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Abstract

Data envelopment analysis (DEA) has been widely recognised as a powerful tool

for performance analysis over the last four decades. The application of DEA in

empirical works, however, has become more challenging, especially in the modern

era of big data, due to the so-called ‘curse of dimensionality’. Dimension reduction

has been recently considered as a useful technique to deal with the ‘curse of dimen-

sionality’ in the context of DEA with large dimensions for inputs and outputs. In

this study, we investigate the two most popular dimension reduction approaches:

PCA-based aggregation and price-based aggregation for hospital efficiency analysis.

Using data on public hospitals in Queensland, Australia, we find that the choice of

price systems (with small variation in prices) does not significantly affect the DEA

estimates under the price-based aggregation approach. Moreover, the estimated ef-

ficiency scores from DEA models are also robust with respect to the two different

aggregation approaches.
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1 Introduction

Envelopment estimators in general and data envelopment analysis (DEA) in particular,

have been widely recognised as a powerful tool for performance analysis.1 Over the four

decades since the seminal work of Charnes et al. (1978), DEA has been applied to study

the efficiency and productivity of decision making units (DMUs) in various economic

sectors. Among these, the healthcare industry, especially hospitals, has been one of the

most active sectors of research, where many state-of-the-art developments of DEA have

been utilised to provide empirical insights into a large number of papers (e.g., see reviews

in Hollingsworth, 2003, 2008; O’Neill et al., 2008; Kohl et al., 2019).

Despite its popularity, the application of DEA in empirical works has been more chal-

lenging, especially in the modern era of analytics, where big data becomes the norm. The

challenge comes from the well-know fact that DEA, as with virtually any nonparametric

estimator, suffers from the ‘curse of dimensionality’. That is the accuracy and the dis-

crimination power of DEA decrease when the dimension of input-output space increases.

The issue is even worse in the context of big wide data, where the number of inputs and

outputs is more than the number of observations: DEA becomes practically infeasible!

Interestingly, the challenge of high dimensionality has been there in the analysis of

hospital efficiency long before the wave of modern big data. Since its first application in

the U.S. in the early 1980s, hospital product in many countries has been defined using

the diagnosis related group (DRG) classification scheme (see more detailed discussions in

Fetter, 1991). Under the classification system, hospital product is classified into hundreds

of DRGs, grouping together patients with similar diagnoses who require similar hospitals

services. Each of these hundreds of DRGs represents a separate type of output of hospitals

and counts into the dimension of the production space, which usually turns out to be larger

than the typical sample sizes in many applied works in the field.

To make DEA models feasible, a natural and common approach in the literature is to

use the so-called casemix weighted episodes (or discharges or patient days). A casemix

weighted episode is a weighted sum of the number of episodes in each DRG with the

weight being the DRG’s casemix cost weight, which can be viewed as the relative price

of each DRG in the funding systems. This approach is actually an example of the price-

based aggregation that is one of the most powerful techniques for dimension reduction to

1Stochastic frontier analysis (SFA) (Aigner et al., 1977; Meeusen & van Den Broeck, 1977) is another

popular method for productivity and efficiency analysis. Recently, more advanced methodologies have

been developed in the literature such as stochastic DEA (Simar & Zelenyuk, 2011), order-m frontiers

(Cazals et al., 2002), order-α quantile frontiers (Aragon et al., 2005; Daouia & Simar, 2007), to mention

a few.
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deal with the ‘curse of dimensionality’ in the context of DEA with big wide data.2 The

other powerful technique is the principle component analysis (PCA)-based aggregation3,

which is based on the eigendecomposition of the moment (or correlation) matrix of inputs

or outputs or their subsets.4 The performance of these two techniques in the context of

DEA with big data have recently been investigated in the literature, with intensive Monte

Carlo simulations therein showing that the gain of dimension reduction is usually more

than the information lost (e.g., see Wilson, 2018; Zelenyuk, 2020).

Back to the case of output aggregation in hospital efficiency analysis, some questions

are of interest, but are usually overlooked by DEA practitioners, and now may be a good

time to revisit these given the increasing attention to DEA as “data enabled analytics”

under big data (Zhu, 2020). In particular, some of these questions include: (i) For price-

based aggregation, what weights should be used, e.g., a constant weight system or a weight

system varying across years? (This question is typical relevant to the case of short panel

data when researchers usually pool data across years to estimate a grand frontier)? (ii)

What about PCA-based aggregation, i.e., are the estimated efficiency scores robust with

respect to the different dimension reduction methods?

In this study, we examine these empirical questions using a fairly aggregated dataset of

public hospitals in Queensland, Australia, which, among other things, consists of 153,472

data points for 704 different types of inpatient procedures across 109 hospitals in two

years. We find that with a small variation in prices across years, the choice of price

(weight) systems does not significantly effect the estimated efficiency scores. Moreover,

the estimated efficiency scores from the DEA models are also robust with respect to

the two different aggregation approaches. The robustness of the results suggests that

PCA-based aggregation can be viewed as a viable alternative for DEA practitioners who

are unable to/or unwilling to use the price-based approach, e.g., due to unavailable or

unreliable price information.

The rest of the paper is structured as follows. Section 2 discusses methodologies

including envelopment estimators and aggregation methods. Section 3 briefly reviews the

statistical methods to analyse the efficiency scores. Section 4 describes data and variables

used in the study. Section 5 compares the estimated efficiency scores among different

aggregation approaches. Section 6 provides concluding remarks.

2E.g., see Zelenyuk (2020) for evidence about the performance of price-based aggregation for dimension

reduction in the context of DEA with big data.
3E.g., see Wilson (2018) for evidence about the performance of PCA-based aggregation for dimension

reduction in the context of DEA with big data.
4Another promising technique that has been recently applied into the DEA context for dimension

reduction is Least Absolute Shrinkage and Selection Operator (LASSO) (see more discussions in Chen

et al., 2020; Lee & Cai, 2020, and references therein).
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2 Methodology

2.1 Envelopment estimators

Let X n =
{(
xk, yk

)
| k = 1, · · · , n

}
be a set of input-output allocations of a sample of

n DMUs, where xk =
(
xk1, · · · , xkN

)
∈ <N+ is an N−dimensional vector of inputs and

yk =
(
yk1 , · · · , ykM

)
∈ <M+ is an M−dimensional vector of outputs.5

Under the assumption of Constant Returns to Scale (CRS), the DEA-estimator of

the Debreu-Farell output oriented technical efficiency score of a DMU with input-output

allocation of (xj, yj) is given by 6

ÔTEDEA−CRS
(
xj, yj|X n

)
≡ max

θ,z1,··· ,zn
θ

s.t.
n∑
k=1

zkykm ≥ θyjm, m = 1, · · · ,M,

n∑
k=1

zkxkl ≤ xjl , l = 1, · · · , N,

θ ≥ 0, zk ≥ 0, k = 1, · · · , n.

(1)

One can add an additional constraint,
∑n

k=1 z
k = 1, into equation (1) to obtain the

DEA-estimator under the assumption of Variable Returns to Scales (VRS), specifically

ÔTEDEA−V RS
(
xj, yj|X n

)
≡ max

θ,z1,··· ,zn
θ

s.t.
n∑
k=1

zkykm ≥ θyjm, m = 1, · · · ,M,

n∑
k=1

zkxkl ≤ xjl , l = 1, · · · , N,

n∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, · · · , n.

(2)

5It is worth mentioning here that in this study we pooled data over years to estimate a grand frontier,

so n here is total number of observations across years.
6There are also other measures of technical efficiency such as the Debreu-Farell input-oriented measure,

the Russell measure, the directional distance function, the slack-based measure, etc. Due to the limit of

space we focus on the Debreu-Farell output oriented technical efficiency here, and the interested readers

can find detailed discussions about the other measures of technical efficiency in Sickles and Zelenyuk

(2019, Ch.3 & Ch. 8).
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Another popular envelopment estimator is the so-called Free Disposal Hull (FDH) estima-

tor recently developed by Deprins et al. (1984). The FDH estimator of the Debreu-Farell

output oriented technical efficiency score can be obtained by solving the following integer

program problem

ÔTEFDH

(
xj, yj|X n

)
≡ max

θ,z1,··· ,zn
θ

s.t.
n∑
k=1

zkykm ≥ θyjm, m = 1, · · · ,M,

n∑
k=1

zkxkl ≤ xjl , l = 1, · · · , N,

n∑
k=1

zk = 1,

θ ≥ 0, zk ∈ {0, 1} , k = 1, · · · , n.

(3)

The formulas discussed above are the envelopment estimators of true Debreu-Farell

output oriented technical efficiency scores, defined by

OTE (x, y|Ψ) ≡ max
θ
{θ ≥ 0| (x, θy) ∈ Ψ} , (4)

where Ψ is the set characterising the technology, defined as

Ψ ≡
{

(x, y) ∈ <N+ ×<M+ |y can be produced by x
}
. (5)

The technology set is assumed to satisfy the standard regularity conditions of the pro-

duction theory (Shephard, 1953, 1970; Färe & Primont, 1995).

