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Abstract

We propose a class of decisive collective choice rules that rely on a linear ordering to

partition the majority relation into two acyclic relations. The first of these relations is

used to pare down the set of the feasible alternatives into a shortlist while the second

is used to make a final choice from the shortlist.

Rules in this class are characterized by four properties: two classical rationality

requirements (Sen’s expansion consistency and Manzini and Mariotti’s weak WARP);

and adaptations of two classical collective choice requirements (Arrow’s independence

of irrelevant alternatives and Saari and Barney’s no preference reversal bias). These

rules also satisfy some other desirable properties, including an adaptation of May’s

positive responsiveness.
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1 Introduction

In many collective choice settings, rules that recommend more than one alternative are

inappropriate. When it comes to selecting a public policy or passing legislation, for instance,

it is essential to be decisive. May (1952) shows that majority voting is the only reasonable

way to decide between two alternatives.1 With more alternatives, no rule that is faithful to

the majority can always choose rationally. The root of the problem is the Condorcet (1785)

paradox: the majority relation may involve cycles. Arrow (1951) shows that this problem

extends to non-majoritarian rules: barring dictatorship, there is no way to make rational

and Pareto-efficient choices that satisfy the independence of irrelevant alternatives (IIA).

We take Arrow’s result as good reason not to give up on majority rule, but rather to search

for collective choice rules that are decisive, faithful to the majority view, and as rational as

possible. Our emphasis on rationality is grounded in the view that, to gain broad legitimacy

among the agents, a rule must exhibit some degree of consistency in choice. Following in the

Arrovian tradition, we seek to achieve greater consistency by limiting irrational choice.

Two important properties necessary for rational choice, expansion consistency (Sen, 1971)

and weak WARP (Manzini and Mariotti, 2007), are compatible with decisiveness and faith-

fulness to the majority. We propose a class of choice rules that satisfy these two properties as

well as some other desiderata—including versions of Arrow’s IIA, May’s positive responsive-

ness and Saari and Barney’s (2003) no preference reversal bias. Not least among the virtues

of the rules we propose is their simplicity. Each uses a linear ordering to partition the ma-

jority relation into two acyclic relations. Then, as in Manzini and Mariotti’s (2007) rational

shortlist methods, the first relation is used to pare down the set of feasible alternatives into

a shortlist before the second relation is used to make a final choice.

Since a higher ranking confers an advantage in terms of being chosen, we interpret the

linear ordering associated with a given rule as a priority among the alternatives. While this

priority is in principle exogenous, the choice setting frequently suggests a natural way to

order the alternatives. In the public policy setting, for instance, it is sensible to prioritize

policies that are less costly or, perhaps, more equitable. In legislative settings, it is customary

to prioritize proposals by the order in which they were tabled or, in some jurisdictions, by

their degree of divergence from the status quo legislation (Rasch, 2000, p. 15). Finally, in

the committee setting, it may be appropriate to use the preference of the chair, which is

conventionally used as a tie-breaking device (Robert, 2011, p. 405).

1In the sequel, we assume that the majority relation is decisive. This assumption is automatically satisfied
when voter preferences are strict and the number of voters is odd. It is also fairly innocuous for large
electorates.
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2 The problem

Given a finite universe of social alternatives X, let X = {A ∈ 2X | 2 ≤ |A|} denote the set

of agendas and T the set of tournaments on X. Formally, a tournament T is an asymmetric

(@a, b: aTb and bTa) and total (∀a, b: aTb, bTa, or a = b) binary relation on X. We interpret

each tournament T ∈ T to be the majority relation induced by an underlying profile of agent

preferences over X (McGarvey, 1953). Given a tournament T and an agenda A, the problem

is to recommend one alternative in A. Formally, the object of interest is a choice rule, that

is a mapping f : T × X → X such that f(T ;A) ∈ A for each T ∈ T and A ∈ X .

We emphasize two aspects of our approach. First, we impose strong restrictions on what

inputs are relevant for collective choice. Although the general voting model takes individual

preferences as inputs, our rules only require the associated majority relation. While certainly

restrictive, there is a rich tradition of rules called “tournament solutions” that take the same

approach.2 A key motivation for these rules is to maintain informational parsimony.

Second, we impose strong restrictions on what kind of output is permitted. While the

general voting model allows a set of “acceptable” alternatives as output, we require our rules

to be decisive. In our view, recommending more than one alternative is problematic. At

best, it puts off the task of making a definite choice. At worst, it delegates the task of

choosing among the acceptable alternatives, a choice which is quite likely to have welfare

implications,3 to an ad hoc and potentially undemocratic tie-breaking procedure.

As outlined, we focus on choice rules that are faithful to the majority for binary choices:

Faithfulness. For all T ∈ T and a, b ∈ X: aTb implies f(T ; {a, b}) = a.

