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Abstract

Public service managers generally make input choices in the face of uncertainty about

the demand for their services. However, this is generally not taken into account when

estimating cost efficiency. The conventional approach to estimating cost efficiency is

based on the assumption that managers choose inputs to minimise the cost of producing

observed outputs. However, when demand is unknown at the time input decisions are

made, many managers will instead choose inputs to minimize the cost of meeting various

output targets. This paper explains how data envelopment analysis (DEA) methods

can be used to account for demand uncertainty when estimating cost, technical and

allocative efficiency. In doing so, it explains how DEA can be used to estimate the effects

of demand uncertainty on costs. The methodology is applied to data on hospital and

health service providers in the Australian state of Queensland. We obtain estimates of

cost, technical and allocative efficiency that are quite different from the estimates obtained

using a conventional approach that ignores demand uncertainty. Our empirical results

also indicate that demand uncertainty has a significant effect on hospital costs.
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1 Introduction

Most firm managers make production choices in the face of some form of financial, price,

technological and/or environmental uncertainty. When it comes to public service provision,

another important source of uncertainty is the nature of future demand. The managers of

state fire and rescue services, for example, must make equipment and staffing choices in the

face of uncertainty about the numbers and types of emergencies that will occur in different

jurisdictions; government and community leaders must make choices about the locations and

sizes of schools in the face of uncertainty about the sizes of future school-age populations;

and hospital managers must make decisions about staff, equipment and supplies in the face of

uncertainty about the numbers and types of patients who will arrive at their hospital requiring

treatment.

When facing demand uncertainty, most rational managers will choose their inputs to

minimise the cost of meeting various output targets (e.g., minimum service levels, predicted

maximum demands). These output targets are sometimes set by the managers themselves,

and sometimes by governments. Needless to say, when the demand for services is difficult

to predict, there can be a significant mismatch between output targets and realised demand.

Some managers may find that the inputs they chose to meet a given output target may

be insufficient to meet unexpectedly high realised demand: in 2019/20, for example, many

Australian fire services found that they did not have enough resources to fight bushfires that

were unprecedented on a national scale; in early 2021, many hospitals in India found they did

not have enough masks, ventilators and ICU beds to care for unexpectedly large numbers of

patients who had contracted COVID-19. At the same time, some managers may find that the

inputs they chose to meet a given output target are more than enough to meet unexpectedly

low realised demand: in early 2021, for example, unexpectedly low school enrolments forced

community leaders in Glendale, Arizona, to consider closing and repurposing five elementary

schools. These examples illustrate that demand uncertainty can give rise to both resource

shortages and excess capacity in the provision of public services, and both can be costly.

The fact that demand uncertainty can affect the cost of providing hospital services has been

recognised by Hughes and McGuire (2003) and Lovell, Rodriguez-Alvarez, and Wall (2009);

the fact it can affect the cost of providing fire and rescue services has been recognised by

Puolokainen (2018).

In this paper, we take the view that rational and competent managers should not be held
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responsible for events that are outside their control: if they are making good decisions, then

the managers of Indian hospitals should not be blamed for COVID-19 deaths resulting from a

shortage of ventilators, and community leaders in Glendale should not be held responsible

for high per-pupil schooling costs resulting from a combination of fixed infrastructure and

unexpected falls in enrolments. Instead, the performance of managers must be assessed in

a way that distinguishes the effects of demand uncertainty from the effects of managerial

incompetence. This is not usually done when estimating the cost efficiency of public service

managers. Instead of estimating how well these managers minimise the cost of meeting

output targets, it is common, and inappropriate, to estimate how well they minimise the

cost of producing a set of outputs that were unknown at the time their input decisions were

made. Examples of this conventional approach can be found in studies of public education

services (e.g., Chakraborty, Biswas, and Lewis, 2001; Cherchye, De Witte, Ooghe, and Nicaise,

2010), police services (e.g., Diez-Ticio and Mancebon, 2002; Gorman and Ruggiero, 2008),

emergency medical services (e.g., Lambert, Min, and Srinivasan, 2009) and hospital services

(e.g., Hollingsworth, 2008; Hussey, Vries, Romley, Wang, Chen, Shekelle, and McGlynn, 2009;

Hunt and Link, 2019; Nguyen and Zelenyuk, 2020).

Witte and Geys (2011) were among the first to acknowledge and take into account

the effects of demand factors when measuring the performance of public service providers.

These authors estimated the input-oriented technical efficiency of library service managers

in Flanders. They assumed that managers seek to minimise the inputs required to produce

measures of “service potential” (e.g., available facilities and opening hours). They argued that

the conversion of service potential into final outputs is affected by public demand, something

that is not within the control of managers. More recently, Puolokainen (2018) accounted for

demand uncertainty when measuring the performance of rescue service managers in Estonia,

Finland, and Sweden. He assumed that managers choose inputs to minimise the cost of

meeting “minimum service levels” (i.e., minimum numbers of services to be provided in given

jurisdictions in given periods). Again, he argued that differences between minimum service

levels and observed service levels are partly due to demand factors that are outside the control

of managers.

This paper contributes to this literature by measuring the performance of hospital and

health service (HHS) managers in the Australian state of Queensland. Instead of assuming

that HHS managers choose inputs to minimise the cost of producing observed outputs, we

assume they choose inputs to minimise the cost of producing output targets that are specified
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in service level agreements (SLAs) negotiated annually between HHS managers and the

relevant government department, namely Queensland Health. Queensland Health is viewed as

a system manager who purchases local healthcare services from HHSs in different locations

across Queensland.

The methodology developed in this paper can be used to estimate the cost efficiency of

any public service providers facing demand uncertainty. Our application to healthcare service

providers in Queensland is partly motivated by growing uncertainty about the future incidence

and treatment of certain illnesses (e.g., variants of COVID-19, drug-resistant tuberculosis). It

is also partly motivated by recent rapid expansions in public healthcare spending in many

high-income countries: in the period from 2000 to 2016, public healthcare spending in high-

income countries1 increased from an average of 4.5% of GDP (and 11.6% of total public

spending) to an average of 6.1% of GDP (and 14.9% of total public spending) (Xu, Soucat,

Kutzin, et al., 2018); in the same period, public healthcare spending in Australia increased

from 5.2% of GDP (and 15.2% of total public spending) to 6.3% of GDP (and 17.4% of total

public spending).2 In Queensland, spending on health is now the largest component of the

state budget; in 2017-18, it accounted for 36% of state government spending (Queensland

Health, 2018). Not surprisingly, managers of healthcare services are coming under increased

pressure to minimise costs. Measures of how well they do that must account for the fact that

they must choose their inputs before the demand for many of their services is known.

The structure of the paper is as follows. In Section 2 we explain how production technologies

can be represented using period-and-environment-specific variable-input sets. We then make

enough regularity assumptions to ensure that these sets can be represented using variable-input

distance functions. In Section 3 we describe the cost minimisation problems faced by firm

managers in the presence of demand uncertainty; we assume that firms are price takers in

input markets, and that managers choose variable inputs in order to minimise the cost of

meeting various output targets. In Section 4 we describe measures of how well managers

solve their cost minimisation problems. In Section 5 we explain how to measure of the effect

of demand uncertainty on costs. In Section 6 we list the assumptions underpinning DEA

estimation methods. We then presents the DEA estimators (or models) that we use to estimate

minimum costs. In Section 7 we describe the data used in the empirical work. The dataset

comprises observations on 16 firms over 5 years. In Section 8 we present the empirical results.

1Based on World Bank income classification in 2016.
2Source: Global Health Expenditure Database, World Health Organization.
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Among other things, we find that our estimates of cost, technical and allocative efficiency

are quite different from the estimates obtained using a conventional approach that ignores

demand uncertainty. In Section 9 we summarise the paper and offer some concluding remarks.

2 Production Technologies

We follow O’Donnell (2018) and divide the possibly millions of variables that are physically

involved in the production process into those that are at some point chosen or controlled

by managers and those that are never within their control. The variables that are never

controlled by managers are referred to as environmental variables. The variables that are

chosen or controlled by managers are divided into predetermined inputs (i.e., goods going into

the production process that have been chosen in a previous period), variable inputs (i.e., goods

going into the production process that are chosen in the current period) and outputs (i.e.,

goods and bads coming out of the production process). We also follow O’Donnell (2018) and

view production technologies as techniques or methods for transforming inputs into outputs.

