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Abstract. This paper is the first in the literature to discuss in detail how to conduct

various types of inference in the stochastic frontier model when it is estimated using non-

parametric methods. We discuss a general and versatile inferential technique that allows for

a range of practical hypotheses of interest to be tested. We also discuss several challenges

that currently exist in this framework in an effort to alert researchers to potential pitfalls.

Namely, it appears that when one wishes to estimate a stochastic frontier in a fully non-

parametric framework, separability between inputs and determinants of inefficiency is an

essential ingredient for the correct empirical size of a test. We showcase the performance of
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versité Catholique de Louvain, Voie du Roman Pays 20, B1348 Louvain-la-Neuve, Belgium. e-mail:
leopold.simar@uclouvain.be. Ingrid Van Keilegom, ORSTAT, KU Leuven, Naamsestraat 69, B3000 Leuven,
Belgium and Institut de statistique, biostatistique et sciences actuarielles, Université Catholique de Lou-
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1. Introduction

The stochastic frontier model (SFM) is one of the workhorse frameworks in applied effi-

ciency analysis. However, it is routinely inveighed against for its imposition of rigid para-

metric assumptions which are typically difficult to justify. For example, specification of the

frontier as Cobb-Douglas or translog is almost universally taken as given with little in the

way of specification testing. Other parametric assumptions include normality of the error

terms and a basic set of distributions for the one-sided inefficiency component (this is usu-

ally done for analytic convenience rather than an unwavering belief in the correct parametric

shape of a given distributional family). Beyond this trinity of parametric assumptions, re-

searchers have also injected strict functional forms into the behavior of how determinants of

inefficiency influence the shape and location of the inefficiency distribution. Needless to say,

the use of parametric assumptions at all modeling stages for the SFM are legion. Robust

and consistent tests of specification and/or significance have yet to be roundly advocated for

in the literature. We take a step in this direction here.

With tongue-in-cheek, nonparametric specification testing of the SFM represents one of the

last frontiers in this literature. Recent advances in nonparametric estimation (Kumbhakar,

Park, Simar & Tsionas 2007, Kneip, Simar & Van Keilegom 2015), panel data modeling

(Greene 2005, Wang & Ho 2010, Chen, Schmidt & Wang 2014), handling endogeneity

(Amsler, Prokhorov & Schmidt 2016, Amsler, Prokhorov & Schmidt 2017, Kutlu, Tran

& Tsionas 2019), the use of quantiles (Behr 2010), spatial spillovers (Glass, Kenjegalieva &

Sickles 2016, Orea & Álvarez 2019) and treatment effects (Chen, Hsu & Wang 2020) have all

made their way to, or are progressing towards, maturity, as is more recent work on general

issues specific to the SFM (Belotti & Ilardi 2018, Horrace & Wright 2020).

However, at present, a versatile testing framework that is nonparametric in nature has

remained elusive. Indeed, virtually all studies that have proposed semi- or nonparametric

approaches for the SFM have almost exclusively focused on aspects of estimation, leaving

questions of inference for future research or discussing them in mere passing at best. As a

case in point, consider the recent review of semi- and nonparametric approaches for the SFM

in Parmeter & Zelenyuk (2019). While Parmeter & Zelenyuk (2019) dedicated a separate

section to discuss various possibilities on how inference for such estimation approaches could

potentially be done, their Monte Carlo focused only on estimation. This is largely because

the research on the inference in such models, even with one particular approach, turned into

a long-lasting study by itself, a summary of which is this very paper.

1



Jumping ahead, the main conclusion of this study is that conducting nonparametric in-

ference, often portrayed as the main advantage of the SFM over data envelopment analysis

(DEA), turns out not to be as simple or straightforward as perhaps has been suggested in

the literature. Specifically, for nonparametric inference, a carefully-designed bootstrap is

commonly required as asymptotic methods are known to perform poorly in finite samples1

and are needed for appropriate construction of a test for correct specification in general,

and especially for the SFM with convoluted error terms and unknown functions for both the

frontier and the mean of inefficiency. More importantly, our simulations here reveal that the

so-called separability assumption arises as a crucial requirement for our nonparametric tests

to perform optimally, just as DEA requires it for the two-stage truncated regression approach

of Simar & Wilson (2007). Thus, while solid nonparametric inference can be performed in

the SFM, our work here suggests that many preconceived notions of dominance with respect

to inference appear overstated at least in the nonparametric setting.

While there are many testing alternatives, we will focus on an omnibus test for many of the

most crucial and important hypotheses that surround production and cost frontiers.2 This

test is based on the seminal work of Delgado & González Manteiga (2001) and can also be

viewed as further generalization of Kim & Schmidt (2008) who considered inference for para-

metric SFMs. However, direct application of their test is not available in the nonparametric

SFM. This stems from the fact that in the fully nonparametric setting, the location of the

frontier is corrupted by expected inefficiency, which must first be removed prior to inference

being conducted (either on the frontier directly, or the conditional mean of inefficiency).

For testing in a nonparametric regression context, various approaches have been sug-

gested in the general statistical/econometric literature: e.g., Ullah (1985), Härdle & Mammen

(1993), Fan & Li (1996), Zheng (1996), Li & Wang (1998), Delgado & González Manteiga

(2001) and Fan, Zhang & Zhang (2001), to mention just a few. Our focus will be on adap-

tation of the tests from Delgado & González Manteiga (2001), hereafter DGM. While other

approaches could be deployed, for example, conditional moment tests such as Zheng (1996),

the main discussion and implementation we discuss here is likely to carry over analogously

in these settings.

A battery of parametric specification tests are proposed as well as two of the most promi-

nent applied tests are put under computational scrutiny: tests of significance and a test of

1See Härdle & Mammen (1993) for one of the first discussions on this as well as more recent textbook
discussions in Pagan & Ullah (1999) and Henderson & Parmeter (2015).
2And of course input and output distance functions, profit frontiers, revenue frontiers, etc.
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correct parametric specification. These simulations reveal two key points. First, when we

have the so-called separability property (Simar & Wilson 2007), the DGM test works quite

well (see Section 4.2). Second, when we do not have separability, the test fails; failure here

refers to the empirical size of the test deviating substantially from the nominal size (see

Section 4.1).

