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Abstract

The literature on firm efficiency has seen its share of research comparing and contrasting Data

Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA), the two workhorse estimators.

These studies rely on both Monte Carlo experiments and actual data sets to examine a range of perfor-

mance issues which can be used to elucidate insights on the benefits or weaknesses of one method over

the other. As can be imagined, neither method is universally better than the other. The present paper

proposes an alternative approach that is quite flexible in terms of functional form and distributional

assumptions and it amalgamates the benefits of both DEA and SFA. Specifically, we bridge these two

popular approaches via Bayesian Artificial Neural Networks. We examine the performance of this new

approach using Monte Carlo experiments. The performance is found to be very good, comparable or

often better than the current standards in the literature. To illustrate the new techniques, we provide

an application of this approach to a recent data set of large US banks.

Key Words: Simulation; OR in Banking; Stochastic Frontier Models; Data Envelopment

Analysis; Flexible Functional Forms.

1 Introduction

Frontier methods continue to have a pronounced impact through myriad of applications in various fields of

management science/operations research and economics/econometrics. They have been deployed for ana-

lyzing performance of airlines, banks, energy generation and distribution, farms, fisheries, hotels, health-

care providers, universities, etc. Aside from their frequent use in academia, they have also become part of
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the standard toolbox used by regulators and economics/management consultants when crafting policy and

strategies aimed at improving performance. Currently, the two main approaches are stochastic frontier

analysis (SFA) and data envelopment analysis (DEA).

Since the inception of SFA and DEA, there have been robust and lively debates on the merits of

each method relative to the other. On the one hand, DEA can estimate a production technology in a fully

nonparametric fashion, enforcing axioms of production and identify firm level efficiency. On the other,

SFA does not run into dimensionality issues that can potentially plague reliable inference of DEA and

is robust to the presence of stochastic noise that is likely to exist in economic production environments.

Both methods have their supplicants and detractors.1

While the relative merits of one method over the other can be debated, what is less controversial is

the importance of understanding and quantifying firm efficiency. These methods have enjoyed widespread

adoption across a range of economic milieus, seeing deployment for a host of analyses related to regulation

and benchmarking and determining frontier individuals, firms, states, governments and countries. Still,

the debate rages within this area, should one use DEA, which assumes that no stochastic noise is present

in the production process or SFA, which requires rigid parametric assumptions. As it turns out the answer

is complicated. Both methods have seen a wide variety of improvements since their initial incantations.

Parmeter and Zelenyuk (2019) have recently covered a range of methods that embrace the benefits of both

DEA and SFA, demonstrating that such a binary choice (SFA or DEA) is no longer an empirically relevant

question. What is relevant is how best to combine or embrace the virtues of both methods. There still

exists a widespread lack of consensus on a go to, practical approach that researchers can deploy to tackle

the important issue of efficiency analysis.

While most prominently developed and elaborated by Farrell (1957) and generalized and empowered

further by Charnes et al. (1978), DEA has a fairly long heritage, influenced by a few Nobel-prize related

works in economics. Indeed, a key advantage of DEA is its connection to economic theory models, whose

roots go back to the works of Leontief (1925), von Neumann (1945), Debreu (1951), as well as the linear

programming theory (e.g., see Dantzig, 1949), and its economics counterparts developed by Koopmans

(1951) and Shephard (1953, 1970). The vast literature on DEA has been extensively reviewed in many

works in economics and especially in the OR/MS and business literature, e.g., see Liu et al. (2013) and

Sickles and Zelenyuk (2019), and references therein.
1This religious language may seem harsh, however, the vast majority of empirical applications studying efficiency com-

monly use one (but not both of the methods) acting as though the other method does not exist. In our view this does a
crippling disservice to the field as both methods have been shown to have tangible benefits (Badunenko, Henderson and
Kumbhakar, 2012) and can offer useful empirical insights.
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In a sense, SFA was also inspired and fueled by the DEA literature (even before the latter was called

so). Its origins indeed go back to the discussion of Farrell’s (1957) paper by Winsten (1957), which in

turn inspired a series of influential contributions that eventually led to the discovery of SFA. The primary

goal was to mitigate the main limitation of DEA – its ignorance of statistical noise. While that goal was

achieved in the seminal works of Aigner et al. (1977) and Meeusen and van den Broeck (1977), it was

achieved at the cost of imposing several parametric assumptions: (i) on the production relationship, (ii)

on the distribution of the inefficiency term and (iii) on the distribution of statistical noise.

Since then many attempts have been made to bridge the two approaches, by overcoming a limitation

of each and embracing some advantages of both. The wide literature on SFA has been extensively reviewed

in many papers and books (e.g., see Kumbhakar, Parmeter and Zelenyuk, 2019 a,b), while Parmeter and

Zelenyuk (2019) focused on the semiparametric and nonparametric versions of SFA and the DEA that

account for noise. In the latter work, the authors concisely summarized the difference between the two

approaches, stating:

“In general, parametric SFA methods do not perform nearly as well as appropriate DEA esti-

mators when the frontier is misspecified, whereas DEA suffers relative to parametric SFA when

the amount of noise in the data is substantial.” (Parmeter and Zelenyuk, 2019, p. 1628).

One prominent example of combining DEA and SFA is stochastic DEA (and stochastic free disposal hull,

FDH) proposed by Simar and Zelenyuk (2011) (see also Simar, 2007), where nonparametric SFA is used

to filter away noise and outliers in the first stage and then DEA is used to impose the desired axioms of

production on the first stage estimates. Another early example in this vein is Tsionas (2003) who deployed

DEA in a first stage to estimate efficiency scores, which are then used to inform a Bayesian prior for the

distribution of the one-sided error term in a second stage relying on (empirical Bayes) likelihood-based

methods.

There are other approaches as well. Zhu (2004) proposed imprecise DEA, whereby some of the

inputs and outputs are measured imprecisely. Kumbhakar, et al. (2007), KPST hereafter, proposed a local

likelihood approach to nonparametrically estimate the stochastic frontier as well as inefficiency. Parmeter

and Racine (2012) and Kuosmanen and Kortelainen (2013) suggested the use of constrained nonparametric

methods to estimate the frontier (akin to DEA) and then recover inefficiency using standard methods.

Another line of attack has been to relax the distributional and functional form assumptions as in Tsionas

(2018).

Here, taking insights from the extant DEA literature, using its axiomatic underpinnings and linear
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programming apparatus, we try to improve traditional Bayesian estimation of the stochastic frontier model

(see van den Broeck et al. 1994; Fernández et al. 2000; Griffin and Steel 2004; Griffiths and Hajargasht

2016). Standard parametric SFA, for example, assumes that the frontier is linear in the parameters,

the two-sided error term is normally distributed, while the one-sided error component (which stands for

inefficiency) is distributed according to the Half-Normal, Truncated-Normal or Gamma distributions (for

example). Clearly, this involves a lot of assumptions which many policy and decision makers may be

uncomfortable with. To make things worse, these assumptions are rarely tested in practice.

This limitation of strict reliance on potentially fragile parametric assumptions suggests that the use

of SFA can benefit from the inclusion of some of the best virtues of DEA. In particular, here we use DEA

to benchmark a good “prior” for the parameters of inefficiency and/or the frontier parameters themselves,

although we do not make distributional assumptions about the one-sided error term. We show how to

impose monotonicity and curvature conditions (if desired). Central to our framework is the notion of a

“smooth mixtures of normals” (SMN), developed by Geweke and Keane (1997, 2007) and Villani et al.

(2009). The use of SMN has been shown to have excellent asymptotic properties (Norets, 2010) and the

notion of heterogeneity in the data that can be captured using endogenously determined groups based on

SMN.

Our results from the Monte Carlo experiments show that the new techniques are competitive to the

state-of-the-art SFA approaches and in several cases they behave better in terms of root mean-squared

errors. The new methods seem to perform well with nearly non-informative or, practically, flat priors. The

question of how to combine DEA and SFA (certainly, an old one) is addressed via the use of DEA-based

priors and then the assessment of model weights in optimal predictive pools (Geweke and Amisano, 2011

a, b). Our empirical application shows that the new SMN models receive, practically, the lion’s share in

such predictive analyses.

The remainder of the paper is as follows. In Section ?? we present the main estimation tools and the

form of the frontier model that we will consider. In Section ?? we discuss pertinent empirical extensions

to the baseline model that will prove invaluable for practitioners. Section ?? discusses the estimation via

DEA and its use for crafting a prior for further analysis. Section ?? presents a detailed Monte Carlo

exercise to compare the performance of this method to its competitors while Section ?? offers an empirical

application. Section ?? offers concluding remarks.
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2 Model

Our main interest is the benchmark stochastic frontier model (SFM):

yi = f(xi) + vi − ui, i = 1, . . . , n, (1)

where xi ∈ RK is the vector of inputs, yi = log Yi is log output, f : RK → R is the production frontier,

vi represents noise (a random variable supported in R), and ui is a random variable supported on R+

representing technical inefficiency.2 Moreover, cost frontiers can be considered using +ui instead of −ui

in (??). For ease of exposition we assume cross-sectional data although extensions to panel data are

straightforward. Moreover, in model (??) it is assumed that the inputs and output are in log terms, and

xi may contain functions of the inputs as well (for example, squared terms and interactions terms as in

the case of a translog production function).

