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Abstract

The goal of this chapter is to overview the current state of the art analysis of bank-
ing performance. For this, we navigate through the literature that has been prospering
during the recent decades. In particular, we start with a brief discussion of the ra-
tio analysis for measuring bank performance, which is still very popular in practice.
Then we consider such popular productivity and efficiency analysis methods as data
envelopment analysis (DEA) and stochastic frontier analysis (SFA). Then, we provide
a brief review of other econometric methods that became leading in the recent finance
literature that involve techniques of casual inference, including difference-in-differences
(DD) and regression discontinuity design (RDD).
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1 Introduction

Banks play a major role in any economy through money creation, borrowing and lending,
which fuels economic activity. Financial intermediation of banks has a direct and indirect
impact on all the types of firms and their production capacities that can be restricted by or
enriched with lending from banks. Banks are studied in economic literature as special firms,
because of their connecting role between the financial markets and real economic growth
(Sealey Jr. and Lindley (1977), Diamond and Dybvig (1983), Mester (1993), Bikker and
Bos (2008)). Indeed, liquidity provided by banks to other industries is instrumental for an
economy at any time, and especially during times of economic uncertainty. The importance
of banks is evidenced by the attention to it from governments. During 2007 - 2009 only, the
U.S. Government allocated trillions of dollars to restore liquidity creation in the economy
(Bai et al. (2018), Berger and Bouwman (2009)).

Governments monitor the performance of banks and introduce various regulations aiming
at the direct enhancement of the performance of banks and the indirect prevention of any
liquidity deficits to develop the productive functioning of firms (Casu et al. (2004)). Besides
the national levels, banking is monitored and regulated on an international level. Specifically,
a key global Accord of banking regulation is documented in the Basel Rules (BIS (2020a)).
The Accord was developed by the Basel Committee and directs internationally converging
regulatory rules. The Basel Committee was established in 1974, in response to an increased
volatility in the currency exchange markets and a failure of key banks (a prominent example of
Herstatt in Germany) betting on the direction of currency pricing trends (Goodhart (2011)).
The cyclicality of crisis further occurring in 1980s with the Latin American debt crisis, 1990s
dot-com bubble and the 2000s Global Financial Crisis reinforced the need for the removal of
the sources of competitive inequality and harmonized the regulatory requirements to bank
capital, liquidity and transparency (BIS (2020b)). The most recent regulatory accords are
identically standardized and implemented almost in every country in the world and are based
on the advanced performance methods balancing risk with return.

The goal of this chapter is to present practical tools that have been extensively applied
to performance analysis of banks. The toolset in this chapter covers ratio analysis, efficiency
techniques of Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA)
as well as it outlines other econometric methods, including causal inference that recently
became very popular in financial literature, comprising of difference-in-differences and re-
gression discontinuity design methods. We believe that our chapter will be valuable for
academics, including PhD students, studying banking as well as banking industry experts
and professionals engaged in research and consulting, regulation and prudential monitoring
and analysis of banks.

1.1 DEA and SFA

DEA has its roots in economic theory models, mainly known as Activity Analysis Models
(AAM), developed by Koopmans (1951), Debreu (1951), Shephard (1953), which were in
turn influenced by the works of Leontief (1925), Von Neumann (1945), to mention just a
few. Inter alia, these and other important works led to the seminal paper of Farrell (1957),
who tailored the AAMs into the foundation for measuring what he referred to as ‘productive
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efficiency’. Besides a few papers, his work was largely overlooked for two decades, until two
streams of research basically exploded from his work. One stream was largely due to the
influential research of Charnes et al. (1978), where Farrell’s approach was generalized and
empowered with linear programming theory and the practice to implement it, as well as being
branded as DEA. The second stream was largely due to the seminal works of Aigner et al.
(1977) and Meeusen and van den Broeck (1977), who at about the same time proposed SFA,
building on the research of Farrell (1957) among others.

Over the last four decades, both of these streams, DEA and SFA, have developed into very
rich streams of literature, with many branches, often interconnected and mutually developing
and spanning several fields of research: Economics and Econometrics, Statistics (including
Data Science & Business Analytics), Operations Research/Management Science, etc. A key,
and in some respects more important, part of the literature is about the applications of these
methods virtually to any sector of the economy. Among the most popular applications are
those to the banking industry, which we briefly overview below and give references for further
details.

Among the first papers using DEA in banking were Sherman and Gold (1985), English
et al. (1993), Fukuyama (1993), which were followed by many others. SFA came out with the
works of Ferrier and Lovell (1990), Hughes and Mester (1998), which were among the first
applying SFA in banking, followed by many interesting works thereafter. Now, both literature
streams are massive, e.g. Google Scholar search (in April 2020) yielded about 58,400 results
for ‘DEA and Banking’ and 14,000 for ‘SFA and Banking’, while a more general Google search
for ‘DEA’ and ‘SFA’ yielded about 6,660,000 and 2,000,000 results respectively. Obviously,
it is practically impossible to review even 10% of the published papers. Our goal is more
modest to overview the major methods and to mention a few popular papers that we think
represent valuable examples, as well as to refer to previous reviews where more examples
could be found.

1.2 Causal Inference Methods

Causal methods are rooted from the randomized experiments of Splawa-Neyman et al. (1990,
1923)1 and Fisher (1925), where both authors introduced a design of experiments around the
testing of treatment effects. These seminal works and their later developments into agricul-
tural, biological and medical research lead to an application of the difference (in differences)
methods in empirical economics (where fundamental works include Ashenfelter (1978) and
Ashenfelter and Card (1985)) and finance (Harris (1966) and Trezevant (1992)).

The recent prominent papers applying DD in banking include Anginer et al. (2018) in
an application to corporate governance, Buchak et al. (2018) in an application to ‘fintech’
lending and Duchin and Sosyura (2014) in studies of government bailouts of banks, among
many others.

Another popular method that is identifying causality between the two variables is re-
gression discontinuity design. It gained popularity from the seminal work of Thistlethwaite
and Campbell (1960) and received attention in the economic and finance literature due to
the minimal assumptions involved in modeling. Hahn et al. (2001) and Imbens and Lemieux

1This work was translated and edited in 1990 by D. M. Dabrowska and T. P. Speed from the Polish
original that appeared in Roczniki Nauk Rolniczych Tom X (1923) 1-51 (Annals of Agricultural Sciences).

3



(2007) provide theoretical and empirical guidelines on RDD. In banking research, RDD appli-
cations are relatively new, a few prominent papers include the works by Bonner and Eijffinger
(2015) on the impact of regulatory liquidity requirements on the demand for long-term lend-
ing, Liberman (2016) on the effects of renegotiations on credit card lending, and Berg (2018)
on the effects of precautionary savings in the transmission of credit supply shocks.

1.3 Chapter Structure

Our chapter is organized as follows. Section 2 starts with the review of the development of
the performance analysis in banking from the simple methods based on financial ratios to
explaining inefficiency with more advanced methods (Data Envelopment Analysis, Stochastic
Frontier Analysis, causal inference), Section 3 presents the basics of the productivity and
efficiency theory, Section 4 reviews Data Envelopment Analysis (DEA), Section 5 reviews
the Stochastic Frontier Analysis (SFA), Section 6 presents an overview of other econometric
methods based on the recent developments in the causal inference analysis of performance,
and Section 7 concludes.

2 Evolution of Performance Analysis of Banks

In this section we present how the methods of performance analysis of banks developed from
very straightforward managerial techniques of financial statements analysis to advanced linear
programming methods enabling the explanation of the inefficiency of banks.

2.1 Analysis of Financial Ratios

Traditionally, analysis of bank performance starts with an analysis of financial statements,
mostly statement of a financial position and a comprehensive income statement (Casu et al.
(2006)). The simplest measures of performance would include the assets of a bank and the
income that was generated with these assets during a financial year. Basically, all the others,
including very complex methods of performance analysis in banking, often use these measures
as building components or generalize over them.

The analysis with financial ratios is based on combining two (absolute) financial measures
into a ratio. For example, net income over assets would signal about how much net income a
bank has generated per dollar of assets. In efficiency analysis literature, it is an example of
the ‘return-to-dollar’ measure, advocated by Georgescu-Roegen (1951) and advanced further
in Färe et al. (2019).

Bank counter-parties, including shareholders and regulators, are often interested in the
performance analysis of banks with the financial ratios. Financial ratios are arithmetically
simple and usually very intuitive. Various management information systems are designed
around financial ratios and the breakdown of the key ratios into driving components. One of
the ways of the ratio decomposition follows the famous DuPont Identity, where the interesting
ratio for shareholders, return on equity, is decomposed as a product of the two other ratios—
the return on assets and the equity multiplier (Ross et al. (2017)). Each of these two ratios
could be further decomposed into the component-driving ratios. For example, the return
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on assets is a product of the profit margin and the total assets turnover. This way, one
can describe the drivers of the return on equity (measured by net income/total equity) with
operating efficiency (measured by net income/sales), asset use efficiency (sales/assets) and
financial leverage (assets/total equity) (Ross et al. (2017)). The most detailed management
information systems include decision trees that relate the top ‘all bank performance’ return
on equity to the sales efficiency of a loan officer in a single branch.

In essence, the key financial performance ratios of interest to any bank and bank stake-
holders will include the return on assets (ROA), return on equity (ROE), non-performing
loan ratios and capital ratios (Casu et al. (2006)). Interestingly, after the Global Finan-
cial Crisis banks increasingly applied risk-adjusted measures of performance (BIS (2015)),
including risk-adjusted return (Bikker and Bos (2008)) on capital (RAROC), defined as

RAROC =
Risk-adjusted Net Income

Economic Capital

(1)

return on risk-adjusted capital (RORAC), defined as

RORAC =
Expected Net Income

Allocated Economic Capital
(2)

and risk-adjusted return on risk-adjusted capital (RARORAC), defined as

RARORAC =
Economic Value Added

Allocated Economic Capital
. (3)

Meanwhile, the risk-adjusted return measures the net income a business has earned in
relation to a risk in a given time frame. With accounting measures it could be calculated as

Risk-adjusted return =Revenue− Expenses− (Expected Loss)

+ (Net Interest Margin of Capital Change). (4)

As a result, this formula ensures that a business with a lower risk and a constant level
of return will have a higher risk-adjusted return. The denominator of the RAROC ratio,
economic capital, attributes bank capital securing the effects of risk-taking by business. It is
often parametrized to the level of capital a bank needs to handle unexpected losses during a
particular time period within a decided confidence interval. For better management economic
capital is calculated at a total bank level and at a level of divisions. Building blocks of
economic capital vary by type of risk. For example, credit risk modeling would require an
estimation of probability of default, loss given default and exposure at default (Roncalli
(2020)).

The economic value added (EVA), in a numerator of the RARORAC, presents a measure
of economic profit as an incremental difference between a rate of return and the cost of
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capital. It is calculated as a net income in a difference to an invested capital times the cost of
capital. EVA is presented in absolute measures and is also calculated at the level of a bank
and its divisions (BIS (2015)).

Alternatively, risk-adjusted return is measured with the asset pricing approach, where
RARORAC is given by

RARORAC =
[(rp − rf )− βp(rm − rf )]I0

Economic Capital
, (5)

where rp is return on a portfolio of assets
rf is a return on a risk–free asset, i.e., government bond
rm is the market return
βp is a systematic risk of the portfolio
I0 is an investment in a project at time = 0, at the beginning of the project. It is a

utilized capital at risk (BIS (2015)).
In the denominator, the Economic Capital, or allocated capital at risk, is a Value at Risk

(VaR), which is the measure of a loss on a portfolio over a fixed time period (Roncalli (2020)).
The difference in the calculation of the two measures of RARORAC with an economic

value added and with an excess return is driven by the availability of accounting versus
market data applied in the calculations. For example the value added versus the loss on the
loan portfolio is presented with an accounting data, whereas the return on a bond portfolio
is likely to be measured with the market pricing data.

