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Despite the long and great history, developed institutions, and high level of physical

and human capital, the Italian economy has been fairly stagnant during the last three

decades. In this paper, we merge two streams of literature: nonparametric methods to

estimate frontier efficiency of an economy, which allows us to develop a new measure

of output gap, and nonparametric methods to estimate probability of an economic

recession. To illustrate the new framework we use quarterly data for Italy from 1995

to 2019, and find that our model, using either nonparametric or the linear probit model,
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Via per Monteroni - 73100 LECCE - Italy. Phone +39832298779, fax +390832298757, E-mail:
camilla.mastromarco@unisalento.it.

§Institut de Statistique, Biostatistique et Sciences Actuarielles, Université Catholique de Louvain. Voie
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1 Introduction

How to predict economic recessions of a country? This is a very important and challenging

question which is of interest to a fairly wide audience. Many papers in the empirical macroe-

conomic literature have proposed various methods to predict economic recessions, mainly fo-

cusing on the US. Here we follow one of the paradigms, started by Estrella and Mishkin (1995,

1998) further elaborated in various papers (e.g., see Duecker, 1997; Kauppi and Saikkonen,

2008, and references cited therein), and we try to elaborate further by adapting some newly

advanced methods in nonparametric statistics and in productivity and efficiency analysis.

In this paper we focus on Italian economy, one of the oldest in the World, with roots going

back to at least the Roman Empire. Notwithstanding the long and great history, developed

institutions and high level of physical and human capital, Italian Economy has been stag-

nant during the last decades. Semiparametric and nonparametric methods are increasingly

popular to analyze data in economics, business and other fields (e.g., see Horowitz, 2009;

Henderson and Parmeter, 2015). Specifically, we use a nonparametric version of the dynamic

probit for time series (Park et al., 2017) to model the dependent variable (recession vs. non-

recession). Meanwhile, for the explanatory variables, besides the standard predictor such as

the spread, we try to develop a method to incorporate the estimates of the efficiency scores

of a country. For this purpose, we use the method of frontier estimation in nonparametric

location-scale models (Florens et al., 2014) and robust conditional frontier methods (Cazals

et al., 2002; Daraio and Simar, 2005; Daouia and Gijbels, 2011; Mastromarco and Simar,

2018, etc.). We illustrate our approach on the case of the Italian economy.

Our paper is also related to and in the spirit of the work of Wheelock and Wilson (1995),

who pioneered the use of efficiency estimates among predictors in the parametric probability

models, in their case for predicting bank failures. Besides the focus on macroeconomic

recessions rather than banks, the major distinctive features of our paper relative to theirs

include (i) the use of recent nonparametric estimation methods for the discrete choice model

(rather than a parametric one), (ii) the use of time-series data, with a dynamic component

modeled explicitly and (iii) the use of more advanced methods for efficiency estimation that

have become available very recently.

1.1 Predicting Recessions

Among the variety of different approaches attempting to model and forecast economic reces-

sions, we will focus on those that employed the parametric binary choice approach and find
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that a good model for the prediction of the US recessions is a parsimonious model with only

one of a few predictors, the most important of which is the interest rate spread and one dis-

crete variable, the lagged dependent variable. The roots of this approach go back to at least

the seminal work of Estrella and Mishkin (1995, 1998), who thoroughly investigated various

parametric models with many variables and concluded that the best forecasts resulted from

a parsimonious probit model involving only one explanatory variable, the lagged spread.

Duecker (1997) confirmed this result, yet also found that including the lagged dependent

variable among regressors substantially improved the predicting power of the Estrella and

Mishkin (1995, 1998) approach, especially for the recessions of the 1970s and 1990s that

were missed by various other forecasting methods. Overall, the analyses in Estrella and

Mishkin (1995, 1998) and Duecker (1997) suggest that their parsimonious model outper-

forms many alternative models that included many variables to gain a high in-sample fit,

yet happened to be poorly forecasting the future. Also see Kauppi and Saikkonen (2008) for

further refinements and more references and discussions.

This paper contributes to the empirical literature on predicting recessions by adding two

novelties: i) we apply a nonparametric dynamic time series discrete response model suggested

by Park et al. (2017); ii) we use a new measure of output gap as one of the recession

predictors. In particular, we employ a robust nonparametric frontier panel data model

proposed by Mastromarco and Simar (2015) to estimate the time-dependent conditional

efficiency of countries and use this as a measure of output gap.1 In a macroeconomics context,

where countries are producers of output (i.e., GDP) given inputs (e.g., capital, labor) and

technology, inefficiency can be identified as the distance of the individual production from

the frontier. This frontier can be estimated by the maximum output of the reference country

regarded as the empirical counterpart of an optimal boundary of the production set. Hence,

at least on intuitive grounds, we might interpret the inefficiency as a measure of output gap

with respect to the potential output of the technological frontier.

1.2 Existing Measures of Output Gap

Output gap is traditionally obtained as a deviation from a statistical measure of trend. One

of the earliest and currently widely used statistical methods for measuring the output gap

is based on measuring the output trend calculated by fitting a polynomial in time to the

output, the residual being the estimated cycle. This method imposes a strong prior on

1Also see Cazals et al. (2002), Daraio and Simar (2005), Daouia and Gijbels (2011) for related discussions
on robust nonparametric frontier.
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the smoothness of the trend. Another popular statistical approach uses a filter, Hodrick and

Prescott (1997), to identify the trend and the cycle. The trend measure in this case is smooth

but not deterministic. The Baxter and King (1999) filter defines the cycle as having spectral

power in pre-specified frequencies. However, Murray (2003) stresses that this filter extracts

an estimate of the cycle which includes some trend shock. Other statistical approaches

need a model to identify the stochastic trend component. These statistical methods do not

require smoothness but impose the restriction of no correlation between the cycle and the

trend, which may lack theoretical support. Beveridge and Nelson (1981) suggest a measure

of trend as a long run forecast of an ARMA model. The unobserved components model

extracts an estimate of the trend and cycle using the Kalman filter (Harvey, 1985; Watson,

1986; Clark, 1987).

Differently from the statistical methods, the economic approaches estimate the output

gap in the framework of the production function (for example Gaĺı and Gertler, 1999). Re-

cently, various studies (Kuttner, 1994; Gerlach and Smets, 1999; Apel and Jansson, 1999;

Roberts, 2001; Basistha and Nelson, 2007; Basu and Fernald, 2009) tried to combine the

statistical approach with the economic approach by estimating the unobserved components

of the multivariate model. These approaches do not impose smoothness or restrictive cor-

relation structure, but estimate the output gap based on the empirical implications of the

forward-looking Phillips curve.