Due to the limit of space we focus here on these most popular DEA models, while

there are many other variations of DEA, which also allow modelling the ‘undesirable

outputs’ and ‘congesting inputs’, incorporating network structure, or imposing various

weight restrictions, etc.7

2.2 ‘Curse of dimensionality’

In this section, we will discuss the methodological issues relating to a large dimension of

input-output space in the context of envelopment analysis.

As we can see from equations (1) to (3), when the dimension of input-output space

(N+M) is larger than sample size (n), the models become practically infeasible. Another

issue can also arise when N + M is substantially lower than n, yet still large enough to

7See Sickles and Zelenyuk (2019, Ch. 8) for more details and related discussion.
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significantly reduce the discrimination power of the models. In such a scenario, the large

dimension possibly makes the estimated results not practically useful (i.e., all DMUs

may attain an efficiency score of or nearly 100%).8 More importantly, the accuracy of

envelopment estimation depends on the dimension of the input-output space in such a

way that the rate of convergence to the truth decreases exponentially when the dimension

increases. It is well-known in the literature (e.g., see Kneip et al., 1998) that under

appropriate assumptions, the DEA/FDH estimators are consistent with the convergence

rate depending on the dimension of input-output space as follows

ÔTE (x, y)−OTE (x, y) = Op

(
n−κ

)
, (6)

where Op (n−κ) denotes the order of magnitude and κ depends on the estimator. Specif-

ically, we have κ = 2/ (N +M) for DEA-CRS estimator, κ = 2/ (N +M + 1) for DEA-

VRS estimator and κ = 1/ (N +M) for FDH estimator.

2.3 Aggregation of Inputs and Outputs before DEA

Aggregation of all or some inputs and/or outputs, inter alia, can be viewed as a useful

method (in some cases, the only method) to deal with the ‘curse of dimensionality’ in

the context of envelopment analysis.9 For example, in hospital efficiency analysis, labour

input is composed of many professionals (e.g., medical officers, nurses, diagnostic and

health professionals, etc.). Although it is desirable (and might be feasible in many cases)

to include all these labour categories as separate inputs in DEA models to account for the

difference in labour composition across hospitals, the estimated efficiency scores from such

models might not be reliable due to the issue of the ‘curse of dimensionality’ as discussed

in Section 2.2. On the output side, we also face a similar issue, but more severe. Under

the DRG classification system, hospital product is classified into hundreds of DRGs. Each

of these hundreds of DRGs represents a separate type of output of hospitals and counts

into the dimension of the production space, which usually turns out to be larger than the

typical sample sizes in many applied works in the field, making DEA models practically

infeasible (e.g., in the working sample of the current study, there are 704 DRGs but only

218 observations).

8Also see a related discussion in Charles et al. (2019) who also proposed a novel approach to increase

the discriminatory power of DEA in the presence of the ‘curse of dimensionality’.
9One can also consider the order-α quantile frontier and order-m frontier estimators as alternative

approaches for the frontier estimation since these estimators do not suffer from the ‘curse of dimension-

ality’. E.g., see an application of the order-α quantile frontier estimators to hospital data in Nguyen and

Zelenyuk (2021b).
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In this section we will briefly discuss the two popular approaches to aggregate in-

puts/outputs which are: (i) PCA-based aggregation and (ii) Price-based aggregation.10

We will illustrate for the context of the aggregation of some M̂ ≤M outputs, and without

loss of generality, assume that these outputs are the 1st-output to the M̂ th-output.11

2.3.1 PCA-based aggregation

The idea of PCA-based aggregation in the DEA context is to find linear combinations

of inputs/outputs that best represent their variation based on the eigendecomposition of

their moment or correlation matrix. The application of PCA in the context of efficiency

analysis goes back at least to Zhu (1998), Adler and Golany (2001, 2007), and Mouchart

and Simar (2002) and Daraio and Simar (2007). In particular, Zhu (1998) appears to

be the first who utilised PCA as a method for evaluating relative performance of DMUs

and compared it to DEA. Meanwhile, Adler and Golany (2001, 2007) employed PCA as

a dimension reduction method based on the eigendecomposition of the correlation matrix

of inputs or outputs. Mouchart and Simar (2002) and Daraio and Simar (2007) also

utilised PCA for dimension reduction in the context of DEA, but their approach based

on the eigendecomposition of the moment matrix of inputs and outputs. It is worth

noting here that PCA-based aggregation using a correlation matrix has an issue in that

the first eigenvector (corresponding to the largest eigenvalue) of a correlation matrix may

contain both positive and negative values, thus it is not practically useful for the context

of envelopment analysis (see more discussions in Wilson, 2018). To avoid this issue, as

in Wilson (2018), we follow Mouchart and Simar (2002) and Daraio and Simar (2007) to

utilise the PCA-based aggregation using the eigendecomposition of the moment matrix.

Let Ŷ be an n × M̂ matrix stacking the 1st-output to the M̂ th-output across all n

DMUs.12 Ŷ can be viewed as a cloud of n data points in an M̂−dimensional space.

The aggregation question here is to find the best subspace of dimension M̃ (M̃ < M̂)

through the origin to project the cloud onto. Now let us define B = {u1, . . . , uM̃} as an

orthonormal basis for the subspace, i.e., um̃ (m̃ = 1, . . . , M̃) are all unit vectors and are

orthogonal to each other. A natural approach to determine the best subspace is to find

the optimal orthonormal basis to solve the following “least square” problem

min
u1,...,uM̃

n∑
k=1

(∥∥ŷk∥∥2 −
∥∥pŷk∥∥2

)
,

10More detailed discussions can be found in Wilson (2018) and Zelenyuk (2020).
11Similar description can be given for the case of aggregating many inputs.
12Since the efficiency measure is invariant to the units of measurement, it is advised to standardise

each column of Ŷ by its standard deviation before the aggregation.
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where ŷk is the kth row of Ŷ and pŷk is the projection of ŷk onto the subspace.

It is well known in mathematics (statistics, optimisation theory, etc.) that the optimal

solution for the above problem is the set of orthogonal eigenvectors, Λ1,Λ2, . . .ΛM̃ , of

Ŷ>Ŷ, which corresponds to the first M̃ largest eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λM̃ (e.g.,

see Härdle & Simar, 2020). As in Härdle and Simar (2020), Λm̃, m̃ = 1, . . . , M̃ , is called

the m̃−th factorial axis, and the coordinate of each DMU on the m̃−th factorial axis

zkm̃ =
(
ŷk
)>

Λm̃, k = 1, · · · , n, (7)

is called the m̃−th factorial variable. The point zk =
(
zk1 , . . . , z

k
M̃

)
is then the repre-

sentation of ŷk in the subspace of dimension M̃ . Moreover, the quality of the factorial

representations of the original data in the subspace of dimension M̃ can be measured by

δM̃ :=

∑M̃
m=1 λm∑M̂
m=1 λm

. (8)

The parameter δM̃ represents the percentage of the inertia in the original data that can

be explained by the M̃ factorial variables. And as discussed in Daraio and Simar (2007)

and Wilson (2018), if the correlation among the M̂ outputs is high, then the majority

of variation in the data can be explained by the first few factorial variables (i.e., high

value of δM̃ with a small value of M̃). In this study, we will consider a special case of

PCA-based approach, where all M̂ outputs are aggregated into an aggregated measure of

dimension 1 – the first factorial variable.

2.3.2 Price-based aggregation

Let us assume that all n DMUs face the same output prices for the M̂ outputs, denoted as

(p1, · · · , pM̂) ∈ <M̂++. We then can use the output prices as weights to linearly aggregate

the M̂ outputs. Specifically, in equations (1) to (3), for each of the DMUs, we replace the

first M̂ outputs by their sub-revenue

rk =
M̂∑
m=1

pmy
k
m, k = 1, · · · , n. (9)

Besides being very simple, the price-based aggregation approach takes into account the

economic valuation of the outputs or inputs (reflected through the prices), which, in

principle, might be very different from the weights implied through statistical approaches,

such as the PCA-based approach. On the other hand, a limitation of the price-based

aggregation is that in practice, some information about the prices might be unavailable.

Under certain conditions, the estimated efficiency scores obtained using the aggregated

output are upward biased (compared to the case of using disaggregated outputs), but the
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bias is bounded by the allocative efficiency. Moreover, it is worth noting here that the

assumption of the same output price is for establishing the exact theoretical properties.13

In practice, when the prices vary to some extent, this price-aggregation approach may

still perform well, as confirmed by the Monte Carlo simulations in Zelenyuk (2020). In

this study, we also examine the robustness of results with different price systems: same

prices vs. varying prices.

