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Abstract

We propose a very general approach for modeling production technologies that al-

lows for modeling both inefficiency and noise that are specific for each input and each

output. The approach is based on amalgamating ideas from nonparametric activity

analysis models for production and consumption theory with stochastic frontier models.

We do this by effectively re-interpreting the activity analysis models as simultaneous

equations models in Bayesian compression and artificial neural networks frameworks.

We make minimal assumption about noise in the data and we allow for flexible approx-

imations to input- and output-specific slacks. We use compression to solve the problem

of an exceeding number of parameters in general production technologies and we also

incorporate environmental variables in the estimation. We present Monte Carlo simula-

tion results and empirical illustration and comparison of this approach for US banking

data.
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1 Introduction

In his seminal work, Afriat (1967) launched a flourishing stream of literature about non-

parametric testing of regularity conditions in economics. Originally cast in a consumer

economics context, it paved the way for non-parametric demand analysis and, in particu-

lar for testing the rationality of consumer behavior (Varian (1982, 1983) and, more recently,

Cherchye et al. (2007), Kitamura and Stoye (2018) and Smeulders et al. (2021), etc.).

In another seminal work, Afriat (1972) developed a similar approach for the context of

production economics, in parallel with Hanoch and Rothschild (1972). This generated a series

of articles, e.g., Diewert (1973), Varian (1984), Diewert and Parkan (1985), that took these

ideas further, developing various non-parametric tests of consistency with the optimizing

behavior of firms using demand and supply data, as well as various restrictions on technology,

such as returns to scale, separability, homotheticity, etc. In a follow up paper, Varian (1990)

proposed a “goodness-of-fit” measure and illustrated it for the context of aggregate demand

estimation, arguing that:

“... a more fruitful approach to testing optimizing behavior is to measure

the departure from optimization using the estimated objective function, and see

whether this departure [measured via a goodness-of-fit measure] is significant in

an economic sense ...”

Leveraging on these works, Färe and Grosskopf (1995) unveiled the more explicit links be-

tween the Afriat-Hanoch-Rothschild-Diewert-Parkan-Varian approach and the works on the

duality of Shephard (1953, 1970) and the efficiency analysis literature pioneered by Farrell

(1957), concluding that:

“... one may view Farrell efficiency measures ... when computed using the

programming approach as providing nonparametric tests of technology which are

also measures of goodness-of-fit.”
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The goal of this paper is to revisit this literature with recently developed insights into effi-

ciency analysis and in Bayesian statistics, with a goal to develop more robust goodness-of-fit

measures that will complement the previously developed analogues, and try to overcome their

limitations, such as sensitivity to outliers.

Our paper is structured as follows: Section 2 briefly describes the related literature.

Section 3 outlines the economic theory underpinnings. Section 4 describes the econometric

model and the estimation approaches, starting with the deterministic convex hulls and then

generalizing it to the stochastic convex hulls representation. It also describes how such models

can be estimated within a Bayesian compression framework and proposes several measures of

goodness-of-fit (economic and statistical). Section 5 describes how to model the determinants

of inefficiency via flexible Bayesian artificial neural networks (ANN). Section 6 presents an

empirical illustration of the introduced approach to real data, for US banking. Section 7

gives concluding remarks. Monte Carlo evidence can be found in Supplement 1 while the

further technical details can be found in Supplement 2.

2 Related Literature in a Nutshell

Most of the literature on non-parametric modeling and testing of regularity conditions in

production contexts is based on the linear programming approach, via a local-linear approx-

imation of technology. This approach started as “activity analysis” models (Debreu (1951),

Koopmans (1951), Farrell (1957)) and these were extended and popularized in business and

the OR/MS community as Data Envelopment Analysis (DEA) by Charnes et al. (1978),

with many variants developed since then.1 Its key advantages include relative simplicity and

absence of parametric assumptions on the frontier or on the inefficiency. The main caveat of

such an approach is not accounting for statistical noise and, in particular, possibly high sen-

sitivity to outliers. Addressing this caveat was the main idea behind the origin of Stochastic
1E.g., for a textbook style description, see Ray (2004) or Sickles and Zelenyuk (2019, Chapters 8-10) and

many references therein.
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Frontier Analysis (SFA): inspired by Farrell (1957) and the discussion articles that followed,

SFA came to light thanks to Aigner et al. (1977) and Meeusen and van den Broeck (1977)

and was developed further in many studies.2

As with any method, parametric SFA also has its caveats—they are typically related to

the requirements for the parametric assumptions about the frontier, or about the inefficiency,

or about the statistical noise, or about all of these three aspects. In turn, these caveats

inspired a series of studies that attempted to address some or all of these limitations in

various ways, bridging the two approaches by proposing various alternatives. Examples of

these include various versions of semiparametric and nonparametric SFA approaches,3 order-

m and order-α quantile frontier approaches4 and stochastic DEA and StoNED.5

Our current paper is positioned in the latter stream—it also proposes a hybrid, where

we try to retain flexibility as well as allow for statistical noise. To do so, we formulate

the production problem as simultaneous equations models, and then cast it in the Bayesian

compression framework of Guhaniyogi and Dunson (2015) as well as the artificial neural

networks (ANN) approach (Hornik et al. (1989) andWhite (1989, 1990)). This allows minimal

assumptions about noise in the data and yet also provides flexibility of approximations to

input- and output-specific slacks. The use of Bayesian compression also helps to solve the

problem of the large number of parameters in the general production technology formulation.

We also consider the case of “environmental variables” that can be used to model and explain

the inefficiency within such an approach. To obtain the posteriors, we use state-of-the-

art Markov Chain Monte Carlo (MCMC) methods based on Metropolis Adjusted Langevin

Algorithm (Durmus et al. (2017)). The Monte Carlo results and the empirical illustration

suggest the proposed approach gives a promising path to improving the toolbox for the

non-parametric testing of regularity conditions and the related goodness-of-fit measures.
2E.g., see Kumbhakar and Schmidt (2016) or a textbook style description in Sickles and Zelenyuk (2019,

Chapters 11-16), and Kumbhakar et al. (2021a,b) for recent reviews and many references therein.
3E.g., see Fan et al. (1996), Kumbhakar et al. (2007), Martins-Filho and Yao (2015), Simar et al. (2017)

and Parmeter and Zelenyuk (2019) for a recent review and comparison.
4E.g., see Cazals et al. (2002), Daouia and Simar (2007) and Bădin et al. (2012).
5E.g., see Simar and Zelenyuk (2011) and Kuosmanen and Johnson (2017).
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3 Economic Theory Underpinnings

The economic theory foundations for the non-parametric production analysis were described

in a few classical papers, e.g., Afriat (1972), Hanoch and Rothschild (1972), Varian (1984),

Chavas and Cox (1990), Färe and Grosskopf (1995), etc., with different emphases and in

different styles. Here we will be closer to the style of Färe and Grosskopf (1995), with

important generalizations, as we find it more convenient for our purposes of engaging it with

the efficiency analysis approach (via a hybrid of DEA and SFA). Specifically, recall that

Färe and Grosskopf (1995) focused on the cost-minimization approach, while we will focus

on profit-maximization and then decompose it all the way to a Debreu-Farrell-type technical

efficiency measure by adapting the recent developments in Färe et al. (2019) and Färe and

Zelenyuk (2020). The latter decomposition is particularly useful as it connects the profit

maximization paradigm with the Debreu-Farrell-type measurement that is taken when prices

are not observed (as in our case).

To facilitate formal discussion, let x = (x1, ..., xN)′ ∈ RN
+ and y = (y1, ..., yM)′ ∈ RM

+

denote inputs and outputs, respectively, and recall that the profit maximization problem of

a firm can be stated as

Maximal Profit := sup
x,y
{p(y)y − w(x)x : (x, y) ∈ Ψ}, (1)

i.e., such a firm will aim for an optimal allocation of (x, y) that will give the highest profit

given the input prices, denoted with a row vector w(x) ∈ RN
+ , the output prices, denoted

with a row vector p(y) ∈ RM
+ , and the technology available to it, characterized by a set Ψ,

defined in generic terms as

Ψ = {(x, y) : x ∈ RN
+ can produce y ∈ RM

+ } (2)

with standard regularity conditions or axioms of production imposed on this set.
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Mainstream economic theory teaches us that, under certain assumptions, “perfect compe-

tition” even if hardly ever achievable in practice, provides a useful benchmark—a theoretically

“efficient outcome” for the industry and, in particular, implies that the prices for all outputs

and all inputs would be exogenous to an individual firm.6 Therefore, (1) simplifies to the

following profit function

PF(p, w|Ψ) = sup
x,y
{py − wx : (x, y) ∈ Ψ}. (3)

Recently, Färe et al. (2019) proposed a general measure of profit efficiency, which, for a

particular allocation of interest (xi, yi), is defined as

GPE(xi, yi;w, p|Ψ) = sup
θ(x),θ(y),x,y

{
ψ(θ(x), θ(y)) : ψy(p, yi, θ

(y))− ψx(w, xi, θ(x)) ≤ py − wx,

(θ(y), θ(x)) ∈ Θ, (x, y) ∈ Ψ
}

(4)

where ψ(θ(x), θ(y)) is an objective function, θ(y) = (θ
(y)
1 , . . . , θ(y)

M ) and θ(x) = (θ
(x)
1 , . . . , θ(x)

N ) are

optimization variables (and Θ is the set specifying their possible values) along with (x, y),

while ψx(w, x, θ(x)) and ψy(p, y, θ(y)) are the functions specifying the way (e.g., orientation)

the measurement of the efficiency is to be done w.r.t. each element of input and output

vectors, selected by a researcher based on the purpose of measurement.

