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Abstract

Asymptotic statistical inference on productivity and production efficiency, using

nonparametric envelopment estimators, is now available thanks to the basic central

limit theorems (CLTs) developed in Kneip et al. (2015). They provide asymptotic

distributions of averages of Data Envelopment Analysis (DEA) and Free Disposal

Hull (FDH) estimators of production efficiency. As shown in their Monte-Carlo

experiments, due to the curse of dimensionality, the accuracy of the normal ap-

proximation is disappointing when the sample size is not large enough. Simar &

Zelenyuk (2020) have suggested a simple way to improve the approximation by using

a more appropriate estimator of the variances. In this paper we suggest another way

to improve the approximation, by smoothing out the spurious values of efficiency

estimates when they are in a neighborhood of 1. This results in sharpening the

data for observations near the estimated efficient frontier. The method is very easy

to implement and does not require more computations than the original method.

We compare our approach using Monte-Carlo experiments, both with the basic

method and with the improved method suggested in Simar & Zelenyuk (2020) and

in both cases we observe significant improvements. We show also that the Simar

& Zelenyuk (2020) idea can also be adapted to our sharpening method, bringing

additional improvements. We illustrate the method with some real data sets.
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1 Introduction

Envelopment estimators have been widely used in performance analysis as a powerful

tool to estimate the efficiency of decision making units (DMUs). The application of

envelopment estimators, such as Data Envelopment Analysis (DEA) along the lines of

Farrell (1957), Charnes et al. (1978) and Banker et al. (1984), and the Free Disposal Hull

(FDH) originated by Deprins et al. (1984), is wide and deep, ranging from private sectors

(e.g., manufacturing, banking, insurance, etc.) to public sectors (e.g., education, health

care, etc.), from micro level (e.g., departments within firms, or firms themselves) to macro

level (regions, or countries). Applied researchers in the field, besides (and in addition to)

investigating the estimates of individual efficiency, are usually interested in analyzing the

performance of some groups of DMUs that share common characteristics (e.g., domestic

banks vs. foreign banks, public hospitals vs. private hospitals, etc.). These analyses are

largely based on the statistical inference for sample statistics, such as the simple mean or

weighted mean, of the estimated efficiency.

The literature on statistical properties of envelopment estimators of technical efficiency

first emerged around the early 1990s and flourished over the last two decades with many

breakthroughs. The statistical properties of envelopment estimators at a fixed point have

been well-established by the seminal works of Kneip et al. (1998), Park et al. (2000),

Kneip et al. (2008), and Park et al. (2010). Meanwhile, the statistical properties of the

estimators at a random point have been recently brought to the literature by the seminal

work of Kneip et al. (2015). Based on these properties, Kneip et al. (2015) derive the

Centre Limit Theorems (CLTs) for the envelopment estimators of technical efficiency.

Many other important works also have been leveraged by the important results in Kneip

et al. (2015), such as hypothesis testing in the context of DEA/FDH (Kneip et al. 2016),

the CLTs for aggregate efficiency (Simar & Zelenyuk 2018), the CLTs for conditional

efficiency (Daraio et al. 2018), the CLTs for Malmquist indices (Kneip et al. 2020), and

the CLTs for cost and allocative efficiency (Simar & Wilson 2020b), to mention a few.

Although the results in Kneip et al. (2015) provide a solid ground for many of the

theoretical developments in the field, the performance of the CLTs is sometimes disap-

pointing for practitioners, especially for small samples with a large dimension of inputs

and outputs. To improve the finite sample approximation of the CLTs, Simar & Zelenyuk

(2020) proposed a ‘simple to compute’ approach, which is based on a bias-corrected ver-

sion of the variance estimator. Simar & Zelenyuk (2020) explore the performance of their

proposed approach with various Monte Carlo simulation scenarios. The simulation results

suggest that the improvement in finite samples is sometimes substantial, but there is still

room for further improvement.

In this study, we propose another way to improve the CLT approximations. The
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proposed improvements are mirroring the work of Simar & Zelenyuk (2006) and Kneip

et al. (2011), who addressed the discontinuity issue to improve the statistical inference in

the DEA/FDH context. Specifically, the idea is to smooth out, in an appropriate way, the

spurious values of efficiency estimates when they are in a neighborhood of 1 (i.e., the 100%-

efficiency bound). We know indeed from previous works that this “discretization” near the

boundary creates problems when estimating the distribution of efficiency estimates for the

purpose of bootstrap approximations, see e.g., Simar & Wilson (1998), Simar & Zelenyuk

(2006), Kneip et al. (2008) and Kneip et al. (2011). In our context, this smoothing-out

results in sharpening the data for observations located near the estimated efficient frontier

before applying the CLTs. The method is very easy to implement and does not require

more computations than the original method. We investigate the size of the improvements

by using Monte-Carlo experiments, compared both to the basic method in Kneip et al.

(2015) and to the improved method suggested in Simar & Zelenyuk (2020). We show

also that the latter can also be adapted to our sharpening method, bringing additional

improvements.

Our paper is organized as follows. The next section briefly discusses the production

theory underlying the analysis of technical efficiency. Section 3 introduces the envelopment

estimators of technical efficiency. Section 4 summarizes the statistical properties of these

estimators. Section 5 presents our data sharpening idea to improve the accuracy of the

CLTs. Section 6 provides Monte Carlo simulation evidence about the performance of the

proposed approach for various sample sizes and various dimensions of inputs/outputs.

Section 7 provides some illustrations with real data sets and Section 8 summarizes the

concluding remarks.

2 Theoretical Background

To facilitate our discussion, in this section we briefly discuss the production theory un-

derlying the analysis of technical efficiency.

2.1 Characterization and Axioms of Production Technology

A production technology in which a production unit utilizes p inputs, denoted as a

p−dimensional column vector x ∈ ℜp
+, to produce q outputs, denoted as a q−dimensional

column vector y ∈ ℜq
+, can be characterized generally by a technology set, defined as

Ψ = {(x, y) ∈ ℜp
+ ×ℜq

+ : x can produce y} . (2.1)

The production technology can be equivalently characterized by a portion of the tech-

nology set in the output space, which is referred to as the output set. The output set is
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defined as

P (x) = {y ∈ ℜq
+ : x can produce y} . (2.2)

When the efficiency measure is a concern, the boundary of the technology set is of interest.

The boundary of the technology set is defined as

Ψ∂ =
{
(x, y) ∈ Ψ :

(
δ−1x, δy

)
/∈ Ψ,∀δ > 1

}
. (2.3)

Usually, some standard axioms are imposed on the production technology, which can be

summarized as follows (see Sickles & Zelenyuk (2019) and references therein for more

detailed discussion).

