWAU of any other type of service.

This means that producing one less QWAU of one type of service and one more QWAU of

another type of service will not change revenue. Our finding that some HHSs operated on the

frontier but did not maximise revenue indicates that marginal rates of transformation (MRTs)

(i.e., the rates that one QWAU of one type of service can be substituted for one QWAU of

another type of service) differ from one. In turn, this indicates that QWAUs may not reflect

service complexity and resource intensity as well as intended.

Second, the RE estimates obtained under the assumption that HHSs are price setters in

output markets (i.e., the estimates reported in column A) are always greater than or equal to

the estimates obtained under the (false) assumption that HHSs are price takers in output

markets (i.e., the estimates reported in column D). This is because estimates of maximum

revenue obtained by solving problem (15) are always less than or equal to estimates obtained

by solving problem (17). In turn, this is due to the fact that the inverse demand function in

problem (15) places a cap on maximum revenue (recall that HHSs are not paid for QWAUs in

excess of targets written into SLAs).

Third, the RE estimates reported in columns A and D are always greater than or equal

to the NRE estimates reported in columns B and E. This is because estimates of maximum

revenue obtained by solving problems (15) and (17) are always less than or equal to estimates

obtained by solving problems (16) and (18). In turn, this is because problems (15) and (17)

contain demand constraints that place a cap on maximum revenue. HHS 10 is an example of

an HHS that faced binding demand constraints in periods 1 and 4 (i.e., the demand for its

services was less than the number of services it could provide using its predetermined inputs).

This explains why, for this HHS in these periods, (a) the estimates of RE are greater than the

estimates of NRE, and (b) the RE and NRE estimates obtained under the assumption that

HHSs are price setters are equal to the estimates obtained under the assumption that HHSs

are price takers (i.e., the inverse demand function did not play a role).

Finally, the NRE estimates reported in columns B and E are always less than or equal to
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the SNRE estimates reported in columns C and H. This is because the frontiers that are used

to compute the NRE estimates envelop the frontiers that are used to compute the SNRE

estimates. In turn, this is because twice as many data points are used to solve problems (16)

and (18) as are used to solve problems (19) and (20).

Table 2 provides a somewhat incomplete picture of our different estimates of revenue

efficiency. A slightly more complete picture is provided by the box-and-whisker plots in Figure

3. The three plots on the left-hand side summarise estimates of RE, NRE and SNRE that

have been obtained under the assumption that HHSs are price setters in output markets; all

three plots are qualitatively similar and indicate that most HHSs were fully revenue efficient.

The three plots on the right-hand side summarise estimates of RE, NRE and SNRE that have

been obtained under the assumption that HHSs are price takers in output markets; these

three plots are also qualitatively similar but indicate that most HHSs were inefficient, albiet

less so over time. These results tell us that (a) accounting for demand constraints and/or

making use of observations on output targets (in addition to observed outputs) has relatively

little impact on estimates of revenue efficiency, and (b) accounting for price setting behaviour

(i.e., the fact that the prices HHSs receive for their outputs depends on the total number

of those outputs) makes a huge difference. Conventional approaches to estimating revenue

efficiency make no allowance for price-setting behaviour and will almost certainly mis-classify

competent managers as being revenue inefficient.

The plot in the top left-hand panel of Figure 3 reveals that our preferred RE estimates

(i.e., those obtained under the assumption that HHSs are price setters in output markets,

and that they face demand constraints) are almost all equal to one. The lowest estimates are

those for HHSs 3 and 13 in period 1. These two HHSs are located in rural and remote regions

of Queensland and are the two smallest HHSs in the state (sorted by their total QWAUs).

To better understand this finding, Figure 4 classifies our preferred RE estimates by size and

location. It indicates that location, rather than size, is the characteristic that matters. This

finding is consistent with the findings of other studies (not necessarily in Queensland) that

have used output-oriented models to measure HHS performance but have ignored demand

constraints (e.g., Paul, 2002; B. H. Nguyen & Zelenyuk, 2021; Andrews, 2020).