For a binary relation R on X, let max(R;A) := {a ∈ A | @b ∈ A : bRa} denote the set of

maximal elements of R in A ∈ X . (When this set is a singleton, we write max(R;A) = a

instead of max(R;A) = {a}.) Let P denote the set of linear orderings on X.4

We note that the restriction of a choice rule f to any tournament T ∈ T defines a classical

choice function f(T ; · ) : X → X. The choice function f(T ; · ) is rational if there is a linear

ordering P ∈ P such that f(T ;A) = max(P ;A) for all A ∈ X . If f satisfies Faithfulness,

then f(T ; · ) cannot be rational unless the tournament T is a linear ordering. The question

is whether there are faithful choice rules for which f(T ; · ) is rational when T is a linear

ordering and not too irrational otherwise.

Some of the simplest faithful choice rules from the literature use an exogenous linear

2For a comprehensive treatment of tournament solutions, see Laslier (1997).
3If T is induced by a profile of strict preferences, for instance, no two alternatives are Pareto indifferent.
4A linear ordering P is an asymmetric, total and transitive (∀a, b, c: aPbPc⇒ aPc) binary relation.
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ordering P ∈ P to establish a priority among the alternatives. The basic idea is to give

more of an “edge” to alternatives that are ranked higher by P and thus guarantee that

choice is single-valued even when the alternatives are not easy to distinguish on principle (as

in a Condorcet cycle aTbTcTa among three alternatives a, b, c ∈ X).

One such approach uses the priority P as a tie-breaking device to make a selection

from a Condorcet-consistent choice correspondence. Formally, F : T × X → 2X \ {∅} is a

Condorcet-consistent correspondence if, for all T ∈ T and A ∈ X : (i) F (T ;A) ⊆ A; and (ii)

F (T ;A) = {a} if aTb for all b ∈ A \ {a} (i.e., if a is the Condorcet winner).5 The choice

rule FP generated by the Condorcet-consistent correspondence F and the priority P ∈ P is

defined, for all T ∈ T and A ∈ X , by FP (T ;A) := max(P ;F (T ;A)).

Another approach uses the priority P to define a succession of binary elimination votes.

For any agenda A = {a1, ..., am} ∈ X , label the alternatives so that a1P...Pam. Then, define

w0(T ;A) := am and, for k = 1, ...,m− 1, define

wk(T ;A) :=

{
wk−1(T ;A) if wk−1(T ;A)Tam−k,

am−k otherwise.

The first vote eliminates either am or am−1. At any subsequent vote, the winner wk−1(T ;A)

from the previous vote is paired against the alternative am−k. The successive elimination

rule sP induced by the priority P ∈ P is then defined, for all T ∈ T and A ∈ X , by

sP (T ;A) := wm−1(T ;A). This rule may be depicted as follows. (For ease of illustration, the

dependence on (T ;A) has been suppressed):

sP = wm−1

...

wk

wk−1

...

w1

am = w0 am−1

am−k+1

am−k

a1

5In Fishburn (1977), Condorcet-consistent correspondences are called C1 social choice functions.
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Both of these approaches induce choice rules that lack basic features of rationality:

Example 1 (Selection from the uncovered set). One well-known Condorcet-consistent

correspondence is the uncovered set correspondence UC : T ×X → X \ {∅} (Landau, 1951;

Fishburn, 1977; Miller, 1980), which is defined, for all T ∈ T and A ∈ X , by

UC(T ;A) := {a ∈ A | ∀b ∈ A \ {a} : (i) aTb or (ii) aTcTb for some c ∈ A} .

For the universe X := {1, 2, 3, 4, 5}, consider the tournament T depicted below:

1

5 2

34 T

By definition, UC(T ; {1, 2, 3, 4}) = {2, 3, 4} , UC(T ; {2, 5}) = {2} and UC(T ; {1, 2, 3, 4, 5}) =

{1, 2, 3, 4}. For the priority P = 1, ..., 5 (with the alternatives listed in decreasing order of

P ), it then follows that:

UCP (T ; {1, 2, 3, 4}) = 2 = UCP (T ; {2, 5}) but UCP (T ; {1, 2, 3, 4, 5}) = 1.

In other words, alternative 2 is chosen from {1, 2, 3, 4} and {2, 5} but not their union.6

Moreover, since UC(T ; {1, 2}) = {2} and UC(T ; {1, 2, 4}) = {1, 2, 4}, it follows that:

UCP (T ; {1, 2}) = 2 = UCP (T ; {1, 2, 3, 4}) but UCP (T ; {1, 2, 4}) = 1.

So, 2 is chosen over 1 from {1, 2} and {1, 2, 3, 4} but not the intermediate agenda {1, 2, 4}.7

Example 2 (Successive elimination). For X := {1, 2, 3, 4}, consider the tournament

T ∈ T depicted below:

6The same choice pattern can arise if we instead start with the top cycle correspondence TC (as defined
in Section 4.2 below). If we modify the tournament T so that 4T ′1, then TCP (T ′; {1, 2, 3, 4}) = 2 =
TCP (T ′; {2, 5}) but TCP (T ′; {1, 2, 3, 4, 5}) = 1.

7To see that this choice pattern cannot arise if we start with the top cycle correspondence TC, suppose
TCP (T ;A) = a = TCP (T ; {a, b}) and TCP (T ;B) = b for {a, b} ⊆ B ⊆ A. Since TCP (T ; {a, b}) = a and
TCP (T ;B) = b, bPa. Since a ∈ TC(T ;A) and b = c1T...T cn = a for some c1, ..., cn ∈ B, b ∈ TC(T ;A).
Since bPa, this contradicts TCP (T ;A) = a.
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1 2

4 3T

For the successive elimination procedure sP induced by the priority P := 1, ..., 4:

sP (T ; {1, 4}) = sP (T ; {1, 2, 3}) = 1 but sP (T ; {1, 2, 3, 4}) = 2.