A1. It is impossible to produce outputs without any inputs, i.e., y /∈ P (0p) , ∀y ≥
0q and y ̸= 0q.

A2. It is possible to produce nothing, i.e., 0q ∈ P (x) , ∀x ∈ ℜp
+.

A3. P (x) is a bounded set for all x ∈ ℜp
+.

A4. Ψ is a closed set.

A5. All inputs and outputs are strongly disposable, i.e., (x0, y0) ∈ Ψ ⇒ (x, y) ∈ Ψ,∀x ≥
x0, y ≤ y0.

2.2 Measure of Technical Efficiency

There are various measures of efficiency in the literature, yet the most popular efficiency

measure appears to be the Farrell-Debreu technical efficiency. The Farrell-Debreu tech-

nical efficiency measures the radical distance from a point representing a production unit

in output space (input space) to the boundary of the technology set in an output (input)

orientation. For the sake of brevity, our discussion here focuses on the Farrell-Debreu

output-oriented technical efficiency, where the radical distance is measured in an output

orientation. For a production unit with input-output allocation (x, y), the Farrell-Debreu

output-oriented technical efficiency measure is defined as

θ (x, y) = sup
θ

{θ > 0 : (x, θy) ∈ Ψ} . (2.4)

By construction, for all (x, y) ∈ Ψ, we have θ(x, y) ≥ 1, the value one characterizes a

production plan (x, y) that belongs to the efficient boundary Ψ∂. More generally, θ(x, y) >

1 indicates the proportionate increase of the outputs the firm located at (x, y) should

perform to reach the efficient frontier.
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3 Envelopment Estimators of Technical Efficiency

In practice, the technology set is not observable, and so neither is the efficiency measure.

Researchers need to estimate the technology set and the related efficiency from a random

sample of data, say, Xn = {(Xi, Yi) | i = 1, . . . , n}. Envelopment estimators appear to

be one of the most popular methods to estimate the technology and efficiency. Among

these, the estimator requires a minimum set of assumptions is the Free Disposal Hull

(FDH) estimator. This estimator only requires the assumption on strong disposability of

all inputs and outputs and is formulated as

θ̂ (Xi, Yi | Xn) ≡ max
ζ1,...,ζn,θ

{
θ :

n∑
k=1

ζkYk ≥ θYi,

n∑
k=1

ζkXk ≤ Xi,

θ ≥ 0, ζk ∈ {0, 1} ,
n∑

k=1

ζk = 1

}
. (3.1)

If in addition to strong disposability, one assumes that the technology set is convex and

global variable returns to scale (VRS), one can then use the VRS-DEA estimator, which

is formulated as

θ̂ (Xi, Yi | Xn) ≡ max
ζ1,...,ζn,θ

{
θ :

n∑
k=1

ζkYk ≥ θYi,
n∑

k=1

ζkXk ≤ Xi,

θ ≥ 0,∀ζk ≥ 0,
n∑

k=1

ζk = 1

}
. (3.2)

Finally, if instead of global variable return to scale, one assumes that the technology is

global constant return to scale (CRS), one can then utilize the CRS-DEA estimator, which

is formulated as

θ̂ (Xi, Yi | Xn) ≡ max
ζ1,...,ζn,θ

{
θ :

n∑
k=1

ζkYk ≥ θYi,
n∑

k=1

ζkXk ≤ Xi,

θ ≥ 0,∀ζk ≥ 0

}
. (3.3)

The flexibility on assumptions about the reference technology does not come without

cost, which is a slower rate of convergence of efficiency estimators, compared to the rate

achieved in restrictive parametric models, when the dimension of the model, p + q, in-

creases. This is known as the “curse of dimensionality”. We will discuss it in more detail

in the next section.
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4 Statistical Properties

4.1 Basic CLTs from Kneip et al. (2015)

Although statistical properties of envelopment estimators of technical efficiency at a fixed

point are well-established in the literature, the statistical properties of these estimators at

a random point, which is necessary to establish central limit theorems for mean efficiency,

has recently been developed by Kneip et al. (2015). The three most important results in

the work of Kneip et al. (2015) can be summarized as follows 1

E
[
θ̂ (Xi, Yi | Xn)− θ (Xi, Yi)

]
= Cn−κ +Rn,κ, (4.1)

E

[(
θ̂ (Xi, Yi | Xn)− θ (Xi, Yi)

)2]
= o

(
n−κ

)
, (4.2)∣∣∣COV

[
θ̂ (Xi, Yi | Xn)− θ (Xi, Yi) , θ̂ (Xj, Yj | Xn)− θ (Xj, Yj)

]∣∣∣ = o
(
n−1
)
, (4.3)

where C is a constant, Rn,κ is a remainder term of order o (n−κ) or smaller, κ is the rate of

convergence and depends on the types of estimators and the dimension of the production

space. Specifically, κ equals to 1/(p+ q), 2/(p+ q+1) and 2/(p+ q) for FDH, VRS-DEA,

and CRS-DEA estimators, respectively. We see that the achieved rates of convergence for

these non-parametric estimators, i.e., nκ, may be much lower than the usual rate achieved

in most parametric models, i.e.,
√
n, when p+ q increases.

From the above results, one can see that the envelopment estimators are biased and

more importantly the bias vanishes with a slower rate compared to the variance when the

sample size increases. As a result, to derive limiting distribution for the mean efficiency,

Kneip et al. (2015) suggest correcting for the bias and controlling for the scaling factor

when necessary. To discuss the procedure in Kneip et al. (2015) in more detail, let us first

define µθ as the population mean of the true efficiency, i.e.,

µθ = E (θ (X, Y )) , (4.4)

σ2
θ as the population variance of the true efficiency, i.e.,

σ2
θ = V ar (θ (X, Y )) , (4.5)

and θn as the sample mean of the estimated efficiency, i.e.,

θn =
1

n

n∑
i=1

θ̂ (Xi, Yi | Xn) . (4.6)

1All the results here are based on a set of mild regularity assumptions about the data generating

process specified in Kneip et al. (2015). Typically they concern the smoothness of the frontier, the

continuity of the density of (X,Y ) on Ψ and the strict positivity of the latter on the frontier.
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Clearly we see from (4.1) that

E
[
θn
]
= µθ + Cn−κ +Rn,κ. (4.7)

The bias correction is obtained through a generalized jackknife method. Specifically,

the original sample Xn is randomly divided into two disjoint subsets X (1)
n/2 and X (2)

n/2 both

of size n/2. Then, in each subset, efficiency scores are estimated and the averages are

computed by using only the sample of size n/2. Formally, for ℓ = 1, 2 we have

θ
(ℓ)

n/2 = 2n−1
∑

{
i|(Xi,Yi)∈X

(ℓ)
n/2

} θ̂
(
Xi, Yi | X (ℓ)

n/2

)
. (4.8)

Kneip et al. (2015) show that the consistent estimator of the bias of θn is then given by

B̂n,κ = (2κ − 1)−1(θ
∗
n/2 − θn), (4.9)

where

θ
∗
n/2 =

θ
(1)

n/2 + θ
(2)

n/2

2
. (4.10)

The main argument in Kneip et al. (2015) is that

B̂n,κ = Bn,κ +Rn,κ + op(n
−1/2), (4.11)

where Bn,κ = Cn−κ is the leading term in the bias of the envelopment estimators as shown

in (4.1) and (4.7). As explained in Kneip et al. (2016), this jackknife operation can be

repeated J times, providing at each step the bias correction B̂
(j)
n,κ, then by averaging over

the J replications, we obtain an estimator of the bias with less variance

B̂n,κ = J−1

J∑
j=1

B̂(j)
n,κ. (4.12)

The CLTs in Kneip et al. (2015) can then be summarized in the following theorem.