For regulatory and investment purposes, bank performance ratios are combined into the
CAMELS system. The most recent governmental capital support of the banks during the
GFC in the U.S. was grounded on a review of the bank applicants according to the CAMELS
rating system (Duchin and Sosyura (2014)). CAMELS stands for Capital Adequacy, Asset
Quality, Management, Earnings, Liquidity and Sensitivity to Market Ratios (Federal Reserve
(2020)). Table 1 summarizes the key regulatory requirements corresponding to each of the
CAMELS criteria and the ratios applied in research to represent these criteria.

Each of the rating measures in CAMELS is focused on balancing returns with the risks.
To start with returns, every bank is aiming at increasing returns to shareholders by maxi-
mizing revenues and minimizing cost, that is by improving the efficiency of a bank (Bikker
and Bos (2008)). The key to efficiency is a technology that transfers inputs (cost-related
contributors to the production process of a bank) into outputs (revenue-related contributors
to the production process of a bank).

In contrast to productivity that measures the output produced relative to the input, effi-
ciency measures the difference between the actual/observed and optimal/unobserved input-
output result. Thus, the challenge of estimating efficiency is in the observability of both
technology and optimal efficiency. The roadmap to overcoming these challenges is discussed
in the next sections.

2.2 Variables for Modeling Production Process in Banking

A critical step in the analysis of productivity and efficiency of any system is defining the
inputs and outputs of the production process of this system. A conceptual framework for
the economics of production analysis of banks was proposed in a prominent work by Sealey
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Table 1: CAMELS Rating System, Corresponding Regulatory Expectations and Ratios

Rating
Component

Uniform Regulatory Expectation
from https://www.fdic.gov

Corresponding Financial Ratio

Capital
Adequacy

Level of capital commensurate
with the degree of credit, market
and other on and off-balance
sheet risks.

Tier 1 risk-based capital ratio =
= (Tier 1 capital)/(risk-weighted
assets) (Duchin and Sosyura
(2014)).
Common equity ratio =
(common equity)/(total assets)
(Anginer et al. (2018)).

Asset Quality The adequacy of allowance for
credit risk, including loan and
other investment portfolios
losses.

Non-performing loans ratio =
= (loans past due 90 days or
more and non-accruals)/(total
loans) (Acharya and Mora
(2015)).

Management Sound management practices to
ensure balanced bank
performance and risk profile.

Return on assets =
= (net income)/(total assets)
(Martinez-Peria and Schmukler
(2001)).

Earnings Strong developing quantity and
quality of earnings adequate to
the risks.

Return on Equity =
= (net income)/(total equity
capital) (Duchin and Sosyura
(2014)).

Liquidity Adequate liquidity position
compared to funding needs,
availability of assets convertible
to cash, access to money markets
and sources of funding.

Cash ratio = cash/(total assets)
(Assaf et al. (2019)).

Sensitivity to
Market Risk

The degree to which changes in
interest rates, foreign exchange
rates, equity prices, or
commodity prices can adversely
affect the earnings or an
economic capital of a bank. The
nature and complexity of market
risk exposure due to trading and
foreign operations.

Sensitivity to interest rate risk =
= (short term assets —
short-term liabilities)/(earning
assets) (Duchin and Sosyura
(2014), Berger and Roman
(2017)).
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and Lindley (1977) defining inputs and outputs of banks in their production, installing the
economics foundation for both DEA and SFA. Since then, three major approaches prevailed
in the literature for modeling the technological process of banks: production, value-added
and intermediation. Many studies, while arriving at the similar, or different, conclusions
on the same or similar data differ by how they apply inputs and outputs to describe the
technological role of banks in modeling with both DEA and SFA. Fruitful reviews on this
and other aspects can be found in Berger and Humphrey (1997), Fethi and Pasiouras (2010)
and Paradi and Zhu (2013), to mention just a few.

Basically, in the production approach, the role of a bank is similar to an industry deci-
sion making unit (DMU), that is labor and capital are needed to produce goods, including
customer accounts, loans and securities. This approach is mostly applied in studies of the
bank level and branch level efficiency rather than in the studies about an industry efficiency.
For application examples, see Berger et al. (1997), Camanho and Dyson (2005), Kenjegalieva
et al. (2009a).

In the value-added approach, the role of a bank is to create income with a difference
between earnings from outputs and cost from inputs. This approach is particularly relevant
for diversified activities, extending to insurance and ‘bancassurance’. Application examples
include Eling and Luhnen (2010) and Leverty and Grace (2010). Recently, Humphrey (2020)
extended this approach to creating value for bank customers, where outputs are measured
with value creation with both assets and liabilities of a bank, i.e., loans and securities are
redefined into adding value flows that are important for users. In this model, inputs are
deposits, labor and capital.

In the most commonly applied intermediation approach, the role of a bank is to transform
savings (mostly deposits) into investments (mostly loans). The bank is viewed as a DMU
which collects deposits with labor and capital and produces loans and other earning assets
(Sealey Jr. and Lindley (1977)). Application examples of this approach include analysis at
the bank level and can be found in Aly et al. (1990), Isik and Hassan (2002), Casu et al.
(2013), Almanidis et al. (2019), Mamatzakis et al. (2019), to mention a few.

Implementation of inputs and outputs to formally model the banking production process
is described in Section 3.

2.3 Variables for Explaining Inefficiency in Banking

One of the major aspects of interest in the analysis of productivity and efficiency of banks is
modeling the inefficiency on other covariates, or explanatory variables. An established econo-
metric strategy here is based on choosing the explanatory variables grounded on theoretical,
or practical, considerations of the relevance of the covariates to the analyzed inefficiency. In
a prominent methodological paper, Simar and Wilson (2007) illustrate how the algorithm of
their model can work with banking data by including covariates of the size of a bank, product
diversity and characteristics of the environment where a bank operates (e.g., see Aly et al.
(1990), Assaf et al. (2019)). While applying the similar conceptual variable selection, the
proxies for each of the concepts differ by studies and in this section we briefly overview some
of the most typical choices.

Size of a bank. The common explanatory covariate that appears in many (if not all)
studies of the performance analysis literature is size, due to beliefs that larger banks may
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utilize scale effects better. Larger banks often have greater diversification capacities (Assaf
et al. (2019)). The common specifications of size include the natural logarithm of total assets
(Simar and Wilson (2007)), total deposits/loans and number of bank branches (Aly et al.
(1990)). By a scale effect, a common belief is that size would have a positive impact on bank
efficiency. For example, Berger and Mester (1997) found a positive impact of bank size on
cost efficiency and a negative impact of a bank size on profit efficiency. Separately, Aly et al.
(1990) found a positive effect of size on both technical and allocative efficiency of a bank. In
a more recent study, Almanidis et al. (2019) found that two top-tier large banking groups
were more efficient than four smaller sized banking groups.

The banks are often differentiated by size because larger banks require more regulatory
attention based on their systemic importance. Systemically important banks are considered
to be “too big to fail” (Bikker and Bos (2008)). In the event of a stress, the government
would need to bail these banks out because the failure of a big bank could have too big risk
to the real sector in the economy (Adrian and Brunnermeier (2016)). One of the approaches
to studying the impact of the size of a bank on its performance is by assigning a dummy
variable of one to a larger and systemically important bank (Acharya and Mora (2015)) and
zero to the rest of the banks. Most of the regulatory rules link the systemic importance of a
bank to the size of a bank. The Dodd-Frank Act in the U.S. defines a banking organization as
systemically important when its total assets exceed $50-$250 billion (Federal Reserve (2020)).

The primary global regulatory standard establisher, the Basel Committee on Banking
Supervision, added more criteria to the definition of systemic importance. In particular,
the Basel criteria also include complexity, interconnectedness, substitutability and the global
significance of a banking organization (BCBS (2019)). The banks that meet the Basel criteria
on significance are included in the annual lists of Global Systemically Important Banks
published by the Financial Stability Board in the European Union. The list comprises of
Bank of China, BNP Paribas, Citigroup, Commerzbank, Erste, Lloyds, Mitsubishi Group, to
mention a few (EBA (2020)).

Many countries adopted (sometimes with modifications) the Basel criteria to their en-
vironments. For example, in Australia, Australian Prudential Regulator followed the Basel
Guidelines and IMF consultations to apply all four criteria to the definition of domestic
systemically important banks and has identified the four biggest banks as systemically im-
portant. Total resident assets of the smallest of these four banks, ANZ, exceed AUD 400
billion (APRA (2013)), about the size of the GDP of Singapore.

Product diversity presents the proportion of the firm revenue generated with the products
that a bank offers to its customers. Greater diversification is usually preferred for a bank for
risk reduction purposes. For example, Aly et al. (1990) and Simar and Wilson (2007) apply
an index representing zero for single-product lending banks that increases with the number
of products added.

Another common approach to presenting diversity is with a dollar value of a particular
product in a dollar value of total assets. Isik and Hassan (2002) apply a share of loans to
total assets as explanatory variables and find a positive association between the share of loans
in assets and efficiency. A similar result was found in a classic study by Berger and Mester
(1997), suggesting that a bank loan product could be higher valued than a bank security.
More recently, Assaf et al. (2019) applied commercial real estate loans in total assets as a
control variable to explain which banks perform better during the crisis and found that the
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higher this ratio is, the lower the risk of bank failure during the crisis. The proportion of
loans in the other assets and what types of loans are to be issued by a bank comprise the
strategic questions for bank management.

Risk, as one of the most important financial concepts (along with return), is applied in
numerous studies (Assaf et al. (2019), Berger et al. (2010), Altunbas et al. (2007)) to explain
bank inefficiency. Risk is usually proxied with the two variables: capital ratio and non–
performing loans (NPL) ratio. In the simplest form, capital ratio as the share of equity to
total assets, represents a bank’s ability to absorb losses for ‘safety and soundness’ of the bank
(BIS (2020a)). It is expected that higher capital ratio would signal better bank management
(Assaf et al. (2019)) and better performance (Berger and Bouwman (2013)).

The impact of capitalization on efficiency is presented with mixed evidence. Conditional
on a model specification, Mamatzakis et al. (2019) found both positive and negative asso-
ciations between capitalization and efficiency for a sample of Japanese banks. In the study
of 10 European banking systems, Lozano-Vivas et al. (2002) found that capital ratio is im-
portant for explaining efficiency differences for banks in the U.K. and France. In a recent
study of 15 European countries, Altunbas et al. (2007) found a positive association between
a change in capital and bank inefficiency. Overall, the majority of reviewed papers signalled
a positive association between capitalization and efficiency. An explanation for a strength of
the capitalization - the efficiency link could be an avenue for future research.

NPLs are often presented as a credit risk proxy. Regulators often require banks to hold
higher levels of equity capital when the banks have higher than average NPL ratios. The
risk arising from NPL has accumulative features. Higher current NPL ratios constrain loan
production in the future periods (Fukuyama and Weber (2015)). The association between
the level of NPLs and efficiency is found to be positive. Efficient banks take a higher risk
(Altunbas et al. (2007)). Yet, when the NPL ratio is applied as a proxy for management
(better managed banks have lower NPLs (Berger and DeYoung (1997)), an association be-
tween NPLs and efficiency appears to be negative (Koutsomanoli-Filippaki et al. (2009)).
Although, risk proxies have been found to have an association with efficiency, a number of
more recent studies model NPLs as an undesirable output that is reducing the value of a
desirable net loan output (e.g., see related discussion in Pham and Zelenyuk (2019)).