Elsewhere in the literature, high efficiency scores of the type presented in the top left-hand

panel of Figure 3 are sometimes attributed to overfitting. Overfitting tends to occur in

situations where there is little theory to guide variable selection, and where the number of

observations in the sample is low relative to the number of variables in the model. We do not
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Figure 3: Estimates of Revenue Efficiency
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Figure 4: Estimates of Revenue Efficiency of Queensland HHSs by Size and Location

believe overfitting is an issue in our case, partly because we have relied heavily on economic

theory to guide variable selection, and also because the ratio of the number of observations

to the number of variables is much higher than what is normally recommended in the DEA

literature: Golany and Roll (1989) suggest that the number of observations used for DEA

estimation should be at least twice the total number of inputs and outputs, Banker, Charnes,

Cooper, Swarts, and Thomas (1989), suggest it should be at least three times the total number

of inputs and outputs, while Dyson et al. (2001) recommend it be at least twice the product

of the number of inputs and number of outputs. In our study, the number of observations

(160) is more than eleven times greater than the total number of inputs and outputs (14),

and more than three times greater than the product of the number of inputs and number of

outputs (48).

Finally, selected estimates of maximum revenue and associated RDUEs are reported in

Table 3 (again results for all HHSs in all periods are reported in the Appendix). A more

complete picture is provided by the box-and-whisker plots in Figure 5. The estimates reported

in the three left-hand columns of Table 3 and in the left-hand panel of Figure 5 are our

preferred estimates; they indicate that the “second-round” impacts of demand uncertainty

on maximum revenue are very small. On the other hand, the estimates reported in the

three right-hand columns of Table 3 and in the left-hand panel of Figure 5 indicate that the

second-round impacts can be large. These results suggest that the funding cap built into the

inverse demand function is enough to blunt the effect that different first-stage input choices
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may have on maximum revenue.

Table 3: Selected Estimates of Revenue-Oriented Demand Uncertainty Effects

Price setters Price takers

Period HHS R(x̂∗it, . . . ) R(x∗it, . . . ) RDUE R(x̂∗it, . . . ) R(x∗it, . . . ) RDUE

1 6 623.92 623.92 1.0000 715.25 678.26 1.0545
1 10 65.65 68.66 0.9563 65.65 68.66 0.9563
2 11 48.12 46.78 1.0286 48.36 46.78 1.0338
3 8 1613.36 1613.36 1.0000 1637.35 1637.35 1.0000
3 13 34.66 34.66 1.0000 39.76 39.76 1.0000
4 10 73.08 72.67 1.0056 73.08 72.67 1.0056
5 1 594.38 594.38 1.0000 645.49 731.39 0.8826
5 16 398.49 398.49 1.0000 409.80 451.04 0.9086

min 1 18.51 18.51 0.9563 19.14 19.14 0.7527
mean 474.50 474.52 0.9999 510.06 517.28 0.9823
max 16 1808.25 1808.25 1.0286 2109.61 2109.61 1.0789

Figure 5: Estimates of Revenue-Oriented Demand Uncertainty Effects
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9 Conclusion

Most public service managers make input and output decisions in the face of demand un-

certainty. We take the view that the performance of these managers must be assessed in

a way that distinguishes the effects of uncertainty (if any) from the effects of managerial

incompetence. To do this, we break the decision making process into two separate stages: the

first stage is a resource planning stage in which managers make input choices before demand

is revealed; the second stage is a production stage in which the chosen inputs are used to meet

realised demand. H. N. Nguyen and O’Donnell (2021) focused on the first stage. This paper

focused on the second stage. In a departure from common practice in the OR literature, and

with a view to our empirical application, we assumed that firms are price setters in output

markets. We then assumed that managers choose outputs in order to maximise the revenue

that can be obtained using their predetermined inputs. In a further departure from common

practice in OR, we assumed that service outputs cannot be stored and that managers are

unable to influence service demands. This led us to include a demand constraint in what

is already an unusual revenue maximisation problem. We defined measures of revenue effi-

ciency (i.e., measures of how well managers have solved their revenue maximisation problems)

and explained why they cannot generally be decomposed into measures of output-oriented

technical and allocative efficiency. We also developed a measure of the revenue effects (if

any) of managers being required to choose inputs before demands for services are known. We

explained how data envelopment analysis (DEA) methods could be used to estimate all of

these measures.