We believe that the reason inference in nonparametric SFMs is likely to remain difficult

stems from the fact that when the frontier and inefficiency contain the same variables (sep-

arability fails), this makes it much harder on the nonparametric test. This is due to the

additional noise that is introduced via estimation of both the frontier and the conditional

mean of inefficiency given that the covariates affect both. We also note that this issue is not

specific to the exact form of the DGM test statistic, but is more generally related to how

the frontier and conditional mean of inefficiency are so difficult to untangle without other

specific assumptions (separability between traditional inputs and environmental variables for

example).

To further examine this we have also explored the question of how would a parametric

estimator perform in this case instead of a nonparametric estimator and we have reached a

somewhat unexpected conclusion. Even a fully parametric stochastic frontier model, esti-

mated via nonlinear least squares (NLS) under correct specification, shows a similarly poor

performance in terms of the size of the test (see Figure 3), and this is when the starting

values in the optimization were set to the true values of the parameters. Hence, hoping that

the preferred nonparametric estimator (and likely other nonparametric approaches) would

perform well in terms of size, even when a correctly specified parametric approach cannot do

so, appears to be unrealistic. In turn, this justifies the approach of Kim & Schmidt (2008)

who only considered the case with separability in their Monte Carlo scenarios and theoretical

derivations.

Given this, our work here can be viewed as the nonparametric generalization of Kim &

Schmidt (2008), which is currently state of the art for inference in the parametric SFM.

Our goal is to both generalize their testing environment to the nonparametric setting and

enhance the suite of hypotheses that can be examined. A key aspect of Kim & Schmidt

(2008) is that the array of tests that they propose hinge critically on the production frontier

being correctly specified and are focused exclusively on testing significance of a given set

of characteristics on efficiency. In our testing framework, given that the conditional mean

is estimated nonparametrically, no such reliance is present. Moreover, the framework of
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DGM allows for a broader range of hypotheses to be tested. Our work is also analogous

or ‘parallel’ to the work of Simar & Wilson (2007) in the DEA context, reaching a similar

general conclusion that nonparametric inference is quite challenging, yet possible under the

separability assumption along with an appropriate bootstrap.

The remainder of the paper is structured as follows. Section 2 briefly reviews the most

recent techniques for nonparametric estimation of both the production frontier and the

conditional mean of inefficiency. Section 3 discusses the general framework of the test of

Delgado & González Manteiga (2001) as well as adaptations to it that specifically deploy

hypotheses of interest for SFM. Section 4 presents a detailed set of simulations surrounding

the performance of the DGM test for both statistical significance and correct parametric

specification. Lastly, Section 5 discusses empirical recommendations based on the theoretical

and simulated insights generated here.

2. Nonparametric Estimation of the Stochastic Frontier Model

Consider a set of i.i.d. random variables (Xi, Zi, Yi), for i = 1, . . . , n, where Xi ∈ Rp is

a vector of traditional inputs used to produce the vector of outputs Yi ∈ R, while vector

Zi ∈ Rd represents a separate set of variables that may influence production, sometimes

referred to as ‘environmental variables’.3

We assume that the data generating process is characterized by the joint pdf of (X,Z, Y )

that can be decomposed into a joint marginal for (X,Z) and a conditional pdf for Y given

(X,Z), so that the conditional of Y given X = x and Z = z is characterized through

(1) Y = m(x, z)− U + V,

where m(x, z) is the production frontier, V |X = x, Z = z ∼ D(0, varV (x, z)) where D(0, ·)
is a real random variable with mean zero and some positive and finite variance varV (·, ·)
and U |X = x, Z = z ∼ D+(µU(x, z), varU(x, z)) where D+(·, ·) is a positive random variable

with mean µU(·, ·) and variance varU(·, ·). We also suppose that, conditionally on (X,Z), U

and V are independent random variables, where V has a symmetric distribution around zero,

and U is a non-negative random variable from a right-skewed distribution. Note that some

3The distinction between Xi and Zi in some contexts might be unimportant from a statistical perspective,
yet it might be imperative from an economic perspective and therefore we keep them separate. E.g., inputs
are usually considered as factors under the control of the firm for producing outputs, while the environmental
variables are often viewed as those that may influence production but are not under the control of the firm
(e.g., geography, regulatory conditions, climate, etc.).
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existing approaches restrict the channels through which Z can influence output, typically by

imposing some structure a priori on the relationship, for example, the so-called ‘separability

condition’ whereby m(x, z) = m(x) and µU(x, z) = µU(z) and varU(x, z) = varU(z) (see

Simar & Wilson 2007, for related discussion).

Unlike parametric approaches, we allow the production frontier m(x, z) to be completely

unknown, where the goal of the researcher is to both estimate and perform inference about

the production technology (scale elasticities, marginal productivity of inputs, etc.) and

inefficiency. In particular a researcher may be specifically interested in how inefficiency is re-

lated to (x, z), by utilizing the sample of i.i.d. triples Sn = {(Xi, Zi, Yi) | i = 1, . . . , n}.
While several approaches exist to estimate the SFM in a nonparametric fashion (Fan,

Li & Weersink 1996, Kumbhakar et al. 2007, Martins-Filho & Yao 2015, Park, Simar &

Zelenyuk 2015)4 here we advocate the use of the approach proposed in Simar, Van Keile-

gom & Zelenyuk (2017), hereafter SVKZ, which is a nonparametric generalization of Olson,

Schmidt & Waldman (1980). In SVKZ, as with the vast majority of papers in this area, in-

terest has mainly hinged on the development of estimators of the SFM and their asymptotic

properties. Our focus here will be exclusively on inference predicated on nonparametric esti-

mation of this model. The findings detailed here are likely to have practical implications for

many of the previous approaches, a focused investigation which we leave for future research.

Our focus on the nonparametric equivalent of the initial corrected ordinary least-squares

approach of Olson et al. (1980) stems from the fact that the existing approaches all have

what we consider to be practical limitations that restrict the ability for general inference

in practice. Both Fan et al.’s (1996) and Martins-Filho & Yao’s (2015) approaches do not

allow one to model the impact of (X,Z) on inefficiency while Kumbhakar et al. (2007) and

Park et al. (2015) rely on local maximum likelihood, which can be quite computationally

burdensome. On the contrary, SVKZ’s corrected local least-squares approach can be rapidly

deployed and is computationally simple. This makes it a convenient candidate to discuss

general inference.