Many efficiency measures in the literature can be derived as a special case of this measure.

Following Färe et al. (2019) and Färe and Zelenyuk (2020), we will focus on the case when

ψy(p, yi, θ
(y)) =

∑M
m=1 pmθ

(y)
m yim, ψx(w, xi, θ

(x)) =
∑N

l=1wlθ
(x)
l xil, while θ

(x)
1 = θ

(x)
2 = ... =

θ
(x)
N = 1, θ(y)

1 = θ
(y)
2 = ... = θ

(y)
M = θ and ψ(θ(x), θ(y)) = θ and assuming pyi 6= 0. Then, we

have the output-oriented profit efficiency measure

OPE(xi, yi;w, p|Ψ) = sup
θ

{
sup
x,y

{
py − wx+ wxi

pyi
: (x, y) ∈ Ψ

}
≥ θ

}
, (5)

6E.g., see Mas-Colell et al. (1995) for details.
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which has various interesting decompositions that can be useful for instrumenting a “goodness-

of-fit” measure.

In particular, for any allocation (xi, yi) ∈ Ψ and any strictly positive price composition

(w, p), and assuming pyi 6= 0, we have the following decomposition:

OPE(xi, yi;w, p|Ψ) = OT E(xi, yi|Ψ)×OAE(xi, yi, p|Ψ)×RAE(xi, yi, p, w|Ψ), (6)

where the first component is the output oriented Debreu-Farrell measure of technical effi-

ciency, the second component is the output oriented allocative efficiency measure and the

third component is yet another allocative efficiency measure that gauges the gap between

profit maximization and revenue maximization. Also, the product of the first two compo-

nents gives the revenue efficiency, which we denote as RE(xi, yi, p|Ψ), while the product of

the last two components is the total allocative efficiency that gauges the gap between the

Debreu-Farrell-type technical efficiency and the output oriented profit efficiency, which we

will denote as AE(xi, yi, p, w|Ψ).

To be more precise, OT E : RN
+ × RM

+ → R+ ∪ {+∞}, is defined as

OT E(x, y|Ψ) ≡ sup
θ
{θ > 0 : (x, θy) ∈ Ψ}, (7)

which is the reciprocal of the output oriented Shephard distance function, and thus dual to

the revenue function, defined as

RF(x, p|Ψ) = sup
y
{py : (x, y) ∈ Ψ}, (8)

Moreover, from Shephard’s duality, we have, for any p ∈ RM
++:

RE(x, y, p|Ψ) :=
RF(x, p|Ψ)

py
≥ OT E(x, y|Ψ), ∀(x, y) ∈ Ψ (9)

and the gap between the two efficiency measures in (9) gives rise to the output oriented
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allocative efficiency measure, OAE(x, y, p|Ψ), so that for all (x, y) ∈ Ψ, we have

RE(x, y, p|Ψ) = OT E(x, y|Ψ)×OAE(x, y, p|Ψ). (10)

Finally,

RAE(x, y, p, w|Ψ) =
OPE(x, y;w, p|Ψ)

RE(x, y, p|Ψ)
. (11)

Similarly, taking the input oriented analogue of (5), will give analogous decomposition,

where the first component would be the input oriented Debreu-Farrell measure of technical

efficiency, the second component would be the input oriented allocative efficiency measure

and their product would give the cost efficiency—exactly the same as those considered in

Färe and Grosskopf (1995) for their goodness-of-fit measures. Moreover, in this framework

we also would have an additional, third, component that gives another allocative efficiency

measure that gauges the gap between profit maximization and cost minimization, which can

also be used as a goodness-of-fit measure.

Any of the components in (6) or their analogues (e.g., input/cost orientation) can be

viewed as measures of goodness-of-fit, in the same spirit as the input/cost oriented Debreu-

Farrell-type measures can be viewed so, according to Färe and Grosskopf (1995), just with

different perspectives. Specifically, OPE can be viewed as a measure of overall goodness-

of-fit with respect to profit maximization criterion, while RE can be viewed as a measure

of goodness-of-fit with respect to revenue maximization criterion, and OT E can be used

as a measure of goodness-of-fit with respect to the technology frontier only, radially in the

output-space. Which of these measures are feasible depends on the data and on the prior

beliefs about optimizing behavior, e.g., if the researcher has input-output data but does not

have price data, then only OT E of these can be used. Such measures of goodness-of-fit can

be used on an individual basis, for each firm or for each allocation, or in an aggregate sense,

by looking at their averages or at the averages of their squares (in the spirit of Cramer-

von-Mises criterion). Such averaging could be simple (i.e., equally weighted) or weighted
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with some economically-relevant weights (e.g., as in Simar and Zelenyuk (2007), Simar and

Zelenyuk (2018)).

Importantly, note that the measures of goodness-of-fit considered so far are based on

technical efficiency of radial type measurement, either in the output space or in the input

space. This is a simplification of the reality (which gives some advantages and some sacrifice),

and if needed can be relaxed by employing the so-called slack-based measures of technical

efficiency, defined as

SBT E(x, y|Ψ) ≡ sup
u
(x)
1 ,...,u

(x)
N ,u

(y)
1 ,...,u

(y)
M

{
ψ(u

(x)
1 , ..., u

(x)
N , u

(y)
1 , ..., u

(y)
M ) :

(x1 − u(x)
1 , ..., xN − u(x)

N , y1 + u
(y)
1 , ..., yM + u

(y)
M ) ∈ Ψ,

u
(x)
1 , ..., u

(x)
N , u

(y)
1 , ..., u

(y)
M ≥ 0

}
, (12)

where ψ(u
(x)
1 , ..., u

(x)
N , u

(y)
1 , ..., u

(y)
M ) is a suitable aggregator function of the individual slacks

selected by a researcher (e.g., see Charnes et al. (1985), Tone (2001), Fukuyama and We-

ber (2009), Färe et al. (2015) for some examples). In the next section we will discuss the

estimation matters for these measures.

4 Estimation Approaches

4.1 Deterministic Hulls

Consider the estimator of the production set characterized by

Ψ̂ =
{

(x, y)|x ≥ X ′λ, y ≤ Y ′λ, λ ∈ Λ̃
}
, (13)

where X ∈ Rn×N
+ and Y ∈ Rn×M

+ are matrices containing all the observations on inputs

and outputs (x ∈ RN
+ and y ∈ RM

+ ), respectively, while λ = (λ1, ..., λn)′ is the vector of the

so-called intensity variables, with Λ̃ being the set of its permissible values.
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Characterization (13) satisfies the standard regularity conditions or axioms of produc-

tion theory and gives the tightest convex free disposal cone of the data (X, Y ) if and only if

Λ̃ = Rn
+. Such technology exhibits constant returns to scale (CRS) and we will start with this

convenient and popular in economics paradigm, e.g., as did Debreu (1951), Farrell (1957),

Charnes et al. (1978), Färe et al. (1994), Kumar and Russell (2002), as well as Kitamura

and Stoye (2018) and Smeulders et al. (2021) for consumer analysis, among many others.

Further generalizations are possible by imposing various constraints onto Λ, e.g., requiring∑n
j=1 λj ≤ 1 or

∑n
j=1 λj = 1 will model non-increasing returns to scale (NIRS) or variables

returns to scale (VRS), respectively, while requiring
∑n

j=1 λj = 1 and λj ∈ {0, 1} will re-

move convexity, modeling the tightest free disposal hull technology. In operations research

literature these approaches are known as Data Envelopment Analysis (DEA) estimators. Sta-

tistical properties of the estimators are now well-established due to rich statistical literature

on the subject (see Korostelev et al. (1995), Kneip et al. (1998), Park et al. (2000), Kneip

et al. (2008), Park et al. (2010), Kneip et al. (2015), and a brief review in Simar and Wilson

(2015)).

It is also worth noting that (13) with Λ̃ = Rn
+ is the so-called H-representation of a convex

cone and an equivalent (due to Minkowski-Weyl theorem) characterization can be given via

the so-called V-representation involving equalities rather than inequalities (e.g., see Kitamura

and Stoye (2018) and Smeulders et al. (2021) for related discussion). While our approach

can be also described via both representations, for our purposes the H-representation is

more convenient for explicitly incorporating the one-sided inefficiency terms that force agents

(firms, banks, hospitals, etc.), whose technology we model from the data, to be below the

frontier of the technology characterized by such a polyhedron ((13) with Λ̃ = Rn
+).

The estimator of the output oriented Debreu-Farrell measure of technical efficiency asso-

ciated with (13), for an allocation (xi, yi), takes the following form

ÔT E(xi, yi|Ψ̂) ≡ max
θ,λ1,...,λn

{θ :
n∑
j=1

λjyj ≥ θyi,
n∑
j=1

λjxj ≤ xi, θ ≥ 0, λ ∈ Λ̃}, (14)
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while the corresponding estimator of revenue function is given by

R̂F(xi, p|Ψ̂) ≡ max
y,λ1,...,λn

{py :
n∑
j=1

λjyj ≥ y,

n∑
j=1

λjxj ≤ xi, λ ∈ Λ̃} (15)

and, provided that pyi 6= 0, yielding the corresponding estimator of revenue efficiency

R̂E(xi, yi, p|Ψ̂) = R̂F(xi, p|Ψ̂)/pyi. (16)

Meanwhile, the corresponding estimator of the profit function is given by7

P̂F(p, w|Ψ̂) ≡ max
x,y,λ1,...,λn

{py − wx :
n∑
j=1

λjyj ≥ y,
n∑
j=1

λjxj ≤ x, λ ∈ Λ̃} (17)

and thus yielding the corresponding estimator of the output oriented profit efficiency

ÔPE(xi, yi;w, p|Ψ̂) =
P̂F(p, w|Ψ̂)

pyi
+
wxi
pyi

, (18)

i.e., it is the sum of the estimated maximal profit margin and the observed cost-revenue ratio.