So, 1 is chosen from the agendas {1, 4} and {1, 2, 3} but not their union. Moreover,

sP (T ; {1, 2}) = sP (T ; {1, 2, 3, 4}) = 2 but sP (T ; {1, 2, 3}) = 1.

Thus, 2 is chosen over 1 from {1, 2} and {1, 2, 3, 4} but not the intermediate agenda {1, 2, 3}.8

The choice rules from Examples 1 and 2 both violate the following rationality properties:

Expansion Consistency. For all T ∈ T , a ∈ X, and A,B ∈ X :

f(T ;A) = a = f(T ;B) implies f(T ;A ∪B) = a.

Weak WARP. For all T ∈ T , distinct a, b ∈ X, and A,B ∈ X such that {a, b} ⊆ B ⊆ A:

f(T ; {a, b}) = a = f(T ;A) implies f(T ;B) 6= b.

Expansion Consistency dates back to Sen (1971). Weak WARP was first introduced by

Manzini and Mariotti (2007) and later studied by Cherepanov et al. (2013). Both proper-

ties weaken Samuelson’s (1938) weak axiom of revealed preference (WARP), which requires

f(T ;B) = a if f(T ;A) = a and a ∈ B ⊆ A. Since WARP characterizes rational choice in

our setting, it is incompatible with the requirement that f satisfies Faithfulness.

8The same choice patterns can arise under the amendment procedure aP (Miller, 1977, p. 779; Moulin,
1986, p. 287). Following our convention (that higher-ranked alternatives in P are more privileged), the
linear ordering P = 1, 2, 3, 4 corresponds to the tree Γ4(4, 3, 2, 1) in Moulin. For the tournament T given in
Example 2, the corresponding choice function gives aP (T ;A) = sP (T ;A) for all A ∈ X .
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3 Two-stage majoritarian rules

We propose a class of choice rules that satisfy Faithfulness, Expansion Consistency and

Weak WARP. Like the rules from Examples 1 and 2, each of our rules relies on an exogenous

priority P ∈ P . For our rules, the function of the linear ordering P is to partition the given

tournament T ∈ T into two acyclic binary relations T ∩ P and T \ P . The first of these

relations is used to obtain a preliminary shortlist of the feasible alternatives in the agenda

A ∈ X while the second is used to make a final choice from the shortlist.

Formally, the two-stage majoritarian choice rule fP based on the priority P ∈ P is defined,

for all tournaments T ∈ T and agendas A ∈ X , by

fP (T ;A) := max(T \ P ; max(T ∩ P ;A)). (1)

For each tournament T ∈ T , the choice function fP (T ; · ) is a rational shortlist method

(RSM) in the sense of Manzini and Mariotti (2007), that is a choice function c : X → X for

which there is a pair of asymmetric binary relations (P1, P2) on X (called rationales) such

that c(A) = max(P2; max(P1;A)) for all A ∈ X . In general, the rationales P1 and P2 must

satisfy nontrivial restrictions (see Lemma 2 of Dutta and Horan, 2015) to ensure that c is a

well-defined choice function. It turns out that, for all T ∈ T and P ∈ P , these restrictions

are automatically satisfied when the rationales are P1 := T ∩ P and P2 := T \ P .

To see this, fix an agenda A ∈ X . Since the binary relation T ∩ P is acyclic, the

shortlist MA := max(T ∩ P ;A) must be nonempty. The alternatives excluded from MA

are those dominated both in terms of the majority tournament T and the priority ordering

P . In other words, the shortlist MA consists of those alternatives that are not majority

beaten by any higher priority alternatives. It follows that the restriction of the relation

T \ P to MA must be a linear ordering. To see this, define the “reverse” linear ordering

P−1 := {(a, b) ∈ X2 | (b, a) ∈ P} and observe that for all a, b ∈MA,

aTb⇔ a(T \ P )b⇔ a(T ∩ P−1)⇔ aP−1b.

This chain of equivalences shows that formula (1) can be re-written as follows:

fP (T ;A) = max(T ;MA) or even fP (T ;A) = max(P−1;MA).

In words, the alternative selected from the shortlist is the alternative most preferred by the

majority. Equivalently, it is the shortlisted alternative with lowest priority.

Finally, note that if the tournament T disagrees with the priority P for all pairs of
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alternatives in X (i.e., T ∩P = ∅), then the shortlist MA is just A itself. Since T = P−1 is a

linear ordering in that case, fP (T ;A) must be the Condorcet winner of T in A. At the other

extreme where the tournament T and the priority P coincide (i.e., T = P ), the shortlist MA

contains only the Condorcet winner of T in A, which must be selected in the second stage.

The following example serves as further illustration of the rules that we propose.