Production technologies can be represented by various input sets, output sets and produc-

tion possibilities sets. In this paper we focus on period-and-environment-specific variable-input

sets. A period-and-environment-specific variable-input set is a set of variable inputs that can

be used with given predetermined (or fixed) inputs and the technologies that are available in

a given period to produce given outputs in a given production environment. For example, the

set of variable inputs that can be used with the fixed input vector xf and the technologies

that are available in period t to produce the output vector q in a production environment

characterised by the vector z is the following:

Lt(xf , q, z) = {xv : xv and xf can produce q in period t in environment z}. (1)

If there are no fixed inputs (i.e., if all inputs are variable), then the v superscript and all

references to xf can be deleted. In that case, the input set defined by (1) is equal to the

period-and-environment-specific input set defined by O’Donnell (2018, p.59).

In this paper we assume that inputs are strongly disposable and input sets are convex.

These so-called regularity assumptions are common in the efficiency literature and are more

than sufficient to ensure that Lt(xf , q, z) can be represented by the following period-and-
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environment-specific variable-input distance function:

Dt
I(x

v, xf , q, z) = sup{θ > 0 : xv/θ ∈ Lt(xf , q, z)}. (2)

This function gives the reciprocal of the smallest fraction of xv that can be used with xf to

produce q in period t in an environment characterised by z. If there are no fixed inputs, then it

is equal to the period-and-environment-specific input distance function defined by O’Donnell

(2018, p.67). By construction, Dt
I(x

v, xf , q, z) is nonnegative and linearly homogeneous in

variable inputs. The strong disposability assumption means it is also nondecreasing in variable

inputs. These properties will be used to motivate the DEA linear programs described in

Section 5 below.

3 Cost Minimisation

We follow common practice and assume that firms are price takers in input markets, and that

firm managers choose variable inputs to minimise costs. However, in a significant departure

from common practice, we assume that outputs are uncertain at the time these variable input

decisions are made. To handle this uncertainty, we assume that firm managers choose variable

inputs to minimise the cost of meeting known output targets. For clarity, it is convenient to

introduce firm and time subscripts into the notation so that, for example, xfit now represents

the fixed input vector of firm i in period t. Mathematically, the variable cost minimisation

problem of manager i in period t is the following:

min
xv
{wvit

′xv : Dt
I(x

v, xfit, q̂it, zit) ≥ 1} (3)

where wvit = (wv1it, . . . , w
v
Mit)

′ is a vector of variable input prices, q̂it is a vector of output

targets to be met, and zit is a vector of environmental variables. There may be more than

one variable input vector that solves this problem. Let x̂v∗it ≡ x̂vt(wvit, x
f
it, q̂it, zit) denote one

such vector. The associated minimum variable cost is V Ct(wvit, x
f
it, q̂it, zit) = wvit

′x̂v∗it .

Figure 1 illustrates this variable cost minimisation problem in a simple case where there

are only two variable inputs. In this figure, the (piecewise) frontier passing through point S

represents the boundary of the set of variable inputs that can be used with the fixed input vector

xfit to produce the target vector q̂it in period t in an environment characterised by zit. The

dashed lines are iso-cost lines with slopes of −wv1it/wv2it. Point A represents the variable input
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Figure 1: Variable cost minimisation in the presence of demand uncertainty

vector chosen by manager i in period t, with the associated variable cost given by V Cit = wvit
′xvit.

Point S represents the variable input vector that minimises the cost of producing q̂it, with the

associated minimum variable cost given by V Ct(wvit, x
f
it, q̂it, zit). Observe that variable cost at

point A is greater than minimum variable cost, i.e., V Cit > V Ct(wvit, x
f
it, q̂it, zit).

To get a better understanding of the implications of demand uncertainty, it is useful to

consider the variable cost minimisation problem under the common but naive assumption

that outputs are known at the time input decisions are made. Let qit denote the observed

output vector of firm i in period t. If qit is known at the time manager i chooses his/her

variable inputs, then his/her period-t variable cost minimisation problem is the following:

min
xv
{wvit

′xv : Dt
I(x

v, xfit, qit, zit) ≥ 1}. (4)

If there are no fixed inputs, then this problem is equivalent to the cost minimisation problem

specified in O’Donnell (2018, eq. 4.17). If there are no fixed inputs and there is no technical

or environmental change, then it is equivalent to the cost minimisation problem discussed in

Sickles and Zelenyuk (2019, Sect. 2.1). Again, there may be more than one variable input

vector that solves problem (4). Let xv∗it ≡ xvt(wvit, x
f
it, qit, zit) denote one such vector. The

associated minimum variable cost is V Ct(wvit, x
f
it, qit, zit) = wvit

′xv∗it . We can generally expect
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xv∗it and V Ct(wvit, x
f
it, qit, zit) to differ from x̂v∗it and V Ct(wvit, x

f
it, q̂it, zit) whenever qit differs

from q̂it.

Figure 2 compares the cost minimisation problems (3) and (4) in a case where there

are only two variable inputs and qit is less than q̂it. In this figure, the frontier passing

through point S is the same frontier that was depicted earlier in Figure 1: it represents

the boundary of the set of variable inputs that can be used with xfit to produce the target

output vector q̂it. The lighter frontier passing through point X is the boundary of the set of

variable inputs that can be used with xfit to produce the smaller observed vector qit. Point

X represents the variable input vector that minimises the cost of producing qit, with the

associated minimum variable cost given by V Ct(wvit, x
f
it, qit, zit). Observe that x̂v∗it > xv∗it and

V Ct(wvit, x
f
it, q̂it, zit) > V Ct(wvit, x

f
it, qit, zit) (i.e., demand uncertainty has led to higher input

use and higher variable costs).

Finally, some managers may face situations where their variable input mix is predetermined

(or fixed). If the manager of firm i in period t can only choose variable input vectors that are

scalar multiples of xvit, then his/her variable cost minimisation problem is the following:

min
xv
{wvit′xv : xv ∝ xvit, Dt

I(x
v, xfit, q̂it, zit) ≥ 1}. (5)

Figure 2: Variable cost minimisation in the presence and absence of demand uncertainty
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The input vector that solves this problem is x̄vit ≡ x̄vt(xvit, x
f
it, q̂it, zit) = xvit/D

t
I(x

v
it, x

f
it, q̂it, zit).

This solution is unique and does not depend on input prices. The associated minimum variable

cost is V Ct(wvit, x
v
it, x

f
it, q̂it, zit) = wvit

′x̄vit = V Cit/D
t
I(x

v
it, x

f
it, q̂it, zit). Figure 3 illustrates this

problem in a simple case where there are only two variable inputs. Again, in this figure, the

frontier passing through point S is the same frontier that was depicted earlier in Figure 1. Point

B represents the scalar multiple of xvit that minimises the cost of producing q̂it. The associated

minimum variable cost is V Ct(wvit, x
v
it, x

f
it, q̂it, zit). Observe that V Ct(wvit, x

v
it, x

f
it, q̂it, zit) >

V Ct(wvit, x
f
it, q̂it, zit) (i.e., restricting the input mix has led to higher variable costs).

4 Measures of Efficiency

Measures of efficiency can be viewed as ex post measures of how well managers solve different

optimisation problems (O’Donnell, 2018). This section defines four measures of efficiency

associated with the three cost minimisation problems described in Section 3. All four measures

take values in the closed unit interval.

The first measure of efficiency recognises that outputs are unknown at the time variable

input decisions are made. In this case, the variable cost efficiency (VCE) of manager i in

Figure 3: Variable cost minimisation in the presence of demand uncertainty when the input
mix is fixed
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period t is defined as

V CEt(wvit, x
v
it, x

f
it, q̂it, zit) =

V Ct(wvit, x
f
it, q̂it, zit)

V Cit
(6)

where V Cit is the observed variable cost and V Ct(wvit, x
f
it, q̂it, zit) is the minimum cost of

producing q̂it in period t when using xfit in a production environment characterised by zit.

This measure of efficiency can be viewed as a measure of how well the manager has solved

problem (3). That problem was depicted earlier in Figure 1. Observe that the isocost lines

passing through points S and A in that figure have intercepts of V Ct(wvit, x
f
it, q̂it, zit)/w

v
2it and

V Cit/w
v
2it. The VCE of manager i in period t is given by the ratio of these intercepts.