Furthermore, the ratio of (16) and (14) gives the estimate of output oriented allocative ef-

ficiencyOAE(x, y, p|Ψ), while the ratio of (18) and (16) gives the estimate ofRAE(x, y, p, w|Ψ).

When price data is not available, then researchers typically choose to focus on the Debreu-

Farrell measure of technical efficiency (14).

Finally, note that these optimization problems are specific for an observation i ∈ {1, ..., n}

and so for a sample of size n will involve the estimation of n of such problems for each type

of inefficiency, thus implying i-specific intensity variables, which we will denote as λi =

(λi1, ..., λij, ..., λin)′.
7Here it is worth noting that this optimization problem can be unbounded or yield zero when technology

is a cone (or any non-decreasing returns to scale) and so additional constraints might be needed in such
circumstances (e.g., placing limits on some inputs or outputs, or constraints on λ of the type as for NIRS or
VRS, etc.).
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4.2 Stochastic Hulls

As mentioned in the introduction, the main caveat of the approach described in the previous

section is not accounting for statistical noise and, in particular, possibly high sensitivity to

outliers. So our first goal is to add stochasticity into this framework. Before proceeding, it

is worth noting again that many interesting studies proposed different ways to do that. This

includes the work on adapting convex non-parametric least squares (Kuosmanen (2008), Ku-

osmanen and Johnson (2010), Kuosmanen and Johnson (2017)), order-m and order-α quantile

frontier approaches (Cazals et al. (2002), Daouia and Simar (2007) and Bădin et al. (2012))

and stochastic DEA (Simar and Zelenyuk (2011) and Olesen and Petersen (2016)). Here we

take a different and (to our knowledge) novel approach, using a Bayesian paradigm. To do

so, first note that, conditional on the data, (X, Y ), if Λ̃ = Rn
+, then (13) is a deterministic

convex free disposal cone, where a for particular observation i we have

xi ≥ X ′λi, yi ≤ Y ′λi, λi ≥ 0, i = 1, ..., n, (19)

where note that λi = (λi1, ..., λij, ..., λin)′.

Now, inspired by the SFA literature and the slack-based measurement of efficiency de-

scribed above, we can express these inequalities in (19) as in the following model:

xi = X ′λi + v
(x)
i + u

(x)
i , yi = Y ′λi + v

(y)
i − u

(y)
i , λi ≥ 0, i = 1, ..., n, (20)

where v(x)
i ∈ RN , v

(y)
i ∈ RM represent two-sided symmetric statistical errors, u(x)

i ∈ RN
+ , u

(y)
i ∈

RM
+ represent one-sided asymmetric random errors or inefficiencies (slacks in inputs and

outputs respectively). Importantly, note that unlike in a typical SFA approach (except for

Kumbhakar and Tsionas (2021)), both the noise and the inefficiency are multivariate vectors,

with elements corresponding to each input and each output in the data.
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Therefore, we have

 xi

−yi

 =

 X ′

−Y ′

λi+
 v

(x)
i

v
(y)
i

+

 u
(x)
i

u
(y)
i

⇔ zi = Z ′λi+vi+ui, λi ≥ 0, i = 1, ..., n, (21)

in obvious notation. In particular, note that the inefficiency term is a vector of dimension

d = N +M :

ui =

 u
(x)
i

u
(y)
i

 , i = 1, ..., n. (22)

The model (21) is a system of simultaneous equations model, with N + M equations,

which gives a stochastic representation of the deterministic (conditional on (X, Y )) convex

free disposal cone. That is, it is a stochastic version of (13) when Λ̃ = Rn
+, where the

stochasticity enters in a very general manner, through individual inefficiencies (slacks) and

statistical noise, corresponding to each element of input and each element of output.

The Jacobian of transformation for (21) can be shown to be

J (λ) = ||In×n − Λ||, (23)

where Λ = (λ′1, λ
′
2, ..., λ

′
n), where λij is the jth element of λi.8

Note that the only restriction on these variables so far is that they are non-negative, i.e.,

λi ≥ 0, i = 1, ..., n, to satisfy the requirement of the conical structure or the CRS technol-

ogy. Meanwhile, restricting
∑n

j=1 λij ≤ 1 will model non-increasing returns to scale, while

strengthening it to
∑n

j=1 λij = 1 will model the variable returns to scale for the observation

of interest i.

Since, in general, zi ∈ RN+M and λi ∈ Rn it is clear that the number of parameters

exceeds by far the number of observations so we have the “small n, large p” paradigm to

deal with, which is typically a challenging problem and, in certain cases, are examples of the
8This is because we have Z

(n×d)
= Λ

(n×n)
Z

(n×d)
+ V

(n×d)
+ U

(n×d)
, where d = N +M .
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so-called NP-hard problems. While there are different ways to approach the “small n, large

p” paradigm, a Bayesian approach offers a way with an appealing simplicity, which we will

follow here. Specifically, we will deploy the Bayesian compression to address this problem,

by writing

λi = Φiγ, i = 1, ..., n, (24)

where Φi ∈ Rn×si , (i = 1, ..., n), γ ∈ Rsi×1 and si is the dimensionality that we must choose

optimally along with the elements of Φ.

In turn, we have

zi = Z ′Φiγ + vi + ui, i = 1, ..., n. (25)

To proceed with the estimation, we adapt the recent developments on Bayesian com-

pressed regression by Guhaniyogi and Dunson (2015), who suggested drawing the elements

of matrix Φ(i) =
[
Φ

(i)
i′j′ , i′, j′ ∈ {1, ..., n}

]
randomly as follows:

Pr(Φ
(i)
i′j′ = 1√

φi
) = φ2

i ,

Pr(Φ
(i)
i′j′ = 0) = 2φ(1− φi),

Pr(Φ
(i)
i′j′ = − 1√

φi
) = (1− φi)2,

(26)

where φi and si (i = 1, ..., n) are parameters.9 Matrices Φi are orthonormalized before

proceeding. Parameters si can be drawn as integers from a uniform distribution and φi from

a uniform distribution in (0.1, 0.9). This is because, (i) setting φi to 0 or 1 results in zero

/ one probabilities in (26), and (ii) φi should necessarily be between 0 and 1 but given (i)

it is good to avoid values close to 0 or 1, e.g., can be drawn from a uniform distribution in

(0.1, 0.9) as we do here.

Besides orthonormalizing, various restrictions can be imposed onto (24). For example, to

model non-increasing returns to scale, we can keep only the draws that satisfy
∑n

j=1 λij ≤ 1

for each i; a form of acceptance-rejection sampling. Alternatively, to model the variable
9Note that we allow for different dimensions si.
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returns to scale, we can impose
∑n

j=1 λij = 1 for each i by re-normalizing the draws so that

they sum up to unity.

Suppose vi ∼ Nd(0,Σ) and let the uis be independently distributed with density p(ui; δ)

supported in Rd
+, where δ is a finite-dimensional parameter vector. Suppose Z denotes all

available data. The joint posterior of the parameters and the latent variables is given by

Bayes’ theorem:

p(γ, δ, {ui}ni=1|Z) ∝ |Σ|−n/2 exp
{
−1

2

∑n
i=1 (zi − Z ′Φiγ − ui) Σ−1 (zi − Z ′Φiγ − ui)

}
·

{
∏n

i=1 p(ui;ω)} ·J (Λ) · p(γ, δ),
(27)

for given values of {φi}ni=1, s, where p(γ, δ) is a prior. Apparently, the uis will have to be

integrated out of this posterior, a task that is analytically impossible. For p(ui; δ) we can

choose a truncated normal distribution:

ui ∼ N+
d (µ,Ω) , i = 1, ..., n, (28)

where N+
d (µ,Ω) denotes the truncated normal distribution in Rd with location vector µ and

scale matrix Ω. A deterministic approximation results if we set µ = 0 and let the elements

of Ω converge to zero. In the sequel, we denote the density corresponding to (28) by p(ui;ω),

where ω is a finite dimensional vector that contains all unknown parameters.

Flexible approximations can be introduced by making the µs flexible function of environ-

mental variables, in case they are available. Moreover, we do so in the interest of incorporating

environmental variables wi ∈ Rdw into the model in the next section.

Our prior for γ and δ is

p(γ, δ) ∼ N (0, q2I), (29)

where q is a parameter that we set (in the benchmark case) to q = 10 so that the prior is

proper but diffuse.
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4.3 Efficiency-based measures of Goodness-of-fit

Once the estimates of the efficiency scores, ÔT E(xj, yj|Ψ̂), R̂E(xj, yj, p|Ψ̂), ÔPE(xj, yj;w, p|Ψ̂),

are obtained, they can be used as the measures of goodness-of-fit as they are or as their re-

ciprocals (to convert them on the scale [0, 1]).

For the more general modeling approach that models inefficiency via the individual slacks,

their estimates need to be converted into the same units of measurement and then aggregated

into a scalar measure. While there are different ways to do so, here we will consider and adapt

two ideas from OR literature. The first one is due to Tone (2001), who proposed using the

following aggregating function

TGoF =

(
1− 1

N

N∑
l=1

u
(x)
l

xl

)
/

(
1 +

1

M

M∑
m=1

u
(y)
m

ym

)
(30)

provided that xl > 0,∀l and ym > 0,∀m. Note that this TGoF is measured on the scale

[0, 1], as one would typically desire for a goodness-of-fit measure.