1.3 Inefficiency as an Alternative Measure of Output Gap

Often, potential output is referred to as the production capacity of the economy. In our

framework of the frontier model, potential output refers to the maximum level of output that

can be produced for a given level of inputs, using full employment and capital utilization.

The gap between the potential and actual outputs is interpreted as a measure of inefficiency

which in our paper also captures the varying factor utilization over the cycle. The approach

is closely linked to the production theory based approach in measuring the output gap.

We cast our empirical model in frontier form, treating the gap as an unobserved variable -

efficiency scores - estimated using nonparametric frontier methods. In pursuing an economic

based approach, we avoid imposing strong priors on the smoothness of the trend or cycle,

and the restrictive correlation structure between the trend and the cycle shocks.

Furthermore, parametric modelling may suffer from misspecification problems when the

data generating process is unknown, as is usual in the applied studies. We propose a unified

nonparametric framework for accommodating simultaneously the problem of model specifi-
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cation uncertainty and time dependence in the panel data frontier model. Specifically, we

estimate the panel data frontier model using a flexible nonparametric two step approach to

take into account the time dependence. Following recent developments in nonparametric

conditional frontier literature (Florens et al., 2014; Mastromarco and Simar, 2015, 2018), we

adapt the nonparametric location-scale frontier model, where we link production inputs and

output to time. In the first step we clean the dependence of inputs and outputs on time

factors. These time factors capture the correlation among units. By eliminating the effect

of these factors on the production process we mitigate the problem of dependence across

our time units and we are able to estimate a nonparametric frontier model from the panel

data. (In the application we illustrate this approach for the data on 16 OECD countries.) In

the second step we estimate the frontier and the efficiency scores using inputs and outputs

whitened from the influence of time.

1.4 The Contribution in a Nutshell and a Roadmap

The main idea of this paper is to merge the interesting streams of literature described above:

the novel nonparametric methods to estimate frontier efficiency of an economy as a new

measure of output gap, and the novel nonparametric method to estimate the probability of

an economic recession. We do this by deploying a generalised nonparametric quasi-likelihood

method in the context of dynamic discrete choice models for time series data (Park et al.,

2017). To illustrate the new framework, we use data from 1995 to 2019 with quarterly

frequency, and find that our model using either nonparametric or the linear probit model,

applied frequently in this context, is able to offer additional insights into the literature.

The paper is organized as followed. Section 2 presents the methodology. Specifically,

Section 2.1. explains the nonparametric discrete choice models for time series to predict

recessions. Section 2.2. introduces our proposed measure of output gap and explains time-

dependent conditional efficiency scores and the nonparametric estimation. This section elu-

cidates the location-scale models to eliminate the influence of common time factors and

external variables. Section 3 illustrates an empirical application for the case of Italian econ-

omy. Section 4 gives concluding remarks.
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2 Methodology

2.1 Forecasting Model

In this section, we summarize the elements from Park et al. (2017) (hereafter PSZ) that are

needed in our setup to forecast economic recessions. The model should provide the elements

for analyzing the behavior of a discrete variable in a time series setup. The approach is

nonparametric.

Suppose we observe (X t,Zt, Y t), t = 1, . . . , T , where
{

(X t,Zt, Y t)
}∞
t=−∞ is a stationary

random process. We assume, as in PSZ that the process satisfies strong mixing conditions

that typically allows time dependence which disappears at a geometrical rate when the time

lags are too large.2

The response variable is binary taking the values 0 and 1; in our set-up, Y = 1 for a

recession and Y = 0 is otherwise. The vector of covariates X t is of dimension r and of

continuous type, whereas Zt is a discrete vector of dimension k. The components of Zt

may be lagged values of the response Y , e.g., Y t−1, Y t−2. The idea is to estimate the mean

function

m(x, z) = E (Y |X = x,Z = z) . (2.1)

Since Y is binary we have

P (Y = y|X = x,Z = z) = m(x, z)y [1−m(x, z)]1−y , for y ∈ {0, 1}. (2.2)

A key ingredient in these discrete choice models is the link function g, which is a strictly

increasing function, defining the function f as

f(x, z) = g(m(x, z)). (2.3)

In parametric models, it is assumed that f(x, z) takes a parametric form, and then m(x, z) =

g−1(f(x, z)). Thus, a wrong choice may jeopardize the estimation of m. In nonparametric

settings, f(x, z) will be locally approximated by some local polynomial around (x, z), so

the choice of g is much less important. Approximating locally the functions g1(m(x, z)) or

g2(m(x, z)) for two different link functions g1 and g2 does not make much difference. One

may simply take the identity function, though since the range of the target m is [0, 1], we

will choose a link that guarantees the correct range (like Probit or Logit). Now, given the

2See PSZ, Section 3.1, for mathematical details and additional references.
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link g and the sample
{

(X t,Zt, Y t)
}T
t=1

, we see from (2.2) that the log-likelihood of f is

given by
∑T

t=1 `
(
g−1

(
f(X t,Zt)

)
, Y t
)

where `(µ, y) = y log
(

µ
1−µ

)
+ log(1− µ).

Let (x, z) be a fixed point of interest at which we want to estimate the value of the mean

function m, or equivalently of its transformed function f . In a nonparametric approach,

we will apply local smoothing techniques to the observations (X t,Zt), which are in the

neighborhood of (x, z). As explained in PSZ, this leads to weighting the observation (X t,Zt)

near (x, z) by some kernel. For the continuous variables (X), usual continuous kernels

(Gaussian, Epanechnikov, etc.) can be used, while for the discrete variables (Z), some

appropriate discrete kernels have to be used. Here we use the product kernel wtc(x, z)×wtd(z)

defined as

wtc(x, z) =
r∏
j=1

Khj(xj, X
t
j , z). (2.4)

wtd(z) =
k∏
l=1

γ
1I(Zt

l 6=zl)
l (2.5)

where 1I(A) denotes the indicator function such that 1I(A) = 1 if A holds and zero otherwise

and γl ∈ [0, 1] is the bandwidth for the lth discrete variable, while for the continuous kernels,

we have

Khj(xj, X
t
j , z) =

1

hj(1)
K

(
X t
j − xj
hj(1)

)
× 1I(Zt = z(1))

+
1

hj(2)
K

(
X t
j − xj
hj(2)

)
× 1I(Zt = z(2))

for a symmetric kernel function K and two bandwidth, hj(1) > 0 and hj(2) > 0, corre-

sponding to the two groups denoted as z(1) and z(2), for each jth continuous variable. The

discrete kernel is in the spirit of Aitchison and Aitken (1976), except that it is standardized

to be between 0 and 1. The continuous kernel is a generalized kernel proposed by Li et al.