3 Statistical Methods to Analyse the Efficiency Scores

After obtaining DEA/FDH estimates of efficiency scores of individual DMUs, researchers

usually perform the statistical inference to explore more about the efficiency level of the

population or its some groups of interest, for example, comparing the efficiency of different

groups in the population by analysing their means, or their densities, or studying the de-

terminants of the efficiency by using regression analysis. Some standard exploratory tools

from statistics/econometrics such as the nonparametric statistical tests (e.g., Wilcoxon

rank-sum test, Kolmogorov-Smirnov test, etc.), the ordinary least squared regression, or

the censored (tobit) regression, were employed to further analyse the efficiency scores from

DEA/FDH models.14 The statistical inference, however, needs to be carefully adapted

to the DEA/FDH context given the well-known fact that the DEA/FDH estimates are

biased and are serially correlated in a complicated unknown way (Simar & Wilson, 2007,

2015; Sickles & Zelenyuk, 2019).

The adapted methods for statistical inference based on the estimated DEA/FDH ef-

ficiency scores have been recently developed and become more popular in the literature

thanks to the important works of Simar and Wilson (1998, 2000) and Kneip et al. (2008)

(for the bootstrap-based statistical inference for individual efficiency scores), Simar and

Zelenyuk (2007) (for the bootstrap–based statistical inference for the weighted mean of ef-

ficiency scores), Simar and Zelenyuk (2006) (for the kernel density estimator–based tests),

Simar and Wilson (2007) (for the bootstrap truncated regression), Kneip et al. (2015,

2016) and Simar and Wilson (2020) (for the central limit theorems for the simple mean

of efficiency scores and related tests), Simar and Zelenyuk (2018) (for the central limit

theorems for the weighted mean of efficiency scores), and Simar and Zelenyuk (2020) (for

the improvement in finite sample approximation by the central limit theorems), among

others.

In this section, we will focus our discussion on the kernel density estimation and related

13E.g., see Färe and Grosskopf (1985), Färe et al. (2004) and Zelenyuk (2020) for detailed discussions.
14See more discussion about the application as well as the caveats of these methods in the context of

DEA/FDH in Grosskopf (1996) and Simar and Wilson (2007).
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statistical tests as well as the analysis of simple means and weighted means of estimated

efficiency scores, which we will apply in the next section.

3.1 Kernel Density Estimation and Related Tests

To discuss the kernel density estimation, let us denote {ui}ni=1 as a set of the realisations

of a random variable U and denote fU as the density function of the variable. Following

Rosenblatt (1956), the estimate of fU at a point u can be obtained by

f̂h(u) =
1

nh

n∑
i=1

K

(
ui − u
h

)
, (10)

where K(·) and h are suitable kernel and bandwidth, respectively.

The application of the kernel density estimation for estimating the densities of effi-

ciency scores in the context of DEA/FDH, however, faces two issues. The first issue is

the discontinuity problem, that is the probability of having an observation which is fully

efficient (i.e., its estimated efficiency score equals one) is always different from zero by

construction. The second issue is the problem of bounded support that is the efficiency

score is bounded with most of the mass of its distribution being around the boundary,

leading to the inconsistency of the kernel density estimator at the boundary.15 To over-

come these issues, one can remove from the sample those observations whose estimated

efficiency scores equal to one and then apply the Silverman’s (1986) reflection method

to estimate the density. Specifically, the kernel density estimate of DEA/FDH efficiency

scores at a point u can be obtained by

f̂Rh (u) =


1

ñhR

∑ñ
i=1

[
K
(
ûi−u
hR

)
+K

(
(2−ûi)−u

hR

)]
, u ≥ 1

0, otherwise
, (11)

where {ûi}ñi=1 is a set of estimated output-oriented efficiency scores whose values are

greater than unity (ñ < n), hR is the bandwidth selected for the reflected sample (i.e.,

{û1, ..., ûñ, 2−ûi, ..., 2−ûñ}).16 As discuss in Sickles and Zelenyuk (2019), the choice of the

kernel K(·) is not very important and one can obtain a good fit when using popular kernels

such as Gaussian or Epanechnikov. On the other hand, the selection of the bandwidth

is much more important, thus it is advised to use more advanced procedures (e.g., the

method of Sheather and Jones (1991), the cross-validation approach, etc.) to select the

bandwidth although the Silverman (1986) robust rule-of-thumb bandwidth can give a

fairly good fit.

15See more discussions in Sickles and Zelenyuk (2019).
16The formula can be easily adapted to the case of input-oriented efficiency scores.
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In addition to estimating and visualising the density of the estimated efficiency scores,

DEA/FDH practitioners are also interested in comparing the densities of efficiency scores

of different groups of DMUs in the population using the statistical tests. Here, we will

focus our discussion on the Li (1996) test - the test based on the kernel density estimator.

To simplify the notations, let us consider only two groups of DMUs, say, group A and Z,

with their efficiency realisations and efficiency density function being {uAi }
nA
i=1 and fA(·),

{uZi }
nZ
i=1 and fZ(·), respectively. Formally, the null and alternative hypotheses of the test

can be stated as follows

H0 :fA(u) = fZ(u), ∀u in the support of UA and UZ

H1 :fA(u) 6= fZ(u), on a set of positive measures.

The Li (1996) test statistics can be obtained by

L̂nA,nZ ,h = nAh
1
2 ĴnA,nZ ,h/σ̂γ,h

d−−−−−→
under H0

N(0, 1), (12)

where

ĴnA,nZ ,h =
1

nA(nA − 1)h

nA∑
i=1

nA∑
k=1,k 6=i

K

(
uA,i − uA,k

h

)

+
1

nZ(nZ − 1)h

nZ∑
i=1

nZ∑
k=1,k 6=i

K

(
uZ,i − uZ,k

h

)

− 1

nZ(nA − 1)h

nA∑
i=1

nZ∑
k=1,k 6=i

K

(
uA,i − uZ,k

h

)

− 1

nA(nZ − 1)h

nZ∑
i=1

nA∑
k=1,k 6=i

K

(
uZ,i − uA,k

h

)
(13)

σ̂2
γ,h =2

{
1

n2
Ah

nA∑
i=1

nA∑
k=1

K

(
uA,i − uA,k

h

)

+
γ2
n

n2
Zh

nZ∑
i=1

nZ∑
k=1

K

(
uZ,i − uZ,k

h

)

+
γn

nAnZh

nA∑
i=1

nZ∑
k=1

K

(
uA,i − uZ,k

h

)

+
γn

nZnAh

nZ∑
i=1

nA∑
k=1

K

(
uZ,i − uA,k

h

)}∫
K2(u)du

(14)

where: K(·) and h are suitable kernel and suitably selected bandwidth, respectively.

γn = nA/nZ and limnA→∞ γn = γ, γ ∈ (0,∞).

In addition to the problem of discontinuity discussed above, the main issue of applying

Li (1996) test (or any tests based on kernel density estimator or Kolmogorov-Smirnov test)
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in the context of DEA/FDH is that we are not using the true efficiency scores in the test,

but their DEA/FDH estimates, and these estimates are biased and are serially correlated

in a complicated unknown way. Simar and Zelenyuk (2006) propose two approaches to

remedy the issues. The two approaches are based on bootstrapping the Li (1996) test

statistics from: either (i) the sample of estimated efficiency scores with those efficiency

scores whose value equal unity being removed (the first approach), or (ii) the sample of

the ‘smoothed’ estimated efficiency scores, i.e., ‘smoothing’ away from the boundary those

efficiency scores whose value equal unity by adding a small uniform noise to them (the

second approach) (see the bootstrap algorithms in Simar & Zelenyuk, 2006).

3.2 Analysis of Simple and Weighted Means

To analyse the overall tendency of efficiency in the population, researchers often estimate

and perform the statistical inference based on the simple mean of DEA/FDH efficiency

scores of a random sample, Sn = {(X i, Y i) | i = 1, · · · , n}, i.e.,17

θ̄n =
1

n

n∑
i=1

ÔTE
(
X i, Y i|Sn

)
. (15)

This simple estimator for the population mean has a drawback that it does not take the

size and thus the economic influence of individual DMUs in the population into account.