The second measure of efficiency also recognises that outputs are unknown at the time

variable input decisions are made. However, it also assumes that input mixes are fixed. In

this case, what we call the variable-input-oriented technical efficiency (VITE) of manager i in

period t is defined as

V ITEt(xvit, x
f
it, q̂it, zit) =

V Ct(wvit, x
v
it, x

f
it, q̂it, zit)

V Cit
(7)

where V Ct(wvit, x
v
it, x

f
it, q̂it, zit) is the minimum cost of producing q̂it in period t when using

xfit and a scalar multiple of xvit in a production environment characterised by zit. Equivalently,

V ITEt(xvit, x
f
it, q̂it, zit) = 1/Dt

I(x
v
it, x

f
it, q̂it, zit). If there are no fixed inputs (i.e., if all inputs

are variable) and q̂it = qit, then this measure of efficiency is equivalent to the measure of

input-oriented technical efficiency defined in O’Donnell (2018, eq. 5.8). As it stands, it can

be viewed as a measure of how well the manager has solved problem (5). That problem was

depicted earlier in Figure 3. Observe that the isocost lines passing through points B and A

in that figure have intercepts of V Ct(wvit, x
v
it, x

f
it, q̂it, zit)/w

v
2it and V Cit/w

v
2it. The VITE of

manager i in period t is given by the ratio of these intercepts.

It is common to break measures of cost efficiency into separate measures of technical

and allocative efficiency. If outputs are unknown at the time variable input decisions are

made, then the technical efficiency component is given by (7). The associated measure of

variable-input-oriented allocative efficiency (VIAE) is defined as

V IAEt(wvit, x
v
it, x

f
it, q̂it, zit) =

V Ct(wvit, x
f
it, q̂it, zit)

V Ct(wvit, x
v
it, x

f
it, q̂it, zit)

. (8)
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This can be viewed as a cost-oriented measure of how well the manager has captured economies

of input substitution (i.e., the cost savings obtained by substituting some inputs for others).

Notice from Figure 3 that the isocost lines passing through points S and B have intercepts of

V Ct(wvit, x
f
it, q̂it, zit)/w

v
2it and V Ct(wvit, x

v
it, x

f
it, q̂it, zit)/w

v
2it. The VIAE of manager i in period

t is given by the ratio of these intercepts. Also notice that equations (6), (7) and (8) together

imply that

V IAEt(wvit, xit, q̂it, zit) =
V CEt(wvit, x

v
it, x

f
it, q̂it, zit)

V ITEt(xvit, x
f
it, q̂it, zit)

. (9)

Thus, VIAE can also be viewed as the component of VCE that remains after accounting

for VITE. If there are no fixed inputs and q̂it = qit, then it is equivalent to the measure of

input-oriented allocative efficiency defined in O’Donnell (2018, eq. 5.23).

The final measure of efficiency makes the common but naive assumption that outputs

are known at the time variable input decisions are made – it ignores demand uncertainty. In

this case, what we call the naive variable cost efficiency (NVCE) of manager i in period t is

defined as

NV CEt(wvit, x
v
it, x

f
it, qit, zit) =

V Ct(wvit, x
f
it, qit, zit)

V Cit
(10)

where V Ct(wvit, x
f
it, qit, zit) is the minimum cost of producing qit in period t when using xfit in

a production environment characterised by zit. If there are no fixed inputs (i.e., if all inputs

are variable), then this measure of efficiency is equivalent to the measure of cost efficiency

defined in O’Donnell (2018, eq. 5.20). As it stands, it can be viewed as a measure of how

well the manager has solved problem (4). That problem was depicted earlier in Figure 2.

Observe that the isocost lines passing through points X and A in that figure have intercepts

of V Ct(wvit, x
f
it, qit, zit)/w

v
2it and V Cit/w

v
2it. The NVCE of manager i in period t is given by

the ratio of those two intercepts.

5 The Effect of Demand Uncertainty

If demand is uncertain at the time variable input choices are made, then managers will solve the

cost minimisation problem given by (3). The input vector that solves that problem is x̂v∗it , and

the associated minimum cost is V Ct(wvit, x
f
it, q̂it, zit) = wvit

′x̂v∗it . On the other hand, if there is
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no demand uncertainty (i.e., if outputs are known at the time variable input choices are made),

then managers will solve the cost minimisation problem given by (4). The input vector that

solves that problem is xv∗it , and the associated minimum cost is V Ct(wvit, x
f
it, qit, zit) = wvit

′xv∗it .

In this paper, we attribute any difference between V Ct(wvit, x
f
it, q̂it, zit) and V Ct(wvit, x

f
it, qit, zit)

to demand uncertainty. Mathematically, the cost-oriented demand uncertainty effect (CDUE)

on manager i in period t is defined as

CDUEt(wvit, x
v
it, x

f
it, q̂it, qit, zit) =

V Ct(wvit, x
f
it, q̂it, zit)

V Ct(wvit, x
f
it, qit, zit)

=
V CEt(wvit, x

v
it, x

f
it, q̂it, zit)

NV CEt(wvit, x
v
it, x

f
it, qit, zit)

(11)

where V CEt(wvit, x
v
it, x

f
it, q̂it, zit) and NV CEt(wvit, x

v
it, x

f
it, qit, zit) are the measures of efficiency

defined by (6) and (10). Unlike the measures of efficiency defined in Section 4, the CDUE

defined by (11) can take a value greater than one. Indeed, it will generally take a value

greater than (resp. less than) one whenever the target output vector q̂it is greater than

(resp. less than) the observed output vector qit. Relatedly, if outputs are unknown at the

time variable input decisions are made, then the (inappropriate) use of the naive measure of

variable cost efficiency, NV CEt(wvit, x
v
it, x

f
it, qit, zit), will malign (resp. flatter) the manager

whenever the CDUE defined by (11) takes a value greater than (resp. less than) one. To

illustrate, reconsider the cost minimisation problems depicted earlier in Figure 2. This figure

depicts a case where there are only two inputs and where q̂it > qit. Observe that x̂v∗it > xv∗it
and V Ct(wvit, x

f
it, q̂it, zit) > V Ct(wvit, x

f
it, qit, zit). Consequently, V CEt(wvit, x

v
it, x

f
it, q̂it, zit) >

NV CEt(wvit, x
v
it, x

f
it, qit, zit) and CDUEt(wvit, x

v
it, x

f
it, q̂it, qit, zit) > 1. In this example, the

inappropriate use of the naive measure of variable cost efficiency would unfairly malign the

manager.

6 DEA Models

Data envelopment analysis (DEA) is a non-parametric estimation approach that is widely-

used to estimate production frontiers and associated measures of efficiency. The approach is

underpinned by the following assumptions: (i) production possibilities sets can be represented

by distance, revenue, cost and/or profit functions; (ii) all relevant variables are observed

and measured without error; (iii) production frontiers are locally (or piecewise) linear; (iv)

inputs, outputs and environmental variables are strongly disposable; and (v) production

possibilities sets are convex (O’Donnell, 2018, p.219). Basic DEA estimators (or models)
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envelop scatterplots of technically-feasible input-output combinations in such a way that

estimated production frontiers are consistent with these assumptions. The set of technically-

feasible input-output combinations obviously includes all pairs of observed inputs and outputs,

i.e., the pairs (xit, qit) for all values of i and t. The empirical application in this paper is a

little unusual in that firm managers sign legally-binding contracts (service level agreements)

that require them to choose inputs that are capable of producing agreed output targets. We

assume that managers meet these legal requirements, and for this reason we assume the set of

technically-feasible input-output combinations also includes all pairs of observed inputs and

output targets, i.e., the pairs (xit, q̂it) for all values of i and t. In this section we describe how

this expanded set of observations can be used to estimate the measures of VCE, VITE and

VIAE defined in Section 4 and the CDUE defined in Section 5.

Estimating the measure of VCE defined by (6) and the CDUE defined by (11) involves

estimating V Ct(wvit, x
f
it, q̂it, zit). If there are I firms in the dataset and assumptions (i) to (v)

are true, then a DEA LP that allows for technical progress is the following:

min
xv ,λ11,...,λIt,θ11,...,θIt

{wvit′xv :

I∑
h=1

t∑
r=1

(λhrqhr+θhr q̂hr) ≥ q̂it, xv ≥
I∑

h=1

t∑
r=1

(λhrx
v
hr+θhrx

v
hr),

I∑
h=1

t∑
r=1

(λhrx
f
hr+θhrx

f
hr) ≤ x

f
it,

I∑
h=1

t∑
r=1

(λhrzhr+θhrzhr) ≤ zit,

I∑
h=1

t∑
r=1

(λhr+θhr) = 1, λhr, θhr ≥ 0 for all h and r}.

(12)

This is a linear program (LP) that can be solved using standard DEA software packages.

The value of the objective function at the optimum is an estimate of V Ct(wvit, x
f
it, q̂it, zit).

Dividing this estimate by observed cost yields an estimate of VCE. Dividing it by an estimate

of V Ct(wvit, x
f
it, qit, zit) yields an estimate of the CDUE; the estimation of V Ct(wvit, x

f
it, qit, zit)

is discussed below.