Theorem 4.1. Under the appropriate set of assumptions of Theorem 3.1, 3.2, or 3.3

specified in Kneip et al. (2015), for p + q ≤ 5 if a CRS-DEA estimator is used and Ψ is

CRS and is convex, for p + q ≤ 4 if a VRS-DEA estimator is used and Ψ is convex, for

p+ q ≤ 3 if a FDH estimator is used and satisfies free disposability of inputs and outputs,

as n → ∞ we have

√
n
(
θn − B̂n,κ − µθ +Rn,κ

)
d−→ N

(
0, σ2

θ

)
, (4.13)

and when κ < 1/2, then as n → ∞ we have

√
nκ

(
θnκ − B̂n,κ − µθ +Rn,κ

)
d−→ N

(
0, σ2

θ

)
, (4.14)
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where θnκ is a subsample version of θn, in the sense that the average is taken over a

random subsample X ∗
nκ

⊆ Xn of size nκ = ⌊n2κ⌋ < n. Formally

θnκ =
1

nκ

∑
{i:(Xi,Yi)∈X ∗

nκ}
θ̂ (Xi, Yi|Xn) . (4.15)

It should be noticed that in (4.15), the notation is explicit: we compute an average over

a random subsample of points in X ∗
nκ
, but the reference set for each efficiency estimator

is the full sample Xn.

Remark. As discussed in Kneip et al. (2015), both results in (4.13) and (4.14) are ap-

plicable for the CRS-DEA estimator with p + q = 5, for the VRS-DEA estimator with

p + q = 4, and for the FDH estimator with p + q = 3, yet the result in (4.14) is more

preferable for these cases because the neglected term in (4.14) (i.e.,
√
nκRn,κ) converges

to zero faster than the neglected term in (4.13) (i.e.,
√
nRn,κ).

In order to apply the CLTs in practice, one needs to obtain a consistent estimate of

population variance of efficiency. Kneip et al. (2015) suggest using the following estimator

σ̂2
θ,n =

1

n

n∑
i=1

(
θ̂ (Xi, Yi | Xn)− θn

)2
. (4.16)

With these results, one can estimate a confidence interval for the population mean of

efficiency, µθ. Specifically, when (4.13) is applied, the (1−α)100% confidence interval for

µθ is given by [
θn − B̂n,κ − zα/2

σ̂θ,n√
n
, θn − B̂n,κ + zα/2

σ̂θ,n√
n

]
, (4.17)

where zα/2 is the critical value corresponding to the area of α/2 on the right tail of

the standard normal distribution. Meanwhile, when (4.14) is applied, the (1 − α)100%

confidence interval for µθ is given by[
θn,κ − B̂n,κ − zα/2

σ̂θ,n√
nκ

, θn,κ − B̂n,κ + zα/2
σ̂θ,n√
nκ

]
. (4.18)

Kneip et al. (2015) investigate the quality of the CLT approximations by intensive Monte-

Carlo experiments. Kneip et al. (2016) do the same for evaluating the quality of the

approximations in various testing situations exploiting Theorem 4.1 to build appropriate

test statistics. The approximations work reasonably well in most of the cases but become,

as expected, disappointing when p+ q increases with small n. This will be illustrated and

confirmed in our Monte-Carlo experiments below.
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4.2 Improvements suggested by Simar & Zelenyuk (2020)

Simar & Zelenyuk (2020) point out that σ̂2
θ,n in (4.16) is based on θn, a biased estimator

of the population mean, and thus it might be a source of error in estimating σ2
θ , with

implications for finite sample accuracy of the CLT approximations. To correct for this,

Simar & Zelenyuk (2020) suggest using the available first-order bias-corrected estimator

of the mean, i.e.,

θn,bc = θn − B̂n,κ. (4.19)

It turns out that this provides the following estimator for the population variance

̂̂σ2

θ,n = σ̂2
θ,n + B̂2

n,κ. (4.20)

Simar & Zelenyuk (2020) show that the confidence intervals in (4.17) and (4.18) are still

valid when replacing σ̂2
θ,n by ̂̂σ2

θ,n and show in Monte Carlo experiments that this provides

significant improvements on the accuracy of the coverages of the resulting confidence

intervals.

But, even with this enhancement, the CLT approximations are still disappointing,

especially for the cases of small sample sizes and for the large number of inputs and

outputs. So there is room for additional improvements, as explained and confirmed below.

5 Data sharpening

It is known that the estimation of the distribution of the efficiency scores from the em-

pirical distribution of their DEA/FDH estimators is jeopardized by the discretization of

the latter near its boundary, i.e., values at data points where the efficiency is not far from

one. In particular, a lot of the resulting estimates will have the value of one, where the

DGP, by continuity, assumes the probability of zero of these values. This is referred in the

literature to as “spurious” ones. So far this issue has been raised when using bootstrap

approximations where the “naive” bootstrap is seen as being inconsistent. In this case,

some smoothing of the efficiency scores is requested, see e.g., Simar & Wilson (1998) and

Kneip et al. (2008). A simplified smoothing approach, smoothing-out only the values for

data points near the efficient boundary, has been used in the related bootstrap setups by

Simar & Zelenyuk (2006) and Kneip et al. (2011). We will use the latter idea in our setup

here, i.e., for improving the approximations in Theorem 4.1. We first indicate that this

discretization issue may impact the quality of the CLT approximations from two sources.