Local economic conditions are an important determinant of inefficiency when banking
systems are compared across regions. Aly et al. (1990) find a positive effect of urbanization
on the efficiency of US banks. In a European cross-country study, Lozano-Vivas et al. (2002)
included income per capita and salary per capita to show a positive association between the
higher levels of these environmental variables and bank efficiency. Other common variables
applied in international bank performance studies include the level of real GDP growth (Leary
(2009)) and inflation.

Ownership represents a major part of the corporate governance puzzle, in particular, a
discussion of its combination with management (Shleifer and Vishny (1997)). Ownership is
usually differentiated into two categories to explain efficiency: private versus public (Berger
et al. (2010) and Sturm and Williams (2004)) and foreign versus domestic (Berger et al.
(2010), Sturm and Williams (2004), Berger et al. (2000)). These two types of ownership are
often included in one study because foreign ownership inflow into a country often follows
with a degree of deregulations and could be accompanied by privatizations.

For instance, Berger et al. (2010) document that privatization in China followed by in-
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creased foreign ownership had a positive effect on bank efficiency. In an earlier study, Berger
et al. (2000) found that domestic banks were more efficient than foreign-owned banks in
four countries Germany, France, Spain and the U.K. In contrast, Sturm and Williams (2004)
found that foreign banks were more efficient than domestic banks in Australia, especially
after complex de-regulation in the 1980s that included removal of the interest rate controls
and loan quality controls.

More recently, Berger et al. (2010) suggest that the effect of ownership on efficiency differs
by country due to the stages of development of the country. In particular, they discuss that
foreign-owned banks are more efficient in developing countries and domestic banks are more
efficient in developed countries. In this vein, Koutsomanoli-Filippaki et al. (2009) find that
foreign ownership brought positive efficiency change to all the banks in Central and Eastern
Europe, including domestic private and state-owned banks. On the other hand, Zelenyuk and
Zelenyuk (2014) found that the efficiency of foreign-owned banks was insignificantly different
from the efficiency of the domestic banks when a foreign bank owns a domestic bank partially.
Foreign banks only exceed domestic banks by efficiency when foreign ownership comprises
100% of a bank.

Overall, the conclusions about the effect of ownership on efficiency are mixed, perhaps
because ownership status is evolving and the agency problems associated with ownership and
management are avenues that are being resolved dynamically, which might be challenging to
capture with modeling.

In this sub-section, we overview the most popular ‘environmental variables’ believed to be
associated with the efficiency of banks. Any particular variable is research-question specific
and is often limited by the data availability. The pool of explanatory variables could be
extended with control variables applied in causal inference analysis that we discuss further
in sub-section 2.4.

Implementation of the covariates in the formal efficiency modeling is discussed in sections
4 and 5.

2.4 Variables in Analysis of Causal Effects in Banking

In studies of causal effects, the emphasis is on a small number of parameters, often only
one identifying parameter (Cameron and Trivedi (2010)). A distinction is made between an
outcome variable and a treatment/forcing variable. For example, the bank interest margin
could be the outcome variable, while the regulatory liquidity requirement can be thought of
as a treatment variable (e.g., see Bonner and Eijffinger (2015)). The rest of the variables in
the estimation are often controls.

While a choice of variables for a causal treatment effect is a challenging researcher’s task
that can be novel, the set of control variables is often standard. Similar to the environmental
variables in sub-section 2.3, controls typically include the size of a bank and the managerial
ability of balancing risk with return, reflected with the CAMELS ratios presented in Table
1.

In particular, Column (1) of Table 1 names the CAMELS component, Column (2) specifies
a uniform regulatory expectation about each of the components and Column (3) defines
the corresponding financial ratios. While interpreting the financial ratios, Column (3) also
provides examples of how these ratios were applied as controls in the banking studies. The
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most comprehensive approach to controls includes both size and all of the CAMELS variables
(Duchin and Sosyura (2014), Eichler et al. (2011)). The proxies for CAMELS may vary.

In a prominent study on market discipline, Martinez-Peria and Schmukler (2001) apply
a return on assets (ROA) to control for both management and earnings. ROA presents an
amount of net income generated with the bank assets and reflects the managerial ability
of creating the former with the latter. At the same time, from an accounting point of
view, income reflects the difference between earnings and cost, thereby, the ROA ratio also
signals earnings quantity and quality. To further control for any heterogeneity between the
banks, a common practice is to include bank fixed effects that capture all the remaining
differences between the banks that are time-invariant during the study period (Duchin and
Sosyura (2014)). In recent work by Boubakri et al. (2020) about the post-privatization state
ownership and bank risk taking, the authors control for bank fixed effects as well as (and
similarly to discussed variables in sub-section 2.3) for environmental variables of competition
within the banking industry, information sharing with the private/public loan registries and
creditor rights.

Due to the recent global convergence of banking regulations to uniform standards, en-
vironmental variables that describe legal and competitive local conditions gain particular
significance in the cross-sectional studies (Bonner and Eijffinger (2015)).

3 Productivity and Efficiency Theory for Banking

Before estimating efficiency or productivity of banks, it is important to sketch a theoret-
ical model that represents the essence of their production activities. For this, let x =
(x1, ..., xN)′ ∈ RN

+ represent the vector of inputs that a bank, its branch or, more gener-
ically its decision making unit (DMU) uses to produce outputs, denoted by vector y =
(y1, ..., yM)′ ∈ RM

+ . As discussed above, in sub-section 2.2., in recent efficiency studies on
banking, researchers typically proxy inputs with capital and labor while for the outputs they
apply loans and other earning assets, although this may vary depending on the goals of the
study.

3.1 Technology Characterization

In reality, each bank, or DMU, may use its own specific technology to produce its outputs
from various inputs. A natural starting point is a simple case when technology involves only
one output—then the technology (and its frontier) of a bank can be characterized with what
economists call a production function. In general terms, a production function, call it ψ, is
defined as a function yielding the maximal output producible with the knowledge and level of
input (x) available at time t and conditions (Z) faced by a bank i at time t. More formally:

ψit(x|Zit) ≡ max
x
{y : y is producible from x at time t with conditions Zit}

In practice, of course, banks typically produce more than one output, as a result, a more
general characterization is needed. This can be done with what production economists call
technology set, which we denote as Ψ, and define as

Ψit(Zit) ≡ {(x, y) : y is producible from x at time t with conditions Zit}. (6)
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To compare different banks in terms of performance, one has to define a common bench-
mark. Often, researchers take what can be called as an egalitarian approach, in the sense
that all DMUs are measured, or benchmarked, with respect to the same frontier in a given
period, t, sometimes referred to as the observed ‘grand frontier’, or the unconditional frontier,
i.e.,

Ψτ = ∪iΨit(Zit|t = τ) (7)

where the union is taken over all the possibilities available for all i in a specific time period
t = τ . In a sense, this is similar to some athletic competitions: e.g., everyone runs the same
distance regardless of the actual technologies they used for developing their training skills for
running.

In further discussions we will focus on this unconditional frontier Ψt but for simplicity
of notation also dropping the subscript t, unless it is needed.2 We will also assume that the
technology meets the requirements of standard regularity conditions or axioms of production
theory (e.g., see Sickles and Zelenyuk (2019) for more details).

Upon estimating such an unconditional frontier, a researcher may then try to analyze
the association of the resulting efficiency scores (with respect to the unconditional frontier)
and Zit and, possibly, t. This would be the so-called two-stage efficiency analysis, popular in
DEA literature for many years and more recently revitalized due to the key work of Simar
and Wilson (2007), although also see the caveats discussed in Simar and Wilson (2011) and
related discussion in Sickles and Zelenyuk (2019, Ch. 10). Ideally, a one-stage approach,
where association of efficiency with other variables is modeled explicitly when estimating the
frontier, is preferred whenever it is possible. This is particularly true in the SFA approach,
as clarified by Wang and Schmidt (2002), as we will discuss in Section 5.

3.2 Relativity

Efficiency is a relative and normative concept — it always depends on the selected criterion
that defines the benchmark of comparison and answers the question: ‘Relative to What?’
Indeed, it could very well be that a bank is very or even 100% efficient relative to one
criterion, while very inefficient relative to another, or perhaps many other criteria. It is
therefore imperative to clarify which criterion is selected and motivate why it was selected.

For example, a natural criterion is the frontier of the technology set, yet there are different
(and not always equivalent) definitions of the frontier. A popular definition is the efficient
frontier according to the Pareto-Koopmans criterion, or optimality principle, that says: (x, y)
is Pareto-Koopmans efficient for technology Ψ if and only if with such technology it is infea-
sible to increase any outputs without decreasing some other outputs or increasing some of
the inputs, and also infeasible to decrease any of the inputs without increasing some other

2It is also worth noting that when having ‘too few’ observations in a time period, researchers consider
pooling over several time periods, i.e.,

Ψ = ∪t∈{1,...,T ′}Ψt = ∪t∈{1,...,T ′} ∪i Ψit(Ziτ |τ = t) (8)

where the union is taken over all the possibilities available for all i in a specific time range {1, ..., T ′}, which
can be all the sample or part of the sample with the moving window approach. A caveat of this approach
is that it presumes (or ignores) the technological change that may have happened over that period and,
therefore, should be done with caution and relevant justifications.
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inputs or decreasing some of the outputs in y. Thus, mathematically, the Pareto-Koopmans
efficient subset of the technology frontier Ψ can be defined as

eff ∂Ψ ≡ {(x, y) : (x, y) ∈ Ψ, (x0, y0) /∈ Ψ,∀(−x0, y0) ≥ (−x, y)} (9)

Another relevant criterion is the level where the optimal scale of using resources is reached,
sometimes referred to as the socially optimal level.

Yet another relevant criterion, and usually the ultimate benchmark for measuring the
performance of banks, is the maximal profit feasible for a technology Ψ and some output and
input prices, which can be formally stated as

π := max
x,y
{p(y)y − w(x)x : (x, y) ∈ Ψ} (10)

where p(y) is the vector of inverse demand functions for each output and w(x) is the vector
of inverse supply functions for each input.

From economic theory we know that the full efficiency is reached with perfect competition
and this implies a relevant benchmark for comparison. Specifically, perfect competition will
imply that the prices are exogenous to any individual firm and so the optimization criterion
(10) simplifies to

π(p, w) = max
x,y
{py − wx : (x, y) ∈ Ψ} (11)

By accepting this benchmark, various profit efficiency measures can be constructed and,
in fact, many were offered in the literature. Most recently, Färe et al. (2019) proposed a very
general profit efficiency measure that unified many other efficiency measures in the literature.
Färe et al. (2019) also showed that the Farrell measures of technical efficiency, which are the
most popular in practice, are components, or special cases, of their general profit efficiency
measure. In the next section we briefly discuss some of them, while more can be found in
Färe et al. (2019) and Sickles and Zelenyuk (2019).

3.3 Popular Efficiency Measures

By far the most popular efficiency measures in general, and in the context of banking in
particular, are the Farrell measures of technical efficiency and, to save space, we will mainly
focus on them.

Specifically, the Farrell input oriented technical efficiency can be defined as

ITE(x, y) ≡ 1

IDF (x, y)
, (x, y) ∈ Ψ

where IDF (x, y) is the input oriented Shephard distance function, IDF : RN
+ × RM

+ →
R+ ∪ {+∞}, defined as

IDF (x, y) ≡ sup{θ > 0 : (x/θ, y) ∈ Ψ}.