The second idea is due to Fukuyama and Weber (2009), who proposed the so-called

directional slack-based (in)efficiency aggregating function

FWGoF =
1

2

(
1

N

N∑
l=1

u
(x)
l

gxl
+

1

M

M∑
m=1

u
(y)
m

gym

)
(31)

where gx = (gx1 , ..., gxN ) > 0N and gy = (gy1 , ..., gyM ) > 0N and so (−gx, gy) is a direction

in (x, y)-space chosen by the researcher depending on the aims (or preferences) of the mea-

surement of (in)efficiency (e.g., a natural choice would be gx = x and gy = y, provided that

x > 0 and y > 0). Note that this FWGoF is measured on the scale [0,∞] and so may need

to be converted to the scale [0, 1], to be commensurate with other goodness-of-fit measures,

e.g., which can be done as

˜FWGoF = (1 + FWGoF )−1. (32)

Once these measures are obtained for each firm i, they can be averaged over all firms
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within the sample (or a sub-sample of interest) to obtain a measure of goodness-of-fit for

that sample.

4.4 Statistical Measures of Goodness-of-fit

The goodness-of-fit measures discussed above are based on the economic theory rationale, as

conceptualized by Varian (1990) and elaborated on further by Färe and Grosskopf (1995).

Since we are also operating with statistical tools, it is also natural to consider statistical

measures of goodness-of-fit. A natural candidate here would be the R-squared for systems

(Carter and Nagar (1977)). Specifically, suppose we have a system with p equations,

Y = Y B +XΓ + U,

where Y is the n× p matrix of observations on the dependent variable, X is the n× k matrix

of observations on the k exogenous variables, B and Γ are matrices containing unknown

parameters. The reduced form is

y = (Z ⊗ I)ϑ+ v

where y = [Y ′1 , . . . , Y
′
p ]′, and Z is the matrix of observations on the exogenous variables.

Carter and Nagar (1977) proposed the measure

R2 = ϑ̂′Z′∗Z∗ϑ̂

ϑ̂′Z′∗Z∗ϑ̂+v̂∗′v̂∗
,

where v̂ denotes residuals, ϑ̂ denotes any estimate of the system’s structural parameters, and

Z ′∗Z∗ = Ẑ ′
(

Ω̂−1 ⊗ I
)
Ẑ and v̂′∗v̂∗ = v̂′

(
Ω̂−1 ⊗ I)

)
v̂
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where

Ẑ =


[XΠ̂1, X1]

. . .

[XΠ̂p, Xp]

 ,

where Π̂1, . . . , Π̂p are estimates of the reduced form parameters for each equation, and X =

[X1, . . . , Xp].

Moreover, based on BIC we can obtain an approximate marginal likelihood as ML '

exp
(
−1

2
BIC

)
. Specifically, suppose the parameter vector is θ = [γ′, δ′]′∈ Rd, then the BIC

in our context is defined as

BIC = −2 logL(θ) + d log(n), (33)

where d is the total number of parameters and n is the sample size. An alternative is, of

course, to use the log marginal likelihood (LML) derived from a Laplace approximation to

the log posterior as

logML ' logL(θ̄;Y ) + log p(θ̄) + n
2

log |S|, (34)

where θ̄ is the posterior mean of θ and S denotes the posterior covariance of θ, quantities

that can be easily computed from MCMC draws. As a matter of fact we can compute the

value of BIC for each MCMC draw instead of computing it at a specific value of θ (e.g., the

posterior mean). From this we obtain an approximation to the posterior of −1
2
BIC, viz. to

the marginal likelihood (ML). In our application we will present some approximations to log

marginal likelihood and report Bayes factors for model selection (see Table 5).

5 Modeling Determinants of Inefficiency via Bayesian ANN

In the current literature, the inefficiency is usually formulated as a scalar measure in general

and for modeling determinants of such inefficiency in particular. It is therefore natural to
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start our description with the scalar case too. While there are many measures of efficiency,

the most popular appears to be the output oriented technical efficiency measure, which can

be formulated as ri = e−Ui . Since ri ∈ (0, 1] it also seems natural to assume ri = F (w′iδ)

where δ ∈ Rdw is a vector of parameters, wi ∈ Rdw is a vector of determinants, and F is

any suitable function that will ensure ri ∈ (0, 1], like a distribution function, for example the

normal or logistic.10 To make this approach flexible we extend to the case

ri =
G∑
g=1

pgF (w′iδg), i = 1, ..., n, (35)

where δg ∈ Rdw is a vector of parameters (1 ≤ g ≤ G), G is the number of terms that

we consider to arrive at a flexible approximation, and pgs are probabilities. Flexibility arises

from the well-known global approximation properties of artificial neural networks (e.g. Hornik

et al. (1989) and White (1989, 1990)).

In turn, we have

Ui = − ln
G∑
g=1

pgF (w′iδg) + εi, i = 1, ..., n, (36)

where εi is an error term which is used to introduce stochasticity into this approach, pg ≥ 0

(g = 1, ..., G),
∑G

g=1 pg = 1; the pgs are mixing probabilities introduced to make (35), and

(36) tighter approximations to the inefficiency process.11 We will examine two cases, viz.

with and without the presence of εis in (36).
10E.g., see Parmeter et al. (2017) and Paul and Shankar (2018) as well as Tsionas and Mamatzakis (2019)

for related discussions with alternative estimators.
11The major difference between Uis and u(x)i , u

(y)
i (in (20) or (21)) is that the former are in logarithm of

percentage terms due to (35), while the latter are in the same units as the corresponding inputs and outputs
and so they need to be converted to percentage terms by dividing with the corresponding variables.
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The extension to our case with N inputs and M outputs is as follows.

Input slacks:

U
(x)
i1 = − ln

∑G
g=1 p

(x)
g1 F (w

(x)
i1
′δ

(x)
g1 + εi1), i = 1, ..., n

U
(x)
i2 = − ln

∑G
g=1 p

(x)
g2 F (w

(x)
i2
′δ

(x)
g2 + εi2), i = 1, ..., n

...

U
(x)
iN = − ln

∑G
g=1 p

(x)
gNF (w

(x)
iN
′δ

(x)
gN + ε

(x)
iN ), i = 1, ..., n

Output slacks:

U
(y)
i1 = − ln

∑G
g=1 p

(y)
g1 F (w

(y)
i1
′δ

(y)
g1 + ε

(y)
i,N+1), i = 1, ..., n

U
(y)
i2 = − ln

∑G
g=1 p

(y)
g2 F (w

(y)
i2
′δ

(y)
g2 + ε

(y)
i,N+2), i = 1, ..., n

...

U
(y)
iM = − ln

∑G
g=1 p

(y)
gMF (w

(y)
iM
′δ

(y)
gM + ε

(y)
i,N+M), i = 1, ..., n

(37)

where δ(x)
gj ∈ Rdw (j = 1, ..., N), δ(y)

gj ∈ Rdw (j = 1, ...,M) are parameter vectors and, similarly,

we have the probability parameters p(x)
gj ∈ Rdw (j = 1, ..., N), p(y)

gj ∈ Rdw (j = 1, ...,M).12

For the random errors in (37) we assume

εi = [εi1, ..., εiN , εi,N+1, ..., εi,N+M ]′ ∼ NN+M (0,Σε) , (38)

where Σε is a diagonal matrix, Σε =



σ2
ε1

. . .

σ2
εN

σ2
ε,N+1

. . .

σ2
ε,N+M


.

12Including the errors in this way is novel relative to Paul and Shankar (2018) and Tsionas and Mamatzakis
(2019). The errors cannot be introduced additively into these equations as they cannot be discriminated from
vis. They can be interpreted as DMU-specific random effects associated with each input and each output.
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To facilitate posterior inference, we amend (37) by introducing small artificial errors:

Input slacks:

U
(x)
i1 = − ln

∑G
g=1 p

(x)
g1 F (w

(x)
i1
′δ

(x)
g1 + εi1) + ξi1, i = 1, ..., n,

U
(x)
i2 = − ln

∑G
g=1 p

(x)
g2 F (w

(x)
i2
′δ

(x)
g2 + εi2) + ξi2, i = 1, ..., n,

...

U
(x)
iN = − ln

∑G
g=1 p

(x)
gNF (w

(x)
iN
′δ

(x)
gN + ε

(x)
iN ) + ξiN , i = 1, ..., n,

Output slacks:

U
(y)
i1 = − ln

∑G
g=1 p

(y)
g1 F (w

(y)
i1
′δ

(y)
g1 + ε

(y)
i,N+1) + ξi,N+1, i = 1, ..., n,

U
(y)
i2 = − ln

∑G
g=1 p

(y)
g2 F (w

(y)
i2
′δ

(y)
g2 + ε

(y)
i,N+2) + ξi,N+2, i = 1, ..., n,

...