First, evidently, we know that Prob(θ(Xi, Yi) = 1) = 0, but by construction, the

envelopment estimators will provide many values θ̂(Xi, Yi | Xn) = 1, whereas the true

θ(Xi, Yi) > 1 with probability one, especially when the dimension of the problem p + q

increases. Thus, these spurious ones provide additional bias in the estimation of µθ when
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using θn or θn,κ. In addition, it can be seen that this discretization also impacts the

estimator of the bias B̂n,κ defined in (4.9). To see this, we can look at a different way to

compute B̂n,κ. Let us define for i = 1, . . . , n,

θ̂∗i =

{
θ̂
(
Xi, Yi | X (1)

n/2

)
if (Xi, Yi) ∈ X (1)

n/2

θ̂
(
Xi, Yi | X (2)

n/2

)
if (Xi, Yi) ∈ X (2)

n/2,
(5.1)

and define a bias correction for θ̂
(
Xi, Yi | Xn

)
as

B̂i,n,κ = (2κ − 1)−1
(
θ̂∗i − θ̂

(
Xi, Yi | Xn

))
. (5.2)

Then, it is easy to verify that we can compute B̂n,κ in (4.9) as

B̂n,κ = n−1

n∑
i=1

B̂i,n,κ. (5.3)

Note that if we repeat the jackknife operation J times, we can define for each j = 1, . . . , J ,

the individual measure B̂
(j)
i,n,κ and then define B̂i,n,κ = J−1

∑J
j=1 B̂

(j)
i,n,κ.

2 By looking into

the decomposition in (5.1) and (5.2), we see that if θ̂
(
Xi, Yi | Xn

)
= 1, we will also have

θ̂∗i = 1, and thus the individual observation i will not contribute to the bias correction

in (5.3). Moreover, there is a non-negligible probability that the same will happen for

observations i such that θ̂
(
Xi, Yi | Xn

)
= 1 + τ , for some small value of τ .

So we hope to improve the accuracy of the CLT approximation by smoothing-out the

estimated efficiency scores that are equal or near one. There are several asymptotically

equivalent ways to achieve this. Given our purpose, we choose a way which gives, with

probability one, smoothed values θ̃
(
Xi, Yi | Xn

)
≥ θ̂

(
Xi, Yi | Xn

)
when θ̂

(
Xi, Yi | Xn

)
≤

1 + τ . Specifically, the smoothed values are defined as

θ̃
(
Xi, Yi | Xn

)
=

{
θ̂
(
Xi, Yi | Xn

)
if θ̂
(
Xi, Yi | Xn

)
> 1 + τ

θ̂
(
Xi, Yi | Xn

)
× ξ̃i otherwise ,

(5.4)

where ξ̃i is a random independent draw from a uniform distribution on the interval [1, 1+

τ ]. The underlying idea is to approximate the density of θ(X, Y ), locally, in the τ -

neighborhood of the frontier, by a uniform density.3 Clearly, not every τ is suitable for

this purpose: while it should be ‘big enough’ to do the smoothing-out job, it should also

be ‘small enough’ to assure the central limit theorems that we leverage on here are still

applicable. Below we derive the lower and upper bounds for τ .

2This equivalent way to define B̂n,κ was already mentioned in Kneip et al. (2016).
3This smoothing is asymptotically equivalent to the one suggested in Kneip et al. (2011) and Simar

& Zelenyuk (2006), where in the second line of (5.4), they define θ̃
(
Xi, Yi | Xn

)
= ξ̃i. Note that this

latter way of smoothing has also been evaluated in our Monte-Carlo experiments, giving qualitatively

similar results, although in some cases, they are slightly inferior in terms of the achieved coverages of the

resulting confidence intervals.
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To assure the consistency of the density estimator after smoothing, the neighborhood

of 1, tuned by τ , should be large enough: we must have τ → 0 and n−κ/τ → 0 as n → ∞,

see Theorem 4.1 in Kneip et al. (2011). So if we define τ = n−γ, this requires 0 < γ < κ.

Intuitively, we must smooth out the efficiency estimates that are in a neighborhood of the

frontier of the bigger order than the statistical precision of the estimator.

On the other hand, we do not want to lose the basic property of our estimator of the

mean characterized by (4.7). The CLT will now be centered on the new estimator of µθ

given by

θ̃n =
1

n

n∑
i=1

θ̃ (Xi, Yi | Xn) , (5.5)

and we need τ to be small enough to keep the asymptotic properties of θn. So we need

θ̃n = θn + op(n
−κ). It is easy to see that

θ̃n = θn +Op(τ
2). (5.6)

The deviation Op(τ
2) comes from the fact that ξ̃i = 1+Ui where Ui is a uniform on [0, τ ],

so the deviation, when it applies, is of the order Op(τ) and this happens with a probability

of order O(τ) = Prob
(
θ̂(Xi, Yi | Xn) < 1+τ

)
. So we need Op(τ

2) = op(n
−κ), which implies

γ > κ/2, thus providing the lower bound for γ to keep the desired asymptotic properties

of θn. Therefore, the smoothing-out keeps the asymptotic properties of θn for all values

of τ = n−γ with κ/2 < γ < κ. Thus, we have exact (and fixed) values for lower and upper

bounds for γ, which in turn imply the lower and upper bounds for τ , which will vary with

n and the dimension of the production model.

Interestingly, the smoothing technique in (5.4) is equivalent to “data sharpening” of

the original observations in Xn, which are close to the frontier.4 Indeed, we can see the

smoothed estimator of the efficiencies as being the DEA/FDH estimators at sharpened

data points (Xi, Ỹi), i = 1, . . . , n, but computed with respect to the same reference sample

Xn. Indeed let us define

Ỹi =

{
Yi if θ̂

(
Xi, Yi | Xn

)
> 1 + τ

Yi/ξ̃i otherwise .
(5.7)

It is easy to check that θ̃
(
Xi, Yi | Xn

)
= θ̂

(
Xi, Ỹi | Xn

)
, i.e., the regular FDH/DEA

estimator for the sharpened sample point (Xi, Ỹi), but with the reference set being the

original sample Xn.

Of course, for coherence, the jackknife estimator of the bias in θ̃n has to be adapted.