Suppose there is a vector zi ∈ Rdz of “environmental” variables. These variables are commonly

thought of as only influencing inefficiency but for our purposes they could also be a subvector of xi or

influence vi through heteroskedasticity. These add minimal complications to our discussion below.3 We

denote wi = [x′i, z
′
i]
′ ∈ Rdw .

There are five fundamental issues in the estimation of the SFM:

1. Specification of the structure of ui;

2. Specification of the structure of vi;

3. Specification of the functional form f(·);

4. Possible endogeneity of the covariates xi;

5. Imposition of monotonicity and curvature conditions to enforce axioms of production.

The literature studying the SFM has offered proposals attempting to lessen the impact of some of these

points, either simultaneously or individually. For example, numerous authors have studied how to estimate

the production technology in a nonparametric fashion (Fan, Li and Weersink, 1996, Kumbhakar et al.

2007, Martins-Filho and Yao, 2010, Simar and Zelenyuk, 2011, Parmeter and Racine, 2012, Kuosmanen
2This formulation nests input-oriented and output-oriented distance functions with appropriate redefinition of the covari-

ates.
3The existence of such predetermined or environmental variables is assumed in place. With panel data a time trend and

lags of inputs and outputs can be used along with any other available environmental variables. With cross-sectional data,
one can proceed using artificial instruments as in Lewbel (1996).
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and Kortelainen, 2013, Park, Simar and Zelenyuk, 2015) but only Simar and Zelenyuk (2011), Parmeter

and Racine (2012) and Kuosmanen and Kortelainen (2013) have sought to enforce axioms of production.

Other authors have turned their attention to dispensing with distributional assumptions on u. Papers

by Hall and Simar (2002), Tran and Tsionas (2009), Horrace and Parmeter (2011) and Parmeter, Wang

and Kumbhakar (2017) fully dispense with distributional assumptions on inefficiency. For endogeneity,

only recently has the literature started to devote attention to solving this pernicious problem. Amsler,

Prokhorov and Schmidt (2016, 2017) are two of the most prominent, but they do not focus on any of the

other issues which impact the estimation of SFMs. To date, there does not yet exist an approach that can

handle all of these important assumptions in a direct manner. In what follows, we will consider each of

these issues within the confines of the approach we provide.

3 Estimation Issues of the Stochastic Frontier Model

Estimation of the benchmark SFM is by now well known and well understood (Kumbhakar, Parmeter and

Zelenyuk, 2021a,b). Here we will detail the salient estimation issues as they pertain to points 1-5 above

and how our framework can accommodate these important issues.

3.1 Modelling Inefficiency

As ri ≡ e−ui ∈ (0, 1] is technical efficiency, it is reasonable to parameterize ri = Φ(w′iδ) for w′iδ ∈ R,

where Φ(·) is a cumulative distribution function (the standard normal in this study), and δ ∈ Rdδ . Note

that in this setup, inefficiency is treated as deterministic instead of random. The benefit is that this switch

eliminates the need for distributional assumptions; the obvious downside is that the selected w variables

fully explain inefficiency so an omitted variable bias may arise.

The roots of this formulation go back to at least Simar et al. (1994) and were further elaborated on

from various vantages, more recently by Paul and Shankar (2018) and Tsionas and Mamatzakis (2019).

This formulation can be adapted to a semiparametric context by constructing a weighted average of these

CDFs across G distinct groups. Naturally, as G increases the weighted average takes on more variation,

but also reduces bias due to the assumed parametric form of the CDF. More specifically we have

ri =

G∑
g=1

Φ(w′iδg,1)δg,2 ⇒ −ui = log

G∑
g=1

Φ(w′iδg,1)δg,2, i = 1, . . . , n, (2)

where δg,2 ∈ R, g ∈ G = {1, . . . , G}; δg,1 ∈ Rdw are unknown parameters and the number of groups, G,
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and the weights δg,2 are also unknown. We redefine δ = [δ′g,1, δg,2]′ for g ∈ G.

From the approximation theory surrounding artificial neural networks (ANN) (e.g., see Hornik, 1993

and Hornik et al., 1994), the formulation in Equation (??) can approximate arbitrarily well the unknown

functional form between efficiency and the covariates wi. This specification can help alleviate any biases

arising due to estimation of the SFM with one of the usual distributional assumptions commonly deployed,

viz. that the one-sided error term follows a specific distribution like the Half-Normal, Truncated Normal

or Gamma, for example. In our formulation G is selected in a data-driven fashion, making the proposed

approach adaptive.

An alternative approach, based on kernel smoothing methods, is available when the production

frontier itself is parametrically specified. In this case the partly linear estimator of Robinson (1988) can

be used to nonparametrically estimate the conditional mean of inefficiency. Both Tran and Tsionas (2009)

and Parmeter, Wang and Kumbhakar (2017) use this methodology in a cross-sectional setting while Zhou,

Parmeter and Kumbhakar (2020) extend the methodology to the panel data setting. A limitation of this

line of research is that the separability assumption (Simar and Wilson, 2007), x ⊥ z, must be satisfied.

That is, the covariates that influence production directly must be different than those covariates that

influence production indirectly through inefficiency. In the above, this would entail changing w with

z, however this is not necessary for identification or estimation in our formulation. Moreover, even if

the separability assumption were valid, use of the partly linear model still assumes that the production

technology is parametrically specified, which is a further limitation of this approach.

3.2 Specification of the Noise Distribution

The unknown distribution of noise can be parameterized, generically, using smooth mixtures of Normal

distributions (Geweke and Keane, 1997, 2007; Villani et al., 2009). In particular, as pointed out by Norets

(2010, p. 1733):

“. . . large classes of conditional densities can be approximated in the Kullback–Leibler dis-

tance by different specifications of finite smooth mixtures of normal densities or regressions in

which normal means and variances and mixing probabilities can depend on variables in the

conditioning set (covariates).”

To adapt this interesting and novel approach to our context, we assume there are M groups in the data

and

yi|wi, ui ∼ N
(
x′iβm − ui, σ2

vim(wi; δm)
)
,with probability pim(wi; ηm), (3)
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where m ∈ M = {1, . . . ,M}, with M denoting the number of groups, while βm ∈ RK and δm ∈ Rdδm

contain unknown parameters, which we denote as vector δ = [δ′1, . . . , δ
′
M ]′ ∈ Rdδm .

Notice that the variance in each group and the probability that observation i is in this group are

both functions of the covariates with respective parameters δm and ηm (m ∈M). We specify

pim(wi; ηm) = ew
′
iηm∑

m0∈M
ew
′
i
ηm0

, m ∈M,

using, without loss of generality, η1 = 0. Furthermore, we denote β = [β′1, . . . , β
′
M ]′ ∈ Rdβ , γ =

[γ′1, . . . , γ
′
M ]′ ∈ Rdγ , and η = [η′1, . . . , η

′
M ]′ ∈ Rdη , while for the variances, we assume

σ2
vim(wi; δm) = ew

′
iδm , m ∈M, (4)

where δm ∈ Rdδm is a vector of parameters.4 As pointed out by Norets (2010), these are special cases of

so-called “mixtures of experts” models in statistics and computer science.

3.3 Unknown functional form

The framework in Equation (??) allows for nonparametric estimation of the production frontier through

the number of groups M . As M is allowed to increase, this will increase the ability of the smoothed

mixture of normals to detect local curvature of the frontier.

The key to allow for full flexibility for the estimation of the frontier is to allow M to grow as n

increases. This will ensure that the frontier is treated in a nonparametric fashion. The approach here is

to select M using the marginal likelihood. To explain the marginal likelihood, suppose we have data Y ,

parameters θ ∈ Θ ⊆ Rd, a likelihood function L (θ;Y ) and a prior p(θ). By Bayes’ theorem the posterior is

p(θ|Y ) ∝ L (θ;Y )p(θ). The marginal likelihood is the normalizing constant of the posterior, viz. M (Y ) =∫
Θ L (θ;Y )p(θ)dθ. Given two models say “1” and “2” with different parameters, likelihoods and priors, the

Bayes factor in favor of model “1” and against model “2”, given the same data, when the prior odds are

1:1, is BF1:2 = M1(Y )
M2(Y ) , also known as the posterior odds ratios.5 The marginal likelihood can be estimated

using the so-called “candidate’s formula” which is an identity for all θ ∈ Θ, viz. M (Y ) = L (θ;Y )p(θ)
p(θ|Y ) .

The numerator is easy to compute at, say, the posterior mean. As the denominator is unknown it can be
4Here, it is worth recalling that Parmeter and Zelenyuk (2019) put special emphasis on heteroskedasticity in the one-sided

error term (see their section 2.3) although they do discuss heteroskedasticity of vi as well, and here we will also look at these
from different angles.

5See Zellner (1971, chapter 10, in particular p. 293); and Kass and Raftery (1995).
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evaluated using the Laplace approximation (DiCiccio et al., 1997; Lewis and Raftery, 1997).