U
(y)
iM = − ln

∑G
g=1 p

(y)
gMF (w

(y)
iM
′δ

(y)
gM + ε

(y)
i,N+M) + ξi,N+M , i = 1, ..., n,

(39)

where

ξij ∼ N
(
0, σ̄2

o

)
, i = 1, ..., n, j = 1, ..., N +M. (40)

We set, on purpose, σo = 10−4 so that these errors are indeed artificial, i.e. “sufficiently

small”.13 Therefore, our new posterior becomes

p(γ, δ, {Ui}|Z) ∝ |Σ|−n/2 exp
{
−1

2

∑n
i=1 (zi − Z ′Φiγ − Ui) Σ−1 (zi − Z ′Φiγ − Ui)

}
·

|Σε|−n/2 exp

{
−1

2

∑N
j=1

1
σ2
εj

∑n
i=1

(
U

(x)
ij + ln

∑G
g=1 p

(x)
gj F (w

(x)
ij
′δ

(x)
gj + εij)

)2
}
·

exp

{
−1

2

∑M
j=1

1
σ2
ε,N+j

∑n
i=1

(
U

(y)
i,j + ln

∑G
g=1 p

(y)
g,jF (w

(y)
ij
′δ

(y)
g,j + εi,N+j)

)2
}
·

σ̄
−(N+M)n/2
o exp

{
− 1

2σ̄2
o

∑n
i=1

∑N+M
j=1 ε2i,j

}
·

J (Λ) · p(γ, δ) ·
∏N+M

j=1 p(σεj),

(41)

13The technical reason for introducing the artificial errors is because we avoid formal application of the
change of variables theorem from εs to Us which, due to the nonlinearity of the transformation, and the
imposition of global monotonicity, would increase the heavily computational burden. Another reason to
avoid global monotonicity is that we are not sure that the effect of environmental variables on inefficiencies
is, indeed, monotonic. Moreover, given the artificial errors, the εis become standard random effects and can
be drawn during MCMC in standard ways.
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given the definitions in (37), and for a fixed value of σ̄o as in (39). Note that, because (37)

are stochastic, we have to integrate the high-dimensional inefficiency variables out of the

posterior. The prior remains the same as in (29), and additionally we assume the proper but

diffuse priors

p(σεj) ∝ σ
−(n+1)
εj e

−q
j
/(2σ2

εj), j = 1, ..., N +M, (42)

where n and q
j
are prior parameters (Zellner, 1971, p. 371, equation A.37b). The priors are

proper but diffuse provided n = 1 and, say, q
j

= 10−4. For n = 0 the priors are improper.

To provide numerical access to the posteriors in (27) or (41) we use state-of-the-art

Markov Chain Monte Carlo (MCMC) methods known as fast Metropolis Adjusted Langevin

Algorithm (fMALA), see Durmus et al. (2017); the methods are described in the Techni-

cal Appendix. Convergence and numerical performance of MCMC can be tested using the

standard diagnostics of Geweke (1992). After the system has been estimated, statistical in-

ferences about inefficiencies can be made using (37) by taking, for example, averages across

MCMC draws. Monte Carlo evidence for this approach can be found in Supplement 1 while

the further technical details can be found in Supplement 2.

6 Empirical Illustration

To apply the new techniques we use the data of Malikov et al. (2016). Specifically, we have

an unbalanced panel with 2,397 bank–year observations for 285 banks from Call Reports

available from the Federal Reserve Bank of Chicago and include all FDIC-insured commer-

cial banks with reported data for 2001:Q1–2010:Q4. We have five outputs (y1, ..., y5), five

inputs (x1, ..., x5), and a quasi–fixed input (equity capital). All nominal stock variables are

deflated to 2005 U.S. dollars using the consumer price index for all urban consumers. The

list of included variables is as follows: y1 = Consumer Loans, y2 = Real Estate Loans,

y3 = Commercial & Industrial Loans, y4 = Securities, y5 = Off-Balance Sheet Activities

Income, x1 = Labor (number of full-time employees), x2 = Physical Capital (Fixed Assets),
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x3 = Purchased Funds, x4 = Interest-Bearing Transaction Accounts, x5 = Non-Transaction

Accounts.

We use MCMC with 150,000 iterations discarding the first 50,000 to mitigate possible

start up effects. We monitor convergence and numerical performance using Geweke’s (1992)

convergence diagnostics. All results for the proposed approach are computed under the

assumption of stochastic inefficiency and compared to a few alternatives from the literature.

We also impose
∑n

j=1 λij = 1 for each i.

In Tables 1, 2 and 3, we present the results for the approach proposed in this paper,

for DEA-CRS, DEA-NIRS, DEA-VRS and from the approach of Kumbhakar and Tsionas

(2021).14 The latter approach is perhaps the closest (albeit still very different) in nature to

our approach from the SFA paradigm to the approach proposed in this paper, in the sense

that it also allows for both output-specific and input-specific inefficiency terms (slacks) and

stochastic noise terms, as well as the environmental variables. While having similar objec-

tives, the latter approach is different in terms of assumptions on the model. Specifically,

recall that Tsionas and Kumbhakar (2021, henceforth TK) presented a model that accom-

modates both output-specific and input-specific inefficiency components (input and output

slacks). They used a translog function to represent the technology in which the input slacks

are generalized to have both deterministic (functions of exogenous variables) and stochastic

components. Here, we apply their MCMC-based techniques to a more general model when

the slacks depend on the same variables as we described above.15

Table 1 summarizes the estimated slacks and their standard errors for each input and

each output. Table 2 presents the estimated marginal effects of the environmental variables

onto slacks and their standard errors, again for each input and each output, while the corre-

sponding Z-statistics that help evaluating statistical significance (from zero) of these marginal

effects are presented in Table 3. From these tables, one can see that different environmental

variables often may have a very different association with different slacks, not just quanti-
14Also see Supplement 3 for the estimation results for the densities of efficiency, slacks and marginal effects.
15Our MCMC configuration is the same as in TK.
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Table 2: Estimated marginal effects of determinants onto slacks, and their standard errors
Notes: wj represents the jth relative price, that is wj = log(Wj/W1).

equity equity/TA TA trend trend2 w1 w2 w3 w4

coefficients
slack x1 0.096 -0.171 0.177 0.062 0.158 -0.111 0.099 0.102 -0.209
slack x2 -0.123 -0.102 -0.154 -0.145 -0.061 -0.156 -0.027 -0.067 -0.020
slack x3 0.161 -0.173 -0.058 0.051 -0.015 -0.051 -0.015 -0.029 -0.078
slack x4 0.089 0.106 0.124 0.003 -0.036 -0.254 -0.003 0.056 0.166
slack x5 0.194 -0.039 -0.165 -0.006 -0.039 0.081 0.091 0.017 -0.057
slack y1 -0.019 0.052 -0.165 0.169 0.014 0.132 -0.001 0.043 0.098
slack y2 0.038 -0.078 0.030 0.096 0.063 -0.084 -0.077 -0.015 0.035
slack y3 0.118 -0.111 0.045 -0.040 -0.069 0.010 0.071 -0.155 -0.109
slack y4 0.038 -0.171 -0.209 -0.078 0.060 0.013 -0.026 0.086 -0.146
slack y5 0.056 -0.027 0.078 0.066 0.017 -0.083 -0.027 -0.086 0.124

standard errors
slack x1 -0.013 -0.038 -0.116 0.067 0.032 -0.042 -0.041 0.031 0.044
slack x2 -0.132 0.024 -0.043 0.014 0.079 -0.031 -0.025 0.064 -0.033
slack x3 -0.047 -0.049 0.010 -0.029 0.026 -0.039 0.001 -0.082 -0.084
slack x4 0.007 -0.033 0.038 -0.045 -0.007 -0.048 -0.041 0.117 -0.035
slack x5 0.008 -0.112 -0.026 0.076 0.049 -0.090 -0.098 0.015 0.045
slack y1 0.033 0.025 0.023 0.015 -0.056 0.026 0.135 0.078 -0.017
slack y2 0.104 -0.039 0.142 -0.004 0.021 -0.070 -0.026 0.003 0.014
slack y3 -0.044 -0.038 0.014 -0.038 0.044 0.016 -0.059 -0.093 0.095
slack y4 -0.068 -0.044 -0.015 -0.064 -0.109 -0.023 0.035 0.064 -0.059
slack y5 0.073 -0.029 -0.147 0.006 -0.024 0.002 0.106 -0.078 -0.025
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tatively but also qualitatively: they can be very different in terms of magnitude, sign and

statistical (in)significance.

For example, one can see that for this data and model specification, the equity variable has

a significant negative association with the slacks of x1 (Labor), x3 (Purchased Funds) and y3

(Commercial & Industrial Loans) but also has significant positive association with the slacks

of x4 (Interest-Bearing Transaction Accounts) and x5 (Non-Transaction Accounts). Mean-

while, we also see statistically insignificant (relative to zero) association with x2 (Physical

Capital), y1 (Consumer Loans), y2 (Real Estate Loans), y4 (Securities) and y5 (Off-Balance

Sheet Activities Income). Analogous information can be obtained for all the other environ-

mental variables. It is worth noting that all other standard approaches in DEA and SFA

typically do not provide such detailed information, usually focusing on an scalar-type effi-

ciency measure in a particular direction. A particular advantage of the proposed approach

is that besides the point-estimates of each specific slack, we also obtain the marginal effects

of environmental variables on each of these slacks, as well as the standard errors for each

slack and for each marginal effect (associated with each slack). In turn, these standard errors

can be used for interval-estimates or for significance testing about these slacks or about the

marginal effects.