Meanwhile, the Farrell output oriented technical efficiency can be defined as

OTE(x, y) ≡ 1

ODF (x, y)
, (x, y) ∈ Ψ
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where ODF (x, y) is the output oriented Shephard distance function, ODF : RN
+ × RM

+ →
R+ ∪ {+∞}, defined as

ODF (x, y) ≡ inf{λ > 0 : (x, y/λ) ∈ Ψ}.

These distance functions are multi-output generalizations of the notion of the production
function. Indeed, note that for a one-output case, we have

ODF (x, y) =
y

ψ(x)

where ψ(x) is the production function. This special case reveals that the ODF is a natural
measure of technical efficiency that relates the actual output to the potential (or maximal)
output.

The Farrell technical efficiency measures described above are radial measures, in the sense
that they measure inefficiency in a radial way, i.e., along the ray from the origin and through
the point of interest all the way to the frontier in either input or output direction while
holding, respectively, the output or input vectors fixed. This means that all the inputs
(outputs) are contracted (expanded) by the same proportion, while keeping the outputs
(inputs) and technology fixed.

Finally, another very general efficiency measure and a complete characterization of tech-
nology is based on the directional distance function, DDFd : RN

+×RM
+ → R∪{+∞}, defined

as
DDFd(x, y) ≡ sup

θ
{θ ∈ R : (x, y) + θd ∈ Ψ}, (12)

where d = (−dx, dy) ∈ RN
−×RM

+ is the direction that defines the orientation of measurement.3

By choosing different directions, many efficiency measures can be derived from this function.
Under the standard regularity conditions, these distance functions (and hence the Farrell

technical efficiency measures) have many desirable mathematical properties and, in particu-
lar, provide complete characterizations of technology Ψ, in the sense that

1/IDF (x, y) ∈ (0, 1] ⇐⇒ ODF (x, y) ∈ (0, 1] ⇐⇒ DDFd(x, y) ≥ 0 ⇐⇒ (x, y) ∈ Ψ

From duality theory in economics, we also know that under certain conditions, the tech-
nology set can be characterized by cost, revenue and profit functions, which can be used to
define the dual efficiency measures, cost efficiency, revenue efficiency and profit efficiency,
which can be then decomposed into the technical efficiency and various allocative efficiencies
(e.g., see Sickles and Zelenyuk (2019, Chapter 3) for details).

4 Envelopment Estimators

For several decades DEA has been a standard and very popular approach in the toolbox for
performance analysis in general and for banks in particular. The literature on DEA is vast
and growing. Among the first was the work of Sherman and Gold (1985), who evaluated

3The ideas of this measure go back to as early as 1940s, and more thoroughly developed by Chambers
et al. (1996, 1998), to mention a few.
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the operating efficiency of bank branches using early DEA models. This work was followed
by three now seminal studies that appeared in top econometric journals: Aly et al. (1990),
Charnes et al. (1990) and Ferrier and Lovell (1990). Shortly after appeared the interesting,
and now classic, works of English et al. (1993) and Wheelock and Wilson (2000). While all
ofthese works were focusing on US banking, besides explaining particular research questions,
they helped in popularizing the novel at that time methods, and eventually they found
applications for many (if not all) other countries globally.

For example, Du et al. (2018) focused on the performance of banks in China, Fukuyama
(1993); Fukuyama and Weber (2015) in Japan, Casu et al. (2013) in India, Simper et al.
(2017) in Korea, Curi et al. (2013, 2015) in Luxembourg, Camanho and Dyson (2005) in
Portugal, etc. Meanwhile, a few studies focused on a set of countries, e.g., Casu et al. (2004),
Koutsomanoli-Filippaki et al. (2009), Kenjegalieva et al. (2009a) and Lozano-Vivas et al.
(2002) analyzed sub-sets of European countries. Of note, many of these and other studies
used both DEA and SFA, and some also did comparisons to other approaches. As mentioned
in the introduction, there are thousands of studies on this topic and these are just a few we
mentioned, while many more examples can be found in Berger and Humphrey (1997), Fethi
and Pasiouras (2010) and the recent Liu et al. (2013).

It is also critical to note that while a myriad of existing works are identified as ‘DEA
in banking’ studies, many of them chose a particular variant of the many different variants
within the DEA approach, besides also varying on the type of efficiency measures, as those
described in the previous section, or their alternatives. It is, therefore, useful to understand at
least the major variants within the DEA approach. Consequently, the goal of the rest of this
section is to give a concise overview of different DEA models for efficiency and productivity
analysis in general and for banking in particular. This overview is indeed brief, as covering
it more extensively would take a book by itself, and these types of books already exist,4 and
here we give a primer that we hope will help learning from more detailed and much lengthier
sources.

4.1 The Basic DEA Model

In their seminal work, Charnes et al. (1978) formulated a fractional programming problem
for measuring efficiency of a decision making unit (DMU) with an allocation (xj, yj), using
data on n observations in a sample, denoted as Sn = {(xk, yk)}nk=1, for similar DMUs that
can be considered as relevant peers for each other. This formulation (in our notation) was

4E.g., see Färe et al. (1994), Ray (2004) and most recent textbook-style treatment in Sickles and Zelenyuk
(2019).
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given by

ÎTECCR(xj, yj|Sn) = max
v1,...,vN ;
u1,...,uM

∑M
m=1 umy

j
m∑N

l=1 vlx
j
l

(13)

s.t. ∑M
m=1 umy

k
m∑N

l=1 vlx
k
l

≤ 1, k = 1, ..., n,

um ≥ 0,m = 1, ...,M,

vl ≥ 0, l = 1, ..., N,

where u′ = (u1, ..., uM) and v′ = (v1, ..., vN) are optimization variables (also called ‘multipli-
ers’).

To explain the objective function in (13) is the ratio of a weighted average of outputs to
a weighted average of inputs for the observation (xj, yj). I.e., intuitively, it is a productivity
index for the observation (xj, yj): the ratio of its aggregate output to its aggregate input,
where the weights are obtained in the optimization problem (13), u and v, respectively.
Moreover, it can also be seen as the so-called ‘return to dollar’ performance measure, i.e., the
total revenue of this observation (xj, yj) divided by the total cost associated with (xj, yj),
where the output and input prices are, again, obtained from the optimization problem (13), u
and v, respectively. Furthermore, note the way these prices are obtained: the model searches
for the best prices for the observation (xj, yj), in terms of the ‘return to dollar’ performance
measure, subject to the constraints that this measure (with the same prices) is within (0, 1]
for all the observations in the sample. In this sense, the optimal values of u and v can be
intuitively understood as (normalized) shadow prices that show (xj, yj) in the best possible
light for the considered sample.

After transforming (13) to a linear programming (LP) problem, Charnes et al. (1978),
obtained its dual formulation, which was the generalization (to multi-output case) AAM
proposed by Farrell (1957), given by

ÎTE(xj, yj|Sn) ≡ min
θ,z1,...,zn

{θ

s.t.
n∑
k=1

zkykm ≥ yjm,m = 1, ...,M,

n∑
k=1

zkxkl ≤ θxjl , l = 1, ..., N,

θ ≥ 0, zk ≥ 0, k = 1, ..., n} (14)

which is usually called the ‘envelopment form of DEA’ assuming CRS, additivity and free
disposability (see Sickles and Zelenyuk (2019) on how to derive the DEA formulation from
these assumptions) and is more common in economics literature. Meanwhile, the formulation
(13) is more common in the management science/operations research literature and is usually
referred to as the ‘multiplier form of DEA’ (also under CRS, additivity and free disposability),
or simply ‘CCR model’ to honor its authors.
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Both formulations compute or estimate (from the sample) the input oriented Farrell
technical efficiency measure because, as can be seen from (14), it minimizes inputs equipro-
portionately, while keeping outputs and the estimated technology fixed.

Similarly, the DEA-estimator of the Farrell output oriented technical efficiency for an
observation (xj, yj), assuming CRS, free disposability of all outputs and all inputs and addi-
tivity, is given by

ÔTE(xj, yj|Sn) ≡ max
λ,z1,...,zn

{λ

s.t.
n∑
k=1

zkykm ≥ λyjm,m = 1, ...,M,

n∑
k=1

zkxkl ≤ xjl , l = 1, ..., N,

λ ≥ 0, zk ≥ 0, k = 1, ..., n} (15)

It is worth noting here that ÎTE(x, y|Sn) = 1/ÔTE(x, y|Sn) for any (x, y) when they are
obtained from (14) and (15), due to CRS, which is convenient and removes some ambiguity
pertinent to the choice of one of these orientations.

Moreover, the estimates of the Shephard distance functions (Shephard (1953, 1970)), can
be obtained by taking the reciprocals of the estimated Farrell efficiency measures.

If one is not willing to keep either inputs or outputs fixed and rather prefers expanding
outputs and contracting inputs, simultaneously, then more general measures can be estimated
(Sickles and Zelenyuk (2019, Chapter 8). For example, the directional distance function can
also be estimated with DEA. E.g., when assuming CRS, free disposability of all outputs and
all inputs and additivity, we can use:

D̂DF (xj, yj|dx, dy|Sn) ≡ max
β,z1,...,zn

{β,

s.t.
n∑
k=1

zkykm ≥ yjm + βdym , m = 1, ...,M,

n∑
k=1

zkxkl ≤ xjl − βdxl , l = 1, ..., N,

zk ≥ 0, k = 1, ..., n}. (16)

Similarly, DEA is applicable to modeling the cost, revenue and profit functions and re-
lated efficiency measures. In particular, in such frameworks researchers estimate the overall
(in)efficiency (e.g., cost, revenue or profit) and then decompose it into technical and alloca-
tive (in)efficiency parts. Sickles and Zelenyuk (2019, Chapter 3 and 8) elaborate on this in
more details.
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4.2 Other Variations of DEA

Many other types of DEA models were suggested in the literature, most of which are modi-
fications of the basic models presented above. The modifications add various constraints to
either the multiplier form of DEA, or the envelopment form.

4.2.1 Returns to Scale and Convexity

The first modifications tried to relax assumptions about CRS and convexity. The most
popular among them is the DEA under the assumption of variable returns to scale (VRS) and,
a bit less so, under the non-increasing returns to scale, while still assuming free disposability of
all inputs and all outputs (and sub-additivity). These models impose additional constraints,∑n

k=1 z
k = 1 or

∑n
k=1 z

k ≤ 1, respectively, to the DEA-CRS formulation (14) or (15) or (16),
depending on the chosen orientation or direction and, in general, these may yield different
(and potentially very different) estimates. The multiplicative form of the DEA-VRS model
is usually referred to as the BCC model due to Banker et al. (1984) (also see Afriat (1972);
Färe et al. (1983)). For the context of banking these types of models were applied by Aly
et al. (1990), Charnes et al. (1990) and Ferrier and Lovell (1990), English et al. (1993) and
Wheelock and Wilson (2000), Fukuyama (1993); Fukuyama and Weber (2015), Camanho
and Dyson (2005), Du et al. (2018), Casu et al. (2013), Curi et al. (2013, 2015), Simper et al.
(2017), Casu et al. (2004), Koutsomanoli-Filippaki et al. (2009), Kenjegalieva et al. (2009a)
to mention a few.