To describe how to conduct inference in SVKZ’s framework, we first summarize the key

points of their approach which consists of three stages. The first stage is dedicated to

estimation of the conditional mean rather than the frontier. This is due to the fact that

E(U |x, z) 6= 0 and hence is conflated with the true frontier when estimated directly. Defining

4See Parmeter & Zelenyuk (2019) for a recent review.
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ε = V − U + µU(x, z), and r1(x, z) = m(x, z)− µU(x, z), one can rewrite Equation (1) as

Y =m(x, z)− µU(x, z) + V − U + µU(x, z)

=r1(x, z) + ε.(2)

Note that E(ε|x, z) = 0 and V(ε|x, z) = varU(x, z) + varV (x, z) ∈ (0,∞), where varU(x, z)

(varV (x, z)) is a function of (x, z) which represents the conditional variance of U |x, z (V |x, z).
As r1(x, z) = E(Y |x, z), Equation (2) can be estimated via standard nonparametric regres-

sion methods from Sn. A promising candidate is local-linear least-squares, which has good

asymptotic properties and is relatively easy to implement; the gradients of the conditional

mean are also provided directly with this estimator.

Note that r̂1(x, z) is an estimate of r1(x, z) = m(x, z) − µU(x, z), rather than of the

production frontier m(x, z) and because µU(x, z) ≥ 0, we have r1(x, z) ≤ m(x, z), ∀(x, z) ∈
Rp+d. Thus, r1(x, z) = m(x, z), ∀(x, z) ∈ Rp+d, if and only if µU(x, z) = 0. And, if there

is inefficiency, then r̂1(x, z) would be a downward-biased estimator of m(x, z) and the bias

is exactly µU(x, z), and so it is potentially varying with (x, z). In the particular case when

µU(x, z) is a constant (i.e., E(U |x, z) = E(U)), much of the characteristics of r1(x, z) are

directly transferred to m(x, z), except its location.

So, from a sample of i.i.d. data {(Xi, Zi, Yi) : i = 1, . . . , n} one can obtain the local-linear

least-squares (LLLS) estimate of r1(x, z) by solving, for any point of interest (x, z)

(3) (α̂x,z, β̂x,z) = arg min
α,β

n∑
i=1

[Yi − (α + β′((Xi, Zi)− (x, z)))]
2
K

(
Xi − x
h1x

,
Zi − z
h1z

)
,

where, with a slight abuse of notation, K
(
Xi−x
h1x

, Zi−z
h1z

)
stands for a product kernel for the

p + d components of (X,Z) with h1 = (h1x, h1z) denoting the vector of p + d bandwidths

(where the 1 in the subscript is used to signify that it is a vector of bandwidths for estimating

r1). Solving (3), yields

r̂1(x, z) =α̂x,z,

∇̂r1(x, z) =β̂x,z,

where the second equation provides an estimate of the gradient of r1(x, z) at (x, z). The

bandwidths can be selected by the leave-one-out least-squares cross-validation (LSCV).

Note that the LLLS approach does not require nonlinear optimization (except for LSCV),

since the solution to (3) can be obtained in closed form via simple linear algebra (see Li
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& Racine 2007). Under fairly mild regularity conditions and an appropriate choice of the

bandwidths, these estimators have desirable theoretical properties (consistency, asymptotic

normality, etc., see e.g. Fan & Gijbels 1996).

The second stage of the approach of SVKZ is dedicated to the estimation of the second

and third conditional moments of ε. This can be also done without particular assumptions

for the local distributions of U and of V . Given the rearrangement of the frontier model in

Equation (2), E(ε|x, z) = 0. Further, due to the assumed symmetry for V , we have

E(ε2|x, z) := r2(x, z) = varU(x, z) + varV (x, z) > 0,

E(ε3|x, z) := r3(x, z) = −E
[(
U − µU(x, z)

)3|x, z] .
SVKZ proposes to estimate these moments nonparametrically, utilizing the residuals from

Equation (2):

ε̂i = Yi − r̂1(Xi, Zi), i = 1, . . . , n,

where r̂1(Xi, Zi) is the selected nonparametric estimator of the conditional mean in the first

stage (e.g., the local-linear least-squares estimator). In this case, nonparametric regression of

ε̂2 on (X,Z) and ε̂3 on (X,Z) will produce consistent estimators for E(ε2|x, z) and E(ε3|x, z),
respectively.

The regression functions r2(x, z) and r3(x, z) can be consistently estimated from {(ε̂2i , Xi, Zi)|i =

1, . . . , n} and {(ε̂3i , Xi, Zi)|i = 1, . . . , n}, via

r̂2(x, z) =
n∑
i=1

Ai,h2(x, z) ε̂
2
i =

n∑
i=1

Ai,h2(x, z)
(
Yi − r̂1(Xi, Zi)

)2
and

r̂3(x, z) =
n∑
i=1

Ai,h3(x, z) ε̂
3
i =

n∑
i=1

Ai,h3(x, z)
(
Yi − r̂1(Xi, Zi)

)3
,

where Ai,hj(x, z) is short-hand notation for the corresponding elements of the matrix stem-

ming from local-linear estimation of the model as detailed in Equation (3).

The third stage entails making a distributional assumption on U so that µU(x, z) can be

estimated (no distributional assumption is required for V ). SVKZ considered the popular

choice of doing this through a Half Normal assumption for U . Given that the single parameter

of U potentially depends on x and z, this makes the parametric assumption “local” (Simar
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& Wilson 2021). Here we have

(4) U |x, z ∼ N+

(
0, σ2

U(x, z)
)
,

for which we have

µU(x, z) =
√

2/πσU(x, z)

and an estimate of σU is available from r̂3(x, z) as (see Olson et al. 1980)

σ̂U(x, z) = max

{
0,

[√
π

2

(
π

π − 4

)
r̂3(x, z)

]1/3}
.

An alternative to this censoring would be to deploy the method of Hafner, Manner & Simar

(2018). We leave a more robust discussion of this method for future research.

3. Inference

One of the main interests of the model and the method inspired by SVKZ is to allow a

flexible modelization and an easy way to estimate the components of the models. However,

practitioners like to test whether some elements of x or z are really significant in the process

of producing inefficiency, or if the inputs x are all significant in describing the production

frontier, or if the model for the frontier, or the model for the mean inefficiency could be sim-

plified in some suitable parametric models. There are many possible settings a practitioner

might want to test in our SFM framework.