The rate of growth of M as n increases is a theoretical construction as we have a given n so we

need to select the best value of M using some criterion (the marginal likelihood in our case). As noted in

Fong and Holmes (2020) marginal likelihood can be demonstrated to be equivalent to a near exhaustive

leave-p-out cross-validation framework, provided this leave-p-out procedure is averaged over all values of p

and all hold out prediction sets. Doing so allows the use of the log posterior model predictive probability

to operate as a scoring rule. Further, Fong and Holmes (2020) show that this log posterior predictive

score is the only coherent scoring rule under data exchangeability. Our use here of their implementation

offers new insights into nonparametric Bayesian applications by formally linking the marginal likelihood

(a Bayesian construct) to cross-validation (a Frequentist construct).

Lastly, we end by noting that the number of smoothed normals that we have assumed can differ

between the estimation of the frontier and the estimation of the distribution of v. While we have implicitly

left the number of smooth normals as M , in practice we would have M1 mixtures for the frontier and M2

mixtures for the unknown noise distribution. This introduces some subtle notational complexities but

does not impact the overall construction or use of the estimator.

3.4 Endogeneity

Although endogeneity is not the main focus in the vast majority of SFA and DEA studies (including

Parmeter and Zelenyuk, 2019), in practice, it is an important issue if one is concerned with the estimates

of parameters for the variables that may suffer from endogeneity. To understand the importance of

endogeneity, we write (??) as follows

yi = x′iβm − ui + σvim(wi; δm)ξim, with probability pim(wi; ηm)m ∈M, (5)

where ξim are mutually independent (for all i and m), and assumed to have zero (conditional) mean and

unit (conditional) variance (assuming wi contains an intercept) but not necessarily independent of xi.

The endogeneity of inputs is well known in the production economics literature and has received a lot

of attention over the years, see Marschak and Andrews (1944), Mundlak (1961), Olley and Pakes (1996),

Levinsohn and Petrin (2003), Doraszelski and Jaumandreu (2013), Ackerberg, Caves, and Frazer (2015),

and Gandhi, Navarro, and Rivers (2020), to mention a few. Only recently has the efficiency community

embraced the importance of endogeneity, e.g., see Kutlu (2015), Amsler, Prokhorov and Schmidt (2016,
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2017), Griffiths and Hajargasht (2016) and other articles in the special issue of Journal of Econometrics

(Kumbhakar and Schmidt, 2016).

Our approach is to couple Equation (??) with a reduced form

xi = Π(qi;$) + Vi, (6)

where Π(·;$) : Rdq → RK , $ ∈ Rd$ is a vector of parameters, and Vi is an error term supported in RK .

The reduced form, relates the endogenous variables xi to the predetermined variables qi via a possibly

nonlinear form.6 To account for endogeneity, it is not enough to relate the xis to the qis. In fact, we need

to account for dependence between Vi and ξi = [ξi1, . . . , ξiM ]′.7 If, in fact, zi in (??) does not contain an

intercept then the problem is simplified as we do not have to assume that the elements of ξi have unit

variance. This is convenient as we can now assume:

[V ′i , ξ
′
i]
′ ∼ NK+M (0,Σ),

where Σ is a covariance matrix whose M ×M southeastern submatrix is diagonal to take into account

the mutual independence of elements of ξi. In general we have

Σ =

 ΣV V ΣV ξ

Σ′V ξ Σξξ

 ,
where the submatrix ΣV ξ accounts for correlations between elements of Vi and ξi, and Σξξ is diagonal

with elements σ2
ξ1, . . . , σ

2
ξM . These are, of course, unknown. In modeling endogeneity, the elements of ΣV ξ

are essential.

As the specification of (??) is important, we consider two strategies: (i) a linear reduced form (LRF)

and a nonlinear reduced form (NLRF). The LRF can be modeled as:

xi = Πqi + Vi. (7)

This setup follows the common convention in the majority of applied economic work. An alternative is to
6Notice that if the relation were linear we would have Π(qi;$) = Πqi, where the reduced form parameters Π ∈ Rdq×dq .
7On this point, see Kleibergen and van Dijk (1993).
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use an ANN which we can write as follows

xik = q′i$k0 +

G∑
g=1

ψ(q′it$kg1)$kg2 + Vik, k = 1, . . . ,K, (8)

where $k0 and $kg1 ∈ Rdq , $kg2 ∈ R (g = 0, 1, . . . , G) are unknown parameters, and the “activation

function” is ψ(s) = 1
1+e−s for s ∈ R. An assumption that G = 0 means that only the linear term is present

in (??). We redefine $ ∈ Rd$ to include all parameters in the set of equations in (??). Finally, Vik is

the kth element of Vi. For simplicity in implementation, we keep the same number of ANN nodes (G)

throughout, although assuming different values is possible.

Of course, there are certain issues8 with the reduced form that arise in implementation, whether

linear or not. The first issue is whether we have “weak instruments” which can result in erratic behavior of

parameter estimates and posterior densities in finite samples (Kleibergen and van Dijk, 1993). The second

issue is whether the instruments (qi) are correlated with the endogenous variables (xi), viz. whether they

are “relevant”. These issues are taken up in the Technical Appendix. Finally, we note that we could also

allow elements of z to be endogenous as well. We leave this as an extension for future research and refer

the reader to Amsler, Prokhorov and Schmidt (2017) for further details in a parametric, frequentist setup.

3.5 Imposing monotonicity and curvature

With the setup described above we can fully estimate the stochastic production frontier without distri-

butional assumptions on v or u and we can estimate the unknown frontier in a nonparametric fashion.

However, even with this, we still face the potential that our estimated frontier may not respect traditional

axioms of production (monotonicity/convexity of a given input). Thus it is imperative to focus on how to

impose these types of constraints on the estimated frontier. Our approach will seek to impose the desired

constraints on a selected grid of points.9 Rejection sampling within MCMC seems possible in this respect.

The average frontier then is given as follows

E (yi|xi, zi) =
∑
m∈M

pim(wi; ηm) ·
(
x′iβm − ui

)
, (9)

where ui is given by (??), and E(·) denotes expectation (and E(·|·) denotes conditional expectation).

One important class of models is when, in fact, pim(wi; ηm) depends only on zi (a form of separa-
8See Staiger and Stock (1997) and Stock et al. (2002).
9Flexibility of the algorithm will be compromised if we make the grid too fine.

11



bility). In this case, if x′iβm satisfies automatically monotonicity and concavity, then the average frontier

in (??) will satisfy these properties as well. Using the convention that yi and xi are in logs, the simplest

possible choice is a Cobb-Douglas production function with coefficients βm (m ∈M). Although this choice

is convenient it can, potentially, result in a large number of groups (M) especially with big (wide) data.

Therefore, we explore a more general formulation – a translog functional form:

f(xi;β) = β0,m + β′1,mxi + 1
2x
′
iBmxi, ∀m ∈M,

where β0,m ∈ R, β1,m ∈ RK and Bm ∈ RK×K is a symmetric matrix. All these parameters10 are subsumed

in the definition of β ∈ B ⊂ Rdβ . The parameter space B depends on the monotonicity and curvature

restrictions, imposed at a number of points. So, we select a set X = [xι, ι = 1, . . . , Ī] and impose curvature

and monotonicity at these Ī points. One of the points is the component-wise mean of the data, and the

other Ī − 1 points are randomly selected. In our Monte Carlo experiments and empirical application we

use Ī = 10. Furthermore, for simplicity we proceed on the assumption that pim(wi; ηm) and the variances

in (??) depend only on zi.

Finally, we note that the choice of a translog within a group is not an altogether unrealistic assump-

tion. Note that

(i) the translog is a second-order approximation to arbitrary functions;

(ii) groups are relatively homogeneous with monotone – concave frontiers which (locally, at least) the

translog can approximate very well;

(iii) with the translog it is relatively straightforward to impose monotonicity and concavity at a specified

number of points.11

We note that this approach here differs substantially from the recent work of Tsionas (2021). Tsionas

(2021) attempts to place monotonicity/concavity restrictions on the production frontier through the cost

function by using the first order conditions stemming from cost minimization (since the production function

is dual). While it is generally known that specification of a globally monotone concave production function

is a difficult task the approach here is straightforward to implement in a Bayesian context and should prove

useful in other application domains.
10It is, of course, possible to include firm- and time-specific effects or a time trend when we have panel data. The time

trend should be included along with its square and interaction with all other xis.
11When the log data are in deviations from their means, then monotonicity holds if the first order coefficients are non-

negative. For imposition of concavity, see Diewert and Wales (1987).
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4 The Use of DEA in Estimation

As we have seen above, an estimation methodology exists that allows us to circumvent many of the

unpopular or contentious assumptions that are levied against the stochastic frontier model. Even with

these impediments removed (or mitigated), one may still prefer DEA to our proposed model. Rather, we

advocate that DEA can be used to craft robust priors for the stochastic frontier estimator just described.

This avenue offers a best-of-both worlds appeal.