Our methodology can be used to assess the performance of any of public service managers

who face demand uncertainty and/or demand constraints. In our application to Queensland

hospital and health services (HHSs), we found that most HHSs (a) did not face binding

demand constraints, (b) operated reasonably close to the production frontier (i.e., levels

of output-oriented technical efficiency were generally high), (c) were able to maximise the

revenue they could obtain from their predetermined inputs (i.e., levels of revenue efficiency

were generally high), and (d) were not particularly affected by having to choose inputs before

demands for service were known (i.e., revenue-oriented demand uncertainty effects were

generally small). We also found that HHSs located in regional and remote areas were likely to

be less revenue-efficient than their metropolitan counterparts. These findings are consistent

with the findings of previous hospital studies that have ignored demand constraints.
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Our work has two main shortcomings. First, our revenue maximisation model does not

explain why many HHSs produced outputs in excess of the output targets specified in their

agreements with Queensland Health; hospitals receive no funding for these excess outputs. This

implies that HHS output decisions are also driven by non-financial considerations. Community

expectations and system-wide healthcare pressures can certainly make it difficult for individual

HHSs to turn patients away from their doors. Political considerations may also play a part if

historical levels of service delivery can be used as leverage in negotiations for higher future

funding. Second, the DEA models we used to generate our results are underpinned by a

number of restrictive assumptions (e.g., that all relevant variables are observed and measured

without error, and that distance functions are locally linear). To relax these assumptions we

must allow for statistical noise. Stochastic frontier analysis (SFA) estimators allow for noise.

We are currently using SFA methods to replicate, and therefore check the robustness of, our

results.
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Appendices

Table A1: Selected Estimates of Efficiency

Price setters Price takers

(A) (B) (C) (D) (E) (F) (G) (H)
Period HHS RE NRE SNRE RE NRE OTE OAE SNRE

1 1 1.0000 1.0000 1.0000 0.9754 0.8056 1.0000 0.8056 0.8056
1 2 0.9923 0.9923 0.9923 0.9126 0.8007 1.0000 0.8007 0.8007
1 3 N/A1 0.8576 0.9818 0.8819 0.8576 1.0000 0.8576 1.0000
1 4 1.0000 1.0000 1.0000 0.8896 0.8281 0.9325 0.8880 0.8281
1 5 1.0000 1.0000 1.0000 0.9075 0.8766 1.0000 0.8766 0.8766
1 6 0.9945 0.9945 0.9945 0.8227 0.7543 0.9436 0.7994 0.7543
1 7 0.9733 0.9733 0.9733 0.9320 0.8437 0.9766 0.8639 0.8437
1 8 1.0000 1.0000 1.0000 0.8575 0.8518 1.0000 0.8518 0.8518
1 9 1.0000 1.0000 1.0000 0.9131 0.8838 1.0000 0.8838 0.8838
1 10 0.9912 0.9456 0.9638 0.9912 0.9456 1.0000 0.9456 1.0000
1 11 1.0000 1.0000 1.0000 0.9683 0.9415 1.0000 0.9415 0.9546
1 12 0.9950 0.9950 0.9950 0.8819 0.8272 0.9223 0.8969 0.8272
1 13 0.8800 0.8800 0.8800 0.8747 0.8049 1.0000 0.8049 0.8049
1 14 1.0000 1.0000 1.0000 0.9384 0.8372 1.0000 0.8372 0.8372
1 15 1.0000 1.0000 1.0000 0.9711 0.9711 1.0000 0.9711 0.9711
1 16 1.0000 1.0000 1.0000 0.8634 0.7468 0.9402 0.7943 0.7468
2 1 1.0000 1.0000 1.0000 0.9628 0.8351 1.0000 0.8351 0.8351
2 2 1.0000 1.0000 1.0000 0.9905 0.8680 1.0000 0.8680 0.8680
2 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 4 1.0000 1.0000 1.0000 0.9819 0.8883 1.0000 0.8883 0.8883
2 5 1.0000 1.0000 1.0000 0.9393 0.7661 1.0000 0.7661 0.7661
2 6 1.0000 1.0000 1.0000 0.9444 0.8829 1.0000 0.8829 0.8829
2 7 1.0000 1.0000 1.0000 0.9935 0.9082 1.0000 0.9082 0.9101
2 8 1.0000 1.0000 1.0000 0.9101 0.9101 0.9965 0.9133 0.9101
2 9 1.0000 1.0000 1.0000 0.9135 0.8971 1.0000 0.8971 0.8971
2 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

. . . continued on next page

1The NLP did not converge (i.e., did not find the maximum revenue).
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Table A1 (continued).