Example 3 (Two-stage majoritarian rules). For the tournament T from Example 2,

the two rationales associated with the priority P := 1, ..., 4 are

P1 = T ∩ P = {(1, 3), (1, 4), (2, 4)} and P2 = T \ P = {(2, 1), (3, 2), (4, 3)}.

To understand the resulting two-stage majoritarian rule fP , first consider the Condorcet cycle

A = {1, 2, 3}. Since 1P13, the first stage eliminates alternative 3, which gives the shortlist

{1, 2}. Since 2P21, the second stage eliminates alternative 1 and fP (T ;A) = 2.

Letting f−1P (T ;x) := {A ∈ X | f(T ;A) = x}, the same kind of reasoning establishes that:

f−1P (T ; 1) = {{1, 3}, {1, 4}} ,

f−1P (T ; 2) = {{1, 2}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}} ,

f−1P (T ; 3) = {{2, 3}, {2, 3, 4}} , and

f−1P (T ; 4) = {{3, 4}} .

By definition, every two-stage majoritarian rule fP satisfies Faithfulness. Since the choice

function fP (T ; · ) is a rational shortlist method for each T ∈ T , Manzini and Mariotti’s

characterization implies that fP must satisfy Expansion Consistency and Weak WARP.9

Two-stage majoritarian rules also exhibit consistency properties across tournaments.

One such property is an adaptation of Arrow’s IIA to our setting (due to Moulin, 1986, p.

278). Let T |A denote the restriction of the tournament T ∈ T to the agenda A ∈ X .

Choice IIA. For all T, T ′ ∈ T and A ∈ X such that T |A = T ′|A: f(T ;A) = f(T ′;A).

To paraphrase, the majority view of infeasible alternatives cannot affect choice. Besides

two-stage majoritarian rules, this property is also satisfied by the rules from Examples 1 and

2 (as well as the variations of these rules discussed in footnotes 6 and 8).

Another inter-tournament consistency property satisfied by fP , which is not satisfied by

any of the other rules discussed in Section 2, is that choice must improve when all majority

9Rubinstein and Salant (2008) characterize the RSM model in terms of a different property called Exclu-
sion Consistency, which can be adapted to our setting as follows: for all T ∈ T , a ∈ X, and A,B ∈ X such
that a ∈ B \ A, f(T ;A ∪ {a}) /∈ {f(T ;A), a} implies f(T ;B) 6= f(T ;A). In all of the subsequent analysis,
this property can be used in place of Expansion Consistency and Weak WARP.
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comparisons are reversed. Where T−1 := {(a, b) ∈ X2 | (b, a) ∈ T} denotes the reversal of a

tournament T ∈ T , this property can be stated as follows:

Reversal Improvement. For all T ∈ T and A ∈ X : f(T ;A)Tf(T−1;A).

This property strengthens Faithfulness, which coincides with the special case where |A| =

2. It also strengthens a condition that Saari and Barney (2003, p. 17) proposed for the

richer setting where collective choice may depend on individual preferences. Their condition

requires the collective choice to change when all individual preferences are reversed.10 In our

setting, this amounts to the requirement that f(T ;A) 6= f(T−1;A).

Reversal Improvement further requires that reversing preferences must improve choice.

What motivates us to strengthen Saari and Barney’s condition in this way is the view that

changes to the majority view ought to impact choice for the better. This makes Reversal

Improvement similar in spirit to May’s positive responsiveness (which we discuss at greater

length in Section 4.2 below). The main difference is that May’s condition relates to changes

that reinforce the support for a particular choice. In contrast, our condition relates to changes

that reverse all comparisons that led to a particular choice.

Combined with Expansion Consistency and Weak WARP, Choice IIA and Reversal Im-

provement characterize two-stage majoritarian rules. To state our result formally:

Theorem. A choice rule f : T ×X → X is a two-stage majoritarian choice rule if and only

if it satisfies Expansion Consistency, Weak WARP, Choice IIA and Reversal Improvement.

Proof. (Necessity) The fact fP satisfies Expansion Consistency and Weak WARP follows

from Manzini and Mariotti (2007). Choice IIA is also immediate. To see that fP satis-

fies Reversal Improvement, fix some T ∈ T and A ∈ X . If fP (T−1;A)PfP (T ;A), then

fP (T ;A)TfP (T−1;A) since fP (T ;A) ∈ max(T ∩ P,A). Similarly, if fP (T ;A)PfP (T−1;A),

then fP (T−1;A)T−1fP (T ;A). Finally, if fP (T ;A) = fP (T−1;A) = a, then a ∈ max(T ∩
P ;A)∩max(T−1 ∩P ;A). It follows that aPc for all c ∈ A \ {a}. Let b be the second-ranked

alternative in A according to P . Since fP (T ;A) = fP (T−1;A) = a, b /∈ max(T ∩ P ;A) ∪
max(T−1 ∩ P ;A). So, aTb and aT−1b, which is a contradiction.

(Sufficiency) Since the case |X| = 2 follows immediately from Reversal Improvement,

suppose |X| ≥ 3. Define the binary relation R on X such that, for all x, y ∈ X:

xRy if xTzTyTx and f(T ; {x, y, z}) = x for some T ∈ T and z ∈ X. (2)

10Fishburn (1973, p. 157) earlier proposed a similar condition, which he called Duality.
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Equivalently, by Reversal Improvement, it follows that

xRy if xT ′yT ′zT ′x and f(T ′; {x, y, z}) = z for some T ′ ∈ T and z ∈ X. (3)

Finally, define the binary relation I on X such that, for all x, y ∈ X:

xIy if neither xRy nor yRx. (4)

Step 1. R is (i) asymmetric and (ii) transitive.