To construct these DEA based priors, we need to estimate inefficiency from a baseline deterministic

frontier model. The obvious route is either FDH or DEA. Specifically, the deterministic frontier estimator

of the Farrell output oriented technical efficiency for an observation (xo, Y o) is given by

ÔTE(xo, Y o) = max
λ,ξ1,...,ξn

{λ :
n∑
i=1

ξiYi ≥ λY o
i

n∑
i=1

ξixi ≤ xoi

λ ≥ 0

(ξ1, . . . , ξn) ∈ Z },

where Z is the set of restrictions on the intensity variables (ξ1, . . . , ξn), which can be used to impose

various shape constraints on the production relationship. In particular, if Z = {(ξ1, . . . , ξn) : κ1 ≤
n∑
i=1

ξi ≤ κ2, ξi ≥ 0, ∀ξi} and if κ1 = 0 and κ2 = ∞ (i.e., unbounded) then the assumption of constant

returns to scale (CRS) is imposed on the estimated production relationship. Meanwhile, if κ1 = 0 and

κ2 = 1 then non-increasing returns to scale is assumed, while if κ1 = 1 and κ2 = 1 then variable returns

to scale (VRS) is assumed. Finally, if in addition to requiring κ1 = κ2 = 1, we require ξi ∈ {0, 1} ∀i,

convexity is relaxed leading to the FDH estimator (Deprins et al., 1984).12

Our use for these estimates is to calibrate a prior for the coefficients in (??). As we use the same data

for calibrating the prior and performing posterior analysis, this is, at best, an empirical Bayes procedure.

Our intention is to compare results across priors computed using various deterministic frontier estimators.

Our benchmark prior is

p(θ) ∝ IB(β) ·
M∏
m=1

σ−1
ξ,m · |Σ|

−(M+K+1)/2 · p(θ∗), (10)

where θ ∈ Θ ⊂ Rdθ is the entire parameter vector, Θ is the parameter space (mainly affected by B), θ∗ is
12For the statistical properties of the DEA and FDH estimators, see Korostelev et al. (1995), Kneip et al. (1998, 2008)

and a review by Simar and Wilson (2015).
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the parameter vector excluding β, γ, its prior is p(θ∗), and the scale parameters, IB(β) = 1 if β ∈ B, and

zero otherwise. The prior for all other parameters (γ, δ, η,$) is flat, and the prior for the scale parameters

is improper and (relatively) uninformative (see Zellner, 1971, p. 225, equation (8.9) for Σ).

To craft the DEA-based prior, we estimate the functional form in (??) using r̂i(j) from DEA to

obtain estimates γ̂(j) and their covariance matrix V̂(j), where (j) corresponds to the jth sub-sample from

J = {1, . . . , J} where J is the number of efficiencies that we consider to calibrate a DEA prior.13 Let

γ̂∗ = [γ(1), . . . , γ(J)]
′. Our prior is then

γ ∼ Ndγ (aγ̂, hV̂ ), (11)

where γ̂ = ω′γ̂(j), ω ∈ S = {ω ∈ RJ+ : ω′1J = 1}, 1J is a J × 1 vector of ones, S is the boundary of the

unit simplex in RJ , ω is a vector of weights to reflect the importance of each different method, a ∈ R and

h > 0 are parameters whose selection will be defined below, and V̂ = ωV̂∗ω
′, V̂∗ = diag[V̂(j), j ∈ J].

Parameters a and h are introduced to improve the fit of the model along with the weights ω as

follows. We randomly take 10,000 draws for ω from S and 10,000 draws for a and h, and we select the set

of weights that maximizes the marginal likelihood or “evidence” of the model (see our earlier discussion of

the marginal likelihood). We draw a from a Normal distribution with mean one and diagonal covariance

matrix whose diagonal elements are all equal to 104; for h we draw from log h ∼ N (0, 104). Regarding the

selection of G, we specify G = Gmax = 10.14 This procedure produces optimal values for a, h and weights

ω which are used to calibrate our prior in (??). Regarding θ∗, which includes only δ and η, we assume

the following prior:

θ∗ ∼ Ndim(θ∗)

(
θ̄∗, h

2
∗Idim(θ∗)

)
, (12)

where θ̄∗ is the prior mean, the prior covariance matrix is a diagonal matrix with all diagonal elements

equal to h2
∗, and Id denotes the d× d identity matrix. In our benchmark prior, we have θ̄∗ = 0dim(θ∗) and

h∗ = 104, but we intend to perform posterior sensitivity analysis with respect to these prior parameters

including a, h and ω (see the Technical Appendix where we also take up the issue of weak instruments

and the validity of instruments in relation to (??) and (??)).
13In the simulations and application we set J = 20% of the total number of observations.
14This is necessitated by the fact that in our MCMC procedure we try different values of G in the interval {1, . . . , Gmax}

to finally select the optimal value of G. For this reason we need to have a prior for γ that is fully defined for all G.
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5 Monte Carlo Simulations

5.1 No endogeneity

We use the same simulation designs as in Parmeter and Zelenyuk (2019) and we compare with the best

results in each of the cases reported in their Tables 1-5. We consider five different data generating processes

(DGP). DGP I is a linear frontier with Normal-Half-Normal (NHN) errors generated as yi = x
1/2
i +vi−ui,

vi ∼ N (0, σ2
v), vi ∼ N+(0, σ2

u) with σv = 0.2 and λ = σu
σv
∈ {0.5, 1, 2}, and i = 1, . . . , n, where the sample

size (n) takes the values 50, 100, 200, and 400. The covariate xi is generated uniformly in the interval

(0.5, 10). In DGP II, the inefficiency distribution is misspecified to be Gamma with parameters (1, 5),

(9, 5), and (9, 34). In DGP III, inefficiency has a skedastic function σu(x) = 0.95e−0.5x. DGP IV is a

nonlinear frontier with

yi = a1xi + a2 sinxi + vi − ui, i = 1, . . . , n, (13)

with a1 = a2 to ensure monotonicity. In DGP V, Parmeter and Zelenyuk (2019) have a nonlinear frontier

(adopted from Martins-Filho and Yao (2015)):

yi = b1 + b2 arctan[b3(xi − b4)] + vi − ui, i = 1, . . . , n, (14)

where b1 = 1, b2 = 0.5, b3 = 20, and b4 = 0.5. The two-sided and one-sided error components are

specified as before. We report results for the benchmark FLWDD estimator (“DD” stands for “data

driven”) which relies on plug-in likelihood estimation with least-squares cross-validation and performs well

in the simulations reported in Tables 1-5 of Parmeter and Zelenyuk (2019, pp. 1649–1652).

We also use 200 Monte replications as in their study and we focus on the more difficult cases, viz.

λ = 0.5, Gamma(9, 5) to save space, although results for other values of λ and the parameters of the

Gamma distribution gave similar conclusions. For all the DGPs, we estimate the frontier at each data

point in each replication and then compute the square root of the mean squared error (RMSE) over all the

data points and take the median over all the replications of Monte Carlo to be consistent with Parmeter

and Zelenyuk (2019). Finally, we do not correct for endogeneity using (??) or (??) as there is none in the

DGPs.
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Table 1: RMSE results, Comparison with Tables 1 - 5 of Parmeter and Zelenyuk (2019), FLWDD method.

I. Linear NHN frontier II. Linear

frontier,

gamma

distribution of

inefficiency

III. Linear

frontier,

heteroskedastic

inefficiency

IV. Nonlinear

frontier, NHN

distribution(a)

V. Nonlinear

frontier, NHN

distribution(b)

n = 50 0.113 0.417 0.180 0.138 0.120
0.062 0.070 0.035 0.049 0.032
0.113 0.129 0.135 0.135 0.120
0.058 0.065 0.030 0.048 0.030

n = 100 0.096 0.377 0.182 0.114 0.095
0.035 0.055 0.022 0.032 0.011
0.095 0.111 0.132 0.110 0.097
0.039 0.051 0.020 0.030 0.010

n = 200 0.070 0.382 0.171 0.092 0.073
0.025 0.032 0.017 0.025 0.005
0.070 0.097 0.120 0.087 0.072
0.020 0.030 0.015 0.022 0.005

n = 400 0.047 0.376 0.164 0.059 0.059
0.015 0.021 0.011 0.011 0.001
0.047 0.096 0.097 0.049 0.058
0.014 0.020 0.010 0.010 0.001

Notes: (a) This refers to (??). (b) This refers to (??). Numbers in regular font correspond to root mean squared errors (RMSE) from
Tables 1–5 in Parmeter and Zelenyuk (2019, pp. 1649–1652) and they refer to FLWDD (the Fan et al., 1997 estimator) which relies on
plug-in likelihood estimation with least-squares cross validation. KPST estimates of inefficiency to calibrate the prior in (??). Numbers
in italics refer to results of this study based on using DEA estimates of inefficiency to calibrate the prior in (??). Underlined figures
do not use information from DEA or KPST and are based on our benchmark prior (??). As FDH priors did not yield better results
compared to DEA or KPST they are omitted although they are available on request. Numbers in bold represent results from a prior
anchored on KPST.

The FLWDD estimator performs well for DGPs I, IV and V (as expected) of Parmeter and Zelenyuk

(2019) although the parametric estimator performs slightly better as expected in DGP I. The techniques

proposed here perform slightly better than FLW in scenarios I, II, and III but RMSEs are considerably

lower for DGPs III and IV. Although DGP V has a nonlinear frontier, it can, nevertheless, be approximated

globally by a linear function so the parametric SFA estimator (Parmeter and Zelenyuk, 2020, p. 1652,

Table 1) performs well. In this instance, our results are also the same or slightly better compared to FLW.