One way to account for the relative economic importance of individual DMUs in the

population is to utilise a weighted mean of DEA/FDH efficiency scores, e.g.,

τ̂n =
n∑
i=1

ÔTE
(
X i, Y i|Sn

)
×W i, W i =

pY i∑n
i=1 pY

i
, (16)

where W i is the weight, and p is a row vector of output prices. The weighted mean for-

mulated above is nothing but an envelopment estimator of the output oriented aggregate

technical efficiency proposed by Färe and Zelenyuk (2003),

τn =
n∑
i=1

OTE
(
X i, Y i

)
×W i, W i =

pY i∑n
i=1 pY

i
. (17)

As discussed in Färe and Zelenyuk (2003), the main advantage of this aggregate measure

is that the weights are economically meaningful since they are derived from the economic

optimisation principle.18

17We change the notations to the capital letters to highlight that the statistical inference for the

population mean needs to be based on the statistical properties of the DEA/FDH estimators of efficiency

scores at the random points.
18Here we focus our discussion on the analysis of simple and weighted means of DEA/FDH efficiency

scores in the whole population. One can find the similar discussion for the case of multiple groups in the

population in Nguyen and Zelenyuk (2021a).
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It is well-known in the literature that the conventional central limit theorems (CLT) fail

to apply to θ̄n and τ̂n since these estimators inherit the statistical properties of DEA/FDH

estimators, which are biased and the bias is of a higher order than the variance when the

number of inputs and outputs increases. Kneip et al. (2015) have recently developed the

new CLTs for the simple mean of DEA/FDH efficiency scores by correcting the bias and

controlling the convergence rates for both bias and variance. Simar and Zelenyuk (2018)

extended the important work of Kneip et al. (2015) to the case of the weighted mean of

DEA/FDH efficiency scores and developed the new CLTs for this estimator. Simar and

Zelenyuk (2020) further improved the finite sample approximation by these new CLTs

by proposing to use the bias-corrected estimators of variances. These important works

have laid theoretical foundation for many useful statistical inference methods involving

DEA/FDH estimators. In this section, we will briefly summarise the important results in

these studies focusing on the CLTs and confidence interval estimation.

3.2.1 Central Limit Theorems and Confidence Interval for Simple Means

The first important result developed in Kneip et al. (2015) is the statistical properties of

DEA/FDH estimators at a random point, which can be summarised as follows

E
[
ÔTE

(
X i, Y i|Sn

)
−OTE

(
X i, Y i

)]
= Cn−κ +Rn,κ, (18)

E

[(
ÔTE

(
X i, Y i|Sn

)
−OTE

(
X i, Y i

))2
]

= o
(
n−κ

)
, (19)∣∣∣COV [ÔTE (X i, Y i|Sn

)
−OTE

(
X i, Y i

)
,

ÔTE
(
Xj, Y j|Sn

)
−OTE

(
Xj, Y j

)]∣∣∣ = o
(
n−1
)
, (20)

when n→∞ and under regularity conditions specified in Kneip et al. (2015). The values

of the constant term C, the convergence rate κ and the remainder term Rn,κ are different

for different estimators and depend on the dimension of the production space (see Table 1).

With this important result, Kneip et al. (2015) establish the new CLTs for the simple

mean of DEA/FDH efficiency scores. Specifically, under regularity conditions specified in

Kneip et al. (2015), and for N +M ≤ 5 if DEA-CRS is used, for N +M ≤ 4 if DEA-VRS

is used, and for N +M ≤ 3 if FDH is used, the CLTs for the simple mean of DEA/FDH

efficiency scores are given by
√
n

σ̂θ

(
θ̄n − B̂θ̄n,κ − µθ +Rn,κ

)
d−→ N (0, 1) , (21)

where µθ = E [OTE (X i, Y i)] is the population mean, σ̂θ is the empirical version of the

population standard deviation, σθ =
√
V AR [OTE (X i, Y i)], and B̂θ̄n,κ is the generalized

jackknife estimator of the bias of θ̄n, which will be discussed later.
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Table 1: Rate of convergence of envelopment estimators

Estimators κ Rn,κ

DEA-CRS 2/(N +M) O
(
n−3κ/2 (log n)α1

)
DEA-VRS 2/(N +M + 1) O

(
n−3κ/2 (log n)α2

)
FDH 1/(N +M) O (n−2κ (log n)α3)

The values of αj , j = 1, 2, 3, are greater than one and can be

found in Kneip et al. (2015)

Alternatively, for κ < 1/2, the new CLTs are given by

√
nκ
σ̂θ

(
θ̄n,κ − B̂θ̄n,κ − µθ +Rn,κ

)
d−→ N (0, 1) (22)

where θ̄n,κ is a subsample version of θ̄n, in the sense that the averages are taken over a

random subsample Snκ ⊂ Sn of size nκ = bn2κc. Formally

θ̄n,κ = n−1
κ

∑
{i|(Xi,Y i)∈Snκ}

ÔTE
(
X i, Y i|Sn

)
. (23)

The procedure to obtain the generalized jackknife estimator of the bias of θ̄n in Kneip

et al. (2015) can be summarised as follows. First, let us consider a random split, say

random split `, of the sample into two parts with their sizes being m1 = bn/2c and

m2 = n−m1, and let us denote the random subset of size m1 of Sn as S(1)
m1,`

, and the set

of remainders in Sn as S(2)
m2,`

.

For j ∈ {1, 2}, let

θ̄
(j)
mj ,`

= (mj)
−1

∑
(Xi,Y i)∈S(j)mj,`

ÔTE
(
X i, Y i|S(j)

mj ,`

)
. (24)

Now, let us define

θ̄∗n,` =
1

2

(
θ̄

(1)
m1,`

+ θ̄
(2)
m2,`

)
, (25)

then

(2κ − 1)−1 (θ̄∗n,` − θ̄n) (26)

provides an estimator of the bias term of θ̄n. To reduce the variance of the estimator, one

can repeat the above operations for L times and average (26) to obtain B̂θ̄n,κ

B̂θ̄n,κ = L−1

L∑
`=1

(2κ − 1)−1 (θ̄∗n,` − θ̄n) . (27)
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Using the new CLTs, one can construct the (1− α) 100% confidence interval for the

simple mean in the population as[
θ̄n − B̂θ̄n,κ ± z1−α/2

σ̂θ√
n

]
, (28)

when (21) can be applied (here z1−α/2 is the (1 − α/2) quantile of the standard normal

distribution), and [
θ̄n,κ − B̂θ̄n,κ ± z1−α/2

σ̂θ√
nκ

]
, (29)

when (22) can be applied.

Moreover, it worth mentioning here that the bias of envelopment estimators is also

a source of bias in estimating variance of individual efficiencies. Specifically, Simar and

Zelenyuk (2020) show that the empirical version of variance, σ̂2
θ , underestimates the popu-

lation variance, σ2
θ . To improve the accuracy of statistical inference in finite sample, Simar

and Zelenyuk (2020) propose to use the following bias-corrected version of the estimator

of variance

σ̃2
θ = σ̂2

θ + B̂2
θ̄n,κ

. (30)

As discussed in Simar and Zelenyuk (2020), the new CLTs also apply if σ̃θ is used in place

of σ̂θ in (21) and (22). Therefore, the (1− α) 100% confidence interval for the simple

mean in the population can also be obtained by[
θ̄n − B̂θ̄n,κ ± z1−α/2

σ̃θ√
n

]
, (31)

when (21) can be applied, and[
θ̄n,κ − B̂θ̄n,κ ± z1−α/2

σ̃θ√
nκ

]
, (32)

when (22) can be applied.

3.2.2 Central Limit Theorems and Confidence Interval for Weighted Means

To develop the CLTs for the weighted mean, τ̂n, Simar and Zelenyuk (2018) first propose

an alternative representation of the aggregate efficiency, τn, as

τn =
(1/n)

∑n
i=1 pY

i∂

(1/n)
∑n

i=1 pY
i

=
(1/n)

∑n
i=1 Z

i∂

(1/n)
∑n

i=1 Z
i
, (33)

where, Zi ≡ pY i is the revenue of DMU i, and Zi∂ ≡ pY i∂ = OTE (X i, Y i) pY i can be

viewed as the monetary value of the projection of Y i on the production frontier. τn then

can be viewed as an estimator of the population parameter τ , which is a ratio of two

population means, i.e.,

τ =
µ1

µ2

, (34)
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where µ1 = E
[
Zi∂
]

and µ2 = E [Zi]. Simar and Zelenyuk (2018) show that the conven-

tional CLT is applied to τn. Specifically,

√
n

στ
(τn − τ)

d−→ N (0, 1) , (35)

where

σ2
τ = τ 2

(
σ2

1

µ2
1

+
σ2

2

µ2
2

− 2
σ12

µ1µ2

)
, (36)

where σ2
1 = V AR

[
Zi∂
]
, σ2

2 = V AR [Zi], and σ12 = COV
[
Zi∂, Zi

]
.

In practice, τn is not observable since the true efficiency scores are not observable, thus

we need to estimate the population parameter and perform statistical inference about it

based on the weighted mean of DEA/FDH efficiency scores, τ̂n. τ̂n can also be rewritten

as

τ̂n =
µ̂1,n

µ̂2,n

=
(1/n)

∑n
i=1 Ẑ

i∂

(1/n)
∑n

i=1 Z
i
, (37)

where Ẑi∂ = ÔTE (X i, Y i) pY i.