All in all, information like this, in Tables 1-3, can be very useful for researchers as well

as practitioners wishing to analyze and understand which environmental variable (from the

many considered) is a relevant predictor for each specific slack (for each input or output) and

how substantial it is in terms of its magnitude relative to other relevant predictors. Therefore

we hope this approach can complement the existing approaches very well, as another valuable

instrument in the overall toolbox for performance analysis and testing of optimizing behavior.
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Table 3: Z-statistics for the marginal effects of determinants onto slacks
Notes: wj represents the jth relative price, that is wj = log(Wj/W1).

equity equity/TA TA trend trend2 w1 w2 w3 w4

slack x1 -7.19 4.55 -1.52 0.93 4.92 2.66 -2.43 3.27 -4.72
slack x2 0.94 -4.33 3.56 -10.48 -0.77 5.07 1.06 -1.06 0.60
slack x3 -3.39 3.50 -5.56 -1.72 -0.57 1.31 -24.44 0.35 0.93
slack x4 12.14 -3.21 3.24 -0.06 4.94 5.33 0.07 0.48 -4.80
slack x5 24.38 0.35 6.31 -0.08 -0.78 -0.90 -0.92 1.14 -1.26
slack y1 -0.57 2.05 -7.21 11.26 -0.25 4.98 0.00 0.55 -5.74
slack y2 0.36 1.99 0.21 -22.44 3.04 1.19 3.00 -4.49 2.52
slack y3 -2.66 2.91 3.13 1.06 -1.57 0.64 -1.19 1.67 -1.15
slack y4 -0.56 3.87 13.52 1.22 -0.55 -0.57 -0.74 1.34 2.50
slack y5 0.77 0.96 -0.53 10.33 -0.70 -52.05 -0.25 1.10 -5.03

Figure 1: Results related to compression and G
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In Figure 1 we report posterior model probabilities for selecting G in (37) (see panel (a)),

and distributions of optimal φis and dimensionality sis in panels (b) and (c), respectively.

From panel (a), G in (37) has a mode value of 2 and ranges, roughly, from 1 to 5. The

optimal φis of Bayesian compression average 0.20 and range between zero and 0.5 (panel

(b)). Finally, the optimal compression parameters si are close to 20 (which is much less than

the sample size indicating significant compression) and range, roughly from 7 to 37.

From a qualitative perspective, it is worth noting that the estimated efficiency scores

and the slacks on average from the proposed approach are fairly similar to those from other

approaches we compare to. In particular, observing Table 4, note that, on average, the

Debreu-Farrell type efficiency level suggested by the proposed approach is around 89% while

those from DEA-CRS, DEA-NIRS, DEA-VRS are around 87%. Similar estimates and con-
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Table 4: Measures of goodness of fit
Notes: Standard deviations are reported in parentheses where appropriate.

this
paper

DEA-
CRS

DEA-
NIRS

DEA-
VRS

TK

Debreu-Farrell
(

1
OT E(xj ,yj |Ψ)

)
0.887
(0.015)

0.872
(0.014)

0.873
(0.015)

0.873
(0.014)

—

OT E(xj, yj|Ψ) 1.127
(0.015)

1.147
(0.014)

1.146
(0.015)

1.146
(0.015)

—

TGoF 0.870 0.893 0.872 0.872 0.874
FWGoF 0.869 0.893 0.871 0.872 0.875

System R2 0.872 0.872 0.865 0.864 0.824

Table 5: log Bayes factors
Notes: Reported are LMLs in favor of a given model and against DEA. The Bayes factor is the LML of a given model minus the
LML of DEA whose exponential is the evidence in favor of a given model against DEA. The LML for comparing “this paper”
and TK is the difference of the two LMLs.

Based on BIC Based on Laplace approximation
this paper 282.32 283.55

TK 277.40 278.00
this paper against TK 95.85 96.71

clusions are for TGoF and FWGoF and for the System-R2. While there is always a degree

of subjectivity in a selection of models, we think some more confidence might be placed on

the estimates of the present paper as they perform better in terms of log marginal likelihood

and Bayes factors than TK.

From Table 5 it turns out that “this paper’s” LML is much better compared to TK as

the odds are overwhelming.

7 Concluding Remarks

In this paper we proposed a fairly general approach for modeling production technologies,

which allows for modeling inefficiency and noise that are specific for each input and each

output. The approach is based on merging ideas from nonparametric activity analysis mod-

els for production and consumption theory with stochastic frontier literature. We implement
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this by re-casting the activity analysis models as simultaneous equations models in Bayesian

compression and ANN frameworks. With minimal assumptions about noise in the data, the

proposed approach allows for flexible approximations to input- and output-specific slacks.

We also deploy Bayesian compression to solve the problem of an exceeding number of param-

eters for such general production technologies and describe a way to model determinants of

inefficiency corresponding to each input and each output, to obtain marginal effects and their

standard errors. Our Monte Carlo simulations provide encouraging results. We also provided

an empirical illustration, where we compared the proposed approach with other alternatives,

for the context of US banking data.

Finally, a fruitful avenue for future research would be to adapt the approach proposed

in this paper to a consumer economics context, leveraging on the seminal works of Afriat

(1967) and Varian (1982), Färe and Grosskopf (1995) and more recent works of Cherchye

et al. (2007), Kitamura and Stoye (2018) and Smeulders et al. (2021), among others.
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Supplement 1: Monte Carlo Evidence

Consider the production technology of the following form

Ψ =

(x, y) :

(
M∑
m=1

βm(ym)2

)1/2

≤

(
N∏
l=1

(xl)
αl

) (A.1)

where βm ≥ 0, αl ≥ 0 and to assure linear homogeneity of the distance functions we let∑N
l=1 αl = 1. Moreover, without loss of generality, we normalize

∑M
m=1 βm = 1.

We chose the coefficient randomly in each Monte Carlo (MC) replication as follows: for

each l ∈ {2, ..., N} we set αl =
(
α̃l/
(∑N

l=2 α̃l

))
(1 − α1) where α̃l

iid∼ Uniform(0, 1), while

α1 is normalized to some arbitrary value in (0, 1), e.g., 0.1, and for each m ∈ {1, ...,M} we

set βm = β̃m/
∑M

m=1 β̃m where β̃m
iid∼ Uniform(0, 1).

We first generate efficient outputs for each k ∈ {1, ..., n}, e.g., as ỹim
iid∼ Uniform(0.1, 1)

for each m ∈ {1, ...,M}, and then generate N − 1 of actual (i.e., inefficient) inputs, e.g., as

xl = x∗l + u
(x)
l , where for each i, we have xil

iid∼ Uniform(0.1, 1) and uil
iid∼ |N(0, σlu(x))|, for

each l ∈ {2, ..., N}, and then define the remaining efficient input, xi1, in terms of the other

generated inputs and all the outputs via (A.1), i.e., for each i ∈ {1, ..., n}, set

xi1 :=
((

(
∑M
m=1 βm(ỹim)2)

1/2
)
/(
∏N
l=2(xil)

αl)
)1/α1

. (A.2)

Finally, we get the inefficient input x1 as x1 = x∗1 + u
(x)
1 where ui1

iid∼ |N (0, σ1u(x))|.

Furthermore, we assume that a researcher observes the inefficient inputs and instead of

the maximal or efficient outputs ỹi the researcher observes inefficient outputs defined as

yi = ỹi × exp(−u(y)
i ), (A.3)

where u(y)
i

iid∼ |Nm(0,Ωu)|, for i = 1, ..., n. Note that in this setup, the inefficiencies are

purely random and below we explain how to have them dependent on determinants (or
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environmental variables).

Also note that the Shephard’s output distance function for this scenario is given by

Do(x, y) = inf

θ > 0 :

(
M∑
m=1

βm(ym/θ)
2

)1/2

≤

(
N∏
l=1

(xl)
αl

)
=

(
M∑
m=1

βm(ym)2

)1/2

/

(
N∏
l=1

(xl)
αl

)
, (A.4)

which is a univariate measure of inefficiency (and is a reciprocal of the output oriented

Debreu-Farrell type measure of technical (in)efficiency), with the convenient property that

Do(x, y) ∈ [0, 1], where 1 represents the 100% technical efficiency score.

Finally, to introduce the environmental variables into this data generating process, recall

that the proposed approach models them as follows:

Input slacks:

U
(x)
i1 = − ln

∑G
g=1 p

(x)
g1 F (w

(x)
i1
′δ

(x)
g1 + εi1), i = 1, ..., n

U
(x)
i2 = − ln

∑G
g=1 p

(x)
g2 F (w

(x)
i2
′δ

(x)
g2 + εi2), i = 1, ..., n

...

U
(x)
iN = − ln

∑G
g=1 p

(x)
gNF (w

(x)
iN
′δ

(x)
gN + ε

(x)
iN ), i = 1, ..., n

Output slacks:

U
(y)
i1 = − ln

∑G
g=1 p

(y)
g1 F (w

(y)
i1
′δ

(y)
g1 + ε

(y)
i,N+1), i = 1, ..., n

U
(y)
i2 = − ln

∑G
g=1 p

(y)
g2 F (w

(y)
i2
′δ

(y)
g2 + ε

(y)
i,N+2), i = 1, ..., n

...

U
(y)
iM = − ln

∑G
g=1 p

(y)
gMF (w

(y)
iM
′δ

(y)
gM + ε

(y)
i,N+M), i = 1, ..., n

(A.5)

where δ(x)
gj ∈ Rdw (j = 1, ..., N), δ(y)

gj ∈ Rdw (j = 1, ...,M) are parameter vectors and, similarly,

we have the probability parameters p(x)
gj ∈ Rdw (j = 1, ..., N), p(y)

gj ∈ Rdw (j = 1, ...,M).
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Hence, we will generalize the functional technology characterization (A.4) as following

Do(x, y|F (w′iδ)) = inf

θ > 0 :

(
M∑
m=1

βm(ym/θ)
2

)1/2

≤

(
N∏
l=1

(xl)
αl

)
F (w′iδ)


=

(
M∑
m=1

βm(ym)2

)1/2

/

(
F (w′iδ)

N∏
l=1

(xl)
αl

)
(A.6)

where, as before, F (w′iδ) is a cumulative distribution function (cdf) of, say, the normal or

the logistic distribution, and each element of wi is generated randomly, e.g., from standard

uniform, while the vector of parameters δ is fixed at some level. Note that there are two

types of inefficiencies in (A.6), the purely random inefficiencies, u(x)
il and u(y)

im , for l = 1, ..., N

and m = 1, ...,M when generating the data, and the deterministic inefficiency F (w′iδ) which

results if we set Σε = O, that is there are no random error terms in (A.5).