(i) To the contrary, suppose xRyRx for some x, y ∈ X. By definition, there are

c, d ∈ X \ {x, y} and T, T ′ ∈ T such that xTyTcTx, xT ′yT ′dT ′x, f(T ; {x, y, c}) = c,

and f(T ′; {x, y, d}) = y. By Choice IIA, it must be that c 6= d. For |X| = 3, this

yields a contradiction directly. For |X| ≥ 4, consider T ∗ ∈ T such that T ∗|C = T |C for

C := {x, y, c}, T ∗|D = T ′|D for D := {x, y, d}, and cT ∗d. By Faithfulness, f(T ∗; {c, d}) = c

and f(T ∗; {y, d}) = y. Since f(T ∗;C) = c and f(T ∗;D) = y by Choice IIA, Expansion

Consistency leads to the following contradiction:

c = f(T ∗;C ∪ {c, d}) = f(T ∗; {x, y, c, d}) = f(T ∗;D ∪ {y, d}) = y.

(ii) Suppose xRyRz. Consider T ∈ T such that xTyTzTx. If f(T ; {x, y, z}) 6= x, yRx

or zRy. Since xRyRz, this contradicts the asymmetry of R. So, f(T ; {x, y, z}) = x and

xRz.�

Step 2. There are exactly two distinct a, b ∈ X such that aIb. Moreover, aRc and bRc for

all c ∈ X \ {a, b}.

Suppose there are pairs of distinct alternatives {x, y} and {z, w} (with x 6= z, w and

z 6= x, y) such that xIy and zIw. First, consider T ∈ T such that xTzTwTx and its reversal

T−1. Since zIw, the definition of R implies zRx (and wRx). Next, consider T ∈ T such

that xTyTzTx and its reversal T−1. Then, xRz since xIy. Since xRzRx contradicts the

asymmetry of R, it follows that aIb for at most one pair {a, b}.
If there is no such pair, then R is a linear ordering by Step 1. Suppose aRb and bRc for

all c ∈ X \ {a, b}. Then, by definition of R, there is some d ∈ X \ {a, b} such that dRb.

Since this is a contradiction, there must be exactly one pair {a, b} such that aIb. Finally,

from the definition of R, it follows that aRc and bRc for all c ∈ X \ {a, b}.�

Complete R into a linear ordering P by defining aPb and xPy if xRy for x, y ∈ X.
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Step 3. For all T ∈ T and A ∈ X , f(T ;A) = fP (T ;A).

The proof is by strong induction on |A|. For the base cases |A| = 2, 3, the result fol-

lows from Reversal Improvement, Expansion Consistency, and the definition of R. For the

induction step, suppose that the result holds for 2 ≤ |A| < n and consider |A| = n ≥ 4.

By the induction hypothesis, it suffices to show that f(T ;A) = fP (T ;A) for all T ∈ T .

Labelling the alternatives of A = {a1, ..., an} so that a1P...Pan, this is equivalent to showing

that

f(T ;A) =

{
an if an = max(T ;A),

f(T ;A \ {an}) otherwise.
(5)

First, suppose f(T ;A \ {an}) = x and recursively define a sequence 〈bi〉mi=0 in A such that:

(i) b0 := an;

(ii) Bi+1 := {y ∈ A | y(P ∩ T )bi} and bi+1 := max(P ;Bi+1); and,

(iii) m is the smallest index such that bmPx, bm = x, or Bm+1 = ∅.

Next, define B := {b0, ..., bm}. Since f(T ;A \ {an}) = x, there are two possibilities. If anTai

for all i = 1, ..., n − 1, then B = {an} = {b0}. Otherwise, B = {b0, ..., bm} 6= {b0} with the

features that: (a) bm(T ∩ P )...(T ∩ P )b0; and (b) x(T \ P )bm or x = bm. This leaves three

cases:

Case 1. If B = {an}, then an = max(T ;A). By the induction hypothesis and the

application of Expansion Consistency to f(T ; {ai, an}) = an for i = 1, ..., n − 1, it follows

that f(T ;A) = an.

Case 2. If 1 < |B∪{x}| < n, then f(T ;B∪{x}) = x by (a)-(b) above and the induction

hypothesis. So, f(T ;A) = f(T ; (B ∪ {x}) ∪ (A \ {an})) = x by Expansion Consistency.

Case 3. If B∪{x} = A, then x ∈ {a1, a2} by (a)-(b) above. What is more, the definition

of B implies: (c) ai−1Tai for i = 4, ..., n; and (d) aiTaj for i = 4, ..., n and all j < i− 1.