Simar and Zelenyuk (2018) extend the theory in Kneip et al. (2015) to develop the

CLTs for the weighted mean. Specifically, under the regularity conditions specified in

Kneip et al. (2015), Theorem 2 in Simar and Zelenyuk (2018) establishes that for N+M ≤
5 if DEA-CRS is used, for N + M ≤ 4 if DEA-VRS is used, and for N + M ≤ 3 if FDH

is used, the CLTs for the weighted mean of DEA/FDH efficiency scores are given by

√
n

σ̂τ,n

(
τ̂n − B̂τ̂n,κ − τ +Rn,κ

)
d−→ N (0, 1) (38)

where σ̂τ,n is a consistent estimator of στ given by

σ̂2
τ,n = τ̂n

(
σ̂2

1,n

µ̂2
1,n

+
σ̂2

2,n

µ̂2
2,n

− 2
σ̂12,n

µ̂1,nµ̂2,n

)
, (39)

with σ̂1,n, σ̂2,n, and σ̂12,n are empirical versions of σ1, σ2, and σ12, respectively. B̂τ̂n,κ is

the generalized jackknife estimator of bias of τ̂n, which can be obtained using a similar

procedure as discussed for the case of the simple mean. Specifically,

B̂τ̂n,κ =
B̂µ̂1,n,κ

µ̂2,n

=
L−1

∑L
`=1 (2κ − 1)−1 (µ̂∗1,n,` − µ̂1,n

)
µ̂2,n

, (40)

where µ̂∗1,n,` is analogous to θ̄∗n,` as defined in (25).

Alternatively, for κ < 1/2, the CLTs for the weighted mean of DEA/FDH efficiency

scores are given by

√
nκ

σ̂τ,n

(
τ̂nκ − B̂τ̂n,κ − τ +Rn,κ

)
d−→ N (0, 1) , (41)
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where τ̂n,κ is a subsample version of τ̂n, in the sense that the averages are taken over a

random subsample Snκ ⊂ Sn of size nκ = bn2κc. Formally

τ̂n,κ =
n−1
κ

∑
{i|(Xi,Y i)∈Snκ}

Ẑi∂ (Sn)

n−1
κ

∑
{i|(Xi,Y i)∈Snκ}

Zi
, (42)

where Ẑi∂ (Sn) = ÔTE (X i, Y i|Sn)Zi.

Using the new CLTs, one can construct the (1− α) 100% confidence interval for the

weighted mean in the population as[
τ̂n − B̂τ̂n,κ ± z1−α/2

σ̂τ,n√
n

]
, (43)

when (38) can be applied, and[
τ̂n,κ − B̂τ̂n,κ ± z1−α/2

σ̂τ,n√
nκ

]
, (44)

when (41) can be applied.

As in the case of the simple mean, the bias of envelopment estimators is also a source

of bias in estimating the variance of aggregate efficiency. To improve the accuracy of

statistical inference in a finite sample, following Simar and Zelenyuk (2020), one can use

the bias-corrected version of the estimator of variance

σ̃2
τ,n = τ̂n

(
σ̃2

1,n

µ̂2
1,n

+
σ̂2

2,n

µ̂2
2,n

− 2
σ̂12,n

µ̂1,nµ̂2,n

)
, (45)

where

σ̃2
1,n = σ̂2

1,n + B̂2
µ̂1,n,κ

. (46)

The new CLTs also apply if σ̃τ,n is used in place of σ̂τ,n in (38) and (41). Therefore,

the (1− α) 100% confidence interval for the weighted mean in the population can also be

obtained by [
τ̂n − B̂τ̂n,κ ± z1−α/2

σ̃τ,n√
n

]
, (47)

when (38) can be applied, and[
τ̂n,κ − B̂τ̂n,κ ± z1−α/2

σ̃τ,n√
nκ

]
, (48)

when (41) can be applied.

As demonstrated by intensive Monte Carlo simulations in Simar and Zelenyuk (2020),

for both the case of simple mean and weighted mean, the confidence intervals constructed

using bias-corrected version of variance estimator have a better coverage and thus are

more reliable.
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4 Data and Variables

4.1 Sample

For this study we were able to obtain a fairly disaggregated dataset on public hospitals

in Queensland that, among other things, consists of 153,472 data points for 704 different

types of inpatient procedures across 109 hospitals in two years. To our understanding of

the literature, it is a relatively rich dataset as researchers often have to use a much more

aggregated data such as patient days (e.g., Sherman, 1984; Bates et al., 2006; Hu et al.,

2012) or the number of patients or admissions or discharges (e.g., Hao & Pegels, 1994;

Zuckerman et al., 1994; Athanassopoulos et al., 1999; McCallion et al., 1999; Grosskopf

et al., 2001; Staat, 2006; Tiemann & Schreyögg, 2009; Besstremyannaya, 2013). Indeed,

despite many attempts we also were not able to obtain similar level of data for other

States or Territories of Australia. So, while we cannot generalise our conclusions for other

States, Territories or especially other countries, our results for Queensland might still be

insightful, at least as a food for thought, for researchers across the globe.

Specifically, the sample for our analysis consists of 109 public acute hospitals in

Queensland, Australia in the two financial years (FY) 2012/13 and 2013/2014.19 The

data is provided by Queensland Department of Health, extracted from the two data col-

lections which are the Financial and Residential Activity Collection (FRAC) and the

Monthly Activity Collection (MAC).

4.2 Variables

The list of variables used in this study is shown in Table 2 (with their notations and

descriptions). In the following subsections, we will discuss each variable in details.

4.2.1 Inpatient Output

The main variable of interest in this analysis is the inpatient output. In our data, inpatient

output is recorded in terms of admitted patient episodes, which are categorised into 704

Diagnosis-Related Groups (DRGs).

In principle, each DRG represents a separate type of output, yet they need to be

aggregated to make the model feasible. Here, we consider two approaches to aggregate

the inpatient output: (i) PCA-based approach and (ii) Price-based approach. Moreover,

for the price-based approach, we consider three different weight systems, which are: (i)

varying DRG cost weights (different weights for different years), (ii) constant cost weights

19In Australia, a financial year starts on 1 July and ends on 30 June of the next calendar year.
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Table 2: The description of variables

Variables Description

Inputs

FLABOUR Labour input (PCA-based aggregation)

BEDS Capital input (Total beds)

DMSUP Consumable input (Drug and medical supply expenditure) (2012/13

constant price)($1,000,000s)

Outputs

OUT Outpatient output (Non-admitted occasions of service)(1,000s)

WEPS1 Inpatient output (Price-based aggregation using varying weights) (1,000s)

WEPS2 Inpatient output (Price-based aggregation using 2012/13 weights) (1,000s)

WEPS3 Inpatient output (Price-based aggregation using 2013/14 weights) (1,000s)

FEPS Inpatient output (PCA-based aggregation)

TEPS Inpatient output (Non-weighted aggregation)(1,000s)

using FY 2012/13 cost weights, and (iii) constant cost weights using FY 2013/14 cost

weights.20 Besides these, we also compare the results from PCA-based and price-based

approaches with those from a non-weighted aggregation approach, in which the inpatient

output is measured by the raw count of the total number of episodes.

The relationship between the cost weights in FY 2012/13 and FY 2013/14 is shown

in Figure 1. We can see that there is a variation (but small in magnitude) in the cost

weights across the years, and thus it is useful to assess the sensitivity of the results with

respect to the different weight systems as was done in the simulation exercises in Zelenyuk

(2020).

Figure 2 shows the total number of episodes of each DRG and the number of hospitals

producing the DRG in 2013/14.21 It can be seen from the figure that DRGs with high

weights are produced in a small quantity and at few hospitals, whereas the DRGs that

are produced in a massive quantity at many hospitals usually have low weights. The

DRGs with high cost weights typically include highly specialised surgical procedures,

20It is worth mentioning here that under the activity-based funding system in Australia, each inpatient

DRG has a single cost weight, which is updated annually based on historical costs incurred by hospitals

in treating patients belonging to the DRG. An inpatient episode in each DRG is then funded at a flat

rate based upon the DRG cost weight and the so-called national efficient price (NEP)–a fixed price paid

per weighted unit.
21The patterns in the year 2012/13 are similar, to save space, we only present a graph for the year

2013/14
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such as Insertion of Ventricular Assist Device (A10Z), Liver Transplant (A01Z), and so

on. Meanwhile, the ones with low cost weights are usually simple medical procedures,

such as Electroconvulsive Therapy (U60Z), Haemodialysis (L61Z), and so on.

With regard to the PCA-based approach, the aggregate inpatient output (i.e., the first

factorial variable) contains 65.39% information in all 704 DRGs as δ1 = 0.6539. Interest-

ingly, in spite of the fact that the weights from the PCA-based approach are negatively

correlated with the DRG cost weights 22, there are almost perfect positive correlations

among the four relevant aggregated outputs (i.e., WEPS1, WEPS2, WEPS2 and FEPS),

as well as between these four aggregated outputs and the non-weighted aggregated output

(TEPS) (e.g., see the pairwise Pearson linear correlation coefficients in Table 3). The re-

lationships among the aggregated outputs discussed here might make one conjecture that

the nature of the dataset makes the results of analysis indifferent across all aggregation

approaches regardless whether they are weighted or non-weighted, but it is not necessarily

the case and we will examine this conjecture in Section 5.