Estimating the measures of VITE and VIAE defined by (7) and (8) involves estimating

13



the reciprocal of the variable-input distance function. A DEA LP that will do this is

min
µ,λ11,...,λIt,θ11,...,θIt

{µ :
I∑

h=1

t∑
r=1

(λhrqhr+θhr q̂hr) ≥ q̂it, µxvit ≥
I∑

h=1

t∑
r=1

(λhrx
v
hr+θhrx

v
hr),

I∑
h=1

t∑
r=1

(λhrx
f
hr+θhrx

f
hr) ≤ x

f
it,

I∑
h=1

t∑
r=1

(λhrzhr+θhrzhr) ≤ zit,

I∑
h=1

t∑
r=1

(λhr+θhr) = 1, λhr, θhr ≥ 0 for all h and r}.

(13)

Again, this is an LP that can be solved using standard DEA software packages. The value of

µ at the optimum is an estimate of V ITEt(xvit, x
f
it, q̂it, zit) = 1/Dt

I(x
v
it, x

f
it, q̂it, zit). Dividing

an estimate of VCE by this estimate of VITE yields an estimate of VIAE.

Estimating the measure of NVCE defined by (10) and the CDUE defined by (11) involves

estimating V Ct(wvit, x
f
it, qit, zit). Arguably the easiest way to do this is to simply replace q̂it

in LP (12) with qit. The DEA LP then becomes

min
xv ,λ11,...,λIt,θ11,...,θIt

{wvit′xv :
I∑

h=1

t∑
r=1

(λhrqhr+θhr q̂hr) ≥ qit, xv ≥
I∑

h=1

t∑
r=1

(λhrx
v
hr+θhrx

v
hr),

I∑
h=1

t∑
r=1

(λhrx
f
hr+θhrx

f
hr) ≤ x

f
it,

I∑
h=1

t∑
r=1

(λhrzhr+θhrzhr) ≤ zit,

I∑
h=1

t∑
r=1

(λhr+θhr) = 1, λhr, θhr ≥ 0 for all h and r}.

(14)

The value of the objective function at the optimum is an estimate of V Ct(wvit, x
f
it, qit, zit).

Dividing this estimate of minimum variable cost by observed cost yields a naive estimate of

variable cost efficiency. Importantly, naive estimates of variable cost efficiency obtained in

this way are still not as naive as estimates that are normally found in the efficiency literature.

In that literature, estimates of variable cost efficiency are normally computed using data on

observed inputs and outputs only; they are obtained by solving DEA LPs of the following

14



form:

min
xv ,λ11,...,λIt

{wvit′xv :

I∑
h=1

t∑
r=1

λhrqhr ≥ qit, xv ≥
I∑

h=1

t∑
r=1

λhrx
v
hr,

I∑
h=1

t∑
r=1

λhrx
f
hr ≤ x

f
it,

I∑
h=1

t∑
r=1

λhrzhr ≤ zit,
I∑

h=1

t∑
r=1

λhr = 1, λhr ≥ 0 for all h and r}.

(15)

The value of the objective function at the optimum is an alternative estimate of V Ct(wvit, x
f
it, qit, zit).

Dividing this estimate by observed cost yields an estimate of what we might call “super-naive”

variable cost efficiency (SNVCE).

Finally, the DEA LPs described above allow production frontiers to exhibit variable returns

to scale (VRS). In the efficiency literature, it is common to assume that production frontiers

exhibit constant returns to scale (CRS). To impose this restriction, the right-hand sides of

the constraints involving the environmental variables must be replaced with “ρzit”, and all

instances of “= 1” must be replaced with “≤ ρ”. Except in restrictive special cases (e.g., there

are no environmental variables involved in the production process), the resulting LPs cannot

be solved using standard DEA software packages.

7 Data

Hospital and health services in Queensland are delivered under SLAs negotiated annually

between HHS managers and Queensland Health. The SLAs are signed at the beginning of

each financial year and specify the output targets to be met by each HHS. These targets

are informed by projections of future demand for different types of services. All targets are

specified in Queensland Weighted Activity Units (QWAUs). QWAUs weight hospital activities

in ways that account for their complexity and resource intensity. The QWAU is largely based

on a national activity-based funding (ABF) model and a National Weighted Activity Unit

(NWAU) that is used in all states and territories; it simply makes some adjustments for a

number of specific features of the Queensland health system (Queensland Health, 2017).

The dataset comprises observations on input quantities, input prices, output quantities and

output targets for I = 16 HHSs in Queensland for T = 5 years after the Australian National

Health Reform Agreement came into effect. The Agreement came into effect on 1 July 2012,

and our dataset covers the financial years from 2012/13 to 2016/17. We were able to collect
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data on one fixed input (xf = beds and bed-alternatives), seven variable inputs (xv1 = medical

officers, xv2 = nurses, xv3 = other personal care staff, xv4 = diagnostic and professional staff,

xv5 = administrative staff, xv6 = domestic and other staff, xv7 = non-labour inputs) and six

outputs (q1 = acute inpatient services, q2 = outpatient services, q3 = sub-acute care services,

q4 = emergency department services, q5 = mental health services, q6 = other interventions

and procedures). Our decision to treat beds and bed-alternatives as a fixed input is consistent

with literature; see, for example, Linna (1998). Quantity data on this variable were sourced

from a database known as the Monthly Activity Collection (MAC) and generously supplied by

Queensland Health. Quantity data on the labour inputs were sourced from a database known

as the Financial and Residential Activity Collection (FRAC) and also supplied by Queensland

Health. An implicit quantity index for non-labour inputs was constructed by dividing total

non-salary non-capital expenditures (i.e., expenditures on drugs, medical and surgical supplies

and other services) by a price index supplied by the Australian Bureau of Statistics (ABS).

Price indexes for each category of staff were constructed by dividing total expenditure on

salaries and wages in each category by the corresponding number of staff. On the output side,

data were drawn from either the annual reports of each HHS or Service Delivery Statements

provided by Queensland Health. Descriptive statistics for all variables are reported in Table

1. These statistics reveal that there is considerable variation in the inputs and outputs of

different HHSs. Moreover, on average, observed outputs generally exceed the corresponding

targets.

8 Results

This section reports DEA estimates of the measures of efficiency defined in Section 4 and

the demand uncertainty effect defined in Section 5. The DEA LPs used to generate these

results were somewhat simpler than the LPs discussed in Section 6 owing to the fact that

there were no environmental variables involved in the production process. Moreover, because

we only had data on I = 16 HHSs over T = 5 years, we made the assumption that there was

no technical change. We used the bootstrap test of Simar and Wilson (1998) to test the null

hypothesis that the (time-invariant) production frontier exhibits CRS against the alternative

that it exhibits VRS. We could not reject the null hypothesis at the 5% level of significance.3

3The value of the F statistic was 0.946. We used the dea.boot function in the Benchmarking package in R
to generate B = 2000 bootstrap samples and associated values of the test statistic. The 95th percentile of the
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Table 1: Descriptive Statistics

Variable Mean St. Dev. Min Max

Input Quantities

xf Beds & alternatives 684.55 605.70 64 2354
xv1 Medical officers 494.28 491.55 10.87 1836.24
xv2 Nurses 1475.83 1334.36 81.65 4961.12
xv3 Other personal care staff 84.06 96.77 0.01 395.61
xv4 Diagnostic & professionals 359.79 395.55 0.00 1457.78
xv5 Administrative staff 491.07 451.92 19.37 1859.83
xv6 Domestic & other staff 442.93 347.81 28.96 1621.26
xv7 Non-labour variable inputs 1869.87 1862.03 63.48 9496.35

Input Prices

wv1 Medical officers 255639.43 110478.81 166733.14 846472.96
wv2 Nurses 101989.13 10686.41 84165.76 138501.01
wv3 Other personal care staff 74128.65 37373.06 18097.83 361029.41
wv4 Diagnostic & professionals 103254.96 13348.06 37567.57 152142.04
wv5 Administrative staff 77267.43 11475.86 33475.86 128384.87
wv6 Domestic & other staff 66759.78 37849.16 47150.37 398962.91
wv7 Non-labour variable inputs 107100.00 2673.83 102800.00 110700.00

Observed Outputs

q1 Acute inpatients 58341.21 58371.39 1775 241887
q2 Outpatients 14778.60 15656.30 453 74398
q3 Sub-acute 6502.90 7286.59 172 40400
q4 Emergency department 13479.57 10275.60 1037 40611
q5 Mental health 9421.07 11385.27 30 56794
q6 Interventions & prevention 7270.10 9594.35 0 41222

Output Targets

q̂1 Acute inpatients 55662.06 55589.87 1797 230338
q̂2 Outpatients 13674.65 14031.08 500 67477
q̂3 Sub-acute 5875.77 5699.89 135 22011
q̂4 Emergency department 12811.91 9736.33 1033 39227
q̂5 Mental health 7845.05 8332.40 55 30068
q̂6 Interventions & prevention 7434.81 9971.53 0 44492
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Of course, this does not mean that the null hypothesis is true. For this reason, this section

reports results obtained under both the null (CRS) and alternative (VRS) hypotheses.