First, suppose x = a1. By definition ofB, a1Ta2Ta3Ta1. Given (c)-(d), ai−2Tai−1TaiTai−2

for i = 3, ..., n. So, f(T ; {ai−2, ai−1, ai}) = ai−2 by the induction hypothesis. Since f(T ; {ai−2, ai}) =

ai by the induction hypothesis, Weak WARP precludes f(T ;A) = ai. So, f(T ;A) ∈ {a1, a2}.
To rule out f(T ;A) = a2, consider the reversal T−1 of T . Since ai−2T

−1aiT
−1ai−1T

−1ai−2

for i = 3, ..., n, the same kind of argument given for T implies f(T−1;A) ∈ {a1, a2}. Since

f(T ;A) ∈ {a1, a2} and a1Ta2, Reversal Improvement then implies f(T ;A) = a1 = x.

Next, suppose x = a2. From the definition of B and the fact that f(T ; (A \ {an}) = a2,

it follows that a1Ta3 and a2Ta1. We distinguish two possibilities: (i) a3Ta2; and (ii) a2Ta3.

11



(i) Given a2Ta1Ta3Ta2 and (c), the same kind of argument used for x = a1 estab-

lishes f(T ;A) = a2. (The difference is that f(T ;A) = a3 is ruled out by a2Ta1Ta3Ta2

while f(T ;A) = a4 is ruled out by a1Ta3Ta4Ta1. In turn, f(T−1;A) = a3 is ruled out by

a2T
−1a3T

−1a1T
−1a2 while f(T−1;A) = a4 is ruled out by a1T

−1a4T
−1a3T

−1a1.)

(ii) By the induction hypothesis: f(T ;A\{a1}) = a2 given a2Ta3 and (c); and f(T ; {a1, a2}) =

a2 given a2Ta1. So, f(T ;A) = f(T ; (A\{a1})∪{a1, a2}) = a2 = x by Expansion Consistency.�

Remark 1. The “revealed priority” R defined in the proof (see (2) and (3) above) is closely

related to the “revealed rationales” for rational shortlist methods. In particular, xTzTyTx

and f(T ; {x, y, z}) = x reveal that, for every RSM representation of f(T ; ·), the second

rationale must contain (y, x). Conversely, xT ′yT ′zT ′x and f(T ′; {x, y, z}) = z reveal that,

for every RSM representation of f(T ′; ·), the first rationale must contain (x, y).

The proof shows that R admits exactly two completions into linear orderings, which are

denoted P a and P b below. These priorities differ only in terms of how they rank the top two

alternatives a and b from Step 2 of the proof. To see why this non-uniqueness is intrinsic to

our model, note that formula (5) implies fPa(T ; {a, b}) = max(T ; {a, b}) = fP b(T ; {a, b}) for

all T ∈ T . As a result, fPa(T ;A) = fP b(T ;A) for all T ∈ T and A ∈ X .

4 Further remarks

4.1 Restricted choice settings

Our characterization of two-stage majoritarian rules relies on the full range of tournaments

and the full range of agendas. This begs the question about what properties characterize

two-stage majoritarian rules in settings that lack variability on one of these dimensions.11

4.1.1 The fixed tournament setting

For a fixed tournament T ∈ T , the choice function fP (T ; · ) is a rational shortlist method

whose rationales P1 = T ∩ P and P2 = T \ P are acyclic. Houy (2008) shows that acyclicity

of the rationales limits the scope of potential choice behavior for rational shortlist methods.

However, the rationales of fP (T ; · ) are not merely acyclic. They are also linked through the

priority P . The next example shows that this imposes additional restrictions on behavior.

11We are indebted to our two referees, each of whom encouraged us to think about one of these settings.
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Example 4. (Acyclic RSM) Suppose that X = {1, 2, 3, 4, 5}. Fix acyclic rationales

P1 := {(1, 2), (2, 3), (4, 1)} and

P2 := {(1, 3), (1, 5), (2, 4), (3, 4), (3, 5), (5, 2), (5, 4)} .

Let c := max(P2; max(P1; ·)) denote the associated rational shortlist method and T := P1∪P2

the associated tournament. To see that there is no priority P such that c = fP (T ; · ), suppose

otherwise. By revealed preference, it follows that:

1T2T4T1 and c({1, 2, 4}) = 4 ⇒ (1, 2) ∈ T ∩ P ;

2T3T5T2 and c({2, 3, 5}) = 5 ⇒ (2, 3) ∈ T ∩ P ; and

1T3T4T1 and c({1, 3, 4}) = 3 ⇒ (1, 3) ∈ T \ P.

Thus, 1P2P3P1 which contradicts the fact that P must be a linear ordering.

The example suggests what is needed to characterize two-stage majoritarian choice in the

fixed tournament setting. To elaborate, fix a choice function c. Let P c
1 and P c

2 denote the

“revealed rationales” for rational shortlist methods – that is, the binary relations consisting

of all pairs that must belong to the first and second rationales in any RSM representation of

c, respectively.12 Extending the logic of Example 4, it follows that x ∈ X must have higher

priority than y ∈ X if the pair (x, y) belongs to the transitive closure of P c
1 ∪ (P c

2 )−1. It is

not difficult to show that c reveals nothing more about the priority.