Alternatively, the environmental variables can be also introduced more generally, by

setting

U
(x)
il = − lnF (w

(x)
il
′δ

(x)
l + ε

(x)
il ), i = 1, ..., n, (A.7)

for each l = 1, ..., N and

U
(y)
im = − lnF (w

(y)
im
′δ(y)
m + ε

(y)
im), i =, ..., n, (A.8)

for each m = 1, ...,M , and where each element of w(x)
il and w(y)

im is generated randomly, e.g.,

from standard uniform, while the vector of parameters δ(x)
l and δ(y)

m are fixed at some levels.

Then, these inefficiencies can be used in the data generation as described above in place of the

purely random u
(x)
il and u(y)

im , for l = 1, ..., N and m = 1, ...,M . Moreover, for all i = 1, ..., n

we first set ε(x)
il = ε

(y)
im = 0, for each l = 1, ..., N and m = 1, ...,M .

We assume that Σ is a diagonal matrix whose diagonal elements are all equal to σv > 0.

If we assume there are no environmental variables we generate U (x)
i , U

(y)
i ∼ i.i.dN+(0, σ2

u), a

half-normal distribution. In this case we can set the signal-to-noise ratio λ = σu
σv

to alternative
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values. In the presence of environmental variables this is no longer possible but we can still

vary σv.We use two environmental variables. In our Monte Carlo we pretend that G in (A.5)

is unknown so it has to be selected using the marginal likelihood criterion (DiCiccio et al.,

1997). Moreover, we follow the compression scheme that we described in the main text of

the paper. Additionally, we can experiment with the presence or absence of random errors

εi in (A.5) or (A.7)-(A.8). We also impose
∑n

j=1 λij = 1 for each i.

If we generate the two wis from standard uniform distributions and their coefficients from

a uniform distribution in (0, 1), in Figure A.1 we display the density of efficiency resulting

from 10,000 different combinations of the two wis (with sample size n = 50) and their

coefficients, when the errors ε(x)
il = ε

(y)
im = 0. To examine the stochastic inefficiency case we

draw the errors ε(x)
il , ε

(y)
im from a normal distribution with zero mean and common variance s2

which we adjust so that the average sample signal-to-noise ratio has a given value (λ).

Figure A.1: Efficiency distributions with environmental variables
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The standard deviations of inefficiency range from 0.148 (dw = 2) to 0.110 (for dw = 5) so

it seems reasonable to examine values of σv like 0.05, 0.10, 0.15, 0.20, 0.25 and 0.50. Without

environmental variables, we will examine the same configurations of these parameters for

consistency.

We use 5,000 Monte Carlo simulations each of which employs MCMC using 15,000 iter-

ations omitting the first 5,000 to mitigate possible start up effects. Our interest focuses on

bias, standard deviation and RMSE of inefficiency estimates.
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Table 6: Monte Carlo results (without environmental variables)
σv ↓ \ n→ 50 100 200 400 800 1000 1500 2000

Bias
0.05 0.2815 0.2728 0.2653 0.2623 0.2597 0.2569 0.2540 0.2494
0.10 0.3041 0.2947 0.2866 0.2833 0.2805 0.2775 0.2743 0.2694
0.15 0.3331 0.3228 0.3139 0.3104 0.3072 0.3040 0.3005 0.2951
0.20 0.3724 0.3609 0.3510 0.3470 0.3435 0.3399 0.3360 0.3299
0.25 0.4300 0.4168 0.4053 0.4007 0.3966 0.3924 0.3880 0.3809
0.50 0.5267 0.5104 0.4964 0.4908 0.4858 0.4806 0.4752 0.4665

Standard deviation
0.05 0.0673 0.0590 0.0513 0.0487 0.0458 0.0432 0.0404 0.0382
0.10 0.0727 0.0638 0.0554 0.0526 0.0495 0.0466 0.0436 0.0412
0.15 0.0796 0.0699 0.0606 0.0576 0.0542 0.0511 0.0478 0.0451
0.20 0.0890 0.0781 0.0678 0.0644 0.0606 0.0571 0.0534 0.0505
0.25 0.1028 0.0902 0.0783 0.0744 0.0700 0.0660 0.0617 0.0583
0.50 0.1259 0.1105 0.0959 0.0911 0.0857 0.0808 0.0756 0.0714

RMSE (Root Mean Squared Error)
0.05 0.2895 0.2792 0.2702 0.2668 0.2637 0.2605 0.2572 0.2523
0.10 0.3127 0.3015 0.2919 0.2882 0.2848 0.2814 0.2778 0.2725
0.15 0.3425 0.3303 0.3197 0.3157 0.3120 0.3083 0.3043 0.2985
0.20 0.3829 0.3693 0.3575 0.3530 0.3488 0.3446 0.3402 0.3337
0.25 0.4422 0.4264 0.4128 0.4076 0.4027 0.3980 0.3928 0.3854
0.50 0.5415 0.5223 0.5055 0.4992 0.4933 0.4874 0.4811 0.4720

Rank Correlation Coefficient with true inefficiency
0.05 0.8013 0.8511 0.9007 0.9207 0.9410 0.9607 0.9700 0.9807
0.10 0.7167 0.7613 0.8056 0.8235 0.8416 0.8593 0.8676 0.8772
0.15 0.6543 0.6949 0.7354 0.7518 0.7683 0.7844 0.7920 0.8007
0.20 0.5666 0.6018 0.6369 0.6511 0.6654 0.6793 0.6859 0.6935
0.25 0.5342 0.5674 0.6004 0.6138 0.6273 0.6405 0.6467 0.6538
0.50 0.5068 0.5383 0.5696 0.5823 0.5951 0.6076 0.6135 0.6202

Correlation Coefficient with true inefficiency
0.05 0.9001 0.9501 0.9602 0.9707 0.9809 0.9910 0.9960 0.9975
0.10 0.8784 0.9272 0.9370 0.9473 0.9572 0.9671 0.9720 0.9765
0.15 0.8582 0.9059 0.9155 0.9255 0.9352 0.9448 0.9497 0.9540
0.20 0.8393 0.8860 0.8953 0.9052 0.9147 0.9241 0.9288 0.9331
0.25 0.7894 0.8333 0.8421 0.8514 0.8603 0.8691 0.8736 0.8776
0.50 0.7349 0.7758 0.7840 0.7926 0.8009 0.8091 0.8133 0.8170

Notes: Results for biases, standard deviations and RMSEs are multiplied by 10.
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Figure A.2: Monte Carlo results (without environmental variables)
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Table 7: Monte Carlo results (with environmental variables, deterministic inefficiency)
Notes: Results for biases, standard deviations and RMSEs are multiplied by 10. “Deterministic inefficiency” corresponds to the
case when the errors εiset to zero. In this case we do not need the ξis and, instead, we use the formulation in (A.5).

(N,M)↓ \ n→ 50 100 200 400 800 1000 1500 2000
Bias

(1,1) 0.3841 0.3732 0.3622 0.3586 0.3554 0.3514 0.3473 0.3410
(2,1) 0.3992 0.3879 0.3764 0.3726 0.3694 0.3652 0.3610 0.3544
(3,1) 0.4178 0.4060 0.3940 0.3900 0.3866 0.3823 0.3778 0.3710
(3,2) 0.4418 0.4293 0.4166 0.4124 0.4088 0.4042 0.3995 0.3922
(3,3) 0.4747 0.4613 0.4477 0.4432 0.4393 0.4343 0.4293 0.4215
(4,4) 0.5253 0.5105 0.4954 0.4904 0.4861 0.4807 0.4751 0.4665

Standard Deviation
(1,1) 0.0921 0.0816 0.0702 0.0661 0.0631 0.0596 0.0552 0.0515
(2,1) 0.0957 0.0848 0.0729 0.0687 0.0656 0.0620 0.0574 0.0535
(3,1) 0.1001 0.0888 0.0763 0.0719 0.0687 0.0649 0.0601 0.0560
(3,2) 0.1059 0.0939 0.0807 0.0760 0.0726 0.0686 0.0635 0.0592
(3,3) 0.1138 0.1009 0.0867 0.0817 0.0780 0.0737 0.0682 0.0636
(4,4) 0.1259 0.1116 0.0960 0.0904 0.0864 0.0816 0.0755 0.0704

RMSE (Root Mean Squared Error)
(1,1) 0.3950 0.3821 0.3690 0.3646 0.3610 0.3564 0.3517 0.3449
(2,1) 0.4105 0.3971 0.3834 0.3789 0.3752 0.3704 0.3655 0.3584
(3,1) 0.4296 0.4156 0.4013 0.3966 0.3926 0.3877 0.3826 0.3752
(3,2) 0.4543 0.4394 0.4244 0.4193 0.4152 0.4100 0.4045 0.3967
(3,3) 0.4882 0.4722 0.4560 0.4506 0.4461 0.4405 0.4347 0.4263
(4,4) 0.5402 0.5226 0.5046 0.4987 0.4937 0.4875 0.4810 0.4717