(2016), which allows different bandwidths for the continuous variables across various groups

defined by the values of Z, and thus allowing for more flexibility in terms of the fitted cur-

vatures in the two groups. It is worth noting that when γj = 0 one performs a separate

estimation for each group identified by the values of Zj. When γj = 1, one considers that

Zj is irrelevant and so all the groups are pooled together, although different bandwidths for

continuous variables may still imply different curvatures in the two groups.

For approximating f(·, ·) locally near the point (x, z) we will not make use of the link

function, nor of the likelihood function. The local approximation is linear in the direction of
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the continuous variable and constant in the direction of the discrete variables. To be specific,

we have

f(u,v) ≈ f(x, z) +
r∑
j=1

fj(x, z)(uj − xj), (2.6)

where fj(x, z) = ∂f(x, z)/∂xj. So the local approximation can be viewed as a first order

Taylor’s expansion of f in x, near (x, z).

To estimate f(x, z) and its partial derivatives fj(x, z) we thus maximize

T−1
T∑
t=1

wtc(x, z)wtd(z)`

(
g−1

(
β0 +

r∑
j=1

βj(X
t
j − xj)

)
, Y t

)
(2.7)

with respect to β0 and βj, j = 1, . . . , r. The solutions β̂0 = f̂(x, z) and β̂j = f̂j(x, z) for

j = 1, . . . , r. Then an estimator of the mean function m(x, z) is obtained by inverting the

link function: m̂(x, z) = g−1(β̂0).

The theory in PSZ shows that the asymptotic properties of the estimators does not

much depend on the choice of the link function, as long it is smooth enough and strictly

increasing, because the estimation is performed locally. We will choose below the probit link,

i.e. g(s) = Φ−1(s), where Φ is the cumulative distribution function of the standard normal

distribution. So we have to maximize in (β0, βj), j = 1, . . . , r

T−1
T∑
t=1

wtc(x, z)wtd(z)

Y t log

 Φ
(
β0 +

∑r
j=1 βj(X

t
j − xj)

)
1− Φ

(
β0 +

∑r
j=1 βj(X

t
j − xj)

)


+ log

(
1− Φ

(
β0 +

r∑
j=1

βj(X
t
j − xj)

))]
. (2.8)

The properties of the resulting estimators follow from PSZ. In summary, under certain

regularity assumptions and with the optimal order of the bandwidths, hc,j := (hj(1) +

hj(2))/2 ∝ T−1/(r+4) and γj ∝ T−2/(k+4), Theorem 3.1 in PSZ establishes

√
T h̄c

(
f̂(x, z)− f(x, z) +

r∑
j=1

O
(
h2c,j
)

+
k∑
j=1

O (γj)

)
L−→ N(0, V (x, z)), (2.9)

where h̄c =
∏r

j=1 hc,j and the variance V has a complicated expression which depends on the

properties of the data generation process (DGP) (see PSZ for details). We see from (2.9)

that the optimal bandwidths balance, as often the case, is between the square of the bias
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terms and the variance.

Remark 1: It is worth noting that if the bandwidths for continuous variables increase

such that they cover all the observations on those variables, the nonparametric approach

yields very similar estimates as the parametric approach that assumes (2.6) holds exactly.

In this sense, the parametric approach can be viewed as a special case of the nonparametric

approach, in the sense that the latter allows for much more flexibility and can be ‘reduced’

to the former by removing the flexibility through tuning the bandwidths to be large enough.

Remark 2: The nonparametric approach can also be viewed as a tool for validation of a

suitable parametric approach. Indeed, when a parametric approach that assumes a particular

(and perhaps very restrictive) functional form yields very similar results or conclusions as

the nonparametric approach that allows for much more flexibility, this should give more

confidence in the results or conclusions from the parametric approach, despite its restrictive

assumptions. We will find this consideration very useful in our empirical application section

for the particular data we use there.

2.2 Efficiency and Estimation of the Output Gaps

We propose as an output gap our measure of inefficiency. The output gap is an economic

measure of the difference between the actual output of an economy and its potential output.

Potential output is the maximum amount of goods and services an economy can turn out

when it is most efficient—that is, at full capacity. Often, potential output is referred to as the

production capacity of the economy. In the context of this paper, we assume that a country

is the producer of an output (i.e., GDP) given inputs (e.g., capital, labor) and available

technology. The inefficiency is defined as the distance between the actual production and its

maximum or frontier potential, given the inputs and technology.3

As explained above, we would like to use the level of inefficiency of the country for

a particular year by considering the so-called conditional inefficiency (Cazals et al., 2002;

Daraio and Simar, 2005; Mastromarco and Simar, 2015). Inputs here are Capital (K) and

Labor (L) and the output is the GDP (Q), and we have quarterly data t = 1, . . . , T for 16

OECD countries. Evaluating the marginal efficiency measures by considering the so-called

meta-frontier of the 3-dimensional cloud of T points {(Kt, Lt, Qt)}Tt=1 would not make too

3In principle, each country may have their own frontier characterized by their uniqueness, which in turn
could imply each country is 100% efficient relative to their own frontier. This is a different paradigm of
thinking. The type of inefficiency we are measuring is relative to a common frontier and we acknowledge
that other paradigms (e.g., which include country effects or group-specific effects) are also interesting to
explore and we leave that for the future research.
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much sense since the technology certainly varies over the years. We will rather consider the

conditional efficiency measure where we condition on the time period. This enables us to

take into account that production factors adjust to fluctuations of aggregate demand and

supply with time delays due to market regulations and price stickiness.4

As suggested in Mastromarco and Simar (2015), to introduce the time dimension we

consider indeed, with some abuse of notation, time as a conditioning variable W and we

define the attainable production set at time t as the support of the conditional probability

HK,L,Q|W (ξ, ζ, η|W = t) = P (K ≤ ξ, L ≤ ζ,Q ≥ η | W = t) , (2.10)

which can be interpreted as the probability of observing, at time t, a production plan dom-

inating a given point (ξ, ζ, η). So, the feasible technology Ψt can be defined as

Ψt = {(ξ, ζ, η) ∈ R3
+|HK,L,Q|W (ξ, ζ, η | W = t) > 0}. (2.11)

Finally, this leads to consider for the output orientation the conditional efficiency score

λ(ξ, ζ, η|t) = sup{λ|(ξ, ζ, λη) ∈ Ψt} ≥ 1, (2.12)

which is known as the Farrell-Debreu output oriented efficiency measure (see e.g. Kumar and

Russell, 2002, for its use in a related context but using a simpler estimator). Nonparametric

estimators of these efficiency scores have been developed and their asymptotic properties

are well-known (see e.g. Jeong et al., 2010). Here, we will follow the approach suggested by

Florens et al. (2014) which has some advantages described below.