Table 3: Pairwise Pearson linear correlation coefficients among five aggregated inpatient

outputs

WEPS1 WEPS2 WEPS3 FEPS TEPS

WEPS1 1

WEPS2 0.9997 1

WEPS3 0.9997 0.9995 1

FEPS 0.9966 0.9958 0.9974 1

TEPS 0.9813 0.9800 0.9828 0.9867 1

22E.g., pairwise Pearson linear correlation coefficients between PCA-based weights and DRG cost

weights are around -0.33.
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Figure 1: Scatter plot of DRG weights in 2012/13 vs. 2013/14. The right panel is a zoomed

part of the left panel.

Figure 2: Total number of episodes of each DRG and the number of hospitals producing the

DRG in 2013/14. Each point reprents a DRG. The colour and size of the points represent DRGs’

weights. The right panel is a zoomed part of the left panel.
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4.2.2 Outpatient Output

Another hospital output used in this study is outpatient output (OUT). Hospital out-

patient output is measured by a raw count of the number of non-admitted occasions of

service including both emergency and non-emergency services for non-admitted patients.

The outpatient output also shows a strong positive correlation with each of the five ag-

gregated inpatient outputs with the pairwise Pearson linear correlation coefficients being

around 0.97 to 0.99.

4.2.3 Inputs

We use three inputs to model the production process of hospitals, which are: labour input

(PCA-based aggregation of full time equivalent staff in six labour categories), capital input

(proxied by the number of beds), and consumable input (proxied by drug, surgical and

medical supply expenditure). On the input side, this is therefore a mixture of PCA-based

approach and price-based approach.

The descriptive statistics of variables used in the study are shown in Table 4. As in

any typical healthcare related data, we observe great variation and positive skewness for

all variables in the working sample.

Table 4: The descriptive statistics of variables

Variables Mean Median Q1 Q3 Std. Dev. Min Max

Inputs

FLABOUR 1.01 0.12 0.07 0.42 2.43 0.02 15.56

BEDS 92.55 20.00 10.00 48.00 185.42 5.00 1024.00

DMSUP 10.12 0.42 0.15 2.37 27.45 0.03 167.35

Outputs

OUT 88.60 19.88 6.31 52.23 166.02 1.31 954.90

WEPS1 9.93 0.87 0.31 4.05 23.05 0.03 132.61

WEPS2 9.94 0.83 0.29 3.93 23.18 0.03 132.61

WEPS3 9.90 0.88 0.31 4.05 22.87 0.03 129.36

FEPS 9.35 1.04 0.43 3.94 20.84 0.043 115.25

TEPS 9.07 1.02 0.38 4.58 18.37 0.05 95.58
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5 A comparison of estimated efficiency scores among

different aggregation approaches

In the following analysis, we compare the DEA-CRS estimates of hospital efficiency across

the five models in which three inputs and two outputs are utilised (see model specifications

in Table 5).23

Table 5: Model Specifications for the case of 3-inputs and 2-outputs models

Model
Inputs Outputs

FLABOUR BEDS DMSUP OUT WEPS1 WEPS2 WEPS3 FEPS TEPS

Model 1 X X X X X

Model 2 X X X X X

Model 3 X X X X X

Model 4 X X X X X

Model 5 X X X X X

Table 6 shows the descriptive statistics on the central tendency and dispersion of

the estimated efficiency scores from the five models. At first glance, we can see that the

descriptive statistics for the estimated efficiency scores from Model 1, Model 2, and Model

3, where the inpatient outputs are aggregated using price-based approaches with different

weight systems, are almost identical. To further investigate the relationship among the

estimated efficiency scores of these three models, we look at their pairwise Spearman

rank-order correlation coefficients. It is shown in Table 7 that the estimated efficiency

scores are nearly perfectly correlated with all the correlation coefficients being around

0.97-0.99, implying that the rankings of the individual hospitals based on the estimated

efficiency scores from the three models are almost the same.

We then compare the 95% confidence intervals for the simple and weighted means

of efficiency scores estimated from these three models. Table 8 reports the results for

23As a sensitivity analysis, we also consider the case of 3-inputs and 1-output models, where we aggre-

gate outpatient output and inpatient output using PCA-based aggregation, and the case of 1-input and

1-output models, where we further aggregate the three inputs into a single measure of hospital inputs

using PCA-based aggregation. The results from the sensitivity analysis are qualitatively similar to the

discussion in this section (see the results in the Appendix).
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the simple mean and Table 9 presents the estimates for the weighted means.24 We can

see that for both the simple mean and the weighted mean, the biased corrected DEA

estimates as well as the 95% confidence intervals are almost the same between Model 1

and Model 2. Compared to the first two models, the results from Model 3 are slightly

different for the case of simple mean, and the difference is more pronounced when we

consider the weighted mean. Specifically, the 95% confidence interval of the weighted

mean from Model 3 is to the left and does not overlap with those from Model 1 and

Model 2. However, the difference here might just be particular for the dataset used in

this study. For this dataset, when using the fixed weights of FY2013/14, the quantity

of the aggregate output of most (but not all) observations in FY2012/13 increases, but

the estimated production frontier is moving inward due to a particular observation. This

observation is on the estimated frontiers no matter whether WEPS1, WEPS2, or WEPS3

is used in the DEA models, and its value of WEPS3 is significantly smaller than WEPS1

and WEPS2. As a result, the estimated frontier of Model 3 around this observation

is significantly lower than those of Model 1 and Model 2. Consequently, the estimated

efficiency scores of other observations in this segment of the production space are smaller

in Model 3 compared to Model 1 and Model 2. Moreover, the observation that we are

referring to is relatively large (in terms of revenue), and thus so do its peers, and this is

the reason why the difference is more pronounced when we compare the weighted mean.

This is also a good real data example of the importance of accounting for the economic

weight of each efficiency score in the averaging of the scores over observations of very

different sizes.

24It is worth mentioning here that to perform the analysis for the weighted mean, it requires information

about the relative price between the outpatient output and the aggregate inpatient output. For the price-

based aggregate inpatient output, we use the information about the relative price in Nguyen and Zelenyuk

(2021a). However, the price information is not available for PCA-based aggregate inpatient output as

well as for the raw count of inpatient episodes, thus we focus only on the simple mean for Model 4 and

Model 5.
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Table 6: Descriptive statistics of estimated efficiency scores using DEA-CRS estimator

for the case of 3-inputs and 2-outputs models

Model Mean Median Q1 Q3 Std. Dev. Min Max

Model 1 1.55 1.38 1.22 1.70 0.54 1.00 4.08

Model 2 1.54 1.37 1.21 1.70 0.53 1.00 4.05

Model 3 1.52 1.34 1.17 1.71 0.54 1.00 4.08

Model 4 1.61 1.43 1.23 1.80 0.58 1.00 4.68

Model 5 1.73 1.58 1.24 1.97 0.70 1.00 5.15

Table 7: Pairwise Spearman rank-order correlation coefficients of estimated efficiency

scores using DEA-CRS estimator across models for the case of 3-inputs and 2-outputs

models

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 1.00

Model 2 0.99 1.00

Model 3 0.97 0.98 1.00

Model 4 0.94 0.94 0.93 1.00

Model 5 0.89 0.90 0.87 0.90 1.00
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Table 8: 95% confidence intervals for the simple mean of DEA-CRS efficiency scores for

the case of 3-inputs and 2-outputs models

Model 1 Model 2 Model 3 Model 4 Model 5

DEA estimate 1.55 1.54 1.52 1.61 1.73

Bias corrected 1.83 1.81 1.75 1.90 2.04

Std. Error 0.06 0.06 0.06 0.07 0.08

Bias corrected Std. Error 0.07 0.07 0.07 0.08 0.09

LB of est. CI 1.69 1.68 1.62 1.73 1.84

UB of est. CI 1.94 1.92 1.87 2.00 2.15

LB of est. CI-Improved 1.68 1.67 1.61 1.72 1.82

UB of est. CI-Improved 1.95 1.94 1.88 2.02 2.17

*LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std. Error: Standard Error, CI:

Confidence Interval.

*Computations are done in the Matlab adopting the code from Simar and Zelenyuk (2020).