Selected estimates of efficiency obtained under the CRS and VRS assumptions are reported

in Tables 2 and 3; results for all HHSs in all periods are reported in the Appendix. The

results seem plausible. Observe from Table 2, for example, that the VCE and VITE estimates

obtained under the CRS assumption are always lower than or equal to the estimates obtained

under the VRS assumption. This is due to the fact that estimates of CRS frontiers always

envelop estimates of VRS frontiers. Also observe from Table 3 that the VCE estimates are

generally lower than the NVCE estimates, and the NVCE estimates are always lower than or

equal to the SNVCE estimates. The fact that the VCE estimates are generally lower than the

NVCE estimates is largely due to the fact that the VCE estimates are measures of how well

the manager minimises the cost of producing an output target, while the NVCE estimates

are measures of how well he/she minimises the cost of producing an observed output that is

generally larger than the target. The fact that the NVCE estimates are always lower than or

equal to the SNVCE estimates is due to the fact that the NVCE estimates were obtained using

twice as many data points as the SNVCE estimates: the NVCE estimates were obtained by

solving LP (14) while the SNVCE estimates were obtained by solving LP (15); this means that

the estimated frontier that was used to compute the NVCE estimates envelops the estimated

frontier that was used to compute the SNVCE estimates. Finally, observe from Table 3 that

some VCE estimates are larger than the corresponding SNVCE estimates (e.g., HHSs 3 and 7

in period 1 and HHS 2 in period 3); this is because the relevant observed outputs are very

much smaller than the corresponding targets.

Table 3 provides a somewhat incomplete picture of our different estimates of variable

cost efficiency. A slightly more complete picture is provided by the box-and-whisker plots in

Figure 4. These plots reveal that (a) the VCE estimates obtained under the CRS assumption

are generally lower than the estimates obtained under the VRS assumption, (b) the VCE

estimates are generally lower than the NVCE estimates, and (c) the NVCE estimates are

generally lower than the SNVCE estimates. The plots also reveal a small number of outliers.

The most notable outliers turn out to be observations on the Cape York Hospital and Health

Service (CYHHS) and the Torres Strait-Northern Peninsula Hospital and Health Service

(TSNPHHS) in periods 1 and 2. These HHSs merged to form the Torres and Cape Hospital

and Health Service (TCHHS) at the end of period 2. The TCHHS is now one of Australia’s

bootstrapped test statistics was 1.006.
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Table 2: Selected Estimates of Efficiency

CRS VRS

Period HHS VCE VITE VIAE VCE VITE VIAE

1 3 0.6277 1.0000 0.6277 0.9851 1.0000 0.9851
1 7 0.8490 0.9509 0.8928 0.9219 0.9563 0.9640
1 12 0.7401 0.8113 0.9122 0.8140 0.8595 0.9470
2 10 0.9382 0.9813 0.9561 0.9394 0.9853 0.9534
2 13 0.2558 0.5493 0.4657 0.2611 0.5860 0.4455
3 2 0.8644 1.0000 0.8644 0.9956 1.0000 0.9956
5 6 0.5836 0.6683 0.8733 0.7286 0.7828 0.9308
5 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

min 1 0.2558 0.5492 0.4406 0.2611 0.5860 0.4017
mean 0.7471 0.8728 0.8541 0.8190 0.9194 0.8850
max 16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3: Selected Estimates of Variable Cost Efficiency

CRS VRS

Period HHS VCE NVCE SNVCE VCE NVCE SNVCE

1 3 0.6277 0.5484 0.5484 0.9851 0.7380 0.8683
1 7 0.8490 0.8087 0.8093 0.9219 0.8733 0.8774
1 12 0.7401 0.7451 0.7455 0.8140 0.8394 0.8394
2 10 0.9382 1.0000 1.0000 0.9394 1.0000 1.0000
2 13 0.2558 0.2649 0.2652 0.2611 0.2873 0.2873
3 2 0.8644 0.8230 0.8230 0.9956 0.9575 0.9749
5 6 0.5836 0.6427 0.6434 0.7286 1.0000 1.0000
5 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

min 1 0.2558 0.2649 0.2652 0.2611 0.2873 0.2873
mean 0.7471 0.7768 0.7949 0.8190 0.8655 0.8775
max 16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

largest providers of health services to Australia’s First Nations peoples. The data indicate

that the CYHHS and TSNPHHS were using excessive quantities of non-medical staff (e.g.,

administrative, clerical and domestic staff). The merged HHS was able to operate with a
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smaller non-medical workforce.

Finally, selected estimates of CDUEs are reported in Table 4; again results for all HHSs in

all periods are reported in the Appendix. The fact that the average of the CDUE estimates is

less than one indicates that the use of NVCE as a measure of performance would have flattered

most HHS managers. Whether a given manager in a given period would have been flattered or

maligned by the use of NVCE depends on the differences between his/her (multiple) observed

and target outputs. Table 4 reveals that the manager of HHS 6 would have looked relatively

efficient if NVCE had been used to assess his/her performance in period 5. On the other hand,

the manager of HHS 3 would have been particularly harshly (and unfairly) judged if NVCE

had been used to assess his/her performance in period 1. A more complete picture of our

estimates of CDUE is provided by the box-and-whisker plots in Figure 5. This figure indicates

that CDUEs have generally been decreasing over time. This suggests that the use of NVCE

as a measure of performance has been more flattering to HHS managers in recent periods

than it has in the past. Results are quite comparable under the CRS and VRS assumptions.

Table 4: Selected Estimates of Cost-Oriented Demand Uncertainty Effects

CRS VRS

Period HHS VCE NVCE CDUE VCE NVCE CDUE

1 3 0.6277 0.5484 1.1447 0.9851 0.7380 1.3349
1 7 0.8490 0.8087 1.0497 0.9219 0.8733 1.0556
1 12 0.7401 0.7451 0.9933 0.8140 0.8394 0.9697
2 10 0.9382 1.0000 0.9382 0.9394 1.0000 0.9394
2 13 0.2558 0.2649 0.9658 0.2611 0.2873 0.9086
3 2 0.8644 0.8230 1.0502 0.9956 0.9575 1.0398
5 6 0.5836 0.6427 0.9081 0.7286 1.0000 0.7286
5 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

min 1 0.2558 0.2649 0.6586 0.2611 0.2873 0.6596
mean 0.7471 0.7768 0.9671 0.8190 0.8655 0.9493
max 16 1.0000 1.0000 1.3237 1.0000 1.0000 1.3349
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Figure 4: Estimates of Variable Cost Efficiency
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Figure 5: Estimates of Cost-Oriented Demand Uncertainty Effects

9 Conclusion

Public service managers generally have to make input choices in the face of demand uncertainty.

Hospital managers, for example, must make decisions about staff, equipment and supplies

in the face of uncertainty about the numbers and types of patients who will arrive at their

hospital requiring treatment. In this paper, we took the view that the performance of these

managers must be assessed in a way that distinguishes the effects of demand uncertainty from

the effects of managerial incompetence. To do this, we began by assuming that firms are price

takers in input markets, and that managers choose variable inputs in order to minimise the

cost of meeting various output targets. We defined three measures of efficiency that can be

used to assess the performance of these managers: cost, technical and allocative efficiency. We

also identified a measure of the effect of demand uncertainty on costs. We explained how data

envelopment analysis (DEA) methods could be used to estimate all these measures. In an

application to Queensland hospitals and health services (HHSs), we found that estimates of

cost, technical and allocative efficiency were quite different from the estimates obtained using

a conventional approach that ignores demand uncertainty; we found that conventional (or

naive) measures of cost and input-oriented technical efficiency tended to flatter HHS managers,

and that the flattery tended to increase over time.

The methodology developed in this paper can be used to estimate the cost efficiency of any

public service providers facing demand uncertainty. Arguably the main shortcoming of our
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work is that production frontiers and associated measures of efficiency were estimated using

DEA. DEA estimators (or models) are underpinned by a number of restrictive assumptions.