In the first step, a flexible nonparametric model is used to whiten the inputs (K,L) and

the output Q from the effect of time W . We have the following model

Kit = µK(t) + σK(t)εK,t

Lit = µL(t) + σL(t)εL,t

Qit = µQ(t) + σQ(t)εQ,t, (2.13)

where we assume that (εK , εL, εQ) are ‘independent’ of time W , with E[ε`] = 0 and V[ε`] = 1

for ` = K,L,Q. The estimation of the mean and variance functions are done by local polyno-

mial smoothing as explained in detail in Florens et al. (2014). They suggest also a bootstrap

4We thank you anonymous reviewer for his comment.
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test for testing the assumption of independence, but in our application below we will eval-

uate various correlations (Spearman, Pearson and Kendall) to check if this assumption is

reasonable.

In our application, we first use the local-linear methods to estimate the mean functions

µ`(t), ` = K,L,Q. From the squared residuals we estimate the variance functions σ2
` (t) by

local constant methods (to avoid negative variances). Finally, Florens et al. (2014) define

the estimated ‘pure’ inputs and the estimated ‘pure’ outputs as

ε̂K,it =
Kit − µ̂K(t)

σ̂K(t)
,

ε̂L,it =
Lit − µ̂L(t)

σ̂L(t)
,

ε̂Q,it =
Qit − µ̂Q(t)

σ̂Q(t)
, (2.14)

which are ‘pure’ in the sense of being filtered from time dependence. In this ‘pure units

space’, we can compute the output directional distance to the efficient frontier.5 Since the

output here is univariate, the efficient frontier in pure units is the function

ϕ(eK , eL) = sup{eQ|P(εK ≤ eK , εL ≤ eL, εQ ≥ eQ) > 0}, (2.15)

so that the directional distance of a point (eK , eL, eQ) to the frontier is simply given by

δ(eK , eL, eQ) = ϕ(eK , eL)− eQ ≥ 0, (2.16)

where the value zero indicates the point (eK , eL, eQ) is on the efficient frontier. Under the

location-scale assumptions, it can be proven that the conditional frontier in original units

can be recovered as (see Florens et al., 2014, for details)

τ(ξ, ζ|t) = µQ(t) + σQ(t)ϕ

(
ξ − µK(t)

σK(t)
,
ζ − µL(t)

σL(t)

)
, (2.17)

so that the gap in the output to reach the frontier level is given by

GQ(ξ, ζ, η|t) = σQ(t)δ(eK , eL, eQ). (2.18)

5We need to use directional distance here since the ‘pure’ inputs and the ‘pure’ outputs may take negative
values.
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The nonparametric estimators of these various elements are obtained by plugging the es-

timators of the mean and variance functions derived above. One of the main advantages

of this location-scale approach is that for estimating the functions (µ`(t), σ`(t)) we require

only smoothing in the center of the data in a standard regression setup. As pointed out in

Bădin et al. (2019), a direct estimation of λ(ξ, ζ, η|t) requires delicate problems of optimal

bandwidths selection for estimating the support of the conditional HK,L,Q|W (ξ, ζ, η | W = t).

So at the end of this step of efficiency estimations we end up in practice with estimated

efficiency scores in the pure units δ(eKt , eLt , eQt) and, if wanted, the measures of the gaps in

original units of the DGP, i.e., GQ(Kt, Lt, Qt|t) at each observation t = 1, . . . , T . These values

(eventually lagged) will be used to improve the prediction of a recession in our application

below.

Real data samples contain in general some anomalous data and the estimated frontier

obtained by these nonparametric techniques can be fully determined by these outliers or

extreme data points, jeopardizing the measurement of inefficiencies, potentially leading to

unrealistic results. Cazals et al. (2002); Daouia and Simar (2007), in the frontier literature,

propose an approach which aims to keep all the observations in the sample but replace the

frontier of the empirical distribution by (conditional) quantiles or by the expectation of the

minimum (or maximum) of a sub-sample of the data. This latter method defines the order-m

frontier that we will use here.

In brief, the partial output-frontier of order-m is defined for any integer m and for input

values eKt , eLt , as the expected value of the maximum of the output of m units drawn at

random from the populations of units such that εK ≤ eK , εL ≤ eL. Formally,

τm(ξ, ζ|t) = E [max (εQ,1t, . . . , εQ,mt)] , (2.19)

where the εQ,it are drawn from the empirical conditional survival function ŜεQ|εx(eQ|ε̂x,it ≤
ex). This can be computed by Monte-Carlo approximation or by solving a univariate nu-

merical integral (for practical details see Simar and Vanhems, 2012).

If m increases and converges to ∞ and n → ∞, it has been shown (see Cazals et al.,

2002) that the order-m frontier and its estimator converge to the full frontier, but for a

finite m, the frontier will not envelop all the data points and so is much more robust than

the Free Disposal Hull (FDH) to outliers and extreme data points (see e.g. Daouia and

Gijbels, 2011, for the analysis of these estimators from a theory of robustness perspective).

Another advantage of these estimators is that besides the fact that their limiting distribution

is normal, they achieve the parametric rate of convergence (
√
n).
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3 Empirical Illustration: The Case of Modern Italy

3.1 Data in Brief

There are different ways to measure the spread to be used in the models that we consider

here. For the US economy it is often (albeit not always) measured as the difference between

the 10-year US Treasury bond rate and the 3-month US Treasury bill rate, though there

are other variants (e.g., see Park et al. (2020) and references there in). For other countries,

including those in the EU, there appears to be no ‘one-fit-all’ rule on how to best measure the

spread, as it may depend largely on the country of interest or even the time period considered.

Here we choose to measure it as the difference between the 10-year Italy Treasury bond rate

and the 10-year Germany Treasury bond rate, in per cent per annum. The logic behind

using this measure of spread is grounded in the belief that the 10-year yield on German

bonds are typically considered as the benchmark for the Euro area since they are viewed by

investors as a risk-free market asset, at least in relative terms. 6 The data for this variable

was sourced from OECD.stat Monthly Monetary and Financial Statistics (MEI).7 However,

again, we acknowledge that other measures of the spread can be tried, and some of them

may potentially may work better for some countries, yet not others, or differ across different

periods for the same country. In fact, finding such a measure of spread that would serve as

the best predictor for a given country may be a research question in itself and we leave it

for future research endeavors.

The variables on recessions are constructed as following. We use the Composite Lead-

ing Indicators from OECD Reference Turning Points and Component Series data, which is

analogous to the information from the Business Cycle Dating Committee of NBER typically

used for timing the recessions in the USA.8 In particular, note that the OECD identifies

months of the so-called turning points (peaks and troughs) of the business cycle. The peri-

ods between a peak and a trough that follows it are then deemed as the recessionary periods

(Yt = 1), while the periods between a trough and a peak that follows it are deemed as the

expansionary periods (Yt = 0). To be more precise, since the turning points are announced

for a particular month while we use quarterly data, to construct this time series we use the

following rule: the recession begins on the quarter of the month of the peak and ends on the

6E.g., for related discussion for a broad audience, see The Economist
https://www.economist.com/blogs/buttonwood/2014/03/investing.