Specifically, in (5.1) and (5.2), the efficiency scores are now evaluated for points in the

4The terminology “data sharpening” was used, e.g., by Choi et al. (2000) in the context of non-

parametric regression and more recently by Doosti & Hall (2016) in the context of improving the accuracy

of density estimators by perturbation of the data. The perturbation can be additive or multiplicative, as

in our case.
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sharpened sample with the reference sets remaining the same (i.e., Xn and its two subsets

X (ℓ)
n/2, ℓ = 1, 2). In other words, in the jackknife procedure, θ̂

(
Xi, Ỹi | Xn

)
, θ̂
(
Xi, Ỹi | X (1)

n/2

)
,

and θ̂
(
Xi, Ỹi | X (2)

n/2

)
are now used in the places of the original θ̂

(
Xi, Yi | Xn

)
, θ̂
(
Xi, Yi |

X (1)
n/2

)
, and θ̂

(
Xi, Yi | X (2)

n/2

)
, respectively. We denote the resulting bias estimate B̃n,κ. Due

to (5.6), it shares the same property in (4.11) as B̂n,κ. Finally, the more appropriate

consistent estimator of σ2
θ may be computed as

σ̃2
θ,n =

1

n

n∑
i=1

(
θ̃ (Xi, Yi | Xn)− θ̃n

)2
. (5.8)

So the confidence intervals described above in (4.17) and (4.18) for µθ are now given by[
θ̃n − B̃n,κ − zα/2

σ̃θ,n√
n
, θ̃n − B̃n,κ + zα/2

σ̃θ,n√
n

]
, (5.9)

and when (4.14) is applied,[
θ̃n,κ − B̃n,κ − zα/2

σ̃θ,n√
nκ

, θ̃n,κ − B̃n,κ + zα/2
σ̃θ,n√
nκ

]
. (5.10)

Finally the improvement suggested by Simar & Zelenyuk (2020) can also be applied.

It can be shown that this provides the following estimator of the variance˜̃σ2

θ,n = σ̃2
θ,n + B̃2

n,κ. (5.11)

So the alternative is to use ˜̃σθ,n in place of σ̃θ,n in the intervals (5.9) and (5.10).

We will investigate through our Monte-Carlo experiments, if these changes introduced

by our data sharpening described in (5.7) provide, as expected, significant improvements

on the coverages of the resulting confidence intervals.

6 Monte Carlo Experiments

6.1 Data Generating Process

To investigate the performance of the proposed improvements, we perform Monte Carlo

simulation using the same data generating process as in Simar & Zelenyuk (2020) (for the

multiple outputs scenario). Specifically, the technology set characterizing the production

technology is given by

Ψ =

(x, y) :

(
q∑

ℓ=1

βℓ (yℓ)
2

)1/2

≤
p∏

s=1

(xs)
αs

 , (6.1)

where αs ≥ 0, βℓ ≥ 0, and
∑q

ℓ=1 βℓ = 1. The values of αs and βℓ for different scenarios

are summarized in Table 1.5

5The Monte Carlo simulation for each scenario involves 1000 MC simulations, 20 reshuffles (to estimate

bias), and sample sizes of up to 1000.
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Table 1: Parameters for Data Generating Process

p q βℓ αs

1 1 β1 = 1 α1 = 0.4

2 1 β1 = 1 α1 = 0.4, α2 = 0.2

2 2 β1 = 0.5, β2 = 0.5 α1 = 0.4, α2 = 0.2

3 2 β1 = 0.5, β2 = 0.5 α1 = 0.4, α2 = 0.2, α3 = 0.1

3 3 β1 = 0.5, β2 = 0.3, β3 = 0.2 α1 = 0.4, α2 = 0.2, α3 = 0.1

To generate the data, for each observation i ∈ {1, . . . , n}, we first generate efficient

output, Y ∂
ℓi , such that Y ∂

ℓi
iid∼ Uniform (0.1, 1) for each ℓ ∈ {1, . . . , q}. Then for the case

p = 1, we let

X1i =

(
q∑

ℓ=1

βℓ

(
Y ∂
ℓi

)2)1/2α1

, (6.2)

for each i ∈ {1, . . . , n}. For the case p ≥ 2, for each i ∈ {1, . . . , n}, we generate p − 1

inputs, Xsi, for each s ∈ {2, . . . , p}, such that Xsi
iid∼ Uniform (0, 1) and let

X1i =


(∑q

ℓ=1 βℓ

(
Y ∂
ℓi

)2)1/2∏p
s=2 (Xsi)

αs


1/α1

. (6.3)

We then generate for each observation i ∈ {1, . . . , n} the true efficiency, θi, such that6

θi ∼ |N
(
0, σ2

θ

)
|+ 1, (6.4)

and the observed output is determined by the efficient output and the true efficiency,

given as

Yi =
Y ∂
i

θi
. (6.5)

We investigate the performance of the CLTs under different approaches by examining

the empirical coverage (corresponding to the nominal coverage of 0.95) of the estimated

confidence interval. The empirical coverage is the percentage of times (out of total number

of Monte Carlo (MC) replications) that the estimated confidence interval includes the true

value of the population mean. In our results below we use the middle of the range for

the possible values of τ = n−γ, with κ/2 < γ < κ, i.e., τ = n−0.75κ. We did the same

simulations with γ in a grid of values ranging from 0.55κ to 0.95κ and the results are

summarized in the Appendix. While in many cases the results are similar, the level of γ

near 0.75κ appears to provide the best performance. Developing a rule for choosing an

optimal level of γ might be a fruitful path forward.

6The tables in the next section report the results where σθ = 1.
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6.2 Results and Discussion

Before discussing the results, it is important to note that in our Monte Carlo experiments,

we investigate the sizes of the improvements of our sharpening method both compared to

the basic method in Kneip et al. (2015) and to the improved method suggested in Simar

& Zelenyuk (2020). Moreover, we also examine the additional improvements by adapting

the latter to our sharpening method. For further reference, let us denote these methods

by the following solutions.

� Solution 1: The basic method in Kneip et al. (2015), i.e., estimating confidence

intervals using (4.17) or (4.18).

� Solution 2: The improved method suggested in Simar & Zelenyuk (2020), i.e., esti-

mating confidence intervals using (4.17) or (4.18) with σ̂θ,n being replaced by ̂̂σθ,n.

� Solution 3: Our sharpening method, i.e., estimating confidence intervals using (5.9)

or (5.10).

� Solution 4: The improved method suggested in Simar & Zelenyuk (2020) adapted

to our sharpening method, i.e., estimating confidence intervals using (5.9) or (5.10)

with σ̃θ,n being replaced by ˜̃σθ,n .

From Figure 1 and Table 2, it can be seen that our Monte Carlo experiments confirm

the result in Simar & Zelenyuk (2020) that Solution 2 provides persistent improvements

compared to Solution 1, and the improvements are substantial for relatively small samples

and large dimensions of inputs and outputs. For example, for n = 100, the improvements

provided by Solution 2 (relative to Solution 1) are around 0.16 with p = 3, q = 2 and

around 0.21 with p = 3, q = 3. However, even with the enhancement, the empirical

coverages from Solution 2 under these scenarios (i.e., 0.666 and 0.711) are still far from

the nominal coverages of 0.95.