We will focus our presentation on two general situations: (i) one could test whether some

particular inputs or environmental variables influence the conditional mean of inefficiency

(significance test); (ii) one could test whether some particular (parametric) functional form

m0(·) is appropriate to fit the data (specification test).5

For the first family of tests we will test the null hypothesis

(5) H0 : E(U | X,Z) = E(U | X1, Z1), a.s.,

where W1 = (X1, Z1) ∈ Rp1+d1 is a subset of the full vector W = (X,Z) ∈ Rp+d. Note that,

as particular cases, we may have several combinations with p1 = 0 or p1 = p and d1 = 0 or

5Note that if we want to test whether all the inputs are relevant in the production frontier, we will show that
it is easy to modify the significance test to the frontier model. Similarly, we may adapt the specification test
for the conditional mean of the inefficiency, see Section 3.3 below.
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d1 = d. For the specification test we will test

H0 : m(W ) = m0(W ), a.s.,

where m0(·) is some parametric model characterized by some finite-dimensional vector of

unknown parameters, say θ.

We will adapt the approach of DGM to our nonparametric SFM. The DGM test is easy to

implement and has a great flexibility allowing testing of various restrictions in the nonpara-

metric regression framework. We note that an advantage of the DGM tests is that, in regular

situations, they only require the estimation of the regression function under the null. We

will see that, unfortunately, we lose a part of this peculiarity in our framework of SFM. The

essence of the DGM approach, in standard regression models, where a dependent variable

of interest, say G, is regressed over W , is to build a random variable T (W ), based on the

difference between the weighted integrated regression function of G under the unrestricted

model and the regression of G under the null. The selection of G and the definition of

the variable T depend on the particular setup of the test, as will be illustrated in the next

subsections. DGM show that, for an appropriate choice of the weighting function, the null

hypothesis can be equivalently written as

H0 : T (W ) = 0, a.s..

Finally they propose two test statistics based on a suitable functional of an estimate Tn(·) of

T (·). The two test statistics are the Cramér-von Mises (CM) statistic and the Kolmogorov-

Smirnov statistic. The p-values, in both cases, are obtained using a bootstrap method.

DGM’s simulations reveal that both test statistics perform roughly equivalently. For the

remainder of this paper we will deploy the CM version of the DGM test which is defined as

Cn =
n∑
i=1

T 2
n(Wi),

where the explicit formulation of Tn(W ) depends on the test and will be given below.

We will see below that the main difficulty in our setup of SFM, is that the dependent

variable G needed to construct the test statistics is not observed and has to be estimated

from the data. We will describe how this “contamination” can perturb the original variable

T (W ) and its estimate.
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3.1. Significance test for inefficiency. We remind the reader that we want to test

H0 : E(U | W ) = E(U | W1), a.s.,

where W1 = (X1, Z1) ∈ Rp1+d1 is a subset of the full vector W = (X,Z) ∈ Rp+d. The depen-

dent variable of interest G is here U but the test described in DGM cannot be implemented,

as such, because we do not observe the variable U . Otherwise the procedure would have

been straightforward.

We define the random variable T (W ) as follows: for all w = (x, z) define

T (w) = E
[
f(X1, Z1)

(
U − E(U |X1, Z1)

)
1I(W ≤ w)

]
.

Hence, H0 is equivalent to H0 : T (W ) = 0, a.s., and an estimator of T (w) is given by

Tn(w) =
1

n

n∑
i=1

f̂(X1,i, Z1,i)
(
Ui − Ê(U |X1,i, Z1,i)

)
1I(Wi ≤ w),

where Ê(U |X1,i, Z1,i) is an appropriate nonparametric estimator of E(U |X1,i, Z1,i) based on

the sample {(Ui, X1,i, Z1,i)}ni=1, and f̂ is an appropriate estimator of the density f of (X1, Z1).

Since U is not observed, this cannot be used, but if we assume that the density of U given

X = x, Z = z belongs to the one-parameter scale family, as in (4), we have by the symmetry

of V that µU(x, z) = C (r3(x, z))
1/3, where r3(x, z) is defined by

ε3 = r3(x, z) + ζ, where E(ζ|x, z) = 0.

Since for all (x, z), E
(
ε3|x, z

)
= r3(x, z), the null hypothesis (5) can equivalently be written

as

(6) H0 : E
(
ε3|X,Z

)
= E

(
ε3|X1, Z1

)
, a.s.,

i.e., we are testing the same restriction, but in another regression, so that the analog of the

previous test can be used replacing U by ε3. Note that here we do not need the value of the

constant C, so we do not need to specify which member of the one parameter scale family

is chosen for U |x, z. However, ε3i are not observed either, but they can be estimated by

ε̂3i = [Yi − r̂1(Xi, Zi)]
3 ,
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where r̂1 is an appropriate estimator of r1. We define, as above for U , the random variable

T (w) by

(7) T (w) = E
[
f(X1, Z1)

(
ε3 − E(ε3|X1, Z1)

)
1I(W ≤ w)

]
,

for all w = (x, z) and again H0 is equivalent to H0 : T (W ) = 0, a.s. Then, a test statistic

could be derived by using an estimator of T (w):

(8) Tn(w) =
1

n

n∑
i=1

f̂(X1,i, Z1,i)
(
ε̂3i − Ê(ε̂3|X1,i, Z1,i)

)
1I(Wi ≤ w),

where Ê(ε̂3|X1,i, Z1,i) is an appropriate non-parametric estimator of E(ε̂3|X1,i, Z1,i), based

on the sample {(ε̂3i , X1,i, Z1,i)}ni=1.

Finally, the Cramér-von Mises test statistic is given by

Cn =
n∑
i=1

Tn(Wi)
2,

whose distribution is approximated by the wild bootstrap described in DGM, leading to the

p-value, # {C∗n ≥ Cn} /B, where C∗n are the bootstrap realizations of Cn and B is the number

of bootstrap repetitions.

The bootstrap algorithm follows as:

(1) Compute the residuals ηi = ε̂3i − Ê(ε̂3|X1,i, Z1,i) and build a wild-bootstrap version,

denoted by η∗i .
6 This leads to the following bootstrap version of ε̂3i :

ε̂3,∗i = Ê(ε̂3|X1,i, Z1,i) + η∗i , for i = 1, . . . , n.

(2) Compute the bootstrap version of Tn(w):

T ∗n(w) =
1

n

n∑
i=1

f̂(X1,i, Z1,i)
(
ε̂3,∗i − Ê∗(ε̂3,∗|X1,i, Z1,i)

)
1I(Wi ≤ w),

where Ê∗(ε̂3,∗|X1,i, Z1,i) is the nonparametric estimate of E(ε̂3,∗|X1,i, Z1,i) in the boot-

strap world, i.e., computed from the sample
{

(ε̂3,∗i , X1,i, Z1,i)
}n
i=1

.