About the same time, the Free Disposal Hull (FDH) approach was developed and advo-
cated by Deprins et al. (1984), where the idea is to relax the convexity (and, therefore, also
additivity) and only keep the free disposability of all inputs and all outputs. While having its
own name, FDH is a special case of DEA, where the envelopment form of DEA ((14) or (15)
or (16), depending on the chosen orientation or direction) is amended into the DEA-VRS,
but where the constraints “zk ≥ 0, k = 1, ..., n” are replaced with “zk ∈ {0, 1}, k = 1, ..., n”.
As a result, it is a hybrid of LP and integer programming (IP) problems.

In the context of banking this type of approach was applied by Bauer and Hancock (1993)
and Resti (1997). FDH typically has much lower discriminative power (and a slower rate of
statistical convergence) and was used substantially less than DEA, though its popularity has
increased more recently because of related work on conditional frontiers (e.g., see Daraio and
Simar (2007)).

4.2.2 Modeling with Undesirable Outputs or with Congesting Inputs

All the models above assumed free disposability of inputs and outputs. This assumption is
violated when there is a congestion phenomenon for inputs. E.g., when there are too many
bank employees per square meter in an office, adding one more employee while keeping other
inputs and technology fixed may even lead to lowering of the total output, implying that
inputs are not freely disposable. Similarly, the free disposability of outputs is violated when
there is an undesirable (or bad) output produced as a byproduct, along with a good output.
In the context of banking, the nonperforming loan (NPL) is often considered as a typical
example of a bad output. If the NPLs are known, some researchers simply subtract their
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total value from the total loans. An alternative way to handle them is to apply the DEA
models that allow for weak disposability of outputs.

The roots for this type of modeling can be found in Shephard (1974), and more formalized
in Färe and Svensson (1980); Färe and Grosskopf (1983); Grosskopf (1986); Tyteca (1996);
Chung et al. (1997) and applied to various industries, with more recent developments in
Seiford and Zhu (2002), Färe and Grosskopf (2003, 2004, 2009), Pham and Zelenyuk (2018,
2019) to mention a few.5

4.2.3 Other Streams of DEA

A number of streams of DEA modeling considered how to account for the network nature
of production, both in static and dynamic contexts, starting from the seminal works of Färe
and Grosskopf (1996); Färe et al. (1996) and many papers since then (e.g., see Kao (2014)
for an excellent review).

Another stream of literature on DEA modeling focused on weight restrictions for the
multiplier form of DEA: see Dyson and Thanassoulis (1988); Charnes et al. (1990); Thompson
et al. (1990) and more recently Podinovski and Bouzdine-Chameeva (2013), and reviews from
Allen et al. (1997); Podinovski (2015)).

Yet another promising stream of literature developed symbioses of DEA with game theory,
and can be found in Hao et al. (2000); Nakabayashi and Tone (2006); Liang et al. (2008);
Lozano (2012) and references therein.

Finally, a very important stream of DEA literature is about its statistical aspects—the
wave largely developed by the seminal contributions by Léopold Simar and his co-authors,
which we discuss in the next section.

4.3 Statistical Analysis of DEA and FDH

4.3.1 Convergence and Limiting distributions

The earliest proof of consistency of the basic DEA estimator, with a single-output for speci-
fication with output orientation was sketched by Banker (1993), who noticed that it is also
a maximum likelihood estimator. Korostelev et al. (1995) advanced these results by proving
more rigorous convergence of DEA and FDH estimators and also deriving their speeds of
convergence (as orders of dimension of the production model), and proving their optimality
properties. Kneip et al. (1998) generalized the theorems about convergence for the multi-
input-multi-output case, Gijbels et al. (1999) discovered the limiting distribution of the DEA
estimator (for the one-input-output case) and it was then generalized by Park et al. (2000),
Jeong and Simar (2006), Kneip et al. (2008), Park et al. (2010).

4.3.2 Analysis of Distributions and Averages of DEA and FDH Estimates

A sub-stream of this literature has focused on analyzing the estimates of the DEA (or FDH)
efficiency scores. Indeed, once such estimates are obtained it is useful, for example, to look
at the estimated densities (at least histograms) of such scores, overall, or for some groups

5Also see Dakpo et al. (2017) for a good review of the research about undesirable outputs and congesting
inputs.
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within the sample and, in particular, test for the equality of distributions, as was explored in
Simar and Zelenyuk (2006). For the context of banking, this type of approach was considered
by Kenjegalieva et al. (2009b), Simper et al. (2017) and Du et al. (2018), to mention a few.

One can also analyze the averages of the efficiency scores, including weighted averages
that account for an economic weight of each DMU in the aggregate, as were explored by
Simar and Zelenyuk (2007) and more rigorously in Simar and Zelenyuk (2018). The latter
work developed several new central limit theorems for aggregate efficiency, building upon
the recent breakthrough due to Kneip et al. (2015). At about the same time, Kneip et al.
(2016); Daraio et al. (2017) also applied the foundation from Kneip et al. (2015) to develop
various statistical tests. Some further finite-sample improvements to these approaches (via
improving the variance estimator) were developed by Simar and Zelenyuk (2020).

4.3.3 Regression Analysis with DEA and FDH Estimates

A very popular approach in DEA literature is the so-called ‘two-stage DEA’. In the first stage
the efficiency scores are estimated and, in the second stage, they are regressed on various
explanatory factors that are believed to explain the variation in the efficiency scores. Early
models applied OLS and then, to account for the ‘boundedness’ of the dependent variable,
Tobit regression was often deployed. Currently, the state of the art here (albeit with its own
caveats) is the method of Simar and Wilson (2007), who pointed out that (under certain
conditions) truncated regression is more appropriate and the inference can be improved with
the help of bootstrap.6

For the context of banking, these types of models were considered by Curi et al. (2013,
2015) and Du et al. (2018), to mention a few.

For example, a simple model that tries to explain (in terms of statistical dependencies)
the distances between particular observations and the (estimate of the) unconditional frontier
Ψ, can be stated as

Efficiencyi = f(Zi) + εi, i = 1, . . . , n, (17)

where Zi is a d-variate row-vector of explanatory variables (also called ‘environmental’ vari-
ables) for observation i, which are expected to be associated with the (in)efficiency score of
this observation, which we denoted as Efficiencyi, via some functional form f , and εi is a
statistical noise.

The type of the score, Efficiencyi, will determine the nature of the truncation. E.g., if
output (input) oriented Farrell-type efficiency is applied, then both sides of (17) are bounded
from below (above) by 1, implying that the distribution of εi is also bounded from below
(above). Typically, one also makes parametric assumptions on f (e.g., linear in parameters)
and the distribution of εi (e.g., truncated normal) and proceeds with parametric estimation
using MLE.7

Because the true efficiency scores are unobserved and replaced by their estimates, which
are inherently biased, the usual inference may be inaccurate, therefore Simar and Wilson
(2007) proposed two alternative bootstrap algorithms that can (under certain conditions)
mitigate these issues to some extent and improve the inference. If a researcher deals with

6Also see Simar and Wilson (2011).
7A nonparametric approach via local likelihood is also available, although with some degree of ‘curse of

dimensionality’ and greater computational costs (e.g., see Park et al. (2008)).
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panel data then the model 17 can be modified to exploit the richness of panel data, e.g., by
estimating annual frontiers or accounting for a fixed or random effect. (E.g., see Du et al.
(2018) and Sickles and Zelenyuk (2019, Chapter 10)).

Here it is important to emphasize that the analysis and the interpretation of this two-stage
approach should be for the (in)efficiency scores with respect to the unconditional frontier,
Ψ, that does not depend on the covariates Zi by construction. At the same time, one should
recognize that each DMU may have their own ‘conditional’ frontiers relative to which it might
be even perfectly efficient. Recalling the analogy with an athletics competition: each athlete
may have their own capacity (or ‘technology’) to perform at a given moment and the interest
is to measure that performance not relative to their own capacity but relative to all other
competitors. Alternatively, approaches like those in Daouia and Simar (2007); Bădin et al.
(2012); Park et al. (2015); Simar et al. (2017) and related literature can be used if one is
interested in measuring efficiency relative to conditional frontiers.

Concluding this section it is also worth clarifying that while the models of production, cost,
revenue and profit functions are well-defined economic concepts where the researcher must
know which variables to include, the selection of the ‘environmental’ variables is somewhat
subjective, often varies across studies and therefore needs careful justification (see section
2.3 for the relevant discussion). Moreover, it is worth remembering that whether it is the
conditional frontier approaches that are used or the truncated regression with respect to the
unconditional frontier approaches, they are designed to estimate the statistical dependencies
in the data under the assumed model and may or may not reveal causal relationships of
the reality. Indeed, potential issues of endogeneity, reverse causality and selection bias may
be relevant here (as for many other statistical analyses). Hence, integrating the existing
methods to address these issues (e.g., such as those we briefly discuss in section 6) and their
methods is a promising area for current and future research.

4.3.4 Noisy Data

A caveat of DEA and FDH is not explicitly handling noise in the data and hence a sensitivity
to the so-called ‘super-efficient’ outliers. Various approaches were recommended to deal with
this issue in the literature, from standard outlier-detection techniques to more sophisticated
approaches tailored specifically to the DEA context. For example, Simar (2007); Simar and
Zelenyuk (2011) proposed a formulation of Stochastic DEA (and Stochastic FDH). This
approach goes in two stages:

Step 1. Filter the noise from the data with a non-parametric stochastic frontier analysis
method (discussed in the next section), and then

Step 2. Apply DEA (or FDH) for the filtered data from Step 1.
All in all, DEA proved to be a very useful technique enabling a meaningful investigation

of the bank efficiency in dimensions of types of inefficiencies, inefficiencies by bank divisions
and input versus output orientation.

5 The Stochastic Frontier Analysis for Banking

SFA also gained significant popularity in research in general and on banking performance in
particular. In a sense, it was inspired by DEA literature: it was developed as its competitor,
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its complement and also as its symbiotic partner. Like DEA, the SFA literature is vast and
growing. It became a standard approach in the toolbox for the performance analysis of banks.

Among the first studies that applied SFA to banks was Ferrier and Lovell (1990), which
we have already mentioned among the first DEA studies on banks, as they applied and
compared both approaches in their basic, yet novel (at that time) forms. Being published
in top econometrics journals, this work set the tone for many other future papers on SFA
for banking and related fields. Among the first followers were Bauer and Hancock (1993),
Berger (1993), Mester (1993), Akhavein et al. (1997), Berger and DeYoung (1997), Berger
et al. (1997), Berger and Mester (1997), Berger and Hannan (1998), Hughes and Mester
(1998), Adams et al. (1999), to mention a few among those that became classic for this
literature.

More recent works include Kumbhakar et al. (2001), Casu et al. (2004), Kumbhakar and
Tsionas (2005), Bos and Schmiedel (2007), Delis and Tsionas (2009), Casu et al. (2013),
Malikov et al. (2016), to mention a few.8 Again, these are just a few examples from a
thousands of studies that are impossible to mention all here, though an interested reader can
find many more examples in reviews by Berger and Humphrey (1997), Fethi and Pasiouras
(2010).