Our results are considerably better than FLW in the relatively “difficult” DGP IV. Under misspecification

of the inefficiency distribution (DGP II) our results are, again, slightly better than FLW. The methods

proposed here perform rather well under scenario DGP where inefficiency is heteroskedastic albeit not in
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the same way that we model heteroskedasticity. This shows that approximations like (??) are likely to

perform very well in practice. Our method also performs very well under a misspecified Gamma(9, 5)

distribution for inefficiency where the parametric methods perform better than FLW but still they have

(like FLW) large RMSEs.

Instead of reporting results separately for DEA- and KPST-based priors we may combine the two

priors:

p(·) = φpDEA(·) + (1− φ)pKPST (·), (15)

where φ ∈ [0, 1], and the arguments are the same as in (??) and (??). We can treat φ as a parameter

with a uniform distribution in the unit interval. We denote this prior as DEA/KPST. Values of φ will be

useful in assessing whether DEA or KPST based priors are more useful.15

When we do not use DEA-based information (see underlined figures in Table 1) but instead we use

the prior in (??), RMSEs are larger than RMSEs delivered by the DEA-prior, mostly in scenarios II and

III. In III, as we have heteroskedasticity, the RMSEs corresponding to the DEA-prior are significantly

lower so, in practice, using DEA to benchmark a prior like (??) may prove to be beneficial.

Our implementation in scenario III assumes that xi is in the skedastic function (??). We have

experimented with a version where we try zi in the skedastic function, where zi = xi + σzζi, ζi
iid∼ N (0, 1)

(i = 1, . . . , n). For moderate values of σz we find16that the DEA-prior loses its advantage over (??).

Specifically, this happens for values of σz greater than about 0.5 which is, approximately, 10% of the

average value of xi (which is 5.25 in this instance). However, the RMSEs are still smaller compared to

FLW even when σz exceeds 1 or 2, again suggesting that using DEA to benchmark such prior may prove

to be beneficial.

Finally, we also find that in the case of small samples (n is 50 or 100) that the DEA-prior is important

in reducing RMSEs. For larger samples, despite the fact that the prior comes from the data, it seems

to be “dominated” by the likelihood.17 Moreover, results for FDH are not reported as they were always

inferior relative to DEA.

The estimated densities (across simulations) of φ are reported in panel (a) of Figure ??. In panel

(b) of Figure ?? we report the corresponding estimated distribution functions. From this evidence it turns

out that DEA and KPST receive approximately equal weight (as we do not have first-order stochastic
15In practice, we use the technique of inverting the distribution function of λ conditional on all other parameters. The

distribution is discretized using 100 values in the unit interval.
16These results are not reported here but are available on request.
17Clearly, this “domination” is due to the fact that we allow a very large variance in (??), as h∗ = 104.
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Figure 1: Distributions of φ for the four models.
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dominance in models I and II). In Models III, IV, and V, again, we do not have first-order stochastic

dominance, although compared to models I and II, φ is likely to be more concentrated around 0.5. This

type of exercise is important as, rarely if ever, do we have the luxury of dividing the data, using one part

to craft the prior and the second to perform posterior inference.

To conclude this discussion, we note that while the KPST prior is slightly better than the DEA prior

(and both give much better results than the others), obtaining the DEA prior is much easier/simpler as it

does not involve setting a bandwidth, which may be fraught with difficulties, especially in high dimensions,

and for which the results might be sensitive to a particular choice. On the other hand, DEA might be

sensitive if too much noise or outliers are present in the data (as KPST might be too). Hence, it might

be wise to use both and potentially with other priors (or mix them as described above), to confirm the

robustness of results or to identify potential issues to explore in more details.

For our proposed estimator we see vast improvements relative to FLW-type estimators for all sam-

ple sizes when we anchor to the KPST results (rather than to DEA to calibrate (??) or (??) without

any information from either DEA and KPST). The reason can be easily attributed to the fact that the

estimation of inefficiency in finite samples is a difficult exercise on its own, and informative priors, that is

priors that carry useful information about inefficiency, can be of great help in reducing root mean squared
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errors. A notable feature of such priors is that their effect does not converge to zero as the sample size

becomes arbitrarily large. For example, DEA- and KPST-based priors remain informative even in large

samples, that is DEA and KPST can be usefully employed to learn about efficiency even in large samples.

In this sense, and since the number of parameters in the inefficiency distribution increases with the sample

size, anchoring priors remain informative.

5.2 With endogeneity

A further benefit of our Bayesian nonparametric approach is that it can easily accommodate endogeneity

if instruments are available. For our framework we use the DGP of Amsler, Prokohorov and Schmidt

(2017, APS hereafter).

The DGP of APS is as follows. They consider the baseline SFM with the scaling property invoked

yi = β0 + x′iβ + vi − ui, ui = uoi e
q′iδ,

where the basic inefficiency term (Wang and Schmidt, 2002) uoi is distributed as Half-Normal, N+(0, σ2
u),

and vi is distributed as N (0, σ2
v). To introduce endogeneity, APS partition both x and q into exogenous

and endogenous components

xi =

 x1i

x2i

 qi =

 q1i

q2i

 ,
where x1i and q1i are exogenous and x2i and q2i are endogenous. The instruments are termed zi =

[1, x1i, q1i, wi]
′, where wi are the outside instruments. Finally, the endogenous variables are generated as

x2i =Π′xzi + ηi

q2i =Π′qzi + τi.

Endogeneity is introduced by allowing vi, τi and ηi to be correlated with each other, defined as ρ. Relative

to APS we have a different model as, among other things, our reduced form estimator is more flexible but

we avoid the use of copulas which places certain limits on the type of dependence we can model. Moreover,

from our point of view, in terms of inefficiency, our approach is broader as we do not anchor to a particular

model but we couple it with efficiency priors that can, potentially, deliver better results in finite samples.

For our simulations we use the small variations of the “base case” of APS which consists of setting
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Table 2: Mean RMSE of conditional frontier across 200 simulations.

α n ↓ δ = 0 δ = 0.5 δ = 1.00

ρ→ 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
100 0.251 0.289 0.31 0.333 0.394 0.42 0.479 0.51 0.699

0.288 0.303 0.325 0.33 0.329 0.351 0.557 0.368 0.402
200 0.182 0.209 0.224 0.248 0.294 0.313 0.348 0.37 0.507

0 0.214 0.226 0.242 0.242 0.242 0.258 0.395 0.26 0.285
400 0.13 0.149 0.16 0.175 0.208 0.221 0.25 0.266 0.364

0.159 0.168 0.18 0.173 0.172 0.184 0.28 0.184 0.202
800 0.09 0.103 0.111 0.123 0.146 0.156 0.177 0.189 0.258

0.114 0.12 0.128 0.119 0.119 0.127 0.195 0.129 0.141
100 0.387 0.394 0.421 0.498 0.504 0.623 0.666 0.706 0.76

0.338 0.392 0.466 0.625 0.465 0.531 0.73 0.581 0.714
200 0.29 0.295 0.316 0.374 0.379 0.467 0.5 0.53 0.57

0.116 0.253 0.293 0.349 0.46 0.342 0.39 0.554 0.441 0.543
400 0.21 0.214 0.229 0.271 0.275 0.343 0.363 0.389 0.419

0.185 0.215 0.256 0.33 0.246 0.281 0.417 0.332 0.408
800 0.15 0.153 0.162 0.194 0.194 0.244 0.256 0.277 0.298

0.136 0.157 0.187 0.235 0.175 0.2 0.295 0.235 0.289
100 0.423 0.458 0.474 0.494 0.508 0.525 0.762 0.771 0.91

0.349 0.51 0.467 0.433 0.624 0.536 0.478 0.659 0.659
200 0.32 0.348 0.359 0.375 0.384 0.409 0.578 0.6 0.708

0.316 0.269 0.392 0.36 0.336 0.485 0.417 0.37 0.51 0.51
400 0.241 0.263 0.27 0.283 0.29 0.307 0.437 0.451 0.532

0.204 0.298 0.273 0.243 0.35 0.301 0.276 0.38 0.38
800 0.171 0.189 0.192 0.203 0.206 0.222 0.314 0.325 0.384

0.15 0.219 0.201 0.176 0.253 0.218 0.202 0.278 0.278

Notes: Numbers in regular font correspond to the LRF specification while numbers in bold represent the NLRF specification.

β0 = 0, β = (0.61, 0.61)′, and Πx = Πq = (0, α, α, α, α) where α ∈ {0, 0.116, 0.316}. We generate our

exogenous covariates, x1i and q1i along with the instruments w1i and w2i as N (0, 1) marginals and corre-

lation equal to 0.5. The errors, η, τ and v are all distributed N (0, 1) with correlation ρ ∈ {0, 0.25, 0.50}.

We select δ = (δ1, δ2) ∈ {0.0, 0.25, 0.5}, where we always have δ1 = δ2 and fix σ2
u = π/(π− 2). The results

are presented for sample sizes 100, 200, 400 and 800.

Tables ?? and ?? contain basic simulation results when we follow APS and allow for endogeneity into

both the covariates entering the frontier and the scaling function of the inefficiency term. We compare

the root mean square error of the conditional frontier and the conditional mean of inefficiency in this

setting across 200 simulations. Given that the current menu of semi- or nonparametric stochastic frontier

estimators does not explicitly deal with endogeneity, we only focus on our proposed estimator.