(3) Finally, the bootstrap version of the test statistic Cn is constructed as C∗n,b =
∑n

i=1 T
∗
n(Wi)

2.

(4) Repeat steps (2) and (3) B times.

6We can e.g., use the Rademacher procedure: we center the residuals to provide ηci = ηi − n−1
∑n

j=1 ηj
and define η∗i = ηciBi − ηci (1 − Bi) where Bi is a random draw from a Bernoulli variable Bi ∈ {0, 1} with
probability of success 1/2.
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(5) Use the B bootstrap estimates from Step (4), to compute the bootstrap-based p-value,

given by

p-value =
1

B

B∑
b=1

I
(
C∗n,b ≥ Cn

)
.

The consistency of the test will be based on the properties of the difference between T (w)

in (7) and our estimator Tn(w) given in (8). The theory of the DGM test still applies under

suitable conditions on the kernel smoothing function and bandwidth. The Monte-Carlo

experiments in Section 4 confirm that the test behaves well, both for the achieved size and

for the power when separability holds.

3.2. Specification test. We remind the reader that we want to test

H0 : m(W ) = m0(W ), a.s.,

where m0(·) is some parametric model characterized by some finite-dimensional vector of

unknown parameters, say θ. Another rewriting of (2) leads to define Y̌ by

Y̌ = Y + µU(x, z) = m(x, z) + ε.

Defined like this, the values of Y̌ are dispersed around the frontier level m(x, z), according

to the random deviations ε = V − U + µU(x, z) depending on (x, z) but with E(ε|x, z) = 0.

So the DGM approach for testing H0 would be easy if the dependent variable of interest

Y̌ were observable. But the values of Y̌ cannot be observed, so we will replace them by the

following estimate: ̂̌Y = Y + µ̂U(x, z)

= Y̌ +
(
µ̂U(x, z)− µU(x, z)

)
= m(x, z) +

(
µ̂U(x, z)− µU(x, z)

)
+ ε.(9)

Under the additional assumption of a one parameter scale family for (U |x, z), we may obtain

an estimator of µU(x, z) by the regression of ε̂3i on (Xi, Zi) leading to r̂3(x, z). Typically we

have

µ̂U(x, z) = C (r̂3(x, z))
1/3 ,

where C is some known constant depending on the choice of the family for (U |x, z). Note

that in this case we have to know the constant C.
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Hence the DGM procedure to test H0 is straightforward. In summary, the random variable

of interest T (w) is defined by:

T (w) = E
[
f(W )

(
Y̌ −m0(W )

)
1I(W ≤ w)

]
,

for all w = (x, z), where f is now the density of W = (X,Z). An estimate of T (w) is

provided by

(10) Tn(w) =
1

n

n∑
i=1

f̂(Wi)
( ̂̌Y i − m̂0(Wi)

)
1I(Wi ≤ w),

where m̂0 is a parametric estimator of m0 based on the sample {( ̂̌Y i, Xi, Zi)}ni=1.

The bootstrap analog of T̃n(w) is similar as in the preceding case. Define

T̃ ∗n(w) =
1

n

n∑
i=1

f̂(Wi)
( ̂̌Y ∗i − m̂∗0(Wi)

)
1I(Wi ≤ w),

where ̂̌Y ∗i = m̂0(Wi) + η̂∗i , with η̂∗i being a wild-bootstrap version of η̂i = ̂̌Y i − m̂0(Wi)) and

m̂∗0(Wi) is the parametric estimator of m0 from the bootstrap sample {( ̂̌Y ∗i , Xi, Zi)}ni=1.

In practice we will estimate the quantity f as follows:

f̂(w) = (n|h|)−1
n∑
i=1

K((wi − w)/h),

where |h| = h1 · · ·hp+d and K((wi−w)/h) is our shorthand for the product kernel. We know

that the additional noise introduced in the DGM test is coming from the term µ̂U(x, z) −
µU(x, z) in (9). This term is again of order Op((nh

p+d)−1/2) and we conjecture that the

theory of the DGM test remains valid. Here too, the Monte-Carlo experiments in Section 4

confirm that the test behaves well, both for the achieved size and for the power.

3.3. Testing other restrictions in the SFM. Other restrictions could be tested by adapt-

ing the procedure described in the preceding sections. For instance we might test some

parametric specification for the conditional mean of the inefficiency:

(11) H0 : E(U | W ) = g0(W ), a.s.,

where g0(·) is some parametric model. For the chosen one-parameter scale family for the

conditional density of U |x, z, we have for the unrestricted case, µU(x, z) = C(r3(x, z))
1/3,

where C is a known constant. As shown above in (6), we have the following analog of (11)
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in terms of ε3:

H0 : E(ε3 | X,Z) = gε,0(X,Z), a.s.,

where gε,0(x, z) = (g0(x, z)/C)3 for all (x, z).

In the DGM approach the dependent variable of interest is ε3 and the quantity of interest

is

T (w) = E
[
f(W )

(
ε3 − gε,0(W )

)
1I(W ≤ w)

]
,

which can be estimated by

Tn(w) =
1

n

n∑
i=1

f̂(Wi)
(
ε̂3i − ĝ0(Wi)

)
1I(Wi ≤ w),

where ĝε,0 is a parametric estimator of gε,0 from the sample {(ε̂3i , Xi, Zi)}ni=1. Then the test

and the bootstrap can be implemented along the same lines as in the preceding subsections.

Another restriction that may be tested is the frontier itself. We may want to test

(12) H0 : m(X,Z) = m(X1, Z), a.s.,

where X1 ∈ Rp1 is a subset of the input vector X. This means that the other inputs

X2 ∈ Rp−p1 are not relevant for the production frontier. More realistically, we may want to

test if some of the inputs, say X1 can be aggregated, say, ξ1 = a′X1, where a is a known

vector (e.g., to allow the aggregation of inputs in different units)

H0 : m(X,Z) = m(a′X1, X2, Z), a.s.

For both cases the dependent variable is G = Y̌ and the quantity of interest T (w) can be

defined by7

T (w) = E
[
f(X,Z)

(
Y̌ −m(ξ,X2, Z)

)
1I(W ≤ w)

]
.