Price setters Price takers

(A) (B) (C) (D) (E) (F) (G) (H)
Period HHS RE NRE SNRE RE NRE OTE OAE SNRE

2 11 0.9546 0.9546 0.9546 0.6858 0.4996 0.5725 0.8727 0.4996
2 12 1.0000 1.0000 1.0000 0.9888 0.9444 1.0000 0.9444 0.9444
2 13 0.9506 0.9506 0.9506 0.8150 0.7526 0.9344 0.8054 0.7526
2 14 1.0000 1.0000 1.0000 0.9884 0.8854 1.0000 0.8854 0.8854
2 15 1.0000 1.0000 1.0000 0.9765 0.9765 1.0000 0.9765 0.9765
2 16 1.0000 1.0000 1.0000 0.9414 0.7971 0.9822 0.8115 0.7971
3 1 1.0000 1.0000 1.0000 0.9766 0.8566 1.0000 0.8566 0.8566
3 2 0.9792 0.9772 0.9772 0.9792 0.8384 0.9998 0.8386 0.8384
3 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 4 0.9972 0.9972 0.9972 0.8222 0.7628 0.8372 0.9111 0.7628
3 5 1.0000 1.0000 1.0000 0.9427 0.8617 1.0000 0.8617 0.8617
3 6 1.0000 1.0000 1.0000 0.9537 0.8916 0.9799 0.9099 0.8916
3 7 1.0000 1.0000 1.0000 0.9945 0.9327 1.0000 0.9327 0.9342
3 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 9 1.0000 1.0000 1.0000 0.9644 0.8908 1.0000 0.8908 0.8908
3 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 11 0.9859 0.9859 0.9859 0.8956 0.8235 0.9350 0.8807 0.8313
3 12 1.0000 1.0000 1.0000 0.9971 0.9718 1.0000 0.9718 0.9718
3 13 1.0000 1.0000 1.0000 0.9956 0.9618 1.0000 0.9618 0.9618
3 14 1.0000 1.0000 1.0000 0.9899 0.9130 1.0000 0.9130 0.9130
3 15 0.9964 0.9964 0.9964 0.8772 0.8497 0.9145 0.9291 0.8497
3 16 1.0000 1.0000 1.0000 0.9500 0.7800 0.9567 0.8153 0.7800
4 1 1.0000 1.0000 1.0000 0.9059 0.7825 0.9758 0.8019 0.7825
4 2 1.0000 1.0000 1.0000 0.9936 0.8541 1.0000 0.8541 0.8559
4 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 6 1.0000 1.0000 1.0000 0.9434 0.8770 0.9634 0.9103 0.8770
4 7 1.0000 1.0000 1.0000 0.9950 0.9272 1.0000 0.9272 0.9288
4 8 1.0000 1.0000 1.0000 0.9535 0.8885 1.0000 0.8885 0.8885
4 9 1.0000 1.0000 1.0000 0.9399 0.8772 1.0000 0.8772 0.8772
4 10 0.9564 0.8772 0.8772 0.9564 0.8772 1.0000 0.8772 0.8847
4 11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

. . . continued on next page
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Table A1 (continued).