Regarding our sharpening method, Solution 3 provides significant improvements com-

pared to both Solution 1 and Solution 2.7 The improvements provided by Solution 3

range from 0.03 to 0.35 (relative to Solution 1) and from 0.03 to 0.14 (relative to Solution

2). For instance, with p = 3, q = 2 and n = 100, the empirical coverage under Solu-

tion 3 is around 0.27 higher than Solution 1 and 0.11 higher than Solution 2. When the

7It is worth clarifying here that we apply the rule-of-thumb that the magnitude of difference between

an empirical coverage and the nominal coverage is significant if it is greater than or equal to 0.014

(i.e., the “error bound” corresponding to the 95% level of confidence given by 2 ×
√

0.95(1− 0.95)

M
≈

0.014, where M = 1000 is the number of MC replications) and the magnitude of difference between two

empirical coverages is significant if it is greater than or equal to 0.028 (i.e., two times the “error bound”

corresponding to the 95% level of confidence).
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sample size increases, the magnitudes of improvements diminish (as expected, because of

the consistency of these approaches). For example, with the same numbers of inputs and

outputs, the improvements decrease to around 0.10 and 0.03, respectively, for n = 300.

Moreover, it is worth noting here that the improvements provided by Solution 3 are, to

some extent, not persistent. For instance, when the sample size increases to n = 1000,

with p = 3, q = 3, the empirical coverage under Solution 3 becomes 0.05 less than the

empirical coverage under Solution 1.

When adapting the improved method suggested in Simar & Zelenyuk (2020) to our

sharpening method, the improvements are more substantial, and more importantly, are

persistent. As can be seen from Table 2, Solution 4 provides improvements ranging from

0.03 to 0.46 compared to Solution 1 and ranging from 0.03 to 0.25 compared to Solution

2. For example, with n = 100, the improvement provided by Solution 4 relative to

Solution 2 is around 0.15 for p = 2, q = 2 (i.e., 0.884 versus 0.734) and around 0.24 for

p = 3, q = 2 (i.e., 0.909 versus 0.666). Even with relatively large sample sizes, such as

n = 500, Solution 4 still provides significant improvements. For instance, for n = 500 and

with p = 3, q = 2, the empirical coverage under Solution 4 is 0.954, which is around 0.05

higher than the empirical coverage under Solution 2 (i.e., 0.906). Meanwhile, it is worth

noting here that for relatively large dimensions of inputs and outputs, Solution 4 provides

a confidence level slightly greater than 95% (i.e., more conservative). For example, with

p = 3, q = 3, the empirical coverages under Solution 4 are around 0.02 higher than the

nominal coverage of 0.95 for n ≤ 500, and converge to the nominal coverage when the

sample size increases to n = 1000. In this regard we note that while ideally one may wish

an approach to always attain exactly the perfect (or nominal) levels, in practice there is

often some under– or over–estimation for finite samples and so the key questions are: how

often?, by how much?, and how substantial it is for practical implications (e.g., in terms

of the length of a confidence interval)? In this respect, the slightly more conservative

confidence intervals that we observe for Solution 4 at moderate sample sizes, like n = 500,

can be viewed as the positive feature of an approach, relative to the under–estimation of

confidence intervals (which may lead to over–rejection of related hypotheses).

With regard to the average lengths of confidence intervals, we can see from Table 3

that Solution 2 and Solution 4 provide, on average, relatively wider confidence intervals

compared to Solution 1 and Solution 3 because they use bias-corrected versions of sample

variances.8 The differences in the average lengths of confidence intervals are, however,

not significant for relatively small dimensions of inputs and outputs, and diminish when

sample sizes increase.

In summary, Solution 4 appears to be a winner by most counts here: in all our sim-

ulations it showed the most substantial and persistent improvement upon the current

8We also examine the median lengths of confidence intervals and the conclusion is qualitatively similar.
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approaches in the literature. Moreover, it is interesting to note that the improvement is

more substantial with higher dimensions of inputs and outputs, where it appears that the

data sharpening becomes even more useful since the proportion of envelopment estimates

in a neighborhood of 1 increases substantially with the increase in the dimension.
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Figure 1: Empirical Coverages for the Mean Efficiency with τ = n−0.75κ
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Table 2: Empirical Coverages for the Mean Efficiency with τ = n−0.75κ

n p q n−m
CI level = 0.95

Solution 1 Solution 2 Solution 3 Solution 4

100

1 1 17.14 0.824 0.834 0.844 0.852

2 1 35.66 0.580 0.628 0.700 0.747

2 2 48.91 0.654 0.734 0.806 0.884

3 2 64.88 0.507 0.666 0.780 0.909

3 3 73.11 0.505 0.711 0.853 0.962

200

1 1 22.23 0.864 0.871 0.871 0.874

2 1 52.11 0.713 0.746 0.794 0.816

2 2 75.42 0.783 0.833 0.852 0.909

3 2 106.64 0.708 0.806 0.880 0.955

3 3 124.51 0.736 0.877 0.893 0.976

300

1 1 26.11 0.893 0.894 0.894 0.899

2 1 64.94 0.754 0.780 0.816 0.827

2 2 97.28 0.848 0.870 0.871 0.911

3 2 141.05 0.800 0.875 0.903 0.957

3 3 167.84 0.807 0.903 0.908 0.979

500

1 1 32.39 0.912 0.912 0.916 0.918

2 1 85.20 0.832 0.840 0.861 0.868

2 2 132.78 0.884 0.916 0.905 0.930

3 2 199.89 0.844 0.906 0.925 0.954

3 3 242.83 0.902 0.954 0.916 0.970

1000

1 1 42.78 0.923 0.924 0.926 0.926

2 1 122.87 0.885 0.893 0.895 0.904

2 2 202.21 0.912 0.926 0.914 0.925

3 2 316.29 0.922 0.944 0.921 0.949

3 3 397.59 0.942 0.970 0.896 0.943

Note: (4.13) applies for p+ q < 4, (4.14) applies for p+ q ≥ 4.

n−m: is the average number of “smoothed-out” observations over 1000

MC replications.
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Table 3: Average Length of CI for the Mean Efficiency with τ = n−0.75κ

n p q n−m
CI level = 0.95

Solution 1 Solution 2 Solution 3 Solution 4

100

1 1 17.14 0.22 (0.02) 0.22 (0.02) 0.21 (0.02) 0.22 (0.02)

2 1 35.66 0.20 (0.02) 0.22 (0.02) 0.19 (0.02) 0.21 (0.02)

2 2 48.91 0.29 (0.03) 0.34 (0.03) 0.26 (0.03) 0.32 (0.03)

3 2 64.88 0.35 (0.04) 0.45 (0.05) 0.31 (0.04) 0.42 (0.05)

3 3 73.11 0.41 (0.05) 0.56 (0.07) 0.35 (0.05) 0.54 (0.06)

200

1 1 22.23 0.16 (0.01) 0.16 (0.01) 0.16 (0.01) 0.16 (0.01)

2 1 52.11 0.15 (0.01) 0.16 (0.01) 0.14 (0.01) 0.15 (0.01)