There are several interesting features stemming from these two tables. First, the performance of
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Table 3: Mean RMSE of conditional mean of inefficiency across 200 simulations.

α n ↓ δ = 0 δ = 0.5 δ = 1.00

ρ→ 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
100 0.344 0.383 0.405 0.407 0.424 0.496 0.563 0.661 0.804

0.345 0.383 0.405 0.432 0.449 0.53 0.568 0.586 0.715
200 0.241 0.269 0.284 0.301 0.305 0.367 0.416 0.475 0.578

0 0.258 0.287 0.303 0.317 0.33 0.389 0.421 0.434 0.53
400 0.165 0.184 0.194 0.21 0.219 0.256 0.29 0.341 0.416

0.191 0.212 0.224 0.229 0.238 0.281 0.301 0.31 0.379
800 0.113 0.126 0.133 0.144 0.152 0.176 0.199 0.238 0.289

0.14 0.156 0.164 0.165 0.17 0.201 0.212 0.219 0.267
100 0.356 0.408 0.484 0.568 0.633 0.665 0.684 0.841 1.063

0.42 0.437 0.448 0.457 0.462 0.49 0.636 0.667 0.935
200 0.268 0.303 0.364 0.422 0.464 0.487 0.514 0.625 0.778

0.116 0.317 0.33 0.341 0.348 0.351 0.371 0.484 0.508 0.712
400 0.194 0.221 0.264 0.308 0.334 0.351 0.373 0.456 0.56

0.222 0.231 0.254 0.258 0.259 0.26 0.361 0.373 0.523
800 0.137 0.157 0.186 0.219 0.234 0.246 0.263 0.325 0.394

0.155 0.161 0.181 0.181 0.184 0.187 0.261 0.262 0.368
100 0.415 0.641 0.641 0.725 0.779 0.889 0.963 0.99 1.007

0.478 0.507 0.507 0.53 0.552 0.612 0.665 0.784 0.831
200 0.316 0.477 0.488 0.552 0.58 0.662 0.738 0.759 0.772

0.316 0.362 0.384 0.384 0.39 0.406 0.469 0.489 0.601 0.637
400 0.24 0.35 0.37 0.418 0.426 0.486 0.548 0.563 0.573

0.256 0.272 0.272 0.288 0.299 0.357 0.361 0.458 0.485
800 0.169 0.254 0.261 0.295 0.309 0.353 0.392 0.403 0.41

0.18 0.191 0.191 0.206 0.214 0.258 0.26 0.334 0.354

Notes: Numbers in regular font correspond to the LRF specification while numbers in bold represent the NLRF specification.

the NLRF specification works as well or better than the LRF for the majority of parameter combinations,

even though the true model for the frontier is linearly specified. Second, we see reasonable decay in RMSE

for both estimators as the sample size increases. We also observe that the performance of the estimator

degrades as the level of endogeneity increases (ρ increases), the impact of determinants of inefficiency

increases (δ increases) and the strength of the instruments manifests (the elements of Πx increase). The

rate of decay of RMSE also appears to be connected to the configuration of the parameters. There also

does not appear to be a large difference in terms of RMSE regarding estimation of the frontier versus the

conditional mean of inefficiency.

APS proposed two ways for estimating their model with endogeneity: IV and MLE. They acknowl-

edged that both approaches are not simple “. . . because a specific copula must be assumed to model the

correlation of uoi with the endogenous variables, and because simulation methods are necessary to form
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the IV criterion function or the likelihood.”

6 Empirical application

6.1 Data and results

We use the same data as in Malikov et al. (2016) where we have five inputs and their prices, five outputs,

and we include log equity as a quasi-fixed input along with a time trend.18

We estimate an output distance function of the form

yit1 = f(x̃it;β) + vit − uit,

where x̃it includes all logs of inputs as well as ỹitf ≡ yitf − yit1 (f = 1, . . . , F ), a time trend, the log of

equity, the log of non-performing loans and the log of total assets. The dependent variable is also in logs.

We estimate our model using different values for G ∈ {1, . . . , Gmax} and we obtain the marginal likelihood

values, say MG(S) where S denotes the entire data set. In turn, we obtain posterior model probabilities

PG(S) = MG(S)∑Gmax
g′=1

MG′ (S)
. (16)

In turn, all measures and quantities of interest can be obtained by combining results for different

values of G using (??). To implement MCMC, we use 150,000 iterations omitting the first 50,000 in a

burn-in phase to mitigate possible start up effects. We report the results for both our benchmark prior as

well as the prior that anchors on DEA or KPST in (??). We also examine the results under endogeneity

of ỹitf . wi, as in (??), includes the log of total assets, the log of equity, the log of non-performing loans,

a time trend and all of their squares and interactions. Sample distributions of posterior mean estimates

of key functions of interest are reported in Figure ?? and Table ??. A general important finding is that

ignoring endogeneity results in very different estimates of returns to scale and inefficiency. For example,

in panel (a), we see that returns to scale are surprisingly low and close to 0.75 for the models that ignore
18The data is an unbalanced panel with 2,397 observations for 285 large U.S. commercial banks (2001-2010), whose total

assets were in excess of one billion dollars (in 2005 U.S. dollars) in the first three years of their observation. The data come
from Call Reports of the Federal Reserve Bank of Chicago. The data are as follows. Outputs are y1 = Consumer Loans,
y2 = Real Estate Loans, y3 = Commercial & Industrial Loans, y4 = Securities, y5 = Off-Balance Sheet Activities Income.
The inputs are: x1 = Labor, number of full time Employees, x2 = Physical Capital (Fixed Assets), x3 = Purchased Funds,
x4 = Interest-Bearing Transaction Accounts, in real USD 1000, x5 = Non-Transaction Accounts, EQ (Quasi-Fixed) Equity
Capital, in real USD 1000. Input prices are: w1 = Price of x1, w2 = Price of x2, w3 = Price of x3, w4 = Price of x4,
w5 = Price of x5. Finally we have Total Assets (TA). The data is available from the Journal of Applied Econometrics data
repository archive at http://qed.econ.queensu.ca/jae/2016-v31.7/malikov-kumbhakar-tsionas/readme.mkt.txt
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endogeneity and technical inefficiency (panel (b)) averages close to 30%. Taking endogeneity into account,

returns to scale are slightly less than one, on average, and technical inefficiency drops to about 17%. In

terms of productivity growth (panel (e)), models that ignore endogeneity deliver implausibly large values

close to 5% whereas models that account for endogeneity deliver estimates that are close to zero, on

average. Reported in panel (f) are relative values (to G = 1) of marginal likelihood or “evidence” in the

form of posterior model probabilities as in (??). For the LRF the optimal G is 3 and for the NLRF it is

G = 2. Although one might have expected larger values, one has to keep in mind that this is a relatively

homogeneous data set of US banks.

One important point that comes out of the empirical application is that the behavior of the new

methods does not depend on whether we benchmark the prior in (??) using DEA or not. In this sense

it appears that it does not matter too much what is the prior of γ provided it can be dominated by the

data/likelihood and this is what happens in our application. This conclusion is supported by posterior

sensitivity analysis which we undertake in the Technical Appendix. The same message came out of the

Monte Carlo experiments in the previous section where we found that a DEA-based prior, in general,

behaves better than FLW as well as (??) but it is likely to lose its advantage quickly, relative to (??)

depending on the variables that enter the skedastic function. Of course, it remains to examine further

whether this holds more generally or in other empirical applications as well.

In Figure ??, we report sample distributions of posterior mean estimates of inefficiency effects derived

from (??) with respect to total assets (TA) and non-performing loans (NPL). Both variables are in logs

and they are normalized to lie in the interval (0,1) for visual clarity.

The interesting feature of the marginal effects, besides having a positive effect on inefficiency, is that

there are two groups in the data. The first group contains banks with near average values of total assets

and NPL, and the second group contains bank observations with a larger size and higher values of NPL.

This can testify to the conjecture or claim that the larger banks among the large US banks were more

exposed to risk.