Similarly to DEA, while thousands of existing works are identified as ‘SFA in banking’
studies, many of them deployed particular variations out of the many within the SFA ap-
proach, as well as variations on the type of efficiency they looked at. Thus, the goal of this
section is to provide a concise review of the different methods within the SFA approach.
Again, the review is aimed to be brief, because covering it in more detail would take several
chapters, or a whole book, which already exists.9

5.1 The Basic SFA Model

The first stochastic frontier models were developed at about the same time by Aigner et al.
(1977) (hereafter ALS) and Meeusen and van den Broeck (1977). The idea was basically to
add one more term to the standard regression model—the inefficiency term, u, unobserved
by researchers and random, with a one-sided asymmetric distribution for it (e.g., half normal
or exponential). This term is in addition to the usual error term with a symmetric (e.g.,
normal) distribution. It was first suggested in the single output cross-sectional framework,
where the output is modeled as

yi = ψ(xi) exp{εi}, i = 1, ..., n (18)

where
ψ(x) = max{y : (x, y) ∈ Ψ}

is the deterministic frontier, or production function (for any fixed x), to be estimated and εi
is a composed-error, defined as a convolution of the usual and unobserved statistical error,

8Note that some of these and other studies used particular versions of both DEA and SFA.
9A classic book here is Kumbhakar and Lovell (2000), though many more developments came after it

and the most recent summary to date can be found, for example in Sickles et al. (2020), as a very short
practical review, and more thorough review in Kumbhakar et al. (2020a,b), while a comprehensive textbook
style treatment can be found in Chapter 11 through 16 of Sickles and Zelenyuk (2019), which also connects
to the economic theory foundations and DEA described in prior chapters.
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or ‘white noise’, vi, and an unobserved inefficiency term ui ≥ 0 that forces the DMU i to
produce below the frontier output, i.e.,

εi = vi − ui. (19)

Thus, the efficiency of firm i can be measured by

Efficiencyi = exp{−ui} ≡
yi

ψ(xi) exp{vi}
, i = 1, ..., n (20)

and often approximated (around 1) as 1− ui, and hence ui approximates the inefficiency of
DMU i.

The model is usually estimated in natural logs, i.e.,

log yi = logψ(xi) + vi − ui, i = 1, ..., n (21)

most commonly with some parametric assumptions on logψ(·), e.g., linear in logs (i.e., ψ(·)
is assumed to be Cobb-Douglas) or Translog, or any other suitable functional form, although
more recent developments proposed various semi and non-parametric generalizations (e.g.,
see Sickles and Zelenyuk (2019, Chapter 16) and Parmeter and Zelenyuk (2019) for more
detailed comparisons).

While many distributions can be used for u and v, the most common is the original
specification from Aigner et al. (1977), where

vi
iid∼ N (0, σ2

v)

and
ui

iid∼ |N (0, σ2
u)|

and also assuming that vi and ui are independent from each other and from xi. In turn, this
implies that εi is an iid random variable, independent from xi, with a density given by

fε(ε) =
2

σ
φ
( ε
σ

)[
1− Φ

(
ελ

σ

)]
, −∞ ≤ ε ≤ +∞ (22)

where φ(·) and Φ(·) are the standard normal pdf and cdf, respectively, while λ = σu/σv is
sometimes referred to as ‘signal-to-noise’ ratio and σ =

√
σ2
v + σ2

u and then the (approximate)
average inefficiency is given by

E(ui) =

√
2

π
σu =

(
2

π(1 + λ2)

)1/2

σλ. (23)

The model can then be estimated with a standard maximum likelihood estimator (MLE)
or even with a method of moments estimator (MME) due to Olson et al. (1980), which will
generate estimates of β, λ and σ, which in turn can be used to obtain estimates of σv and
σu. Plugging the estimate of σu or (σ and λ) into (23) will give an estimate of the (approx-
imate) average inefficiency. The model can also be re-parametrized to obtain estimates of
E(exp{−ui}), although estimation of (23) appears to be more common in practice.
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The estimates of the individual inefficiencies are usually proxied by the so-called JLMS-
estimator, due to Jondrow et al. (1982), which estimate E(ui|εi) for specific distributions of
ui and vi. Specifically, when ui and vi are half-normal and normal, respectively, then Jondrow
et al. (1982) showed that

E(ui|εi) =
σvσu
σ

[
−εiλ
σ

+
φ (εiλ/σ)

1− Φ(εiλ/σ)

]
, (24)

where the unobserved quantities σv, σu, εi, λ, σ can be replaced with their MLE or MM esti-
mates to obtain the estimates of E(ui|εi) for each observation i = 1, ..., n. Again, it is also
possible to re-parametrize the model to obtain E(exp{−ui}|εi). 10

Finally, here by convention we outlined SFA for the case of production frontier estimation
and a similar logic (with some modifications) applies to the estimation cost frontier, revenue
frontier and profit frontier approaches. In these contexts, researchers try to estimate the over-
all (in)efficiency (e.g., cost, revenue or profit efficiency) and then decompose it into technical
and allocative (in)efficiency, which may require estimation of a system of equations.11

5.2 Panel Stochastic Production Frontiers

Often researchers have panel data, where each observation i is observed over several periods,
t = 1, ..., T . One can still employ the ALS approach described above by pooling the panel
and treating it as a cross section (i.e., hence the name ‘pooled SFA’). While this is a good
start, it is usually beneficial to exploit the richness of the panel data by using SFA approaches
tailored specifically for panel data, and we briefly describe some of them below. More details
can be found in Sickles and Zelenyuk (2019, Chapter 11-15) and its brief version in Sickles
et al. (2020).

5.2.1 Basic Panel Data SFA

The first attempts at the SFA for panel data go back to Pitt and Lee (1981) and Schmidt
and Sickles (1984). In a nutshell, they modeled the frontier as

yit = α + xitβ + vit − ui, i = 1, ..., n; t = 1, ..., T, (25)

where xit is the row vector of N inputs used by firm i in period t, and then re-parametrized
it, by letting αi = α− ui, as

yit = αi + xitβ + vit, i = 1, ..., n; t = 1, ..., T. (26)

Observing (26), one can see it looks exactly like a standard panel data regression model,
which can be estimated (and tested) using the pooled OLS approach, the fixed effects (FE)
approach, or the random effects (RE) approach.

10E.g., see Sickles and Zelenyuk (2019, Chapter 11).
11E.g., for detailed discussion on this see the classic work of Kumbhakar (1997) and some more recent

developments in Kumbhakar (1997); Kumbhakar and Tsionas (2005); Mamatzakis et al. (2015); Malikov
et al. (2016) as well as a textbook-style discussion in Sickles and Zelenyuk (2019).
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In the case of the FE estimation approach, one can obtain the estimates of the individual
fixed effects, αi, call them α̂i, and then find their maximum value in the sample, α̂ ≡
maxi{α̂i}, to serve as the benchmark and then define estimates of inefficiency scores as

ûi = α̂− α̂i ≥ 0, i = 1, ..., n

i.e., this means that the most efficient DMU in the sample is assigned 0% inefficiency by
construction.

All approaches have their own caveats and the main one for this approach is that the
estimates of (in)efficiency are assumed to be time-invariant. Moreover, with the nature of
the FE approach in general, all the time-invariant heterogeneity pertinent to the individuals
is absorbed by the estimates of FEs, which all feed into the estimates of efficiency scores.

5.2.2 Other Panel Data SFA Approaches

Various modifications of SFA for panel data were later suggested in the literature, mainly
to account more for the unobserved heterogeneity at various levels, including allowing for
time-varying inefficiency. For example, Cornwell et al. (1990), started with the model

yit = Ziα + xitβ + witδi + vit i = 1, ..., n; t = 1, ..., T, (27)

where Zi and wit are row vectors of explanatory factors affecting yit via corresponding column
vectors of parameters α and δi, besides the affects from the inputs xit via the column vector
β.

They then re-parametrized model, by letting δi = δ0 + ui where δ0 = E[δi], as following:

yit = Ziα + xitβ + witδ0 + εit,

where εit is a composed error generalization of (19), given by

εit = vit + witui (28)

and it is assumed that ui is i.i.d. random variable with a finite positive-definite covariance
matrix Ω while the statistical noise term, vit, is i.i.d. with zero mean and constant variance
σ2
v and is uncorrelated with Zi, xit, and ui. Furthermore, various time-dependency structures

can then be assumed, e.g., by setting wit = (1, t, t2). They also discussed various strategies
of estimating this model, which were adaptations of Fixed-effects estimator, Random-effects
estimator and Hausman-Taylor estimator, depending on the assumed correlation structure
between the errors and regressors.

Other variations of panel data SFA were also proposed in many other interesting works,
most notably in Kumbhakar (1990), Lee (1991) and Lee and Schmidt (1993), Battese and
Coelli (1995). More recent elaborations on the panel data SFA can be found in Greene
(2005a,b), Ahn et al. (2007) and one of the most general approaches by Kneip et al. (2012)
(which is analogous to seminar works of Bai and Ng (2002) and Bai (2009)). Also see Colombi
et al. (2011), Colombi et al. (2014), Tsionas and Kumbhakar (2014) and a special issue in
Journal of Econometrics edited by Kumbhakar and Schmidt (2016) for many interesting
discussions.
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5.3 Explaining Inefficiency

Special attention has been paid to many SFA models (especially those mentioned in previous
subsection) and how to explain the inefficiency with some of the explanatory variables. The
work of Battese and Coelli (1995) seems to be very popular on this, in practical work,
probably due to its simplicity and availability of software for it from the early days. The idea
of this approach is to model the frontier as

yit = Xitβ + vit − uit i = 1, ..., n; t = 1, ..., T, (29)

with additional assumption that uit is not purely random but has some regularities or deter-
ministic part, e.g.,

uit = Zitδ + wit, (30)

where Zit and is a row vector of explanatory factors (also called ‘environmental’ variables)
believed to explain uit via the corresponding column vector of parameters δ, up to some noise
wit. Because of the requirement that uit ≥ 0, truncation restriction must be imposed on wit,
namely wit ≥ −Zitδ and some distribution assumed to disentangle it from other error terms.
They specifically considered

wit ∼ N (0, σ2
w), wit ≥ −Zitδ i = 1, ..., n; t = 1, ..., T (31)

which (as they noted) also equivalent to stating that

uit ∼ N (Zitδ, σ
2
u), s.t. uit ≥ 0, i = 1, ..., n; t = 1, ..., T. (32)

Since the model is fully parametrized, one likelihood function can be constructed after
substituting (34) into (29) and can be optimized to get the ML estimates of β, σw, σv and
δ and their standard errors (from the Fisher information matrix). The estimate of δ will
indicate the association of uit on zit in the sense of (34) and significance tests can be done
in the usual way in econometrics (e.g., using t-tests or LR-tests).

Here it is worth noting that some researchers also tried to analyze SFA efficiency scores
in two stages, first estimating JLMS efficiency scores in ALS framework and then regress
them onto explanatory variables. While this may seem natural, it is incoherent in the ALS
framework: if there is a belief that inefficiency scores ui, i = 1, ..., n are not iid and they
depend on some characteristics then the assumptions of ALS are violated and instead one
should incorporate those beliefs into the model and the corresponding likelihood structure,
e.g., as in Battese and Coelli (1995), etc.12

While very intuitive and relatively simple, it is important to realize that the approach of
Battese and Coelli (1995) often suffers from computational problems and numerical identifi-
cation issues in particular. One reason for the problems is because Zitδ, while believed to be
part of the inefficiency, is influencing yit in essentially the same way as xitβ (except for the
impact through truncation on wit, which can be minimal). A way to mitigate this problem
is to model the inefficiency through the second (rather than the first) moment of u, that is,
via σu, e.g.,

12More discussion on this can be found in Wang and Schmidt (2002). Also see Kim and Schmidt (2008)
for various statistical testing issues in this context have.
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uit ∼ N (0, σ2
u(Zit)), s.t. uit ≥ 0, i = 1, ..., n; t = 1, ..., T

with some structure assumed for σ2
u(Zit) that makes sure it is non-negative.13 For example,

one can assume

log(σ2
u(Zit)) = Zitδ, i = 1, ..., n; t = 1, ..., T (33)

and then estimate this relationship in the MLE framework and obtain fitted values of σ2
u(Zit)

for particular Zit of interest (e.g., observed points), and then, in this (half-normal) case, one
can estimate

E(uit|zit) =

√
2

π
σu(Zit), i = 1, ..., n; t = 1, ..., T (34)

which (under certain assumptions) will give estimates of the individual inefficiency scores for
any particular Zit.