7The observation period is selected by the data availability.
8This information can be found at:

www.oecd.org/sdd/leading-indicators/oecdcompositeleadingindicatorsreferenceturningpointsandcomponentseries.htm
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quarter of the month on the trough.9

To construct our measure of output gap, we need to go beyond the data on Italy and

consider a few other countries that may be deemed as relevant peers for Italy, to estimate a

relevant technological frontier. For this illustrative exercise, we choose the following OECD

countries: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Israel, Italy,

South Korea, Netherlands, New Zealand, Norway, Spain, Sweden and United Kingdom.10

The data for these countries was sourced from OECD.stat (OECD Quarterly National

Accounts), and includes 99 quarterly observations from (1995 : Q1) till (2019 : Q2), on

capital, labor and output.11 To be precise, the output Q is proxied by gross domestic

product (GDP), and is measured in millions of US dollars, at 2015 constant price level. For

the labor input L, we use the number of employed persons (in thousands) seasonally adjusted.

Meanwhile, the capital K is also measured in millions of US dollars at 2015 constant price,

and constructed applying the perpetual inventory method (PIM) by using the real investment

series (gross fixed capital formation).12 As often suggested with macroeconomic data, all

these variables are transformed in logarithms before the frontier estimation.

3.2 Brief Economic Background on Italy

The Italian economy is one of the oldest in the World, with roots going thousands years

back to at least the Roman Empire. Through its long evolution on its way to the modern

days, it has witnessed a myriad of ‘ups and downs’ of its economy—what is now usually

9It is worth noting that (as with many other time series macroeconomic data), the historical information
about the turning points is sometimes updated, which potentially can change the months or even quarters
for when (according to the OECD) the recession started with respect to different editions (or ‘vintages’) of
the data. In this version of the paper, we use the latest edition available (February 2020), which is slightly
different from its previous edition used in the earlier version of this paper. Also note that the last turning
point reported by OECD in this edition was in November 2017, which was a peak, and for simplicity we
treat all the remaining quarters in the data (till 2019:Q2) as recessionary periods. This simplification was
also confirmed by forecasting the value of Yt for periods beyond 2019:Q2.

10We acknowledge that there could be many reasons for why more or less countries can be selected here
and there appears to be no theoretical or empirical rule to decide on this, besides the data availability which
was an obvious consideration here. Trying other sets of countries may be a fruitful avenue for future research
on this topic.

11See Appendix A1 for data description.
12PIM is necessitated by the lack of capital stock data across all the countries.The capital stock is con-

structed as Kt = Kt−1 (1− θ) + It, where It is investment and θ the rate of depreciation assumed to be 6%
(e.g., Hall and Jones, 1999; Iyer et al., 2008). Repair and maintenance are assumed to keep the physical pro-
duction capabilities of an asset constant during its lifetime. Initial capital stocks are constructed, assuming
that capital and output grow at the same rate. Specifically, for countries with investment data beginning
in 1995, we set the initial stock, K1995 = I1995/ (g + θ), where g is output growth rate from 1995 to 2019.
Estimated capital stock includes both residential and non-residential capital.

13



referred to as Business Cycles. In a broad sense, even a book cannot give a full picture of

this interesting country and its economy, yet a brief snapshot on the recent years might be

useful here.13

Despite the long and great history, fairly developed institutions, and relatively high level

of physical and human capital, the Italian economy has been fairly stagnant during the last

three decades, the period we focus on in this study. For example, in Figure 1 we depict

the growth rate of Italian GDP during 1995-2019.14 Note that for the late 1900s, the figure

exhibits negative growth in Q2 (2nd quarter) of 1996 and Q1 (1st quarter) of 1998. In the

Q1 (1st quarter) of 2009, as the figure reveals, GDP growth registers the largest negative

value, and by the Q3 (3rd quarter) of 2009 the economy began to re-grow slightly. In the

Q3 (3rd quarter) of the year 2011 Italy’s growth was negative till Q1 (1st quarter) of 2013,

then Italy’s economy recovered with positive economic growth rates but in Q1 of 2019 it

starts to contract again. Here it is worth noting that, similarly as with the NBER data on

recessions in the US, the OECD data on recessions in Italy (highlighted with grey shadow

in Figure 1) is not the same as the casual definition of a recession being two consecutive

quarters of negative growth, but is based on the identification of the turning points of the

business cycle, as described above.

Various reasons have been advocated in the literature as explanations for such poor

economic performance of Italy. One of them is the lagging productivity growth relative to

its peer countries. In particular, it was argued that insufficient productivity growth may

be pivotal to Italy’s competitiveness problem, witnessed by the continual erosion of world

export market shares and the limited ability to attract foreign direct investment (Faini et al.,

2004). These problems appear to be particularly relevant in Italian manufacturing industries

where productivity has been low and international competitiveness has worsened over the

recent decades (Bassanetti et al., 2004; Aiello et al., 2011; Pellegrino and Zingales, 2017).

For example, Pellegrino and Zingales (2017) credit the inability of Italian firms to take full

advantage of the information and communication technology revolution as one of the key

reasons for the poor productivity or what they dubbed as ‘Italy’s productivity disease’. In

turn, and as for many other failures or successes of a country, the existence and persistence of

this ‘disease’ appears to be due to specific institutional aspects; or, as Pelrgrino and Zingales

(2017) put it:

13E.g., see Locke (1997), Malanima (2005) and Pelrgrino and Zingales (2017) for more detailed exposition
and discussions.

14Here we use GPSA measure (growth rate compared to previous quarter, seasonally adjusted), from
OECD.stat.
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“While many institutional features can account for this failure, a prominent one

is the lack of meritocracy in the selection and rewarding of managers. ... the

prevalence of loyalty-based management in Italy is not simply the result of a

failure to adjust, but an optimal response to the Italian institutional environment.

Italy’s case suggests that familism and cronyism can be serious impediments to

economic development even for a highly industrialized nation.”

Clearly, disentangling the true reasons for the recessions in Italy is well-beyond the scope of

this paper, if at all possible. What seems more feasible, however, is to compare or benchmark

Italy to some of its peers—as we do via the proposed output gap measure explained above—

in the hope that it may potentially help in providing some useful information for predicting

upcoming recessions via the dynamic choice models.