Price setters Price takers

(A) (B) (C) (D) (E) (F) (G) (H)
Period HHS RE NRE SNRE RE NRE OTE OAE SNRE

4 12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 13 0.9715 0.9715 0.9715 0.9606 0.9211 1.0000 0.9211 0.9211
4 14 1.0000 1.0000 1.0000 0.9406 0.8881 1.0000 0.8881 0.8881
4 15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 16 1.0000 1.0000 1.0000 0.9431 0.7583 0.9208 0.8235 0.7583
5 1 1.0000 1.0000 1.0000 0.9163 0.8042 1.0000 0.8042 0.8042
5 2 1.0000 1.0000 1.0000 0.9451 0.8432 0.9585 0.8797 0.8432
5 3 0.9497 0.9497 0.9497 0.9828 0.9497 1.0000 0.9497 1.0000
5 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 5 1.0000 1.0000 1.0000 0.9737 0.8595 1.0000 0.8595 0.8595
5 6 1.0000 1.0000 1.0000 0.9630 0.9502 1.0000 0.9502 0.9502
5 7 1.0000 1.0000 1.0000 0.9953 0.9440 1.0000 0.9440 0.9448
5 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 9 1.0000 1.0000 1.0000 0.9980 0.9980 1.0000 0.9980 0.9980
5 10 0.9999 0.9998 0.9998 0.9999 0.9998 1.0000 0.9998 1.0000
5 11 0.9991 0.9991 0.9991 0.9985 0.9282 1.0000 0.9282 0.9282
5 12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 14 1.0000 1.0000 1.0000 0.9691 0.9518 1.0000 0.9518 0.9518
5 15 1.0000 1.0000 1.0000 0.8743 0.7397 0.9010 0.8210 0.7397
5 16 1.0000 1.0000 1.0000 0.9931 0.9072 1.0000 0.9072 0.9072

min 1 0.8576 0.8576 0.8800 0.6858 0.4996 0.5725 0.7661 0.4996
mean 0.9928 0.9912 0.9938 0.9512 0.8906 0.9818 0.9064 0.8942
max 16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A2: Selected Estimates of Revenue-Oriented Demand Uncertainty Effects

Price setters Price takers

Period HHS R(x̂∗it, . . . ) R(x∗it, . . . ) RDUE R(x̂∗it, . . . ) R(x∗it, . . . ) RDUE

1 1 474.95 474.95 1.0000 520.93 504.52 1.0325
1 2 276.91 276.91 1.0000 287.25 292.02 0.9837
1 3 22.17 22.17 1.0000 21.56 23.29 0.9255
1 4 166.59 166.59 1.0000 169.62 177.24 0.9571
1 5 382.49 382.49 1.0000 441.16 460.17 0.9587
1 6 623.92 623.92 1.0000 715.25 678.26 1.0545
1 7 205.20 205.20 1.0000 210.36 215.47 0.9763
1 8 1491.21 1491.21 1.0000 1751.28 1751.28 1.0000
1 9 1241.61 1241.61 1.0000 1385.49 1385.49 1.0000
1 10 65.65 68.66 0.9563 65.65 68.66 0.9563
1 11 46.14 46.14 1.0000 48.07 48.69 0.9872
1 12 457.76 457.76 1.0000 495.89 482.92 1.0269
1 13 39.89 39.89 1.0000 40.14 40.14 1.0000
1 14 531.84 531.84 1.0000 572.12 569.29 1.0050
1 15 318.81 318.81 1.0000 340.89 332.83 1.0242
1 16 313.69 313.69 1.0000 346.99 341.61 1.0158
2 1 512.54 512.54 1.0000 533.07 533.07 1.0000
2 2 298.81 298.81 1.0000 302.34 302.34 1.0000
2 3 19.07 19.07 1.0000 19.14 19.14 1.0000
2 4 172.42 172.42 1.0000 177.94 183.37 0.9704
2 5 405.70 405.70 1.0000 460.78 459.25 1.0033
2 6 717.59 717.59 1.0000 761.02 748.82 1.0163
2 7 223.26 223.26 1.0000 223.46 226.87 0.9850
2 8 1553.25 1553.25 1.0000 1717.04 1668.33 1.0292
2 9 1306.99 1306.99 1.0000 1451.48 1451.48 1.0000
2 10 82.23 82.23 1.0000 84.98 88.42 0.9612
2 11 48.12 46.78 1.0286 48.36 46.78 1.0338
2 12 506.88 506.88 1.0000 525.52 525.52 1.0000
2 13 34.48 34.48 1.0000 36.84 38.62 0.9540
2 14 555.28 555.28 1.0000 613.88 572.55 1.0722
2 15 351.37 351.37 1.0000 381.77 364.10 1.0485
2 16 348.18 348.18 1.0000 371.13 372.02 0.9976
3 1 528.32 528.32 1.0000 547.60 554.06 0.9883
3 2 304.72 304.72 1.0000 310.16 305.18 1.0163
3 3 18.79 18.79 1.0000 22.69 22.69 1.0000

. . . continued on next page
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Table A2 (continued).