Table 9: 95% confidence intervals for the weighted mean of DEA-CRS efficiency scores

for the case of 3-inputs and 2-outputs models

Model 1 Model 2 Model 3 Model 4 Model 5

DEA estimate 1.31 1.30 1.19 n/a n/a

Bias corrected 1.58 1.55 1.28 n/a n/a

Std. Error 0.03 0.03 0.03 n/a n/a

Bias corrected Std. Error 0.04 0.04 0.03 n/a n/a

LB of est. CI 1.51 1.48 1.23 n/a n/a

UB of est. CI 1.64 1.61 1.34 n/a n/a

LB of est. CI-Improved 1.49 1.46 1.23 n/a n/a

UB of est. CI-Improved 1.66 1.63 1.34 n/a n/a

*LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std. Error: Standard Error, CI:

Confidence Interval.

*Computations are done in the Matlab adopting the code from Simar and Zelenyuk (2020).

26



Furthermore, we examine the whole distribution of estimated efficiency scores from

the three models by comparing their estimated densities and performing the adapted Li

test for the equality of the densities. From Figure 3, we see that the estimated densities

of estimated efficiency scores from Model 1 and Model 2 are almost overlapped. And,

although the estimated densities from Model 3 is slightly to the left of those from Model

1 and Model 2, the adapted Li test shows that there is insufficient statistical evidence

to conclude that the densities of the estimated efficiency scores from these three models

are pairwise different. All in all, the analysis suggests that the efficiency scores estimated

from the three models, in which inpatient outputs are aggregated using different weight

systems, provide the same information about the overall efficiency level as well as the

relative rankings of individual hospitals in our sample. This implies the robustness of

results with respect to a slight change in relative prices.

Table 10: The adapted Li test for equality of distributions of DEA-CRS efficiency scores

by different models for the case of 3-inputs and 2-outputs models

The Li test

statistics

Bootstrap

p-value

Decision (at 5% level

of significance)

Model 1 vs. Model 2 -0.01 0.99 Do not reject H0

Model 1 vs. Model 3 1.30 0.06 Do not reject H0

Model 2 vs. Model 3 0.96 0.11 Do not reject H0

Model 1 vs. Model 4 0.04 0.97 Do not reject H0

Model 2 vs. Model 4 0.19 0.79 Do not reject H0

Model 3 vs. Model 4 1.76 0.03 Reject H0

Model 1 vs. Model 5 4.47 0.00 Reject H0

Model 2 vs. Model 5 4.63 0.00 Reject H0

Model 3 vs. Model 5 5.21 0.00 Reject H0

Model 4 vs. Model 5 2.69 0.01 Reject H0

Notes:

* H0: The densities of estimated efficiency scores of the two corresponding models are equal.

* Computations are done in the Matlab adopting the code from Simar and Zelenyuk (2006), with

2000 bootstrap replications using Gaussian kernel, and Silverman (1986) robust rule of thumb

bandwidth.
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Figure 3: Density estimates of the estimated efficiency scores using the DEA-CRS esti-

mators for different models for the case of 3-inputs and 2-outputs models. Kernel-based

with Silverman’s (1986) reflection method: Gaussian kernel and bandwidth is selected by

the method of Sheather and Jones (1991).

Let us now look at the estimated efficiency scores from Model 4, where inpatient out-

puts are aggregated using the PCA-based approach and let us compare the estimates with

those from Model 1, Model 2, and Model 3. We can see that although the simple mean

of estimated efficiency scores from Model 4 are slightly higher (i.e., indicating overall less

efficient) than those from the first three models, the 95% confidence intervals for the popu-

lation mean constructed using the estimated efficiency scores from the four models almost

overlap. Besides, the pairwise Spearman rank-order correlation coefficients between the

estimates from Model 4 and each of those from the first three models are still very high

(all around 0.93-0.94). Moreover, the estimated density of the estimated efficiency scores

from Model 4 looks similar to those from the first three models, especially from Model

1 and Model 2. The adapted Li test supports the visualisation, showing no statistical

pairwise difference between the densities of the estimated efficiency scores from Model 1,

Model 2 and Model 4. The results suggest that the estimated efficiency scores from the

DEA models are also robust with respect to the two different aggregation approaches.

To examine the conjecture discussed in Section 4 that due to the nature of the data, the

results might be indifferent regardless of whether the weighted or non-weighted aggrega-

tion approaches are utilised, we compare the estimated efficiency scores from Model 5 with

those from the first four models, focusing on their whole distribution. We can see from

Figure 3 that the estimated density of the efficiency scores obtained from Model 5 is very

different from the estimated densities of those obtained from the first four models. Our

visualisation is then confirmed by the adapted Li test, where the null hypotheses about
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the equality between densities of estimated efficiency scores from Model 5 and from each

of the first four models are all rejected with very small p-values. The results highlight the

importance of utilising the appropriate approaches for dimension reduction in the DEA

context: estimated efficiency scores under PCA-based aggregation and price-based aggre-

gation approaches are similar, but very different compared with those obtained under the

naive non-weighted approach.

6 Concluding Remarks

Given the increasing attention to dimension reduction in the context of DEA with large

dimensions for inputs and outputs, in this study we revisit the output aggregation in

hospital efficiency analysis, where the challenge of big wide data for DEA has been present

since the early 1980s. Although not cast explicitly, researchers in the field usually use

price-based aggregation to aggregate a hospital’s output to deal with the most challenging

issue of DEA with big data – the ‘curse of dimensionality’.

Using data on public hospitals in Queensland, Australia, we find that the choice of price

systems (with small variation in prices) does not significantly affect the DEA estimates

under the price-based aggregation approach. Moreover, the estimated efficiency scores

from the DEA models are also robust with respect to the price-based aggregation and

the PCA-based aggregation approaches. The robustness of the results suggests that the

PCA-based aggregation can be viewed as a viable alternative for DEA practitioners who

are unable to/or unwilling to use the price-based approach, e.g., due to unavailable or

unreliable price information.

It is worth highlighting here that the results in this study are particular for the working

sample, and should be interpreted with care. Even though, this paper can be viewed as

a pilot study to remind DEA practitioners, especially those who work with hospital data,

that price-based aggregation is just one approach (among others) to reduce the dimension

of production space to deal with the ‘curse of dimensionality’. Thus in applied works,

several approaches should be applied to ensure the robustness of results.

Recently, the Least Absolute Shrinkage and Selection Operator (LASSO) has been

applied into the DEA context as a promising technique for dimension reduction (see more

discussions in Chen et al., 2020; Lee & Cai, 2020, and references therein). As a result, a

fruitful direction for future research is to empirically compare the DEA estimates based

on the LASSO approach with those based on price-based and PCA-based aggregation

approaches.

29



Acknowledgments

We thank the Editors/referees for fruitful comments. We acknowledge the support from

The University of Queensland and the financial support from the Australian Research

Council (FT170100401). We also thank Zhichao Wang and Evelyn Smart for their valuable

feedback. We acknowledge and thank Queensland Health for providing part of the data

that we used in this study. These individuals and organizations are not responsible for

the views expressed in this paper.

30



Appendix

A Results for the case of 3-inputs and 1-output models

Here we aggregate outputs into a single measure of hospital outputs using the PCA-

based approach and estimate 3-inputs and 1-output production models using DEA-CRS.

Specifically, we aggregate the outpatient output with each of the four aggregated inpatient

outputs (i.e., WEPS1, WEPS2, WEPS3, and FEPS) and denote the aggregated outputs as

FOUT1, FOUT2, FOUT3, and FOUT4, respectively (see model specifications in Table 11)

Table 11: Model Specifications for the case of 3-inputs and 1-output models

Model
Inputs Outputs

FLABOUR BEDS DMSUP FOUT1 FOUT2 FOUT3 FOUT4 FOUT5

Model 6 X X X X

Model 7 X X X X

Model 8 X X X X

Model 9 X X X X

Model 10 X X X X

Table 12: Descriptive statistics of estimated efficiency scores using DEA-CRS estimator

for the case of 3-inputs and 1-output models

Model Mean Median Q1 Q3 Std. Dev Min Max

Model 6 2.61 2.49 1.98 3.07 1.01 1.00 8.43

Model 7 2.63 2.50 1.99 3.07 1.02 1.00 8.48

Model 8 2.60 2.49 1.95 3.07 1.00 1.00 8.41

Model 9 2.49 2.41 1.87 2.87 0.92 1.00 7.71

Model 10 2.36 2.22 1.74 2.81 0.93 1.00 8.10
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Table 13: 95% confidence intervals for the simple mean of DEA-CRS efficiency scores for

the case of 3-inputs and 1-outputs model

Model 6 Model 7 Model 8 Model 9 Model 10

DEA estimate 2.61 2.63 2.60 2.49 2.36

Bias corrected 3.43 3.46 3.41 3.26 3.00

Std. Error 0.07 0.07 0.07 0.06 0.06

Bias corrected Std. Error 0.09 0.09 0.09 0.08 0.08

LB of est. CI 3.30 3.32 3.27 3.13 2.88

UB of est. CI 3.57 3.59 3.54 3.38 3.12

LB of est. CI-Improved 3.26 3.28 3.24 3.10 2.85

UB of est. CI-Improved 3.60 3.63 3.58 3.42 3.15

*LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std. Error: Standard Error, CI:

Confidence Interval.