Combined with Proposition 2 of Dutta and Horan (2015), this observation establishes that

a choice function c is two-stage majoritarian if and only if it satisfies Expansion Consistency

and the binary relation P c
1∪(P c

2 )−1 is acyclic. By way of comparison, Houy’s characterization

of acyclic rational shortlist methods uses Expansion Consistency and the weaker requirement

that P c
2 is acyclic.13

4.1.2 The fixed agenda setting

There is a bijection between two-stage majoritarian rules in our setting and the setting with

a fixed agenda X.14 To elaborate, fix a tournament T ∈ T and an agenda A ∈ X . Let TA

denote the tournament that coincides with T on A but puts each alternative in X \A below

12While it is not required to appreciate the subsequent discussion, Dutta and Horan (2015, Proposition 1)
show that P c

1 and P c
2 admit simple definitions in terms of choice behavior. In particular: xP c

1 y if c(B) = y
and c(B ∪ {x}) /∈ {x, y} for some B ⊂ X; and, xP c

2 y if c(A) = x and c(B) = y for some {x} ⊂ A ⊂ B ⊆ X.
13Since it is implied by the acyclicity of P c

2 , Weak WARP is not expressly required for either result.
14The same is also true for the choice rules considered by Apesteguia et al. (2014) and Horan (2021),

which include the successive elimination rule from Example 2 and the amendment rule from footnote 8.
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every alternative in A. For any two-stage majoritarian rule fP : T × X → X, going from

TA to T is tantamount to removing the alternatives in X \ A, that is

fP (T ;A) = fP (TA;X). (6)

From this identity, it follows that the usual projection f( · ; · ) 7→ f( · ;X) defines a bijection

between two-stage majoritarian rules in our setting and the setting with a fixed agenda X.

By applying identity (6) to our axioms, it is also possible to “translate” our characteriza-

tion to the fixed agenda setting. While Choice IIA becomes vacuous, the other three axioms

continue to have bite. The drawback is that they become more difficult to interpret.

4.2 Flexibility and Pareto sub-optimality

The well-known top cycle correspondence TC : T × X → X \ {∅} (Camion, 1959; Good,

1971; Schwartz, 1972; Smith, 1973; Fishburn, 1974) is defined, for all T ∈ T and A ∈ X , by

TC(T ;A) := {a ∈ A | ∀b ∈ A \ {a} : a = c1T...T cn = b for some c1, ..., cn ∈ A}. Just like the

uncovered set, the top cycle correspondence is Condorcet-consistent.

For all T ∈ T and A ∈ X , the set of alternatives that are chosen by some two-stage

majoritarian rule coincides with the top cycle, that is TC(T ;A) = {fP (T ;A) | P ∈ P}.
To see that TC(T ;A) ⊇ {fP (T ;A) | P ∈ P}, pick any P ∈ P and note that fP (T ;A) =

fP (T ;TC(T ;A)) ∈ TC(T ;A). For the reverse inclusion, pick any a ∈ TC(T ;A). By a

standard result in graph theory, there is a path a = a1T...Tam such that {a1, ..., am} = A

(see e.g., Lemma 8.3.3 of Laslier, 1997). Fix a priority P ∈ P such that a1P...Pam. Since

max(T ∩ P ;A) = a by construction, it follows that fP (T ;A) = a.

A classic result of Miller (1977) shows that successive elimination rules (Example 2) also

trace out the top cycle, that is TC(T ;A) = {sP (T ;A) | P ∈ P}. As such, those rules provide

exactly the same flexibility to the designer as two-stage majoritarian rules.

It is well known that, for some tournaments T ∈ T and agendas A ∈ X such that |A| ≥ 4,

the top cycle TC(T ;A) contains alternatives that are Pareto dominated at some preference

profiles consistent with T . It follows that all two-stage majoritarian rules occasionally make

Pareto sub-optimal choices. To illustrate, suppose X := {1, 2, 3, 4} and consider the two-

stage majoritarian rule fP based on P := 4, 3, 2, 1. Suppose (as in Bordes, 1979, p. 188)

that there are three agents with preferences �1:= 1, 4, 3, 2, �2:= 2, 1, 4, 3, and �3:= 3, 2, 1, 4.

Note that alternative 4 is Pareto-dominated by alternative 1. Since the majority tournament

T for this profile coincides with the one from Example 2 however, fP (T ;X) = 4.
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4.3 The connection to May

Two-stage majoritarian rules satisfy a natural adaptation of May’s positive responsiveness to

the tournament setting. To state this adaptation (originally formulated by Moulin, 1986, p.

285), say that a binary relation R↑a on X improves an alternative a ∈ X relative to another

binary relation R on X if, for all x, y ∈ X \ {a}: (i) aRx⇒ aR↑ax; and (ii) xRy ⇔ xR↑ay.

T -Monotonicity. For all T ∈ T , a ∈ X, T ↑a ∈ T that improves a, and A ∈ X :

f(T ;A) = a implies f(T ↑a;A) = a.

Thus: improving the majority view of a chosen alternative must reinforce its choice.

To see that two-stage majoritarian rules satisfy this property, recall that fP (T ;A) is

the lowest priority alternative in A that beats all higher priority alternatives by majority.

Improving fP (T ;A) relative to T does nothing to change this: fP (T ;A) still beats all higher

priority alternatives; and every alternative with lower priority than fP (T ;A) is still beaten

by some alternative with higher priority.