Concluding this section it is also worth reiterating the caveats, which are similar to
those we already mentioned for the analogous DEA context. Namely, while the models
of production, cost, revenue and profit functions are well-defined economic concepts where
the researcher must know which variables to include, the selection of the ‘environmental’
variables is more subjective, may vary across studies and thus demands careful justifications
(e.g., see section 2.3 for some examples). Moreover, these and most of SFA approaches are also
designed to estimate the statistical dependencies in the data under the assumed statistical
model, which may or may not reveal the causal relationship of the reality. Therefore, adapting
various methods for mitigating potential issues of endogeneity, reverse causality and selection
bias may be relevant here (e.g., such as those we briefly discuss in section 6) to SFA methods
and is a promising area for current and future research. Some of the fundamental works on
this include Horrace et al. (2016), Kumbhakar and Tsionas (2016), Simar et al. (2016)14 and
more recently Amsler et al. (2017), to mention just a few.

5.4 Other Variations of SFA

All the SFA models above were parametric in the sense that parametric assumptions on the
functional form for the frontier had to be made (in addition to parametric assumptions on
the inefficiency and noise in some cases). More recent literature has tried to avoid such
assumptions. Among the first works on this are the papers by Fan et al. (1996) and Kneip
and Simar (1996), who suggested kernel based methods. The latter work was also considered
in the panel data context, which was soon complemented by the research of Adams et al.
(1999) and Park et al. (2003).

More recent elaborations came due to Park et al. (2007), which employed the local likeli-
hood approach, and a similar approach by Martins-Filho and Yao (2015), and further gener-
alizations by Park et al. (2015). These approaches estimated the frontier non-parametrically,

13This approach is a special case of the nonparametric approach developed by Park et al. (2015) in local-
likelihood framework and Simar et al. (2017) in local-least squares framework.

14Also see other papers in the same Special Issue as these papers and the introduction from the Editors,
Kumbhakar and Schmidt (2016).

28



yet required local parametric assumptions on the inefficiency and the statistical noise. A
somewhat simpler to compute (and with less assumptions) approach was more recently pro-
posed by Simar et al. (2017). The latter work also developed a novel way of estimating the
marginal effects of covariates onto expected inefficiency without imposing any parametric as-
sumptions, exploiting the advantages of the one-parameter distribution family that is natural
to assume for the inefficiency term. For more discussions of these methods, see Parmeter and
Zelenyuk (2019).

Finally, as in virtually any other field involving statistics, various Bayesian approaches for
SFA have been developed. Among the classical works on this are due to Koop et al. (1994,
1995, 1997, 1999) and more recently by Griffin and Steel (2007), Tsionas and Papadakis
(2010) and Liu et al. (2017), to mention a few. For the context of banking these types of
models were considered by Kumbhakar and Tsionas (2005) and Malikov et al. (2016), to
mention examples.

Overall, SFA proves to be an evolving technique enabling both aggregation of data in the
focus of analysis and breakdown into identified specifications of cost and profit efficiencies,
that could be enriched with the conditional variables, specified by researcher.

6 Other Econometric Approaches

Recent finance literature on banking performance dedicated significant attention to causal
inference. The roots of the methods of causal evaluation take their origins from the seminal
works of Splawa-Neyman et al. (1990) and Fisher (1925) on statistical tests of treatment
effects in randomized experiments. Methods of causal inference currently thrive in microe-
conometrics, in particular, in labour and health economics (Bertrand et al. (2004)), and other
areas (Imbens and Wooldridge (2009)).

Recent applications of these methods in banking include Laeven and Levine (2009), Aiyar
et al. (2014), Duchin and Sosyura (2014), Nanda and Nicholas (2014), Schepens (2016),
Anginer et al. (2018), Buchak et al. (2018), Neuhann and Saidi (2018), Zelenyuk et al.
(2019), Zelenyuk et al. (2020), to mention a few.

The literature on casual inference is fairly large by itself and it seems infeasible to cover
it even briefly within the few remaining pages of this chapter. Instead, we recommend the
reader to get familiar with these methods through already written excellent books, e.g., by
Manski (2009), Angrist and Pischke (2009), Imbens and Rubin (2015), to mention a few that
also provide many references. Our goal here, therefore, is to discuss a few recent examples
of how the causal analysis can be applied in the context of performance of banks, and to
provide references for further details.

6.1 Importance of Causal Inference in Analysis of Banking Per-
formance

Causal inference has received significant attention in the recent banking literature on the
topics of the performance effects that change after the passage of regulatory laws, or rules.
Most interesting econometric questions would consider the cause and the resulting effect
triggered by the new rule. Popular empirical questions here would be of a nature as to
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whether the new capital requirements introduced by the regulatory rule affect the riskiness
of bank loans. The research question is often about the drivers (e.g., see Berger and Bouwman
(2013), Acharya and Mora (2015)) that could have a causal effect on the performance of banks.
For example, Bonner and Eijffinger (2015) find the causal effect of liquidity requirements on
bank interest margins. In another study, Hamadi et al. (2016) find that capital increase due
to Basel rules increases market valuation of loan loss provisions. Both outputs of interest
margins and loan loss provisions are in attention of studies of bank performance, because
they contribute to the major banking function of lending.

To address these and similar policy type questions with econometric methods a theoretical
model is needed. A model is basically a framework for inter-relationships between parameters.
If these parameters can be identified, than the model is estimable (Cameron and Trivedi
(2010)). In the presence of economically and statistically significant results, conclusions
about the policy effects would be valuable for the literature and for the policy makers. To
derive relevant conclusions the most interesting model set up needs to identify the causal and
‘effect’ parameters and control for any observed confounding variables. If the confounding
factors are observed (and controlled for) the conclusions could be derived about causality.
In the event, when confounders are unobserved, causal effects could be derived with the
instrumental variables techniques (Angrist and Pischke (2009)).

The key three questions in the modeling are about the event (or treatment), the cause-
effect relationship and the confounding factors. In application to banking, causal inference
is often driven by an exogenous (beyond control of the bank) event. Rarely, this event is
entirely random (global crisis, pandemics, etc.), yet more often it is a policy intervention
(regulation of bankers pay gaps, etc.). In an empirical framework, any of these events can
create an experimental setting, where a relevant question is about the effects that this event
brings on the parameters of interest, in particular, effects on the lending of banks, etc. The
literature examples include the effects of bail-outs (Duchin and Sosyura (2014)) and capital
enhancement (Berger and Bouwman (2013)) policies on bank performance, where the bank
performance is presented with loans and market share, respectively.

Investigation of the effects of the policy enhancements with the research methods involves
identification of the banks that were impacted by the policy (Zelenyuk et al. (2019)), the
counterfactual (not impacted), and identification of the impact-related parameters. The
impact of an event could vary among banks because of a different assignment to the policy
rules and the differential response of banks to the rules. For example, capital enhancing
policies could affect only banks of a certain size in a certain state. The banks of the same
size in a similar state could form a control group. And the affected parameter could be bank
lending.

Of critical importance for an empirical design is whether the banks are self-selecting by
the results of an event, whether they are assigned to comply with the rule (assigned to
‘treatment’), and whether the assignment is random. If a regulator has selected banks to a
mandatory capital adequacy increase, an assignment to treatment is beyond the control of the
bank and the effect of the policy can be evaluated with the difference-in-differences methods
(DD). If the change in law is random, causal methods of regression discontinuity design
(RDD) could be applied. Alternatively, if banks are self-selecting to treatment, for example,
banks are deciding on the provision of information about their capital adequacy and they
inform the market voluntarily, then difference-in-differences methods may be inappropriate

30



for causal inference. For these types of problems, the instrumental variable (IV) approach
can be more relevant, yielding consistent estimates, if the underlying regularity conditions
hold. Fuzzy versus sharp RDD design are applied in similar situations to IV methods.

We now embark on the task to briefly present the essence of each of these methods in
their application to studying bank performance.

6.2 The Role of DD in Causal Inference on Bank Performance

DD is one of the working models in modern econometric analysis and its detailed descrip-
tion can be found in many textbooks, e.g., in Cameron and Trivedi (2010), Greene (2011),
Wooldridge (2013) and Imbens and Rubin (2015), and papers, including by Bertrand et al.
(2004), Imbens and Wooldridge (2008), that we follow here. In its idea, DD method is a com-
parison between the outcomes post and pre an event versus the difference to the outcomes
of similar banks that are unaffected by the event. The emphasis is on a ‘causal parameter’,
impacting the resulting outcome. The rest of the variables are considered as controls. More
specifically, with the assumption that a policy changing parameter δ measures the impact on
the treated sample and X is a conditional variable of the treatment, an outcome variable Y
can be formally described via

Yit = Xitβ + δDit + εit (35)

In a simple regression, comparing treated and untreated samples, β2 measures the difference
in average outcomes pre and post intervention for a treated group.

Yit = β1 + β2Dit + εit, (36)

where the average outcome conditional on Dit = 0, of those who did not receive treatment,
is compared to an average outcome conditional on Dit = 1, of treated.

In a banking example, Duchin and Sosyura (2014) focused on the effect of government aid
on risk taking by banks. Specifically, the authors studied the difference between the ’before’
versus ‘after’ the government assistance approval for the qualifying banks in the difference
to a number of control banks: unapproved, those that did not apply for aid and eligible
banks. The range of variables of interest affected with the government capital program
included retail mortgages, corporate loans and securities. Interestingly, the authors find no
significant effect of the government aid programs on the loan volume, yet they find that
the loans originated by the approved banks are riskier than the loans of any of the control
groups of banks. The findings are based on a linear probability regression, where an outcome
variable is 1/0 for approved/unapproved loans. The authors found that the approved for aid
banks increased their new credit origination by 5.4 percentage points for riskier mortgages,
as well as for syndicated loans and riskier securities. To deal with possible selection bias
and to demonstrate that the treatment effect is due to a government program rather than
due to a selection of approved banks, the authors apply propensity score matching and the
instrumental variables techniques.

In a further example, the effect is of the capital adequacy increase on lending. Here,
lending is an outcome variable and capital adequacy is distinguished between the treated –
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required to increase the capital adequacy of banks and untreated (control) banks that do
not need to increase their capital adequacy. The difference between the capital adequacy of
the treated versus the capital adequacy of control banks after the policy intervention would
contribute to the determination of the average treatment effect resulting from a policy event.
For a more complete analysis of the policy effect the researcher would need to evaluate the
difference post versus pre policy intervention. The sample is comprised of four groups: the
treatment group before the policy change, the treatment group (the one required to increase
capital adequacy) after the policy change, the control group before the policy change and
the control group (not required to increase capital adequacy) after the policy change.

Formally, let Yit be the outcome variable of interest, lending for bank i in period t, then
the model can be specified, similarly to Zelenyuk et al. (2019), as follows

Yit = α0 + β1Cit + β2Postt + β3CitPostt +Xitγ + εit (37)

where

Postt is a variable which is equal to zero before the capital increasing reform and one
after the reform.

Cit is a variable which equals one if the bank is in the treatment group and is required
to increase its capital after the reform milestone and zero otherwise.

Xit is a row vector of control variables and γ is the corresponding column vector of pa-
rameters. A usual guide for selecting bank-level controls is the CAMELS system
(see Table 1 above), where variables are considered to explain bank performance
remarkably well (e.g., see Eichler et al. (2011) for the related discussion).