6.2 A bridge too far?

Combining DEA and SFA in our context, may or may not be a “bridge too far”. To decide whether this

is the case, we use optimal model pools (Geweke and Amisano, 2011a,b). Given a set of models, say

m ∈ M = {1, 2, . . . ,M} whose posterior predictive densities are pm(So|S), where S is the data that we

use for posterior inference and So is an out-of-sample set of observations that we want to use for prediction
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Figure 2: Sample distributions of posterior mean estimates. DEA and KPST stand for Data Envelopment
Analysis, and Kumbhakar, Park, Simar and Tsionas (2007, KPST), respectively. LRF is the linear reduced
form in (??) and NLRF corresponds to the flexible nonlinear specification of the reduced form in (??).
“G” denotes the number of nodes in the artificial neural network (ANN) specification.
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Table 4: Posterior means and standard deviations of functions of interest.

posterior mean posterior s.d.
Returns to Scale
Benchmark Prior (No Endogeneity) 0.777 0.056
DEA/KPST Prior (No Endogeneity) 0.774 0.055
Benchmark Prior (With Endogeneity, LRF) 0.920 0.025
DEA/KPST Prior (With Endogeneity, LRF) 0.919 0.024
Benchmark Prior (With Endogeneity, NLRF) 0.889 0.032
DEA/KPST Prior (With Endogeneity, NLRF) 0.890 0.030
Inefficiency
Benchmark Prior (No Endogeneity) 0.262 0.055
DEA/KPST Prior (No Endogeneity) 0.260 0.050
Benchmark Prior (With Endogeneity, LRF) 0.144 0.028
DEA/KPST Prior (With Endogeneity, LRF) 0.145 0.030
Benchmark Prior (With Endogeneity, NLRF) 0.170 0.028
DEA/KPST Prior (With Endogeneity, NLRF) 0.167 0.029
Technical Change
Benchmark Prior (No Endogeneity) 0.026 0.023
DEA/KPST Prior (No Endogeneity) 0.025 0.025
Benchmark Prior (With Endogeneity, LRF) 0.0005 0.014
DEA/KPST Prior (With Endogeneity, LRF) 0.0006 0.015
Benchmark Prior (With Endogeneity, NLRF) 0.005 0.030
DEA/KPST Prior (With Endogeneity, NLRF) 0.006 0.031
Efficiency Change
Benchmark Prior (No Endogeneity) 0.0046 0.018
DEA/KPST Prior (No Endogeneity) 0.0051 0.017
Benchmark Prior (With Endogeneity, LRF) 0.0097 0.013
DEA/KPST Prior (With Endogeneity, LRF) 0.0096 0.014
Benchmark Prior (With Endogeneity, NLRF) 0.033 0.017
DEA/KPST Prior (With Endogeneity, NLRF) 0.034 0.019
Productivity Growth
Benchmark Prior (No Endogeneity) 0.0046 0.018
DEA/KPST Prior (No Endogeneity) 0.0051 0.017
Benchmark Prior (With Endogeneity, LRF) 0.0097 0.013
DEA/KPST Prior (With Endogeneity, LRF) 0.0097 0.014
Benchmark Prior (With Endogeneity, NLRF) 0.0033 0.018
DEA/KPST Prior (With Endogeneity, NLRF) 0.0044 0.019
φ 0.112 0.015
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Figure 3: Sample distributions of posterior mean estimates of inefficiency effects.
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and/or model validation.

We consider predictive densities of the form:

∑
m∈M

wmpm(So|S1:t);
∑
m∈M

wm = 1; wm ≥ 0 ∀m ∈M, (17)

known as linear opinion pools. The data up to and including period t are denoted S1:t. We consider using

the log predictive score function: ∑
(i)

log

[∑
m∈M

wmpm(So|S(i))

]
, (18)

where S(i) denotes the sample of available observations for posterior inference, indexed by (i). The index

(i) depends on which observations are actually used in-sample.

The log predictive score function is a measure of the out-of-sample prediction record of the model.

Maximizing (??) subject to (??) is quite feasible given nonlinear programming software.
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Therefore, the problem is:

max{wm,m∈M}
∑

(i) log
[∑M

m=1wmpm(So|S(i))
]
,

subject to∑
m∈Mwm = 1; wm ≥ 0 ∀m ∈M.

The objective is to maximize weighted log predictive scoring (or, equivalently, maximize out-of-

sample performance) subject to the usual portfolio-like constraints on the weights attached to different

models. The models considered do not have to contain the same parameters (or have any parameters for

that matter) so this approach is quite general.19

In our application, we omit 10% of observations randomly and we obtain the posterior predictive

density as follows:

pm(So|S) =

∫
pm(So, θm|S)dθ =

∫
pm(So|θm,S)p(θm|S)dθm

'S−1
S∑
s=1

pm(So|θ(s)
m ,S),

where {θ(s)
m , s = 1, . . . , S} is a set of MCMC draws that converges in distribution to the distribution whose

density is the posterior pm(θ|S) (m ∈ M). As we use smooth normal mixtures, pm(So|θ(s)
m ,S) can be

evaluated point-wise as it is available in closed form.

We repeat omitting 10% of the observations, randomly, 1,000 times and we use as competing models

(i) our model, (ii) DEA-prior, (iii) FDH-prior, and (iv) KPST-prior, as in the Monte Carlo experiments.

We account for endogeneity using (??). Optimal model weights are reported, in the form of histograms,

in Figure ??.

Although the SMN model receives the lion’s share in most instances (panel (a)), it turns out that

DEA-based and KPST-based priors can be quite useful in certain sub-samples (panels (b) through (d)).

The FDH does not turn out to be useful in this respect as it is (as stated previously), practically, never

included in the optimal pool. To appreciate better the performance of DEA-based and KPST-priors we

provide plots of their optimal weights against our SMN in panels (e) and (f). The number of instances

(sub-samples) where DEA-based or KPST-priors result in models with non-negative weights as well as
19In our computations we used the fortran 77 version of library lbfgs in netlib. The problem can be converted

to unconstrained optimization by reparametrizing wm =
exp(−ω2

m)
1+
∑

m0>1 exp
(
−ω2

m0

) , and the ωis are defined on the real line.

Convergence was quite fast given any initial conditions and no other local optima were found.
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Figure 4: Sample distributions of optimal model weights.
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non-negative weights for SMN (indicating that a non-trivial “portfolio” of the approaches is useful) is quite

low, although, clearly, it is not zero.

It remains to consider a prior where βms and δm as well as the inefficiency parameters are crafted

using the DEA and the FDH prior. The procedure has been described at the end of Section 2. We

apply this procedure in 1,000 different sub-samples of the data omitting 10% of observations randomly,

re-applying MCMC and computing the marginal likelihood of the SMN versus the marginal likelihood of

the DEA and FDH priors. We take as a benchmark the FDH case so its marginal likelihood is normalized

to 1. The resulting distributions of Bayes factors (ratios of marginal likelihood of DEA and SMN to the

marginal likelihood of FDH) are reported in Figure ??.

The marginal likelihood in favor of the SMN model (and against the FDH prior, reported in panel

(a)) ranges from 818 to 826 and has a median value of 819. The marginal likelihood in favor of the SMN

model with the default prior (and against the FDH prior, reported in panel (b)) ranges from roughly from

220 to 1700 and the median is 560. As the Bayes factor in favor of DEA and against the FDH prior is

BFDEA:FDH = BFSMN :FDH
BFSMN :DEA

, the respective density is presented in panel (c) of Figure ??; it ranges from

0.98 to 3.70 with a median 1.47 which does not provide strong evidence for or against either model. On the

contrary, the posterior odds in favor of the SMN model and against DEA or FDH priors are overwhelming

(Kass and Raftery, 1995).

7 Concluding Remarks

The contrast between DEA and SFA is likely to persist for some time although the work of Parmeter

and Zelenyuk (2019) shows that nonparametric methods provide a bridge that can be usefully deployed in

practice. They find that although FLW performs rather well under a variety of data generating processes,

at least comparing DEA and SFA in any given empirical application can provide important insights. In the

Monte Carlo experiments of Parmeter and Zelenyuk (2019), variants of DEA do not perform extremely well

although they do perform better than SFA in some scenarios that are realistic enough. In this work, we

propose a novel flexible model that (i) does not require distributional assumption on inefficiency; (ii) based

on a flexible functional form for the frontier using smooth mixtures of normals which can approximate

very well any smooth function; (iii) accounts for endogeneity in a flexible manner; (iv) can incorporate

information from DEA in benchmarking an empirical Bayes prior and (v) has the ability to enforce axioms

of production on the technology.
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Figure 5: Log Bayes factors against FDH priors in 1,000 subsamples.
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Results from Monte Carlo simulations and an empirical application to large US banks, show that the

performance of the new techniques is very good under a variety of plausible data generating mechanisms

as in Parmeter and Zelenyuk (2019) and they perform better than the state-of-the-art FLW technique.

Altogether this is not surprising as FLW is fully non-parametric whereas the methods in this study are

quite flexible yet they are anchored in the parametric set up (if one can claim that smooth normal mixtures

are parametric instead of semi-parametric).

In the stochastic DEA approach (e.g., Simar and Zelenyuk, 2011), Parmeter and Zelenyuk (2019)

demonstrate that one can first filter out the noise from the data using SFA and then apply variants of

DEA. We agree that this line of attack can be successfully implemented in practice and has its advantages

although DEA-like methods like stochastic DEA or concave non-parametric least squares are designed to

deliver the same thing. In this study, we have proposed a different use of DEA (possibly along with other

similar methods) to craft an empirical Bayes prior for the parameters of inefficiency. This method has

been found to work acceptably well in Monte Carlo simulations and the empirical application. However,

it seems that our novel model does not depend critically on this aspect as the prior allows “domination”

by the data/likelihood (despite the fact that it is based on the data themselves). It is only in very small

samples (close to 100 observations) where this use of DEA is found to be rather useful which is, in itself,

an important point for practitioners.