2 2 75.42 0.24 (0.02) 0.27 (0.02) 0.22 (0.02) 0.25 (0.02)

3 2 106.64 0.31 (0.02) 0.37 (0.03) 0.28 (0.02) 0.35 (0.03)

3 3 124.51 0.37 (0.03) 0.49 (0.04) 0.32 (0.03) 0.46 (0.04)

300

1 1 26.11 0.13 (0.01) 0.13 (0.01) 0.13 (0.01) 0.13 (0.01)

2 1 64.94 0.12 (0.01) 0.13 (0.01) 0.12 (0.01) 0.13 (0.01)

2 2 97.28 0.21 (0.01) 0.23 (0.01) 0.20 (0.01) 0.22 (0.01)

3 2 141.05 0.28 (0.02) 0.33 (0.02) 0.26 (0.02) 0.31 (0.02)

3 3 167.84 0.34 (0.02) 0.44 (0.02) 0.31 (0.02) 0.41 (0.02)

500

1 1 32.39 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00)

2 1 85.20 0.10 (0.00) 0.10 (0.00) 0.10 (0.00) 0.10 (0.00)

2 2 132.78 0.17 (0.01) 0.19 (0.01) 0.17 (0.01) 0.18 (0.01)

3 2 199.89 0.25 (0.01) 0.28 (0.01) 0.23 (0.01) 0.27 (0.01)

3 3 242.83 0.32 (0.01) 0.39 (0.02) 0.29 (0.01) 0.37 (0.02)

1000

1 1 42.78 0.07 (0.00) 0.07 (0.00) 0.07 (0.00) 0.07 (0.00)

2 1 122.87 0.07 (0.00) 0.07 (0.00) 0.07 (0.00) 0.07 (0.00)

2 2 202.21 0.14 (0.00) 0.14 (0.00) 0.13 (0.00) 0.14 (0.00)

3 2 316.29 0.21 (0.01) 0.23 (0.01) 0.20 (0.01) 0.22 (0.01)

3 3 397.59 0.28 (0.01) 0.32 (0.01) 0.26 (0.01) 0.30 (0.01)

Note: (4.13) applies for p+ q < 4, (4.14) applies for p+ q ≥ 4.

n−m: is the average number of “smoothed-out” observations over 1000

MC replications.
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7 Illustration with Real Data

In this section, we provide empirical illustrations of the proposed improvements with some

real data sets.

7.1 Philippine Rice Data

Our first empirical illustration utilizes the same data set as in Simar & Zelenyuk (2020),

which is a data set including the information about 43 rice producers in Tarlac, Philippines

from 1990 to 1997.9 From the data set, we obtain the information about three inputs and

one output. Specifically, the three inputs include the area planted, labour used, and

fertiliser used, which are measured in hectares, man-days of family and hired labour, and

kilograms of active ingredients, respectively. Meanwhile, the output is measured in tonnes

of freshly threshed rice.

Following Simar & Zelenyuk (2020), we apply the VRS-DEA estimator to estimate

the Farrell-Debreu output oriented efficiency scores and the 99% confidence intervals of

their simple mean for each year separately and also for the pooled data across the 8 years.

The results are presented in Table 4.

From Table 4 we can see that the differences in the estimated confidence intervals are

more substantial for the annual frontiers where the sample sizes are relatively small (i.e.,

n = 43). Meanwhile, for the pooled frontier where the sample size is relatively large (i.e.,

n = 344), the estimated confidence intervals based on Solution 1 and Solution 2 are very

similar to those based on Solution 3 and Solution 4, respectively.

For the annual frontiers, some remarks are in order. First, among other Solutions,

Solution 3 appears to provide the narrowest confidence intervals. Meanwhile, the confi-

dence intervals based on Solution 2 and Solution 4 are among the widest. For example,

for the year 1995, the confidence interval based on Solution 3 is from 1.54 to 1.92, which

is about 15% narrower than the confidence interval based on Solution 1 (from 1.40 to

1.85). On the other hand, the confidence intervals based on Solution 2 (i.e., from 1.36 to

1.89) and Solution 4 (i.e., from 1.49 to 1.97) are, respectively, around 17% and 7% wider

than those based on Solution 1. Second, the lower bounds of the confidence intervals

based on Solution 4 are around 7% to 13% higher than those based on Solution 2, and

the corresponding upper bounds are around 2% to 7% higher. For instance, for the year

1992, the confidence interval based on Solution 4 is shifted to the right compared to the

confidence interval based on Solution 2 by a distance of around 35% of their lengths.

Despite the desire to have narrower confidence intervals, the Monte Carlo evidence

9The data set was popularized in the literature by Coelli et al. (2005) and can be downloaded from the

website of their book: http://www.uq.edu.au/economics/cepa/crob2005/software/CROB2005.zip.
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from the previous section suggests the wider confidence intervals of Solution 4 (jackknife

with sharpening for correction of bias and variance) are likely to be more accurate.

Table 4: VRS-DEA Estimates of Simple Means of Efficiency and their 0.99% Confidence

Intervals for the Philippine Rice Data with τ = n−0.75κ

CI level = 0.99

1990 1991 1992 1993 1994 1995 1996 1997 Pooled

DEA

estimate

1.51 1.41 1.20 1.27 1.40 1.33 1.38 1.40 1.80

Solution 1 [1.76, 2.47] [1.53, 2.15] [1.41, 1.70] [1.31, 1.70] [1.43, 1.95] [1.40, 1.85] [1.42, 1.89] [1.69, 2.13] [2.12, 2.45]

Solution 2 [1.67, 2.56] [1.48, 2.20] [1.36, 1.75] [1.27, 1.74] [1.37, 2.02] [1.36, 1.89] [1.35, 1.96] [1.59, 2.23] [2.08, 2.48]

Solution 3 [1.89, 2.52] [1.66, 2.22] [1.57, 1.81] [1.48, 1.82] [1.56, 2.02] [1.54, 1.92] [1.60, 2.00] [1.78, 2.17] [2.13, 2.46]

Solution 4 [1.78, 2.62] [1.61, 2.27] [1.50, 1.88] [1.43, 1.87] [1.48, 2.10] [1.49, 1.97] [1.51, 2.09] [1.66, 2.28] [2.09, 2.49]

7.2 Queensland Hospital Data

Our second empirical illustration looks at the case of multiple outputs. We utilize the data

set on Queensland public hospitals from Nguyen & Zelenyuk (2021). The data set includes

annual data on 104 public acute hospitals in Queensland, Australia in the five financial

years (FYs) from FY 2012/13 to FY 2016/17.10 Following Nguyen & Zelenyuk (2021)

and the common practice in the literature (e.g., see Hao & Pegels 1994, Burgess & Wilson