It is well known that the rules from Example 2 (just like those from footnotes 6 and

8) also satisfy T -Monotonicity.15 To see that the rules from Example 1 do not, consider

X := {1, 2, 3, 4} and P := 4, 3, 2, 1. Then, UCP (T ;X) = 3 for the tournament T from

Example 2 while UCP (T ′;X) = 4 for the tournament T ′ that improves 3 relative to 1.

4.4 The role of the priority

A minor variation on the argument used to show that two-stage majoritarian rules satisfy

T -Monotonicity also establishes that every rule fP is monotonic with respect to the priority

P . In other words, two-stage majoritarian rules satisfy the following property:

P -Monotonicity. For all P ∈ P, a ∈ X, P ↑a ∈ P that improves a, T ∈ T , and A ∈ X :

fP (T ;A) = a implies fP ↑a(T ;A) = a.

This property formalizes the idea that higher ranked alternatives are more privileged.

The rules from Examples 1 and 2 (as well as the related rules from footnotes 6 and 8)

satisfy an analogous property.16 The difference is that the priority P plays a less intrusive

15See Exercise 9.4(c) of Moulin (1988, p. 250) for sP and the Corollary to Theorem 9.5 (p. 247) for aP .
Horan (2021) shows that a much broader range of binary trees (which he calls “simple agendas”) have the
same feature. For TCP , simply note that the top cycle cannot gain new members by improving one of its
members.

16For UCP and TCP , the claim is straightforward. For sP and aP , see Exercise 9.5 of Moulin (1988, p.
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role for two-stage majoritarian rules than it does for these other rules. To see this, first con-

sider the successive elimination rules from Example 2. By definition, the chosen alternative

sP (T ;A) must defeat all higher priority alternatives in the agenda A ∈ X . Because the same

is true for fP (T ;A), this means that, when the alternatives sP (T ;A) and fP (T ;A) differ,

fP (T ;A) must be preferred by a majority over sP (T ;A).

The same reasoning shows that fP (T ;A) must be weakly preferred by majority to the

alternatives TCP (T ;A) and aP (T ;A) chosen by the top cycle selection rule (footnote 6) and

the amendment rule (footnote 8). In fact, the same is also true for the uncovered set selection

rule from Example 1 once differences in flexibility of the two rules are taken into account: if

fP (T ;A) ∈ UC(T ;A), then fP (T ;A) must be weakly preferred by a majority to UCP (T ;A).

4.5 An extension

There may be settings where it is desirable to select the same alternative for a tournament

and its reversal. To accommodate this possibility, it is necessary to weaken the conclusion

of Reversal Improvement to allow f(T ;A) = f(T−1;A). Unlike Reversal Improvement, the

resulting Weak Reversal Improvement property does not imply Faithfulness.

When combined with Faithfulness and the other requirements in our Theorem, Weak Re-

versal Improvement defines a much broader class of choice rules. The next example describes

some rules in this class that share the same basic structure as two-stage majoritarian rules.

Example 5. (General two-stage majoritarian rules) Let R2 denote the set of weak

orderings17 R on X such that, for any x ∈ X, the indifference class IR(x) := {y ∈ X |
xRyRx} contains at most two alternatives. Given a weak ordering R ∈ R2, let gR be the

choice rule defined, for all T ∈ T and A ∈ X , by

gR(T ;A) := max(T \R; max(T ∩R;A)).

To see that gR does indeed define a choice rule, let RT denote the linear ordering obtained

by taking the lexicographic composition of R with a tournament T ∈ T . Then, gR(T ;A) =

fRT
(T ;A) for all A ∈ X . Not only does this show that gR is well-defined, it shows that gR is a

two-stage majoritarian rule when R contains no indifferences (since, in that case, RT = RT ′

for all T, T ′ ∈ T ). This is not true when xRyRx for distinct x, y ∈ X. Then, x and y must

be compared by the first rationale T ∩R regardless of T ∈ T , something which cannot occur

for a two-stage majoritarian rule.

250). A much broader class of binary trees introduced by Horan (2021) (called “priority agendas”) have the
same feature.

17A weak ordering R is a complete (∀a, b : aRb or bRa) and transitive binary relation.
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Besides Faithfulness, Expansion Consistency, Weak WARP, Choice IIA, and Weak Re-

versal Improvement, gR satisfies T -Monotonicity and (the analog of) P -Monotonicity for any

weak ordering R ∈ R2. To see that gR may violate Reversal Improvement when |X| ≥ 3,

consider a weak ordering R ∈ R2 such that 1R2R3R2 and a tournament T ∈ T such that

1T2T3T1. Then, gR(T ;A) = 1 = gR(T−1;A) for the agenda A := {1, 2, 3}.
To close, we note that the rules from Example 4 provide the same flexibility as two-

stage majoritarian rules, that is TC(T ;A) = {gσR(T ;A) | σ is a permutation on X} for all

R ∈ R2, T ∈ T , and A ∈ X . As with two-stage majoritarian rules, the implication is that

all of these rules occasionally make Pareto sub-optimal choices. This raises the question of

whether an efficient choice rule can satisfy all of the desiderata listed in the last paragraph.
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