Price setters Price takers

Period HHS R(x̂∗it, . . . ) R(x∗it, . . . ) RDUE R(x̂∗it, . . . ) R(x∗it, . . . ) RDUE

3 4 267.65 267.65 1.0000 280.94 289.57 0.9702
3 5 472.66 472.66 1.0000 521.87 517.54 1.0084
3 6 778.33 778.33 1.0000 838.10 857.38 0.9775
3 7 234.75 234.75 1.0000 236.92 236.92 1.0000
3 8 1613.36 1613.36 1.0000 1637.35 1637.35 1.0000
3 9 1404.20 1404.20 1.0000 1470.32 1470.32 1.0000
3 10 80.69 80.69 1.0000 82.97 85.91 0.9658
3 11 45.53 45.53 1.0000 47.50 47.07 1.0091
3 12 523.14 523.14 1.0000 530.61 544.31 0.9748
3 13 34.66 34.66 1.0000 39.76 39.76 1.0000
3 14 587.27 587.27 1.0000 615.16 629.26 0.9776
3 15 333.79 333.79 1.0000 354.81 340.34 1.0425
3 16 343.56 343.56 1.0000 359.08 366.84 0.9788
4 1 539.07 539.07 1.0000 564.57 601.62 0.9384
4 2 313.12 313.12 1.0000 320.80 325.64 0.9851
4 3 18.51 18.51 1.0000 20.56 20.79 0.9890
4 4 338.62 338.62 1.0000 356.52 347.48 1.0260
4 5 475.99 475.99 1.0000 513.99 633.14 0.8118
4 6 877.51 877.51 1.0000 941.81 921.43 1.0221
4 7 234.39 234.39 1.0000 237.29 250.88 0.9459
4 8 1655.51 1655.51 1.0000 1820.09 1820.09 1.0000
4 9 1465.62 1465.62 1.0000 1571.10 1571.10 1.0000
4 10 73.08 72.67 1.0056 73.08 72.67 1.0056
4 11 44.19 44.19 1.0000 52.69 62.86 0.8383
4 12 565.79 565.79 1.0000 574.12 568.53 1.0098
4 13 36.81 36.81 1.0000 40.03 38.86 1.0299
4 14 614.65 614.65 1.0000 660.27 660.33 0.9999
4 15 352.53 352.53 1.0000 365.87 486.10 0.7527
4 16 359.38 359.38 1.0000 369.94 383.97 0.9634
5 1 594.38 594.38 1.0000 645.49 731.39 0.8826
5 2 342.55 342.55 1.0000 351.75 367.90 0.9561
5 3 22.62 22.62 1.0000 21.86 21.86 1.0000
5 4 370.53 370.53 1.0000 390.52 390.52 1.0000
5 5 432.80 432.80 1.0000 463.21 543.45 0.8524

. . . continued on next page
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Table A2 (continued).

Price setters Price takers

Period HHS R(x̂∗it, . . . ) R(x∗it, . . . ) RDUE R(x̂∗it, . . . ) R(x∗it, . . . ) RDUE

5 6 942.49 942.49 1.0000 982.44 1064.34 0.9231
5 7 249.47 249.47 1.0000 255.05 301.51 0.8459
5 8 1808.25 1808.25 1.0000 2109.61 2109.61 1.0000
5 9 1618.55 1618.55 1.0000 1755.77 1765.57 0.9944
5 10 86.00 86.00 1.0000 86.00 86.00 1.0000
5 11 48.56 48.56 1.0000 48.59 48.59 1.0000
5 12 661.07 661.07 1.0000 675.26 664.68 1.0159
5 13 43.43 43.43 1.0000 46.88 43.45 1.0789
5 14 650.33 650.33 1.0000 689.75 723.84 0.9529
5 15 359.52 359.52 1.0000 373.30 385.78 0.9676
5 16 398.49 398.49 1.0000 409.80 451.04 0.9086

min 1 18.51 18.51 0.9563 19.14 19.14 0.7527
mean 474.50 474.52 0.9999 510.06 517.28 0.9823
max 16 1808.25 1808.25 1.0286 2109.61 2109.61 1.0789
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