1996, Magnussen 1996, Harris et al. 2000, Grosskopf et al. 2001, Berta et al. 2010, Ferrier

& Trivitt 2013, Nayar et al. 2013, Chowdhury & Zelenyuk 2016), we use three inputs (i.e.,

labor, capital, and consumable inputs) and two outputs (i.e., outpatient and inpatient

outputs) to model the production process of hospitals. Labor input is an aggregation

(based on the principle component analysis) of the full-time equivalent staff of six main

categories of hospital personnel. Capital input is proxied by the number of beds, and

consumable input is measured by expenditures on drug, surgical and medical supplies

in 2013/14 constant prices. On the output side, outpatient output is measured by the

number of non-admitted occasions of service. Meanwhile, inpatient output is measured

by casemix weighted inpatient episodes.11

As in Nguyen & Zelenyuk (2021), we estimate the simple means of efficiency and

their confidence intervals for teaching hospitals, non-teaching hospitals and for the whole

sample. We also trim 5% of outliers in the right tail of the estimated efficiency distribu-

tions, resulting in a trimmed sample of 494 observations, in which 118 observations have

teaching status. We apply the CRS-DEA estimator to estimate the Farrell-Debreu output

10In Australia, a financial year starts on 1 July and ends on 30 June of the next calendar year.
11See more detail discussion in Nguyen & Zelenyuk (2021).
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oriented efficiency scores and the 95% confidence interval of their simple mean for each

group of hospital separately as well as for the whole sample.12 The results are presented

in Table 5.

As can be seen from Table 5, the estimated confidence intervals are not significantly

different among the solutions for non-teaching hospitals and for the whole sample, where

the sample sizes are relatively large (i.e., n = 376 for non-teaching hospitals and n = 494

for the whole sample). However, for teaching hospitals (where the sample size equals

to 118), our sharpening method provides significantly different results compared to the

current approaches in the literature. Note that for teaching hospitals, Solution 2 provides a

very similar confidence interval compared to Solution 1 (i.e., [1.29, 1.40] versus [1.28, 1.42]).

Meanwhile, the confidence interval based on Solution 3 (i.e., [1.40, 1.49]) is to the right and

does not overlap with the confidence interval based on Solution 1. The confidence interval

based on Solution 4 is similar to Solution 3, but is wider due to the use of biased-corrected

variance.

Again, the Monte Carlo evidence from the previous section suggests the wider confi-

dence intervals of Solution 4 (jackknife with sharpening for correction of bias and variance)

are likely to be more accurate and this is what we would recommend using.

Table 5: CRS-DEA Estimates of Simple Means of Efficiency and their 0.95% Confidence

Intervals for the Queensland Hospital Data with τ = n−0.75κ

CI level = 0.95

Non-teaching Hospitals Teaching Hospitals All Hospitals

DEA estimate 1.65 1.19 1.65

Solution 1 [1.84, 2.00] [1.29, 1.40] [1.90, 2.03]

Solution 2 [1.83, 2.01] [1.28, 1.42] [1.88, 2.06]

Solution 3 [1.86, 2.01] [1.40, 1.49] [1.91, 2.04]

Solution 4 [1.84, 2.02] [1.38, 1.51] [1.89, 2.06]

8 Concluding Remarks

In this paper, we propose a new ‘simple to compute’ approach endeavoring to improve

the finite sample approximation of the CLTs for the envelopment estimators of produc-

tion efficiency. The method is based on data sharpening of observations that fall in a

neighborhood of the efficient frontier. This is in the spirit of ways suggested by Simar &

Zelenyuk (2006) and Kneip et al. (2011) to solve the discretization issue of the empirical

12It is worth noting here that in Nguyen & Zelenyuk (2021), they use the whole sample data to estimate

efficiency scores for both teaching and non-teaching hospitals.
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distribution of DEA/FDH efficiency estimates near the efficient value (1), providing what

is known as “spurious ones”. The problem may become severe when the dimension of the

problem increases. The method we derive does not involve more numerical burden than

the up-to-date existing methods for CLTs derived by Kneip et al. (2015) and Simar &

Zelenyuk (2020). Our Monte-Carlo experiments compare our method with the existing

ones. The results suggest that the data sharpening we propose, applied together with

the variance correction proposed by Simar & Zelenyuk (2020), provides persistently as

good or better accuracy in the coverage of the resulting confidence intervals, than the

current approaches in the literature. In many cases, the improvement is substantial and

significant.

It is also worth mentioning here that even with the proposed improvements, the em-

pirical coverages of the CLTs for small samples, with a relatively large dimension of inputs

and outputs are far from the nominal coverages. There is no miracle: we have to face the

well-known “curse of dimensionality” of the nonparametric approaches.

It is straightforward to apply our method to other CLTs based on Kneip et al. (2015).

Among others, these include the CLTs for aggregate efficiency (Simar & Zelenyuk 2018),

the CLTs for conditional efficiency (Daraio et al. 2018), the CLTs for Malmquist in-

dices (Kneip et al. 2020), and the CLTs for cost and allocative efficiency (Simar & Wil-

son 2020b). The same is true for the problems of hypothesis testing in the context of

DEA/FDH, such as testing for the equality of the efficiency of different groups of DMUs,

testing for assumptions on technology sets (e.g., convexity or returns to scale), see Kneip

et al. (2016) and Simar & Wilson (2020a), or testing the separability condition as in

Daraio et al. (2018), among other possibilities. Due to the encouraging results of our

Monte-Carlo experiments, we can hope that the improvements will be also observed in

these extensions.
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Appendix

In this Appendix, we examine the performance of the sharpening method with different

choices of τ = n−γ by varying γ in a grid of values ranging from 0.55κ to 0.95κ, i.e.,

{0.55κ, 0.65κ, 0.75κ, 0.85κ, 0.95κ}.13 From Figure 2, we can see that while in many cases

the results are similar, the level of γ near 0.75κ appears to provide the best performance.

Specifically, with the values of γ close to its lower bound (i.e.,γ = 0.55κ, 0.65κ), Solution 3

and Solution 4 are not well-performing, i.e., the empirical coverages under these Solutions

are further from the nominal coverage when the sample size increases. Meanwhile, with

the values of γ close to its upper bound (i.e.,γ = 0.85κ, 0.95κ), Solution 3 and Solution

4 provide improvements relative to Solution 1 and Solution 2, but the improvements are

not as substantial as if γ is in the middle of the range of its possible values. As a result,

developing a rule for choosing an optimal level of γ might be a fruitful path forward.

13We have also obtained the results for a finer grid, which, in addition to the values reported here,

includes {0.60κ, 0.70κ, 0.80κ, 0.90κ}, but these figures do not provide any additional useful information,

and therefore are omitted to save space.
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