Rank Correlation Coefficient
(1,1) 0.8015 0.8512 0.9003 0.9207 0.9406 0.9606 0.9704 0.9804
(2,1) 0.7580 0.8051 0.8515 0.8708 0.8895 0.9085 0.9178 0.9272
(3,1) 0.7243 0.7692 0.8135 0.8320 0.8499 0.8680 0.8769 0.8859
(3,2) 0.6740 0.7158 0.7571 0.7743 0.7909 0.8078 0.8160 0.8244
(3,3) 0.6544 0.6950 0.7351 0.7518 0.7680 0.7844 0.7923 0.8005
(4,4) 0.6374 0.6770 0.7160 0.7322 0.7480 0.7640 0.7717 0.7797

Correlation Coefficient
(1,1) 0.9000 0.9501 0.9601 0.9704 0.9806 0.9907 0.9959 0.9965
(2,1) 0.8891 0.9386 0.9485 0.9586 0.9687 0.9787 0.9839 0.9884
(3,1) 0.8789 0.9277 0.9375 0.9475 0.9575 0.9674 0.9725 0.9770
(3,2) 0.8691 0.9175 0.9271 0.9371 0.9469 0.9567 0.9617 0.9662
(3,3) 0.8429 0.8898 0.8991 0.9088 0.9183 0.9278 0.9327 0.9370
(4,4) 0.8133 0.8585 0.8675 0.8768 0.8861 0.8952 0.8999 0.9041

Notes: Results for biases, standard deviations and RMSEs are multiplied by 10.

Generally, RMSEs do not scale as
√
n. Previously developed asymptotic theory is also in
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Figure A.3: Monte Carlo results (with environmental variables, deterministic inefficiency)
Notes: Results for biases, standard deviations and RMSEs are not multiplied by 10. “Deterministic inefficiency” corresponds to
the case when the errors εiset to zero. In this case we do not need the ξis and, instead, we use the formulation in (A.5).
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line with this finding. In Figure A.4, we report the estimates of biases, standard deviations

and RMSEs for the two δ inefficiency parameters in (A.5). As a function of the sample size,

the estimates of bias are presented in panel (a), standard deviations in panel (b) and RMSEs

in panel (c), for a variety of values of N and M . Due to the parameterizations of inefficiency

in (A.5) it seems that RMSEs scale approximately as
√
n for all N and M . Finally, as we

have two parameters in δ, we report maximum bias, standard and RMSE.

Figure A.4: Monte Carlo results for inefficiency parameters (δ), deterministic inefficiency
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Notes: In Figure A.4, we report the estimates of biases, standard deviations and RMSEs for the two δ inefficiency parameters
in (A.5). As a function of the sample size, the estimates of bias are presented in panel (a), standard deviations in panel (b) and
RMSEs in panel (c), for a variety of values of N and M . As we have two parameters in δ, we report maximum bias, standard
deviation and RMSE.

The case with stochastic inefficiency does not yield qualitatively different results.16

16The exact results are available in Supplement 2 in in Tables OS-1 and OS-2.
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Supplement 2. Technical Appendix

MCMC

We use a recent advance on the Metropolis Adjusted Langevin Algorithm (MALA) called fast

MALA (fMALA), see Durmus et al. (2017). Suppose we have a parameter vector θ ∈ Rd,

where now d denotes the dimensionality of the parameter vector, and we target the non-

normalized density π(θ) which represents the posterior, omitting the dependence on data to

ease notation. We consider a Langevin diffusion defined by:

dθt = 1
2
Σ · O lnπ(θt) + Σ1/2dW t, (A.9)

where {W t, t ≥ 0} is a standard d-dimensional Brownian motion, and Σ is a given positive

definite self-adjoint matrix. Under appropriate assumptions on π one can show that the

dynamics generated by (A.9) are ergodic and result in π(θ) as the unique invariant distri-

bution. A standard approach is to discretize (A.9) using a one step integrator, and sample

using the averages over the numerical trajectories. This approach introduces a bias because

the posterior does not coincide in general with the exact π.

An alternative way of sampling from π exactly, i.e., such that it is not biased by dis-

cretizing (A.9), is by using the Metropolis-Hastings algorithm (Hastings (1970)). The idea

is to construct a Markov chain {θj}, where at each step j, given θj, a new sample proposal

θc is generated from the Markov chain with a transition kernel q(θ, ·). This proposal is then

accepted (θj+1 = θc) with probability α(θj,θ
c) and rejected (θj+1 = θj) otherwise. If we

have

α(θ,θc) = min

{
1,
π(θc)q(θc,θ)

π(θ)q(θ,θc)

}
, (A.10)

then the resulting Markov chain {θj} is π-invariant and will, for large j generate samples

from π under mild ergodicity assumptions (Liu (2008), Robert et al. (2004)). In general, a
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candidate is generated as:

θc = µ(θ, h) + S(θ, h)ζ, (A.11)

where ζ ∼ Nd(0, Id). The specific fMALA proposal has

µ(θ, h) = x+ h
2
f(θ)− h2

24
Of(θ) · f(θ) + {Σ : O2f(θ)}, (A.12)

S(θ, h) =
(
h1/2Id + h3/2

12
Df(θ)

)
Σ1/2, (A.13)

where f(θ)
M
= Σ ·O lnπ(θ), Of(θ) and O2f(θ) are the d× d Jacobian and d× d2 Hessian of

f(θ), respectively, and Σ = S(θ, h). Let O2f(θ) = [H1(θ), . . . ,Hd(θ)] where [H i(θ)]jk =

∂2fi(θ)
∂θk∂θj

, then {Σ : O2f(θ)}i
M
= tr [Σ′H i(θ)]. The scaling constant has received detailed

attention in Durmus et al. (2017) and it is related directly to the discretization of (A.9).

Specifically, Durmus et al. (2017) recommend h = εd−1/5 for some positive constant, ε. The

optimal acceptance rate maximizing the first-order efficiency is very close to the limiting

value of 0.704 predicted in Theorem 3.2 of Durmus et al. (2017). Therefore, one can calibrate

the constant ε (during the burn-in phase) so that the acceptance rate is close to 0.70.

This approach has been found to perform excellently once ε and h are calibrated correctly

during the burn-in phase. All derivatives are computed numerically17 during the burn-in

phase, and they are interpolated18 in the main phase of the MCMC algorithm. This results

in dramatic computational savings and, as a matter of fact, a different chain can be run in

parallel in computers with multiple nodes.

Our transition density q(θ, θc) is a d-dimensional Student-t distribution with five degrees

of freedom. We monitor convergence using the standard diagnostics of Geweke (1992).
17We use the Fortran77 subroutines in package NDL of Voglis et al. (2009). Specifically we use ver-

sion 2.0 of Hadjidoukas et al. (2014), https://data.mendeley.com/datasets/j2fhmszg85/1, see also
http://cpc.cs.qub.ac.uk/summaries/AEDG_v1_0.html

18We use the Fortran subrourines in finterp by Jacob Williams in
https://github.com/jacobwilliams/finterp/blob/master/README.md. Alternatively, we use for com-
parison RBF_INTERP_ND in https://people.sc.fsu.edu/~jburkardt/f_src/rbf_interp_nd/rbf_interp_nd.html.
RBF_INTERP_ND is a Fortan90 library by John Burkardt which defines and evaluates radial basis function
(RBF) interpolants to multidimensional data.
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Numerical performance and convergence of MCMC

To assess numerical performance of MCMC we focus on autocorrelation in MCMC, Relative

Numerical Efficiency (RNE), and Geweke’s (1992) convergence diagnostic. RNE should be

equal to 1 if i.i.d sampling from the posterior were possible. The convergence diagnostic is a

z-statistic that compares the posterior means in the first and last 25% of MCMC draws (so

if it is less 1.96 in absolute value, we cannot reject convergence). The results are reported in

Figure A.5.

Figure A.5: Numerical performance of MCMC
Notes: In panel (a) we report autocorrelation functions for inefficiency, input and output slacks as well as λs. For input and
output slacks as well as λs we report the maximum autocorrelation coefficient in this case. In panel (b) we report Relative
Numerical Efficiency (RNE) for inefficiency, input and output slacks as well as λs. For input and output slacks as well as λs we
report the minimum RNE in this case. In panel (c) we report Geweke’s (1992) convergence diagnostic for inefficiency, input and
output slacks as well as λs. For input and output slacks as well as λs we report the maximum absolute convergence diagnostic
in this case.
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Autocorrelation functions show that MCMC has some autocorrelation but this is not

destructively large so as to make problematic a thorough exploration of the posterior. RNEs
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are close to 0.5 with a distinct mode near 0.7 and Geweke’s (1992) convergence diagnostics

indicate that convergence in MCMC chains has occurred. Posterior sensitivity analysis cor-

responding to 1,000 different values of q is performed and the results are shown in Figure

A.6. In panel (a) we report distributions of differences of posterior means relative to the

benchmark case. In panel (b) we report distributions of differences of posterior standard

deviations relative to the benchmark case.

Figure A.6: Posterior sensitivity analysis
Notes: In panel (a) we report sample distributions of difference of posterior means relative to the benchmark case. In panel (b)
we report sample distributions of difference of posterior standard deviations relative to the benchmark case. The distributions
arise by considering 1,000 different values of q uniformly drawn in the interval (1,100).
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Supplement 3. Empirical Illustration Extras

Figure A.7: Empirical results for large U.S. banks
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Figure A.8: CRS-DEA results
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