*Computations are done in the Matlab adopting the code from Simar and Zelenyuk (2020).

Table 14: 95% confidence intervals for the weighted mean of DEA-CRS efficiency scores

for the case of 3-inputs and 1-output models

Model 6 Model 7 Model 8 Model 9 Model 10

DEA estimate 2.66 2.66 2.65 2.65 2.54

Bias corrected 3.73 3.72 3.71 3.66 3.49

Std. Error 0.05 0.05 0.05 0.06 0.07

Bias corrected Std. Error 0.09 0.09 0.09 0.09 0.10

LB of est. CI 3.63 3.62 3.61 3.55 3.34

UB of est. CI 3.83 3.82 3.81 3.77 3.63

LB of est. CI-Improved 3.55 3.55 3.54 3.48 3.29

UB of est. CI-Improved 3.90 3.90 3.88 3.83 3.68

*LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std. Error: Standard Error, CI:

Confidence Interval.

*Computations are done in the Matlab adopting the code from Simar and Zelenyuk (2020).
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Table 15: Pairwise Spearman rank-order correlation coefficients of the estimated efficiency

scores using the DEA-CRS estimator across models for the case of 3-inputs and 1-output

models

Model 6 Model 7 Model 8 Model 9 Model 10

Model 6 1

Model 7 0.999 1

Model 8 0.999 0.999 1

Model 9 0.982 0.979 0.983 1

Model 10 0.975 0.973 0.977 0.979 1

Table 16: The adapted Li test for the equality of distributions of DEA-CRS efficiency

scores by different models for the case of 3-inputs and 1-output models

The Li test

statistics

Bootstrap

p-value

Decision (at 5% level

of significance)

Model 6 vs. Model 7 0.006 0.994 Do not reject H0

Model 6 vs. Model 8 -0.001 0.998 Do not reject H0

Model 7 vs. Model 8 0.022 0.974 Do not reject H0

Model 6 vs. Model 9 0.417 0.573 Do not reject H0

Model 7 vs. Model 9 0.404 0.595 Do not reject H0

Model 8 vs. Model 9 0.378 0.620 Do not reject H0

Model 6 vs. Model 10 2.131 0.016 Reject H0

Model 7 vs. Model 10 2.221 0.013 Reject H0

Model 8 vs. Model 10 2.012 0.018 Reject H0

Model 9 vs. Model 10 1.229 0.071 Do not reject H0

Notes:

* H0: The densities of estimated efficiency scores of the two corresponding models are equal.

* Computations are done in the Matlab adopting the code from Simar and Zelenyuk (2006), with

2000 bootstrap replications using Gaussian kernel, and Silverman (1986) robust rule of thumb

bandwidth.
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Figure 4: Density estimates of the estimated efficiency scores using the DEA-CRS esti-

mators for different models for the case of 3-inputs and 1-output models. Kernel-based

with Silverman’s (1986) reflection method: Gaussian kernel and bandwidth is selected by

the method of Sheather and Jones (1991).

B Results for the case of 1-input and 1-output models

Here we further aggregate three inputs into a single measure of input using the PCA-

based approach, denoted as FINPUT, and estimate 1-input and 1-output production

models using DEA-CRS (see model specifications in Table 17)

Table 17: Model Specifications for the case of 1-input and 1-output models

Model
Inputs Outputs

FINPUT FOUT1 FOUT2 FOUT3 FOUT4 FOUT5

Model 11 X X

Model 12 X X

Model 13 X X

Model 14 X X

Model 15 X X
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Table 18: Descriptive statistics of the estimated efficiency scores using the DEA-CRS

estimator for the case of 1-input and 1-output models

Model Mean Median Q1 Q3 Std. Dev Min Max

Model 11 4.82 4.09 3.21 5.46 2.37 1.00 14.23

Model 12 4.86 4.10 3.23 5.47 2.41 1.00 14.23

Model 13 4.78 4.05 3.19 5.42 2.33 1.00 13.75

Model 14 4.46 3.85 3.07 5.27 2.06 1.00 12.21

Model 15 4.28 3.69 2.79 5.14 2.11 1.00 12.76

Table 19: 95% confidence intervals for the simple mean of DEA-CRS efficiency scores for

the case of 1-input and 1-outputs model

Model 11 Model 12 Model 13 Model 14 Model 15

DEA estimate 4.82 4.86 4.78 4.46 4.28

Bias corrected 5.61 5.64 5.55 5.15 4.94

Std. Error 0.16 0.16 0.16 0.14 0.14

Bias corrected Std. Error 0.17 0.17 0.17 0.15 0.15

LB of est. CI 5.29 5.32 5.24 4.88 4.66

UB of est. CI 5.92 5.96 5.86 5.42 5.22

LB of est. CI-Improved 5.28 5.31 5.22 4.86 4.65

UB of est. CI-Improved 5.94 5.98 5.87 5.44 5.24

*LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std. Error: Standard Error, CI:

Confidence Interval.

*Computations are done in the Matlab adopting the code from Simar and Zelenyuk (2020).
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Table 20: 95% confidence intervals for the weighted mean of DEA-CRS efficiency scores

for the case of 1-input and 1-output models

Model 11 Model 12 Model 13 Model 14 Model 15

DEA estimate 4.18 4.18 4.17 4.15 3.99

Bias corrected 4.86 4.86 4.84 4.79 4.60

Std. Error 0.13 0.13 0.13 0.14 0.17

Bias corrected Std. Error 0.14 0.14 0.14 0.15 0.18

LB of est. CI 4.60 4.60 4.59 4.51 4.26

UB of est. CI 5.11 5.11 5.10 5.06 4.95

LB of est. CI-Improved 4.59 4.59 4.57 4.50 4.25

UB of est. CI-Improved 5.13 5.12 5.12 5.08 4.96

*LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std. Error: Standard Error, CI:

Confidence Interval.

*Computations are done in the Matlab adopting the code from Simar and Zelenyuk (2020).

Table 21: Pairwise Spearman rank-order correlation coefficients of the estimated efficiency

scores using the DEA-CRS estimator across models for the case of 1-input and 1-output

models

Model 11 Model 12 Model 13 Model 14 Model 15

Model 11 1

Model 12 0.999 1

Model 13 0.999 0.999 1

Model 14 0.988 0.987 0.990 1

Model 15 0.981 0.980 0.982 0.985 1
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Table 22: The adapted Li test for the equality of distributions of DEA-CRS efficiency

scores by different models for the case of 1-input and 1-output models

The Li test

statistics

Bootstrap

p-value

Decision (at 5% level

of significance)

Model 11 vs. Model 12 -0.004 0.995 Do not reject H0

Model 11 vs. Model 13 0.001 0.998 Do not reject H0

Model 12 vs. Model 13 0.009 0.989 Do not reject H0

Model 11 vs. Model 14 0.372 0.577 Do not reject H0

Model 12 vs. Model 14 0.426 0.518 Do not reject H0

Model 13 vs. Model 14 0.271 0.700 Do not reject H0

Model 11 vs. Model 15 3.103 0.004 Reject H0

Model 12 vs. Model 15 3.276 0.002 Reject H0

Model 13 vs. Model 15 2.864 0.008 Reject H0

Model 14 vs. Model 15 1.419 0.050 Reject H0

Notes:

* H0: The densities of the estimated efficiency scores of the two corresponding models are equal.

* Computations are done in Matlab adopting the code from Simar and Zelenyuk (2006), with 2000

bootstrap replications using Gaussian kernel, and Silverman (1986) robust rule of thumb bandwidth.
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Figure 5: Density estimates of the estimated efficiency scores using the DEA-CRS esti-

mators for different models for the case of 1-input and 1-output models. Kernel-based

with Silverman’s (1986) reflection method: Gaussian kernel and bandwidth is selected by

the method of Sheather and Jones (1991).
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Kohl, S., Schoenfelder, J., Fügener, A., & Brunner, J. O. (2019). The use of data en-

velopment analysis (DEA) in healthcare with a focus on hospitals. Health care

management science, 22 (2), 245–286.

Lee, C.-Y., & Cai, J.-Y. (2020). LASSO variable selection in data envelopment analysis

with small datasets. Omega, 91, 102019.

Li, Q. (1996). Nonparametric testing of closeness between two unknown distribution func-

tions. Econometric Reviews, 15 (3), 261–274.

McCallion, G., McKillop, D. G., Glass, J. C., & Kerr, C. (1999). Rationalizing Northern

Ireland hospital services towards larger providers: Best-practice efficiency studies

and current policy. Public Money & Management, 19 (2), 27–32.

Meeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas

production functions with composed error. International Economic Review, 18 (2),

435–444.

Mouchart, M., & Simar, L. (2002). Efficiency analysis of air controllers: First insights

(Consulting report #0202). Institut de Statistique, Université Catholique de Lou-
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