β3 is the DD coefficient that captures the difference between the lending outcomes
for the treatment group and the control group post reform. The estimate of β3
provides the average treatment effect because it measures the effect of the policy
of capital increase on the average outcome of lending.

εit is an error (i.e., unexplained) term, assumed to satisfy certain regularity con-
ditions (e.g., see Cameron and Trivedi (2010), Wooldridge (2013), Imbens and
Rubin (2015) for the formal details and the related discussions of the limitations,
as well as Cameron and Trivedi (2010) for implementation in Stata).

Overall, and as with any approach, the causalities identified with the average treatment
effects have certain caveats. In particular, for any effect to be causal, the governmental
policies need to be unexpectedly assigned to the banks, while the treatment and control
groups need to be similar by their key characteristics before the policy changing event. Some
of these challenges in estimation could be dealt with application of RDD methods, others
can be approached with the instrumental variables techniques. Both of these methods are
discussed in sub-sections 6.3 and 6.4, respectively.
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6.3 The Role of RDD in Causal Inference on Bank Performance

In cases when randomized assignment to treatment is impossible, yet there is an effect of
a policy change that is ‘as good as random’, an alternative to DD strategy is RDD. The
foundations of this method go back to at least Thistlethwaite and Campbell (1960) and are
further described and elaborated by Angrist and Pischke (2009), with the famous application
by Hahn et al. (2001) and a practical guide by Imbens and Lemieux (2007), Cameron and
Trivedi (2010) and Greene (2011), which we follow here.

In its essence, the RDD approach allocates observations to a treatment and a control
group based on the value of an assignment variable, exogenous to an experiment. Examples
of an assignment variable include poverty rate and its effect on educational programs and class
size on examination performance Greene (2011). Continuing the example in sub-section 6.2.
of the capital increase, suppose the treatment is assigned based on the systemic importance
of a bank. In particular, in macroeconomics literature a bank is often considered to be
systemically important if its failure might be a trigger to a financial crisis (Adrian and
Brunnermeier (2016)), which in turn implies a threshold on certain variables, e.g., assets of
a bank.

When the assignment to treatment is activated by the crossing of a fixed threshold, i.e.,
the size of a bank, the effects of the treatment can be evaluated with the RDD. Discontinuity
stems from different values of the outcome variable depending on whether the bank is above
or below the treatment threshold, or a certain cut-off point. It is assumed that the banks
closest to the cutoff are similar by their key characteristics. In our example, the lending
growth could be different for the increasing capital banks versus the non-increasing capital
banks when the assignment to treatment is determined based on crossing the cutoff. The
idea here is that the banks cannot manipulate the assignment variable, that is the banks
cannot change their size, or systemic importance, over a very short period of time, then the
treatment occurs with certainty and the policy effects of the capital increase on lending can
be evaluated.

This assignment to treatment feature of the regression discontinuity design allows to
match the banks relatively well. Importantly, the matching is based on the cutoff character-
istics rather than on any other complex method of propensity score estimator, or the ‘nearest
neighbor’ estimator15. RDD presents an alternative to the matching experiment (Thistleth-
waite and Campbell (1960)), when there is an equivalency in treatment and control groups
prior to a policy event. Alternatively, RDD allocates observations to the treatment and con-
trol groups conditional on the value of a predictor to the left and to the right sides of a cutoff
(Imbens and Lemieux (2007)). The caveat of RDD is that the predictor might be associated
with the outcomes, yet, if the association is functionally continuous (only an outcome variable
is discontinuous), any distributional discontinuity of the outcome variable, conditional on the
predicting variable at the cut-off point is subject to a causality interpretation, provided that
the regularity conditions on the data generating process hold (e.g., see Imbens and Lemieux
(2007) for further details).

Critically, any estimated treatment effect with RDD has “local” properties. It is an
assumption that the banks are well matched around the cutoff, the further an observation

15For more details on propensity score matching and nearest neighbour estimator, see Rubin and Thomas
(1996), Rubin (2006), while for practical implementation, see Cameron and Trivedi (2010).
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is from the cutoff the more different the banks are expected to be. How well the banks
are matched is testable. The outcome variable would be continuous without the policy
intervention and discontinuity arises as a result of the policy event. Therefore, it is expected
that the effect is causal and dominates the effect of the other variables, except for an identified
relationship between the outcome (Y ) and the forcing (X) variable.

To identify causality, an analysis needs to find the discontinuity (Imbens and Lemieux
(2007)). An interesting example is the recent study about liquidity enhancing policies by
Bonner and Eijffinger (2015), who found that the interest rates distribution is discontinuous
around the liquidity buffer cutoff.

After the discontinuity is identified, a test is needed to estimate whether the difference
of the outcome variable is significant. In the capital increase example, if Xi is a dummy
variable for whether a bank needs to increase capital with a new policy and Zi is a variable
representing the systemic importance of the bank based on size, then:

Xi = 1, if Zi ≥ Z0

= 0, otherwise

where Z0 is the systemic important threshold.
Here, the RDD implementation is an estimation of two regressions of outcome variable

Yi (lending) on Xi in samples to the left and to the right of the size cutoff. A comparison
of the intercepts from these two regressions estimates a change in the lending variable Yi
given treatment Xi. For further flexibility of implementation, the model can be formulated
in general terms as:

Yi = α(Zi) +Xiβ + εi (38)

where αi = α(Zi) + εi is a function of Zi and other unobservables εi, with the assumptions
that E[αi|Zi = Z] is continuous in Z at Z0, while the density of Zi is positive in the neigh-
borhood of Z0, along with other regularity conditions that allow identification and consistent
estimation and valid inference for this model (see Hahn et al. (2001) for details).

To conclude, in the application of the RDD, researchers need to be aware of its caveats.
In particular, the estimated treatment effects are likely to have ‘local’ features due to an
analysis of observations that are placed close to a cutoff.

6.4 Performance Analysis in the Presence of Selection Bias

Selection bias presents a significant challenge in research, aiming to conduct causal inference.
An impossibility of observing the outcome after the policy change in a difference to the
outcome for the same banks should the policy change not occur, creates a fundamental
problem of causal inference, described by Holland (1986). Selection bias is essentially the
difference between the outcome of the treatment banks should the policy change not occur
and the outcome of the control banks. Randomization in the ‘ideal’ experiment resolves
the selection bias questions. However, in the presence of selection bias, an estimate of an
average treatment effect may be inconsistent. For an extensive review we recommend Holland
(1986), Heckman (1990), Heckman et al. (1997), Imbens and Wooldridge (2009), Angrist and

34



Pischke (2009), Cameron and Trivedi (2010). In performance of banks literature, Allen et al.
(1990), Cantor and Packer (1997), Maskara and Mullineaux (2011) deal with selection bias
by changing the sample, inclusion of the possible determinants of the resulting variable, and
the IV type estimation, respectively.

To summarize, two types of selection bias are most common (Imbens and Wooldridge
(2009), Cameron and Trivedi (2010)), these are selection on observable and selection on
unobservable variables. In selection bias on observables, the treatment variable is correlated
with the error in the outcome equation due to an omitted observable variable that determines
both the treatment and outcome variable. In selection bias on unobservables, the correlation
between the treatment variable and the error in the outcome equation is due to an omitted
unobservable variable that partly determines both treatment and outcome variables.

To deal with the selection bias problem, in the first event a common approach is to
include all the observable variables (potentially correlated with an error term in the outcome
equation) into an outcome equation and then estimate this equation with least squares. In
the event of selection on unobservables, a usual approach is to remedy the selection bias
problem in a two-stage procedure, parametric or semiparametric estimation.

Recently Zelenyuk et al. (2020) adapted a two-stage approach of Heckman (1976) and
Maddala (1983) – to deal with the selection bias in a study of the impact of voluntary
disclosure of capital adequacy on bank lending in the U.S. In a two-stage procedure the
model includes an outcome variable, treatment assignment and instrumental variables.16 To
be more precise, in their model, when banks self-select to voluntary disclosure, treatment of
disclosure on lending can be endogenous and is assumed to follow the process

Yi = Xiβ + aDi + εi (39)

where Yi is the lending adjusted for past performance (essentially a growth of lending) for
bank i, Xi is a row vector of control variables and β is the corresponding column vector
of parameters, while Di is a treatment participation decision variable that equals 1 or 0.
Moreover, the treatment participation indicator depends on the instrumental variable Z, via
the following specification

D∗i = γ0 + γ1Zi + vi (40)

where D∗i is a latent variable with an observable counterpart Di defined as 1/0.
Importantly, the variable Z is in the equation of D (40), but not in the equation of Y

in (39). Leveraging on the linear nature of the model, assuming cov[Z, v] = 0, cov[ε, Z] =
0, cov[X, ε] = 0, and cov[D,Z] 6= 0, and other assumptions on random errors vi and the
data generating process in general, it can be shown that a consistently estimates the average
treatment effect (e.g., see Cameron and Trivedi (2010) and references therein).

An indicator about treatment participation depends on the instrumental variable. Ze-
lenyuk et al. (2020) selected an instrument based on the theory of voluntary disclosure (Dia-
mond and Dybvig (1983)) and corporate governance (Shleifer and Vishny (1997)). In partic-
ular, they chose stock-based managerial compensation as an instrument because of the role
of the stock-related compensation in dealing with the agency problems. Then, the two-stage

16For related discussions, also see Cameron and Trivedi (2010).
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algorithm was applied to the model for an estimation of probability of voluntary disclosure
and the effect of this disclosure on the lending. Here an estimate of a is an IV type estimate
that has local properties (Gippel et al. (2015)). The local average treatment effect depends
on Z being applied in the treatment evaluation and on an instrument. With this approach,
Zelenyuk et al. (2020) found significant evidence of a positive effect of a voluntary bank
capital adequacy disclosure on lending.

Finally, it is important to note that a limitation of the IV application to an inference
involving selection bias is that treatment and control groups may not be representative of
the whole population, therefore, the results of these types of estimations may not be robustly
supporting big policy questions, yet they could still be informative of more local changes,
such as policy thresholds, etc.

7 Concluding Remarks

In this chapter, we overview major approaches of performance analysis in banking. These ap-
proaches include envelopment-type estimators (DEA and FDH, in many variations), stochas-
tic frontier estimators (parametric, semiparametric and nonparametric) and other non-efficiency
type econometric methods. We provide a relatively brief overview of each stream and cite
many (although, of course, not all) works we believe would be useful for the interested readers
to find more details about them.

It might be also worth emphasizing that the inclusion of the last part, briefly describing
methods of DD, RDD, IV, is a key difference of our chapter relative to most (if not all) other
works on performance analysis in banking and, perhaps, overall that we are aware of to date.
The reason for including this interesting area of research in our review, however, is not just
to distinguish our work from others. The goal is to bring attention of both audiences, which
have so far largely developed on their own. This is because, indeed, we strongly believe a lot
of interesting research should result from the synthesis and the synergies of these approaches,
both for new theoretical developments and for future interesting practical applications.

Finally, there are also other areas of performance analysis that we have not covered
here. One of them that so far has been largely under-explored and we believe has a fruitful
future is the adaptation of methods in machine learning and artificial intelligence (including
the contexts of Big Data and Social Networks) for performance analysis in general and for
performance of banking in particular.17 We hope and encourage this to be addressed with
future research endeavors.

17E.g., see Mullainathan and Spiess (2017), Athey and Imbens (2019) and Zelenyuk (2020) and Ya Chen
and Zelenyuk (2020) for some recent examples of such studies for performance analysis.
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