Although we did not filter out noise using a non-parametric technique like FLW and then apply

DEA, we explicitly account for noise and even for endogeneity of the explanatory variables. Our use of

DEA is more modest, viz. in benchmarking a prior for the parameters of inefficiency. Are we still in a

state of “a bridge too far” between SFA and DEA and have we succeeded in “the final blood” between the

two techniques? It would be an exaggeration to claim that we have found the way of combining DEA

and SFA in the optimal way. However, we have presented some evidence and tools that can be used in

empirical applications to answer such questions or, at least, provide useful insights. Our proposal of using

optimal model pools is designed to answer precisely such questions.
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Technical Appendix

A.1 MCMC methods

We use a recent advance on the Metropolis Adjusted Langevin Algorithm (MALA) called fast MALA

(fMALA), see Durmus et al. (2017). Suppose we have a parameter vector θ ∈ <d, and we target π(θ)

which represents the posterior, omitting the dependence on data to ease notation. We consider a Langevin

diffusion defined by:

dθt = 1
2Σ · O lnπ(θt) + Σ1/2dW t, (A.1)

where {W t, t ≥ 0} is a standard d-dimensional Brownian motion, and Σ is a given positive definite self-

adjoint matrix. Under appropriate assumptions on π one can show that the dynamics generated by (??)

are ergodic and result in π(θ) as a unique invariant distribution. A standard approach is to discretize (??)

using a one step integrator, and sample using the averages over the numerical trajectories. This approach

introduces a bias because the posterior does not coincide in general with the exact π.

An alternative way of sampling from π exactly, i.e. that is not biased by discretizing (??), is by using

the Metropolis-Hastings algorithm (Hastings, 1970). The idea is to construct a Markov chain {θj}, where

at each step j, given θj , a new sample proposal θc is generated from the Markov chain with transition kernel

q(θ, ·). This proposal is then accepted (θj+1 = θc) with probability α(θj ,θ
c) and rejected (θj+1 = θj)

otherwise. If we have

α(θ,θc) = min

{
1,
π(θc)q(θc,θ)

π(θ)q(θ,θc)

}
, (A.2)

then the resulting Markov chain {θj} is π-invariant and will, for large j generate samples from π under

mild ergodicity assumptions. In general, a candidate is generated as:

θc = µ(θ, h) + S(θ, h)ζ, (A.3)

where ζ ∼ Nd(0, Id). The specific fMALA proposal has

µ(θ, h) = x+ h
2f(θ)− h2

24Of(θ) · f(θ) + {Σ : O2f(θ)}, (A.4)

S(θ, h) =
(
h1/2Id + h3/2

12 Df(θ)
)

Σ1/2, (A.5)

where f(θ)
M
= Σ · O lnπ(θ), Of(θ) and O2f(θ) are the d × d Jacobian and d × d2 Hessian of f(θ),
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respectively, and Σ = S(θ, h). Let O2f(θ) = [H1(θ), . . . ,Hd(θ)] where [H i(θ)]jk = ∂fi(θ)
∂θk∂θj

. Then,

{Σ : O2f(θ)}i
M
= tr [Σ′H i(θ)]. The scaling constant has been investigated in Durmus et al. (2017) and

it is related directly to the discretization of (??). Durmus et al. (2017) recommend h = εd−1/5 for some

positive constant, ε. The optimal acceptance rate maximizing the first-order efficiency is very close to

the 0.704 predicted in Theorem 3.2 of Durmus et al. (2017). Therefore, one can calibrate the constant ε

(during the burn-in phase) so that the acceptance rate is close to 0.70.

This approach has been found to perform excellently once ε and h are calibrated correctly during

the burn-in phase. All derivatives are computed numerically20 during the burn-in phase, and they are

interpolated21 in the main phase of the MCMC algorithm. This results in dramatic computational savings

and, as a matter of fact, different chains can be run in parallel in computers with multiple nodes. We run

ten different chains starting from randomly selected initial conditions and we compare the chains after

150,000 iterations with a burn-in phase consisting of 50,000 iterations. Our transition density q(θ,θc) is

a d-dimensional Student-t distribution with five degrees of freedom. We monitor convergence using the

standard diagnostics of Geweke (1992).

A.2 Posterior sensitivity analysis

To perform posterior sensitivity analysis, we replace (??) and (??) with the following. Suppose ϑ ∈ Rdϑ

denotes all elements of θ with the exception of scale parameters. Then we assume

ϑ ∼ Ndϑ (a, V ) . (A.6)

We draw the elements of the mean vector (a) from normal distributions with zero mean and standard

deviation 100. For V we assume it is a diagonal matrix whose elements are draws as log Vii ∼ N (0, 100).

We consider 10,000 prior specifications, viz. 10,000 different draws for a and V , and we use the Sampling-

Importance-Resampling (SIR) approach (Rubin, 1987, 1988; Smith and Gelfand, 1992) with 20% sub-

samples of the original MCMC sample for re-weighting and we compute posterior moments corresponding

to the new priors.
20We use the Fortran77 subroutines in package NDL of Voglis et al. (2009). Specifically we use

version 2.0 of Hadjidoukas et al. (2014), https://data.mendeley.com/datasets/j2fhmszg85/1, see also
http://cpc.cs.qub.ac.uk/summaries/AEDG_v1_0.html

21We use the Fortran subroutines in finterp by JacobWilliams in https://github.com/jacobwilliams/finterp/blob/master/README.md
Alternatively, we use for comparison RBF_INTERP_ND in https://people.sc.fsu.edu/~jburkardt/f_src/rbf_interp_nd/rbf_interp_nd.html.
RBF_INTERP_ND is a Fortan90 library by John Burkardt which defines and evaluates radial basis function (RBF) interpolants
to multidimensional data.
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The differences relative to benchmarks are reported in panels (a) and (b) of Figure ??, respectively.

We report results for parameters (θ), returns to scale (RTS), technical change (TC), efficiency change (EC)

and inefficiency itself. In panel (c) we report Geweke’s (1992) relative numerical efficiency (RNE) which

should be equal to one if one could draw IID samples from the posterior. In panel (d), we report upper

95% values of Geweke’s (1992) convergence diagnostic which is asymptotically normal in the number of

draws. As the upper 95% values of this z -test are less than 1.96 we can be relatively confident that the

MCMC chains have converged and, despite autocorrelation, the RNEs are not extremely low to prevent

us from a thorough exploration of the posterior.

A.3 Validity and weakness of instruments

We focus on Equation (??) which we repeat here in the interest of clarity:

xik = q′i$k0 +

G∑
g=1

ψ(q′i$kg1)$kg2 + Vik, k = 1, . . . ,K. (A.7)

We can obtain the linear reduced form (LRF) in (??) using appropriate restrictions. To make sure

(to the extent feasible) we rely on squared correlation coefficients between actual and fitted values from

(??). As a matter of fact we can use a single measure, the generalized R-squared,

R2
∗ = 1− |ΣV V |

|S| , (A.8)

where ΣV V is the covariance matrix of Viks and S is the empirical covariance matrix of xiks. For each

MCMC draw, we save the generalized R-squared, say R2
∗(s), and we present its posterior distribution based

on these draws.

The issue of valid instruments is based on ideas from Generalized Method of Moments (GMM)

estimation. Our (??) requires the moment conditions

1
n

n∑
i=1

xik − q′i$k0 −
G∑
g=1

ψ(q′i$kg1)$kg2

 qi = 0, k = 1, . . . ,K. (A.9)

We can write these moment conditions compactly as follows:

1
n

n∑
i=1

g(Si;$1,0, $̂∗) = 0, (A.10)

41



Figure A.1: Posterior sensitivity relative to benchmark prior
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where the notation is intended to make clear that we fix part of the parameter vector.

We have Kdz moment conditions but the number of parameters is KG[(1 + dz) + 1] so we need

to expand the number of moment conditions or reduce the number of parameters. We decide to set

$k,g,1, $k,g,2 to their posterior means, set $k,0 = $1,0 (k = 2, . . . ,K) and redo the MCMC using only a

common $1,0 in the moment conditions.22 Then we have only dz parameters.

The test statistic that we use is the Sargan-Hansen test statistic give by

Q =

[
1
n

n∑
i=1

g(Si;$1,0, $̂∗)

]
W

[
1
n

n∑
i=1

g(Si;$, $̂∗),

]
d→ χ2

(K−1)dz
, (A.11)

whereW =
(

1
n

∑n
i=1 g(Si;$, $̂∗)g(Si;$, $̂∗)

′)−1 with degrees of freedom determined by df = (K− 1)dz.

The test statistic is distributed as a χ2
df with df degrees of freedom and it, in fact, indexed Q(s) for

each MCMC draw s (s = 1, . . . , S). The test is quite stringent in our case as a large number of parameters

is fixed so, it is not expected a priori that the test will indicate that the moment conditions are satisfied

under these restrictions. To simplify the presentation, as Q d→ χ2
(K−1)dz

it follows that Q
df

d→ G (df, df), a

gamma distribution,23 whose 95% (90%) critical value is approximately 1.17 (1.13).

Figure A.2: R2
∗ and Q/df.
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22$1,0 is estimated with least-squares for each MCMC draw.
23This can be shown using a simple change of variables technique.
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The generalized R-squared (R2
∗) whose marginal posterior is reported in panel (a) of Figure ??, is

substantial for the nonlinear reduced form (NLRF) in (??) but, clearly, quite low for the linear reduced

form (LRF) in (??). In terms of the Sargan-Hansen statistic (Q/df) whose marginal posteriors for LRF

and NLRF are reported in panel (b), the LRF clearly fails the test while the NLRF clearly passes the test.

This is surprising, as we have fixed a large number of parameters in (??) or (??) to implement this test,

and testifies to the fact that such semiparametric functional forms perform well.
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