An estimator of T (w), analog to (10) is now given by

Tn(w) =
1

n

n∑
i=1

f̂(Xi, Zi)
( ̂̌Y i − m̂(ξi, X2,i, Zi)

)
1I(Wi ≤ w),

where m̂ is a nonparametric estimator of m based on the sample {( ̂̌Y i, ξi, X2,i, Zi)}ni=1. Then

the bootstrap can be implemented similarly as in the preceding subsections to provide the

p-value for this test.

7Similar expressions are available for the test (12), replacing m(ξ,X2, Z) by m(X1, Z).
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Other restrictions can be tested following the same vein, like, e.g., partial linear models,

or single index models.

4. Monte Carlo Simulations

In all the scenarios we will assume that the production technology is characterized by (1),

where X ∼ U [1, 10], Z ∼ U [0.1, 1] and U |x, z ∼ N+(0, σ2
U(x, z)), where

σU(x, z) = σU0 × zbU1
1 × xbU2

1

and V |x, z ∼ N (0, σ2
V (x, z)), where

σV (x, z) = σV 0 × zbV 1
1 × xbV 2

1

and the production frontier is given by

(13) m(x, z) = a1x1 + a2 sin(x1) + c1z1.

While we tried many values for the parameters, the results presented below are for the case

where a1 = 1, a2 = 1. This ensures that the technology satisfies free disposability, which

is a typical assumption in production theory, though not necessary for our more general

approach.

In all cases, for the regression in the first stage (to estimate r1), we use least-squares cross-

validation (LSCV) to estimate bandwidths for W = (X,Z). Meanwhile, for the bandwidth

used to construct the DGM test statistic we use h = δn−1/(3q), where q is the dimension

of W1 = (X1, Z1) and δ is a tuning constant. This is in the spirit of Delgado & González

Manteiga (2001).

4.1. Results Without Separability. Prior to discussing some promising results for the

DGM test we alert the reader to some issues we encountered when both x and z appear

together (either in the frontier or in the inefficiency parameter). While no test is beyond

reproach, we find these insights useful for empiricists adopting nonparametric methods to

conduct stochastic frontier analysis and any subsequent inference based on it.

4.1.1. Both x and z appear in inefficiency. We assume that V |x, z ∼ N (0, σ2
V ) (homoskedas-

tic noise) with σV = 1 and that U |x, z ∼ N+(0, σ2
U(x, z)), where σU(x, z) = σ0e

β1(z+x/10) with

β1 = 1 and σ0 = 1. The production frontier is specified as

m(x, z) = 2 + a1x+ a2 sin(x).
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The results for the DGM test presented below are for the case where a1 = 1, we assess size

by setting a2 = 0 and power for a2 ∈ {−1,−0.75,−0.5,−0.25, 0.25, 0.5, 0.75, 1}; this ensures

that the technology satisfies free disposability of inputs.

To speed up the computations for this illustration and to highlight an important practical

issue, we follow the corresponding procedure. We generate samples of size n =2,500 for each

value of a2 in Equation (14). We then use LSCV to select the bandwidths for both the

first and third stages of the SVKZ estimator with a Gaussian kernel deploying local-linear

least-squares. Both of these regressions are estimated including both X and Z. The scale

factors, i.e., c` from writing the bandwidth as h` = c`σ̂`n
−1/6 for ` = X or Z with σ̂` the

estimator of the standard deviation of the random variable `, are stored and this process

is repeated 50 times.8 We then take the median of these scale factors to construct ‘rule-

of-thumb’ bandwidths for our actual simulations. The aim here is to substantially reduce

the computational burden and cut down on the additional noise that is introduced into the

simulations through bandwidth selection when both x and z appear in either the conditional

frontier or conditional inefficiency.

Meanwhile, for the test-related bandwidth we use h = n−1/(3q), where q is the dimension

of (X,Z) over which we test for correct specification (i.e., q = 1) along with a second order

Epanechnikov kernel. We conduct 499 Rademacher wild-residual bootstrap replications over

1,000 Monte Carlo trials for each sample size and value of a2. In all of the simulations

reported here, after µ̂U(Xi, Zi) is estimated, it is held fixed in the bootstrap replications.

Level accuracy plots for the DGM test are presented in the upper panels of Figures 1 and

2. These figures correspond to the case when a2 = 0 and we assess the performance of the

DGM test using either ̂̌Y (which we term in the figure Y ∗) or the corresponding Y value

that results in treating conditional inefficiency as known.

As with the bivariate frontier size plots, the use of SVKZ to remove the component of the

conditional mean of Y that is due to conditional inefficiency, results in severe size distortions.

Treating E[U |X = x, Z = z] as known instead of estimating it, produces an estimated size

that is very near to nominal size across all sample sizes. That these size distortions appear is

due to the nonparametric bias that stems from both Xi and Zi appearing in the conditional

mean of inefficiency, as discussed in Section 3.

Similar results hold for the assessment of power. Power plots for the DGM test are

presented in the lower panels of Figures 1 and 2. The results are as expected in light of the

8The exponent 1/6 appears since the standard optimal rate for bandwidth decay is 1/(4 + q).
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size findings. As a2 increases the test does a better job detecting departures from correct

parametric specification on X. This is true whether we test using ̂̌Y or the true values of

the frontier though we need a caveat on the size distortions just discussed.

To discern if this performance was solely linked to nonparametric estimation of the model

we also implemented the same process but used nonlinear least squares (i.e., parametric) to

estimate the model. In this case we estimate our parameter vector θ by minimizing

n∑
i=1

(Yi − a0 − a1Xi − a2 sin(Xi) + eβ1Xi+β2Zi)2.

We then use
√

2/πeβ̂1Xi+β̂2Zi to correct our dependent variable prior to implementing the

DGM test. In this case the NLS estimator for the model is correctly specified. Figure 3

presents the empirical size results from this exercise. As is evident, the size is quite poor,

on par with the results when we used SVKZ to estimate the conditional mean of U prior to

the correction of Y .

This suggests that the problem of size distortion is more general than the SVKZ per se,

and is likely to be present when other semi- and nonparametric approaches are deployed,

where by and large the inference frameworks are currently absent and so we hope it will be

explored in future research endeavors.

4.1.2. Both x and z appear in the frontier. To further examine the performance of the DGM

test when separability is not satisfied, we again assume that V |x, z ∼ N (0, σ2
V ) (homoskedas-

tic noise) with σV = 1 and that U(x, z) ∼ N+(0, σ2
U(x, z)), where σU(x, z) = σ0e

β1z with

β1 = 1 and σ0 = 1. The production frontier is specified as

(14) m(x, z) = 2 + a1(x+ 10z) + a2 (sin(x) + sin(10z)) .