Turning the attention to the spread dynamics, one can also note that Figure 2 reveals the

spread between the 10-year Italy Treasury bond rate and 10-year Germany Treasury bond

rate increases during the period of low economic growth. This indicates a lack of confidence

of investors in the Italian economy due to the deterioration of potential determinants of the

spread, namely the current or expected macroeconomic fundamentals, such as fiscal policy,

international risk, liquidity conditions, sovereign credit ratings, to mention a few. Again, note

that while in some periods the dynamics of the spread to some extent matches the upcoming

changes in the recession indicators (highlighted with grey shadow), the relationship appears

to be not very strong, e.g., relative to what we found in the literature for the recessions in

the USA (see Park et al., 2020 and references therein).

3.3 Filtering the Inputs/Output and Efficiency Estimates

Here, we first have to run three location-scale models for K,L,Q respectively, to clean the

effect of time W .15 This provides the ‘pure’ inputs and ‘pure’ output, {(ε̂Kt , ε̂Lt , ε̂Qt)}Tt=1 as

explained above. The correlations of these ‘pure’ inputs/output with time are given in Table

(1) (where X1 = K,X2 = L, Y = Q and Z = W ). Clearly these correlations are very small

so we can infer that the assumption of independence between (εK , εL, εQ) and W , which is

part of our location-scale model, seems reasonable.

Robust measures of efficiency scores, providing the gaps in ‘pure’ units were computed

with m = 1500. This choice was done for letting less than 5% of points above the order-m

15For numerical convenience, all variables are scaled by their means, including the conditioning variable
time, denoted here by W .
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frontier, as shown in Figure 3. Note that from the values of m = 1500 and m → ∞ (the full

FDH frontier), all the results are quite similar.

The resulting efficiency scores δ̂m,t are shown in Figure 4, which illustrates that most of

the time, the time effect has indeed been cleaned from the production process. We see also

that most of the values of δ̂m,t are positive and some take very small (near zero) negative

values. Figure 5 exhibits the time path of output gaps in original units (in logs and re-scaled

by their mean). Figure 6 reports the values of the gap in original units for each country in

our sample at the first period of observation (1995: Q1) and last period (2019: Q2).

We give in Appendix C the full table of results for all the time periods. The table also

indicates the gaps Gt in original units of the DGP, as defined above (in log scale and re-scaled

by their mean). Figure 9 in Appendix C reports the values of output gap in original units

for all countries in our analysis for the first and last year of the observation period.

3.4 In-sample Fit of the Model

Our next step is to fit the prediction model described above by estimating the parametric

linear probit model and the nonparametric model of PSZ to the data described above. In

particular, we fit the following model:

E (Y |X = x,Z = z) = m(x, z) = m(X1, X2, Z), (3.20)

where X1,t = Spt−r1 is the spread lagged by r1 periods, X2,t = ∆G,t−r2 is the first difference of

the estimates of output gaps (production efficiency) lagged by r2 periods. Finally, Zt = Yt−r3 ,

where we recall that Yt is the dichotomous dependent variable, defined as Yt = 1 if “Italian

economy is in recession” in the quarter t and 0 otherwise and r3 is its chosen lag. Finally,

for smoothing Zt in the nonparametric approach we use the complete smoothing technique

suggested by Li et al. (2016), allowing different bandwidths for the continuous variables in

the two groups determined by the values of Z, as described in Section 2.1.

Even though there are only three potential predictors in the general specification (3.20),

many variations of it are possible that are based on different subsets of predictors and

different choices of lags for each predictor. In the following sub-sections, using data on Italy

we briefly show and discuss how a model selection can be done in such situations.16

16Each model required re-estimation of all the bandwidths. To simplify the computations, we used the rule-
of-thumb bandwidths from PSZ for all of them, which have correct theoretical rates and showed good perfor-
mance in simulations in PSZ. Specifically, for a continuous predictor Xj , we used hj(0) = 1.06T−1/(4+r)×σ̂j,0
and hj(1) = 1.06T−1/(4+r) × σ̂j,1, where σ̂j,0 and σ̂j,1 are the estimated standard deviations from data
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3.4.1 Selection of lags

As is typical in empirical time-series studies, there is no theory on what lags should be

chosen—it is largely an empirical issue. Here we will focus our discussion on the case when

r1 = r2 = 2 and r3 = 1. Thus, intuitively, our model assumes that the first difference of

our measure of output gap affects the probability of an economy to be in recession with

some delays, e.g., due to market imperfections and frictions. In particular, in this model it

is expected to act as an indicator of recession two periods in advance, similarly as the other

indicator, the spread, often used to forecast the recession, which in our case is expected to

indicate two periods before a recession.

We also considered other combinations of lags and none of them have dominated the one

we focus on here in the main text of the paper (see Appendix A for the related results). In

particular, as suggested in the literature for measuring the quality of the model fit, we used

the values of the achieved Maximum Likelihood and the Estrella Pseudo-R2 to compare the

models, although alternative measures of goodness-of-fit can also be used.17

3.4.2 Selection of predictors

For each combination of lags, we tried several specifications to check the sensitivity of results

with respect to dropping/adding of predictors of interest. The estimation results are shown

in Table 2 for the case when r1 = r2 = 2 and r3 = 1, and analogous results for other choices

of the lags are presented in the Appendix A. Specifically, the first column indicates which

coefficients of the index function were estimated: β0 is the constant, β1 is the coefficient

for the spread, β2 is the coefficient for the output gap and β3 is the coefficient for lagged

dependent variable. The second column reports the parametric estimates and the third

column presents their standard errors, while the fourth and the fifth columns present the

corresponding t-statistics and p-values for the two-sided tests (relying on the asymptotic

normality), respectively. Since the nonparametric estimates of the coefficients vary across

the observations, in this table we only present their averages (where available)—reported in

on Xj corresponding to Y = 0 and Y = 1, respectively. Meanwhile, for the discrete variable we use
γ = 0.1n−2/(d+4). We also tried the maximum likelihood cross-validation approach (adapted from PSZ), yet
it exhibited some instability and sensitivity to starting values, running into the problem of ‘spurious optima’.
This caveat is known for these methods to often occur particularly for small samples like ours, which was
also noticed in the simulations and discussed in Section 4 of PSZ, where the rule-of-thumb bandwidths often
outperformed the cross-validation bandwidths. In any case, improving bandwidth selection would therefore
be another natural direction for future research.

17Specifically, we also used the Efron Pseudo-R2, which gave similar results. For details of these measures
and related discussion, see PSZ and references therein.
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the last column of the table and discussed in more detail further on.18

In principle, it is possible to automatize the model selection process, e.g., using currently

popular statistical approaches in Machine Learning (e.g., forward step-wise selection, best

subset selection, various LASSO approaches, etc.) to our modeling, to arrive at a final parsi-

monious model suggested by “the machines” based on some pre-specified statistical criteria.