For example, all DEA models are underpinned by the assumption that all relevant variables

are observed and measured without error, and that distance functions are locally linear. The

only way to relax these assumptions is to use an estimation methodology that allows for

omitted variable errors, measurement errors and functional form errors. In econometrics, these

types of errors are collectively known as statistical noise. Stochastic frontier analysis (SFA)

estimators explicitly allow for statistical noise. We are currently exploring ways in which SFA

estimators can be used to replicate, and therefore check the robustness of, our results.

23



References

Chakraborty, K., B. Biswas, and W. C. Lewis (2001): “Measurement of Technical

Efficiency in Public Education: A Stochastic and Nonstochastic Production Function

Approach,” Southern Economic Journal, 67(4), 889–905.

Cherchye, L., K. De Witte, E. Ooghe, and I. Nicaise (2010): “Efficiency and equity

in private and public education: A nonparametric comparison,” European Journal of

Operational Research, 202(2), 563–573.

Diez-Ticio, A., and M.-J. Mancebon (2002): “The efficiency of the Spanish police service:

an application of the multiactivity DEA model,” Applied Economics, 34(3), 351–362.

Gorman, M. F., and J. Ruggiero (2008): “Evaluating US state police performance

using data envelopment analysis,” International Journal of Production Economics, 113(2),

1031–1037.

Hollingsworth, B. (2008): “The measurement of efficiency and productivity of health care

delivery,” Health Economics, 17(10), 1107–1128.

Hughes, D., and A. McGuire (2003): “Stochastic demand, production responses and

hospital costs,” Journal of Health Economics, 22(6), 999–1010.

Hunt, D. J., and C. R. Link (2019): “Better outcomes at lower costs? The effect of public

health expenditures on hospital efficiency,” Applied Economics, pp. 1–15.

Hussey, P., H. Vries, J. Romley, M. Wang, S. Chen, P. Shekelle, and E. McGlynn

(2009): “A Systematic Review of Health Care Efficiency Measures,” Health services research,

44, 784–805.

Lambert, T. E., H. Min, and A. K. Srinivasan (2009): “Benchmarking and measuring

the comparative efficiency of emergency medical services in major US cities,” Benchmarking:

An International Journal.

Linna, M. (1998): “Measuring Hospital Cost Efficiency with Panel Data Models,” Health

Economics, 7, 415427.

24



Lovell, C. A. K., A. Rodriguez-Alvarez, and A. Wall (2009): “The Effects of

Stochastic Demand and Expense Preference Behaviour on Public Hospital Costs and Excess

Capacity,” Health Economics, 18, 227–235.

Nguyen, B. H., and V. Zelenyuk (2020): “Robust efficiency analysis of public hospitals in

Queensland, Australia,” CEPA Working Papers Series WP052020, School of Economics,

University of Queensland, Australia.

O’Donnell, C. J. (2018): Productivity and Efficiency Analysis: An Economic Approach to

Measuring and Explaining Managerial Performance. Springer, Singapore.

Puolokainen, T. (2018): “Public Agencies Performance Benchmarking in the Case of

Demand Uncertainty with an Application to Estonian, Finnish and Swedish Fire and Rescue

Services,” Ph.D. thesis, School of Economics and Business Administration, University of

Tartu, Estonia.

Queensland Health (2017): Health Funding Principles and Guidelines: 2017-18 financial

yearState of Queensland (Queensland Health).

Queensland Health (2018): “The health of Queenslanders 2018,” Report of the Chief

Health Officer Queensland, Queensland Government, Brisbane.

Sickles, R. C., and V. Zelenyuk (2019): Measurement of Productivity and Efficiency:

Theory and Practice. Cambridge University Press, Cambridge, United Kingdom.

Simar, L., and P. W. Wilson (1998): “Sensitivity Analysis of Efficiency Scores: How to

Bootstrap in Nonparametric Frontier Models,” Management Science, 44(1), 49–61.

Witte, K. D., and B. Geys (2011): “Evaluating efficient public good provision: Theory

and evidence from a generalised conditional efficiency model for public libraries,” Journal

of Urban Economics, 69, 319–327.

Xu, K., A. Soucat, J. Kutzin, et al. (2018): “Public Spending on Health: A Closer Look

at Global Trends,” Global report, World Health Organization, Geneva.

25



Appendices

Table A1: Selected Estimates of Efficiency

CRS VRS

Period HHS VCE VITE VIAE VCE VITE VIAE

1 1 0.8352 0.9489 0.8802 0.9030 0.9911 0.9111
1 2 0.8287 0.9270 0.8939 0.9453 0.9965 0.9486
1 3 0.6277 1.0000 0.6277 0.9851 1.0000 0.9851
1 4 0.5328 0.6728 0.7920 0.5362 0.7165 0.7484
1 5 0.7481 0.9130 0.8193 0.8237 1.0000 0.8237
1 6 0.7215 0.7699 0.9372 0.7418 0.7750 0.9572
1 7 0.8490 0.9509 0.8928 0.9219 0.9563 0.9640
1 8 0.7105 0.7534 0.9430 0.7917 0.9226 0.8581
1 9 0.7938 0.8806 0.9014 0.8919 0.9754 0.9144
1 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 11 0.5760 1.0000 0.5760 0.5800 1.0000 0.5800
1 12 0.7401 0.8113 0.9122 0.8140 0.8595 0.9470
1 13 0.2980 0.6764 0.4406 0.3047 0.7586 0.4017
1 14 0.7316 0.7731 0.9463 0.8114 0.8945 0.9070
1 15 0.7315 0.9166 0.7980 0.7470 0.9180 0.8137
1 16 0.7024 0.7761 0.9050 0.8216 0.8995 0.9134
2 1 0.8269 0.8818 0.9376 0.9229 0.9908 0.9315
2 2 0.9672 1.0000 0.9672 1.0000 1.0000 1.0000
2 3 0.5529 1.0000 0.5529 1.0000 1.0000 1.0000
2 4 0.5084 0.6486 0.7839 0.5099 0.6850 0.7444
2 5 0.7589 1.0000 0.7589 0.8779 1.0000 0.8779
2 6 0.7824 0.8371 0.9347 0.8170 0.8972 0.9106
2 7 0.8400 0.9222 0.9109 0.8449 0.9224 0.9160
2 8 0.7768 0.8252 0.9415 0.8786 1.0000 0.8786
2 9 0.7997 0.8766 0.9123 0.9523 0.9893 0.9626
2 10 0.9382 0.9813 0.9561 0.9394 0.9853 0.9534
2 11 0.5037 0.6001 0.8394 0.5102 0.6346 0.8040
2 12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 13 0.2558 0.5493 0.4657 0.2611 0.5860 0.4455

. . . continued on next page
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Table A1 (continued).

CRS VRS

Period HHS VCE VITE VIAE VCE VITE VIAE

2 14 0.9581 1.0000 0.9581 0.9808 1.0000 0.9808
2 15 0.8260 0.9709 0.8507 0.8260 0.9711 0.8506
2 16 0.9037 0.9927 0.9104 0.9287 1.0000 0.9287
3 1 0.9210 0.9374 0.9826 0.9431 0.9650 0.9773
3 2 0.8644 1.0000 0.8644 0.9956 1.0000 0.9956
3 3 0.8544 1.0000 0.8544 1.0000 1.0000 1.0000
3 4 0.5621 0.7863 0.7148 0.5719 0.7934 0.7208
3 5 0.8593 1.0000 0.8593 0.9203 1.0000 0.9203
3 6 0.7672 0.8012 0.9577 0.8143 0.8924 0.9125
3 7 0.8989 1.0000 0.8989 0.9096 1.0000 0.9096
3 8 0.8417 0.9745 0.8638 0.9793 0.9876 0.9916
3 9 0.8228 0.8919 0.9226 0.9980 1.0000 0.9980
3 10 0.8895 1.0000 0.8895 0.8912 1.0000 0.8912
3 11 0.5037 0.8885 0.5669 0.5045 0.9723 0.5188
3 12 0.9182 0.9303 0.9870 0.9349 0.9565 0.9774
3 13 0.4170 0.5492 0.7594 0.4228 0.7053 0.5994
3 14 0.8201 0.8914 0.9201 0.8378 0.9435 0.8880
3 15 0.7539 0.8660 0.8706 0.7637 0.8736 0.8742
3 16 0.8067 0.8680 0.9294 0.8695 0.9124 0.9530
4 1 0.7379 0.7678 0.9610 0.7907 0.8376 0.9441
4 2 0.8637 1.0000 0.8637 0.9653 1.0000 0.9653
4 3 0.6435 1.0000 0.6435 0.7742 1.0000 0.7742
4 4 0.6124 1.0000 0.6124 0.6432 1.0000 0.6432
4 5 0.8060 0.9457 0.8523 0.8389 0.9659 0.8685
4 6 0.8006 0.8264 0.9688 0.8367 0.9153 0.9141
4 7 0.8238 0.9330 0.8830 0.8253 0.9342 0.8835
4 8 0.6588 0.8824 0.7466 0.7396 0.8827 0.8379
4 9 0.7308 0.7809 0.9358 0.8964 0.9354 0.9583
4 10 0.7950 1.0000 0.7950 0.7979 1.0000 0.7979
4 11 0.9155 1.0000 0.9155 0.9253 1.0000 0.9253
4 12 0.9369 0.9861 0.9501 0.9385 0.9865 0.9514
4 13 0.5925 0.8138 0.7281 0.6035 0.9348 0.6456
4 14 0.7887 0.8620 0.9149 0.8091 0.8887 0.9105
4 15 0.6586 0.7244 0.9093 0.6658 0.7282 0.9142
4 16 0.7623 0.8280 0.9206 0.8096 0.8547 0.9473
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Table A1 (continued).