The results for the DGM specification test presented below are for the case where a1 = 1. We

assess size by setting a2 = 0 and power for a2 ∈ {−1,−0.75,−0.5,−0.25, 0.25, 0.5, 0.75, 1};
this ensures that the technology satisfies free disposability and monotonicity of inputs. Again,

to speed up the computations for this illustration we follow the same procedure as before.

Meanwhile, for the test-related bandwidth we use h = n−1/(3q), where q is the dimension

of (X,Z) over which we test for correct specification (i.e., q = 2) along with a 4th order

Epanechnikov kernel.9 We conduct 499 Rademacher wild-residual bootstrap replications

9DGM suggested use of higher order kernels when the dimensionality of the covariates was greater than 1.
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over 1,000 Monte Carlo trials for each sample size and value of a2. In all of the simulations

reported here, after µ̂U(Xi, Zi) is estimated, it is held fixed in the bootstrap replications.

Level accuracy plots for the DGM test are presented in the upper panels of Figures 4 to

5. These figures correspond to the case when a2 = 0 and we assess the performance of the

DGM test using either ̂̌Y (the original Y which has the mean subtracted off using the SVKZ

approach) or Y with the true level of inefficiency subtracted off.10

The results are striking, the use of SVKZ to remove the component of the conditional

mean of Y that is due to conditional inefficiency results in severe size distortions of the test

(though, given our earlier results using the NLS estimator, it is likely a similar phenomena

would arise with other nonparametric stochastic frontier estimators as well). Using the actual

values of the frontier, i.e., treating E[U |X = x, Z = z] as known instead of estimating it,

produces estimated size that is very close to the nominal size, for any sample size.

Similar results hold for the assessment of power. The power plot for the DGM test are

presented in the lower panels of Figures 4 and 5 for the same setups as detailed above. The

results are as expected in light of the size findings. As a2 increases the DGM test does a

better job detecting departures from correct parametric specification on X. This is true

whether we test using ̂̌Y or the true values of the frontier though, again, we need a caveat

on the size distortions just discussed.

To conclude this section, it is worth emphasizing that without separability even a fully

parametric stochastic frontier model estimated via NLS with all correct specifications, has

shown similarly poor performance in terms of the size of the test (see Figure 3), even when the

starting values in the optimization were the true values of the unknown parameters. Hence,

expecting that the SVKZ estimator (and likely any other nonparametric estimator) would

perform well in terms of size, when even correctly specified parametric approach cannot do

so, appears to be unrealistic. In turn, this justifies the approach of Kim & Schmidt (2008)

who only considered the case with separability in all their Monte Carlo scenarios and all

theoretical derivations. As a result, the rest of the paper will also focus on the separable

cases.

4.2. Results With Separability. Despite the poor performance of the DGM test to con-

duct inference on the correct specification of the stochastic frontier, the news is not all bad.

Here we detail a set of simulations that demonstrate desirable performance of DGM when

10This allows us to assess the impact that bias stemming from nonparametric estimation of the first stage
has on the performance of the DGM test.
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we adopt the separability assumption, consistent with the testing environment used by Kim

& Schmidt (2008) in their parametric framework.

4.2.1. Significance Testing. For the results presented here, we have c1 = 0, σU0 = 0.5;

bU1 ∈ {0, 0.25, 0.5, 1, 1.5} and σV 0 = 0.2; bV 1 = 0.5, which makes the noise heteroskedastic,

depending on Z. We also have bU2 = 0.2; bV 2 = 0.1, i.e., with additional heteroskedasticity

coming from X, influencing both V and U via their skedastic functions. We also tried

many other values of parameters of the skedastic functions appearing right before Equation

(13), including homoskedastic cases, and the results are similar with basically the same

conclusions.

To accurately assess the performance of the DGM significance test we present level accu-

racy and power plots in the upper and lower panels of Figure 6, respectively. These curves

are constructed using 1,000 Monte Carlo simulations with 499 Rademacher wild-residual

bootstrap resamples within each simulation. Power is calculated assuming a size of 0.05.

Overall, the results suggest that the estimated size (i.e., when bu1 = 0) is generally close to

nominal size, except for fairly small samples n = 50 or 100. Meanwhile, the power increases

as bu1 increases (for the same n) and increases in n (for the same bu1), as is expected.

4.2.2. Specification Testing. In this section we detail a set of Monte Carlo simulations to in-

vestigate the performance of the test of correct parametric specification of the stochastic fron-

tier detailed in Section 3.2. Here we consider sample sizes of n ∈ {25, 50, 100, 200, 400, 800}
for X ∼ U [1, 10] and Z ∼ U [0.1, 1]. We assume that V |x, z ∼ N (0, σ2

v) (homoskedastic

noise) with σv = 1 and that U |x, z ∼ N+(0, σ2
U(x, z)), where σU(x, z) = σ0e

β1z with β1 = 1

and σ0 = 1.

The production frontier is specified as

m(x, z) = a1x+ a2 sin(x).

The results presented below are for the case where a1 = 1. We assess size by setting a2 = 0

and power for a2 ∈ {−1,−0.75,−0.5,−0.25, 0.25, 0.5, 0.75, 1}; again this ensures that the

technology satisfies free disposability of inputs. Here we have the separable case with x only

influencing output through the technology, and z only influencing output through inefficiency.

Both of these regressions are estimated including both X and Z. Meanwhile, for the test-

related bandwidth we use h = n−1/(3q), where q is the dimension of (X,Z) over which we

test for correct specification (i.e., here it is just X so q = 1) along with an Epanechnikov
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kernel. We conduct 499 Rademacher wild-residual bootstrap replications over 1,000 Monte

Carlo trials for each sample size and value of a2. In all of the simulations reported here, after

µ̂U(Xi, Zi) is estimated, it is held fixed in the bootstrap replications.

A level accuracy plot for the DGM test is presented in the upper panel of Figure 7. This

figure corresponds to the case when a2 = 0 and we assess the performance of the DGM

test using ̂̌Y which is calculated by subtracting off the mean estimated through the SVKZ

approach, which we term Y ∗ in the figure.