However, in the case of a small number of predictors like ours, it might be more valuable,

at least for illustration/pedagogical purposes, to discuss how a model can be selected by

practitioners, also in the spirit of forward step-wise and best subset selection methods, yet

thoughtfully rather than automatically.

We start with the Specification 1 in Table 2, which considers the spread as the only

predictor, i.e., it is the specification that Estrella and Mishkin (1997) used for the US economy

and the originator of the paradigm we tried to adapt and extend here. One can see that the

parametric estimate of β1 is 0.364 and is statistically significant at 1%. Note however that

the average of the nonparametric estimates is substantially smaller, around 0.184. Moreover,

the Pseudo-R2 of the parametric model is quite low, about 0.074, while for the nonparametric

it is 0.15, i.e., about 2 times higher than for the parametric model, yet still relatively low

from a perspective of predictive power, thus encouraging to try other or more predictors, as

we do below.

The Specification 2 considers the output gap as the only predictor. One can see that the

parametric estimate of β2 is 1.444 and is also statistically significant at 1%. Notably, it is

substantially larger in magnitude than the estimate of β1 in the Specification 1 (note that the

data on both variables were standardized). Interestingly, the average of the nonparametric

estimates is 1.531, i.e., has the same sign of the relationship and is also similar in magnitude

to the parametric estimate. Meanwhile, the Pseudo-R2 of the parametric and nonparametric

models are still fairly low, about 0.123 and 0.158, respectively, which is somewhat better than

for Specification 1, especially for the parametric model.

The Specification 3 considers both the spread and the output gap as the two predictors.

The parametric estimate of the coefficient of the spread (β1) is now 0.470, which is a bit

larger relative to what it was in Specification 1, and continues to be statistically significant

at 1%. Note that the average of the nonparametric estimates for this coefficient is about

18The nonparametric approach does not provide an estimate of β3 and so it is not presented.
In principle, what is possible is to estimate Pr (Yt = 1|X = x, Yt−1 = 1) − Pr (Yt = 1|X = x, Yt−1 = 0)
and Pr (Yt = 0|X = x, Yt−1 = 1) − Pr (Yt = 0|X = x, Yt−1 = 0) as well as Pr (Yt = 1|X = x, Yt−1 = 1) −
Pr (Yt = 0|X = x, Yt−1 = 0) and Pr (Yt = 0|X = x, Yt−1 = 1)−Pr (Yt = 1|X = x, Yt−1 = 0). As with other
nonparametric estimates, these may vary across different values of x and so we do not present them for the
sake of brevity.
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two times smaller. Meanwhile, the parametric estimate of the output gap (β2) is now 1.81,

which is slightly larger than what it was in Specification 2 (and continues to be a statistically

significant predictor at 1%), while the average of the nonparametric estimates of β2 is higher,

about 2.0, which is still fairly similar in magnitude to the parametric estimate. The Pseudo-

R2 of the parametric and nonparametric models are now 0.23 and 0.32, i.e., both improved

substantially relative to Specifications 1 and 2, suggesting that both variables have something

‘valuable to tell us’ in terms of predictions of the recession for this data.

Specification 4 is analogous to Specifications 1 and 2, except that it takes the lagged value

of the dependent variable as the only predictor. Since there is no continuous variable in this

specification we only use a parametric approach here, which gives 2.406 as the estimate of

β3, with a high statistical significance (well under 1%). Moreover, the Pseudo-R2 here is 0.6,

which is the highest so far.

Specifications 5 has the spread variable and the lagged recession indicator, i.e., this is the

model analogous to Ducker (1997), Kauppi and Saikkonen (2008), Park et al. (2020) and

many others. Specification 6 has the output gap variable and the lagged recession indicator,

while Specification 7 has all three variables in the model. In all three cases, the estimate

of β3 remained similar (albeit slightly lower) relative to Specification 4, while the Pseudo-

R2 increased to some extent, with the highest one for Specification 7 (about 0.64 for the

parametric and 0.71 for the nonparametric approaches). Meanwhile, relative to those from

Specifications 1, 2 and 3, the magnitudes of the estimates of β1 and β2 decreased further

(especially relative to Specification 3, which had both of them), while their standard errors

increased further. In turn, this led to a substantial increase in p-values to around 0.137 and

0.235 for β1 and β2 in Specifications 5 and 6, respectively and 0.076 and 0.145 in Specification

7, for the two-sided tests or half of those values for the one-sided tests.

Note that while we presented the two-sided test results, the one-sided tests might be

indeed more relevant here: a priori we would expect that the increasing output gap of a

country (i.e., its further lagging behind relative to peer countries) could serve as an early

signal of the country entering a recession. Similarly with our definition of the spread: the

increase in the difference between the Italian bonds and the German bonds is a cumulative

signal of what investors sense about the Italian economy, which may reflect the true dynamics

or contribute to the ‘self-fulfilling prophecies’ by forcing local businesses to pay higher local

interest rates or reduce the local investments. Even more evident is the expected sign for

the relationship between the recession indicator and its lagged value: the majority of the

quarters are where Yt = 0 (i.e., no recession) and most of them are also followed by Yt = 0,
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until the switch to Yt = 1 (recession) that stays for a few quarters as Yt = 0 until it switches

back to Yt = 1 and so on, i.e., implying a positive relationship between Yt and Yt−1.

The phenomenon where a powerful predictor of the dependent variable is the lagged

dependent variable, and possibly dominating all other predictors is, of course, very common

in time series. However, while it appears as the most powerful predictor of the three variables

that we considered here, it is important to note that the precise information on our lagged

value of the recession indicator is often not available for the most recent periods in real

time, which are also the periods that are the most important for the prediction of future

periods. This is because the OECD decisions on the turning points of a business cycle (peak

or trough) from which the variable is constructed usually come with some delay (similarly

as for NBER data about US), which may be as long as a few months to a few quarters.

That is, while there is a lot of useful historical information in this variable, most of it is

‘too old’ for the actual prediction of the future. And, this is where the other two predictors

might be useful, although their overall predictive power is partially taken over by the lagged

dependent variable once it becomes available, making β1 and β2 significant only at 5% and

10%, respectively, in the one-sided tests. Overall, considering this phenomenon and the

relatively small sample (96 observations), we deem these two continuous variables as useful

predictors for the case of Italy and in what follows we will focus on Specification 7, which

we will refer to as the ‘final specification’.19

3.4.3 Insights from the Final Specification

While focusing on the final specification, one can see that the nonparametric complete

smoothing approach offers similar (and slightly better) results as the parametric probit on

both the achieved maximum likelihood value and of the Pseudo-R2. Indeed, the Pseudo-R2

is around 64% for the parametric approach, while it is 71% for the nonparametric approach.