CRS VRS

Period HHS VCE VITE VIAE VCE VITE VIAE

5 1 0.5651 0.6480 0.8721 0.6813 0.7594 0.8971
5 2 0.7201 0.8788 0.8194 0.8396 0.8938 0.9394
5 3 0.5603 0.6660 0.8412 1.0000 1.0000 1.0000
5 4 0.6705 1.0000 0.6705 0.8023 1.0000 0.8023
5 5 0.6861 0.7226 0.9495 0.8009 0.8979 0.8919
5 6 0.5836 0.6683 0.8733 0.7286 0.7828 0.9308
5 7 0.5739 0.7104 0.8078 0.6146 0.7155 0.8590
5 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 9 0.6635 0.7849 0.8454 1.0000 1.0000 1.0000
5 10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 11 0.8855 0.9262 0.9561 0.8881 0.9422 0.9426
5 12 0.8175 1.0000 0.8175 0.9948 1.0000 0.9948
5 13 0.7723 0.9929 0.7779 0.8400 1.0000 0.8400
5 14 0.6944 0.7579 0.9162 0.7859 0.8206 0.9576
5 15 0.6188 0.6871 0.9006 0.6617 0.7191 0.9203
5 16 0.7057 0.7883 0.8952 0.7948 0.8272 0.9608

min 1 0.2558 0.5492 0.4406 0.2611 0.5860 0.4017
mean 0.7471 0.8728 0.8541 0.8190 0.9194 0.8850
max 16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table A2: Selected Estimates of Variable Cost Efficiency

CRS VRS

Period HHS VCE NVCE SNVCE VCE NVCE SNVCE

1 1 0.8352 0.8728 0.9308 0.9030 0.9371 0.9385
1 2 0.8287 0.8714 0.8928 0.9453 0.9783 1.0000
1 3 0.6277 0.5484 0.5484 0.9851 0.7380 0.8683
1 4 0.5328 0.5536 0.5539 0.5362 0.5626 0.5700
1 5 0.7481 0.8056 0.8063 0.8237 0.8507 0.8568
1 6 0.7215 0.7011 0.7227 0.7418 0.7357 0.7360
1 7 0.8490 0.8087 0.8093 0.9219 0.8733 0.8774
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Table A2 (continued).

CRS VRS

Period HHS VCE NVCE SNVCE VCE NVCE SNVCE

1 8 0.7105 0.7015 0.7800 0.7917 0.7877 0.8015
1 9 0.7938 0.7846 0.8875 0.8919 1.0000 1.0000
1 10 1.0000 0.7554 0.7558 1.0000 0.7598 0.7601
1 11 0.5760 0.5270 0.5270 0.5800 0.5357 0.5357
1 12 0.7401 0.7451 0.7455 0.8140 0.8394 0.8394
1 13 0.2980 0.2992 0.2992 0.3047 0.3920 0.3920
1 14 0.7316 1.0000 1.0000 0.8114 1.0000 1.0000
1 15 0.7315 0.7719 0.7725 0.7470 0.7724 0.7736
1 16 0.7024 0.7434 0.7434 0.8216 0.8791 0.9062
2 1 0.8269 0.8587 0.8647 0.9229 0.9870 0.9889
2 2 0.9672 0.8814 0.8814 1.0000 1.0000 1.0000
2 3 0.5529 0.5128 0.5128 1.0000 1.0000 1.0000
2 4 0.5084 0.5379 0.5408 0.5099 0.5444 0.5600
2 5 0.7589 0.8224 0.8224 0.8779 0.9089 0.9108
2 6 0.7824 0.7893 0.7907 0.8170 0.8827 0.8840
2 7 0.8400 0.8142 0.8169 0.8449 0.8358 0.8359
2 8 0.7768 0.7876 0.8854 0.8786 0.8703 0.9039
2 9 0.7997 0.8006 0.8392 0.9523 1.0000 1.0000
2 10 0.9382 1.0000 1.0000 0.9394 1.0000 1.0000
2 11 0.5037 0.4798 0.4811 0.5102 0.4865 0.4890
2 12 1.0000 0.9687 0.9906 1.0000 0.9875 0.9913
2 13 0.2558 0.2649 0.2652 0.2611 0.2873 0.2873
2 14 0.9581 0.8735 1.0000 0.9808 0.8776 1.0000
2 15 0.8260 0.7518 0.7527 0.8260 0.7544 0.7546
2 16 0.9037 0.8251 0.8503 0.9287 0.8729 0.8850
3 1 0.9210 1.0000 1.0000 0.9431 1.0000 1.0000
3 2 0.8644 0.8230 0.8230 0.9956 0.9575 0.9749
3 3 0.8544 0.9722 0.9722 1.0000 1.0000 1.0000
3 4 0.5621 0.5817 0.5842 0.5719 0.5919 0.5932
3 5 0.8593 0.8672 0.8674 0.9203 0.9445 0.9475
3 6 0.7672 0.7781 0.7802 0.8143 0.8667 0.8669
3 7 0.8989 0.8831 0.9548 0.9096 0.9210 1.0000
3 8 0.8417 0.8559 0.8593 0.9793 1.0000 1.0000
3 9 0.8228 0.8270 0.8704 0.9980 1.0000 1.0000
3 10 0.8895 1.0000 1.0000 0.8912 1.0000 1.0000
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Table A2 (continued).

CRS VRS

Period HHS VCE NVCE SNVCE VCE NVCE SNVCE

3 11 0.5037 0.4974 0.4974 0.5045 0.4983 0.4983
3 12 0.9182 1.0000 1.0000 0.9349 1.0000 1.0000
3 13 0.4170 0.5270 0.5319 0.4228 0.6410 0.6928
3 14 0.8201 0.7810 0.7910 0.8378 0.7954 0.7959
3 15 0.7539 0.7404 0.7412 0.7637 0.7620 0.7634
3 16 0.8067 0.8333 0.8579 0.8695 0.9144 0.9278
4 1 0.7379 0.8900 0.9223 0.7907 0.9778 0.9785
4 2 0.8637 0.8670 0.8671 0.9653 1.0000 1.0000
4 3 0.6435 0.6404 0.6404 0.7742 0.8822 0.8827
4 4 0.6124 0.6319 0.6319 0.6432 0.6562 0.6572
4 5 0.8060 1.0000 1.0000 0.8389 1.0000 1.0000
4 6 0.8006 0.7773 0.7798 0.8367 0.8686 0.8686
4 7 0.8238 0.8978 0.9154 0.8253 0.8982 0.9274
4 8 0.6588 0.7263 0.7335 0.7396 1.0000 1.0000
4 9 0.7308 0.7895 0.8352 0.8964 1.0000 1.0000
4 10 0.7950 0.7757 0.7757 0.7979 0.7807 0.7807
4 11 0.9155 1.0000 1.0000 0.9253 1.0000 1.0000
4 12 0.9369 0.9676 0.9678 0.9385 0.9985 0.9985
4 13 0.5925 0.6758 0.6758 0.6035 0.6874 0.6874
4 14 0.7887 0.7903 0.8165 0.8091 0.7932 0.8210
4 15 0.6586 1.0000 1.0000 0.6658 1.0000 1.0000
4 16 0.7623 0.8748 0.8936 0.8096 0.9151 0.9307
5 1 0.5651 0.6668 0.6682 0.6813 0.8327 0.8386
5 2 0.7201 0.7749 0.7751 0.8396 0.9028 0.9030
5 3 0.5603 0.5208 0.5219 1.0000 1.0000 1.0000
5 4 0.6705 0.6932 1.0000 0.8023 1.0000 1.0000
5 5 0.6861 0.8564 0.8566 0.8009 0.9694 0.9767
5 6 0.5836 0.6427 0.6434 0.7286 1.0000 1.0000
5 7 0.5739 0.7294 0.7770 0.6146 0.7882 1.0000
5 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 9 0.6635 0.6919 0.6919 1.0000 1.0000 1.0000
5 10 1.0000 0.8860 1.0000 1.0000 0.9305 1.0000
5 11 0.8855 1.0000 1.0000 0.8881 1.0000 1.0000
5 12 0.8175 0.8029 0.8032 0.9948 0.9555 0.9555
5 13 0.7723 0.8656 0.9174 0.8400 1.0000 1.0000
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Table A2 (continued).