As we can see the DGM test displays only minor size distortions when using ̂̌Y . This is

most likely due to the fact that X and Z are separable and uncorrelated in this example

coupled with the fact that there will be an inherent estimation error associated with the

use of ̂̌Y , which is made more pronounced with data-driven bandwidth selection. Moreover,

keep in mind that in both stages of the SVKZ estimator, we are including both X and Z in

the estimation and subsequent bandwidth selection; this undoubtedly will have an effect on

performance.

Next we compare the power of the DGM test. The corresponding estimate power curve for

the DGM test is presented in the lower panel of Figure 7. The results are as expected. As a2

increases the test does a better job detecting departures from correct parametric specification

on X. We see the classic > shape taking hold as n increases.

4.2.3. Allowing correlation. For the separable case, we also performed the same set of Monte

Carlo simulations but allowed X and Z to be correlated to determine if this had any impact

on the performance of the test using either observed output, Y or adjusted output ̂̌Y . Here,

rather than specify Z as uniform we instead generate Z as Φ(0.1Xi+εi) where εi is distributed

as N (0, 1). This puts the correlation of X and Z at ≈ 0.25.

The level accuracy plot for the DGM test is presented in the upper panel of Figure 8. As

we can see the DGM test displays size distortions when using ̂̌Y , of about 3%. This is due to

the fact, for the n = 800 setting, across the 1,000 simulations, 33 trials produced a p-value

exactly equal to 0. If we investigate these cases we see that they correspond to simulations

where the SVKZ estimator had many instances of local “wrong skewness” (Simar & Wilson,

2010, 2021). As we are including both X and Z in the estimation and bandwidth selection,

this undoubtedly makes it harder for the SVKZ estimator to detect structure.

If we remove the 0 p-value draws, we see that the DGM test works correctly when usinĝ̌Y , see Figure 9. These results suggest that practitioners deploying the DGM test may wish
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to purge 0 p-value draws in the sampling process as they are likely to distort the true nature

of the implications of the test.

Next we compare the power of the DGM test when X and Z are correlated. Estimated

power curves for the DGM test are presented in the lower panel of Figure 8 with the results

as expected. As a2 increases the test does a better job detecting departures from correct

parametric specification on X.

We see from these simulations that one can test accurately for correct functional form

when separability holds. Moreover, correlation between X and Z did not appear to adversely

impact the performance of the test beyond the issue of local wrong skewness, which is easy

for a practitioner to diagnose. Thus, consistent with the findings of Kim & Schmidt (2008),

one can confidently assess the parametric structure of a production frontier in a nearly

nonparametric setting.

5. Conclusions

Consistent specification testing is a bedrock principle in all areas of applied statistical

research. While a variety of tests for correct specification have been proposed for standard

regression settings, practically none have been thoroughly scrutinized in the realm of sto-

chastic frontiers. We have tried to fill this gap here, proposing a robust omnibus testing

facility based on the insights of DGM. Modifications were needed as direct application of

DGM does not follow when one is dealing with a frontier.

Our simulations suggest that when separability holds between those covariates that impact

the location of the frontier and the level of inefficiency, then the DGM test works reasonably

well both for testing the statistical significance of the impact of covariates on conditional

efficiency, as well as for correct parametric specification. The significance results can be

viewed as the nonparametric generalization of the work of Kim & Schmidt (2008) for the

parametric setting.

We also discovered some limitations of the tests that apparently were not perceived in

the earlier literature. Specifically, when the assumption of separability is violated, the DGM

test can suffer size distortions, which also lead to compromised power. This stems from

the manner in which bias manifests in the absence of separability and if it is present for

other estimators and other tests. Future work to examine how to mitigate this bias for

the purpose of inference are ongoing. We also note that there potentially exist further

generalizations to accommodate panel data and to adapt developments in Belotti & Ilardi
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(2018) to the nonparametric setting as well, which are left for future research. Our overall

general conclusion is in fact similar to the one reached by Simar & Wilson (2007) for the

competing alternative (DEA+truncated regression), namely: Inference for the SFM in the

semi- and nonparametric context is quite challenging, yet possible under the separability

assumption along with an appropriate bootstrap.
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Figure 1. Level accuracy and power plots for DGM specification test using

corrected output, ̂̌Y (Y ∗ in the figure), when both X and Z belong to the
inefficiency. 23
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Figure 2. Level accuracy and power plots for DGM specification test using
true frontier when both X and Z belong to the inefficiency.
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Figure 3. Level accuracy for DGM specification test using parametrically
estimated model via NLS when both X and Z belong to the inefficiency.
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Figure 4. Level accuracy and power plots for DGM specification test using

corrected output, ̂̌Y , when both X and Z belong in the frontier.
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Figure 5. Level accuracy and power plots for DGM specification test using
true output when both X and Z belong in the frontier.
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Figure 6. Level accuracy and power plots for DGM significance test under
separability and using corrected output Y ∗.
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Figure 7. Level accuracy and power plots for DGM specification test using

corrected output, ̂̌Y under separability.
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Figure 8. Level accuracy and power plots for DGM specification test using

corrected output, ̂̌Y , X and Z correlated.
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Figure 9. Level accuracy plots for DGM specification test using corrected

output, ̂̌Y , removing 0 p-values.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Level Accuracy

DGM w/ Y*
Nominal Level

A
ct

ua
l L

ev
el

n=25
n=50
n=100
n=200
n=400
n=800

31



References

Amsler, C., Prokhorov, A. & Schmidt, P. (2016), ‘Endogeneity in stochastic frontier models’, Journal of

Econometrics 190, 280–288.

Amsler, C., Prokhorov, A. & Schmidt, P. (2017), ‘Endogeneity environmental variables in stochastic frontier

models’, Journal of Econometrics 199, 131–140.

Behr, A. (2010), ‘Quantile regression for robust bank efficiency score estimation’, European Journal of

Operational Research 200, 568–581.

Belotti, F. & Ilardi, G. (2018), ‘Consistent inference in fixed-effects stochastic frontier models’, Journal of

Econometrics 202(2), 161–177.

Chen, Y.-T., Hsu, Y.-C. & Wang, H.-J. (2020), ‘A Stochastic Frontier Model with Endogenous Treatment

Status and Mediator’, Journal of Business & Economic Statistics 38(2), 243–256.

Chen, Y.-Y., Schmidt, P. & Wang, H.-J. (2014), ‘Consistent estimation of the fixed effects stochastic frontier

model’, Journal of Econometrics 181(1), 65–76.
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