CRS VRS

Period HHS VCE NVCE SNVCE VCE NVCE SNVCE

5 14 0.6944 0.7648 0.7659 0.7859 0.8605 0.8605
5 15 0.6188 0.6776 0.6791 0.6617 0.7256 0.7264
5 16 0.7057 0.8399 0.8401 0.7948 0.9887 0.9984

min 1 0.2558 0.2649 0.2652 0.2611 0.2873 0.2873
mean 0.7471 0.7768 0.7949 0.8190 0.8655 0.8775
max 16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table A3: Selected Estimates of Cost-Oriented Demand Uncertainty Effects

CRS VRS

Period HHS VCE NVCE CDUE VCE NVCE CDUE

1 1 0.8352 0.8728 0.9570 0.9030 0.9371 0.9636
1 2 0.8287 0.8714 0.9510 0.9453 0.9783 0.9662
1 3 0.6277 0.5484 1.1447 0.9851 0.7380 1.3349
1 4 0.5328 0.5536 0.9624 0.5362 0.5626 0.9532
1 5 0.7481 0.8056 0.9285 0.8237 0.8507 0.9682
1 6 0.7215 0.7011 1.0292 0.7418 0.7357 1.0084
1 7 0.8490 0.8087 1.0497 0.9219 0.8733 1.0556
1 8 0.7105 0.7015 1.0128 0.7917 0.7877 1.0051
1 9 0.7938 0.7846 1.0117 0.8919 1.0000 0.8919
1 10 1.0000 0.7554 1.3237 1.0000 0.7598 1.3161
1 11 0.5760 0.5270 1.0929 0.5800 0.5357 1.0828
1 12 0.7401 0.7451 0.9933 0.8140 0.8394 0.9697
1 13 0.2980 0.2992 0.9960 0.3047 0.3920 0.7774
1 14 0.7316 1.0000 0.7316 0.8114 1.0000 0.8114
1 15 0.7315 0.7719 0.9476 0.7470 0.7724 0.9671
1 16 0.7024 0.7434 0.9448 0.8216 0.8791 0.9346
2 1 0.8269 0.8587 0.9629 0.9229 0.9870 0.9350
2 2 0.9672 0.8814 1.0973 1.0000 1.0000 1.0000
2 3 0.5529 0.5128 1.0782 1.0000 1.0000 1.0000
2 4 0.5084 0.5379 0.9452 0.5099 0.5444 0.9366
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Table A3 (continued).

CRS VRS

Period HHS VCE NVCE CDUE VCE NVCE CDUE

2 5 0.7589 0.8224 0.9228 0.8779 0.9089 0.9659
2 6 0.7824 0.7893 0.9913 0.8170 0.8827 0.9256
2 7 0.8400 0.8142 1.0317 0.8449 0.8358 1.0109
2 8 0.7768 0.7876 0.9864 0.8786 0.8703 1.0096
2 9 0.7997 0.8006 0.9989 0.9523 1.0000 0.9523
2 10 0.9382 1.0000 0.9382 0.9394 1.0000 0.9394
2 11 0.5037 0.4798 1.0499 0.5102 0.4865 1.0487
2 12 1.0000 0.9687 1.0324 1.0000 0.9875 1.0127
2 13 0.2558 0.2649 0.9658 0.2611 0.2873 0.9086
2 14 0.9581 0.8735 1.0969 0.9808 0.8776 1.1176
2 15 0.8260 0.7518 1.0986 0.8260 0.7544 1.0950
2 16 0.9037 0.8251 1.0952 0.9287 0.8729 1.0640
3 1 0.9210 1.0000 0.9210 0.9431 1.0000 0.9431
3 2 0.8644 0.8230 1.0502 0.9956 0.9575 1.0398
3 3 0.8544 0.9722 0.8789 1.0000 1.0000 1.0000
3 4 0.5621 0.5817 0.9663 0.5719 0.5919 0.9661
3 5 0.8593 0.8672 0.9908 0.9203 0.9445 0.9744
3 6 0.7672 0.7781 0.9860 0.8143 0.8667 0.9395
3 7 0.8989 0.8831 1.0179 0.9096 0.9210 0.9876
3 8 0.8417 0.8559 0.9834 0.9793 1.0000 0.9793
3 9 0.8228 0.8270 0.9949 0.9980 1.0000 0.9980
3 10 0.8895 1.0000 0.8895 0.8912 1.0000 0.8912
3 11 0.5037 0.4974 1.0126 0.5045 0.4983 1.0125
3 12 0.9182 1.0000 0.9182 0.9349 1.0000 0.9349
3 13 0.4170 0.5270 0.7914 0.4228 0.6410 0.6596
3 14 0.8201 0.7810 1.0501 0.8378 0.7954 1.0533
3 15 0.7539 0.7404 1.0183 0.7637 0.7620 1.0021
3 16 0.8067 0.8333 0.9681 0.8695 0.9144 0.9509
4 1 0.7379 0.8900 0.8291 0.7907 0.9778 0.8087
4 2 0.8637 0.8670 0.9963 0.9653 1.0000 0.9653
4 3 0.6435 0.6404 1.0049 0.7742 0.8822 0.8776
4 4 0.6124 0.6319 0.9691 0.6432 0.6562 0.9801
4 5 0.8060 1.0000 0.8060 0.8389 1.0000 0.8389
4 6 0.8006 0.7773 1.0300 0.8367 0.8686 0.9632
4 7 0.8238 0.8978 0.9176 0.8253 0.8982 0.9188
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Table A3 (continued).

CRS VRS

Period HHS VCE NVCE CDUE VCE NVCE CDUE

4 8 0.6588 0.7263 0.9071 0.7396 1.0000 0.7396
4 9 0.7308 0.7895 0.9257 0.8964 1.0000 0.8964
4 10 0.7950 0.7757 1.0249 0.7979 0.7807 1.0221
4 11 0.9155 1.0000 0.9155 0.9253 1.0000 0.9253
4 12 0.9369 0.9676 0.9683 0.9385 0.9985 0.9399
4 13 0.5925 0.6758 0.8767 0.6035 0.6874 0.8780
4 14 0.7887 0.7903 0.9979 0.8091 0.7932 1.0201
4 15 0.6586 1.0000 0.6586 0.6658 1.0000 0.6658
4 16 0.7623 0.8748 0.8714 0.8096 0.9151 0.8847
5 1 0.5651 0.6668 0.8474 0.6813 0.8327 0.8182
5 2 0.7201 0.7749 0.9293 0.8396 0.9028 0.9300
5 3 0.5603 0.5208 1.0759 1.0000 1.0000 1.0000
5 4 0.6705 0.6932 0.9672 0.8023 1.0000 0.8023
5 5 0.6861 0.8564 0.8012 0.8009 0.9694 0.8261
5 6 0.5836 0.6427 0.9081 0.7286 1.0000 0.7286
5 7 0.5739 0.7294 0.7868 0.6146 0.7882 0.7798
5 8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 9 0.6635 0.6919 0.9590 1.0000 1.0000 1.0000
5 10 1.0000 0.8860 1.1287 1.0000 0.9305 1.0747
5 11 0.8855 1.0000 0.8855 0.8881 1.0000 0.8881
5 12 0.8175 0.8029 1.0183 0.9948 0.9555 1.0411
5 13 0.7723 0.8656 0.8923 0.8400 1.0000 0.8400
5 14 0.6944 0.7648 0.9078 0.7859 0.8605 0.9133
5 15 0.6188 0.6776 0.9131 0.6617 0.7256 0.9119
5 16 0.7057 0.8399 0.8402 0.7948 0.9887 0.8038

min 1 0.2558 0.2649 0.6586 0.2611 0.2873 0.6596
mean 0.7471 0.7768 0.9671 0.8190 0.8655 0.9493
max 16 1.0000 1.0000 1.3237 1.0000 1.0000 1.3349

33


	WP122021. Cover
	2021-08-21 Estimating the Cost Efficiency of Public Service Providers in the Presence of Demand Uncertainty