This suggests that the linearity assumption in the parametric approach may be a reason-

able approximation for both X1 (the Spread, Sp,t−2) and X2 (the output gap, ∆G,t−2) for

this data. Although this simplification led to a slightly lower attained goodness-of-fit, its

simplicity of estimation, especially due to the readily available inference procedures, may

warrant it a status of the preferred approach for this data and specification. Meanwhile, the

nonparametric approach can serve here as a robustness check tool and so a few words on

this are in order.

19The final specification, of course, may be different for other countries or even for Italy with a much
larger sample—verifying this could be an interesting avenue for future research, and the goal of a somewhat
detailed description above is to show a possible (albeit not only) algorithm for such research.
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Figure 6 exhibits the boxplots of the resulting local estimates of β0, β1 and β2 for the two

states of the economy Yt = 1 (recessions) and Yt = 0 (expansions).20 It is interesting to see

some similarity as well as substantial difference in the local estimates of β0, β1 and β2 across

the two groups of observations. In particular, note that only the medians of β2 are somewhat

similar, suggesting about some stability of the relationship between the predictors and the

response variable regardless of the state of the economy. (The estimates are very different for

β0, which is expected since the estimate of β0 determines the estimate of the probability of

recession, via the link function.) Also note that the median of the nonparametric estimates

for β1 is nearly zero for Yt = 1 and positive (around 0.5) when Yt = 0. This suggests

that, in this data the spread variable (X1,t = Sp,t−2) appears to be a more powerful predictor

during expansionary periods relative to recessionary periods, which is somewhat intuitive and

resembles the so-called liquidity-trap phenomenon in macroeconomics. One can also observe

a greater range and the interquartile range, as well as more outliers in the recessionary periods

for this variable, suggesting about greater possible estimation noise. It is also coherent with

the fact that while all recessions are coded here as Yt = 1, many (if not all) of them have

many unique features as well as those caused by possible different compositions of factors

and triggers, which in turn make predicting recessions a very challenging task.

We see an even greater difference for the first difference of our measure of output gap

(X2,t = ∆G,t−2). In particular, note that while the median of estimates for β2 are similar in

the two states of the economy, the range is very different and is larger for the recessionary

periods. In both cases the median is around 1.5, suggesting that the positive growth in

inefficiency, our measure of output gap, is associated with an increase in the probability to

be in a recession. This positive association seems to be more pronounced in expansionary

periods of the economy, as we see mostly a positive range there.21

We now look at the in-sample fit for modeling the probability of recessions in Figure 7.

We can indeed observe that both the nonparametric and parametric approaches fit the data

well (as seen with the various measures described above). In particular, note that most of

the recession periods, as established by the turning points of OECD.stat, are successfully

20The axes have been trimmed to visualize all boxplots on one scale.
21Here it is also worth contrasting the difference between the mean and the median of the estimates: the

former is substantially larger due to two extreme estimates of β2, which were around 155 (corresponding to
the first two periods in the data and not seen on the boxplots due to trimming of the axes), distorting the
mean substantially away from the median. Observing such anomalous estimates in nonparametric approaches
for some observations in real data is not uncommon, especially for relatively small samples like ours and so
the median would be a more reliable indicator of central tendency here. For the sake of illustrating the point
we reported both.
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captured by our model both using the parametric and the nonparametric approaches.

3.5 Out-of-sample forecasts

We now proceed with the out-of-sample forecasts, to see if we can have a reasonably good

prediction of the recession periods (one-period and two-periods ahead), using the data from

the beginning till 2016:Q1 from either the parametric or nonparametric approaches.22

The forecasts of the recessions are displayed in Figure 8. In most cases (and on average),

we can observe a slightly better forecast value for the parametric approach, both for the

case of the one-period ahead and for the two-periods ahead forecasts. In particular, note

that, with the one-period ahead forecasts, both approaches correctly and somewhat similarly

warn about the recession in Q1-2018 - Q2-2019, with the parametric approach slightly out-

performing. Both approaches with the one-period ahead forecasts correctly alert us to the

non-recession (or expansions) in Q1-2016 through Q3-2017, though both miss on warning

about the start of the recession in Q4-2017, while they manage to warn correctly about the

subsequent quarters being in the recession.

Finally, it is worth recalling here that the parametric approach can be viewed as a spe-

cial case of the nonparametric approach, in the sense that the latter allows for much more

flexibility and can be restricted further to obtain the former through reducing this flexibil-

ity. Interestingly, for this data set we see that despite assuming a naive (linear) and quite

restrictive (e.g., constancy of the first derivative) functional form for the index function, the

parametric approach still produced very similar conclusions and very similar or even slightly

better forecasts than the nonparametric approach which allows for much more flexibility.

This suggests that, for this sample and the specifications we considered, we can have more

confidence in the results and conclusions from the parametric approach, even though it im-

poses fairly restrictive assumptions. Of course for other data (e.g., for other countries or even

the same country but for different time periods or with different variables) this similarity

of parametric and nonparametric approaches may or may not hold a priori and so needs

to be verified and validated on a case-by-case basis. Indeed, it is very easy to construct an

example when parametric and nonparametric approaches deliver very different results and

conclusions, (e.g., see Monte Carlo examples in PSZ).

22Available sample size (past) at this time is 81.
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4 Concluding Remarks

In this paper, we have attempted to merge two so far largely unrelated streams of literature.

The first stream is about the non-parametric methods to estimate frontier efficiency of an

economy, which we tailor to estimate the output gap of a country. The other stream is

the literature on predicting economic recessions. We considered various methods among

the myriad of approaches, selecting and tailoring one that currently appears to be the most

suitable for a new measure of output gap to be used, inter alia, for estimating the probability

of economic recessions. For the latter goal we have chosen the paradigm started by Estrella

and Mishkin (1995, 1998), further refined by Duecker (1997) and Kauppi and Saikkonen

(2008) as well as their nonparametric version recently developed by Park et al (2017, 2020).

Naturally, endeavoring to merge the economic efficiency literature with other methods from

the many paradigms for forecasting of economic recessions would be a natural direction for

future research.

To illustrate our proposed framework that resulted from the merger of two different

literatures, we apply it to the context and data on the Italian economy. In particular, we

utilize the data from 1995 to 2019 and find that the proposed approach (using both the linear

probit model and its non-parametric version), is capable of giving useful insights, although

of course it is not a ‘crystal ball’ and more work is needed to refine and further improve this

method and, possibly, synthesize it with other methods as well as try it on other data sets.

In particular, it appears that our measure of output gap, based on efficiency measures in

general and via the estimation approach we considered here, is sound conceptually and can

be useful as a predictor (or a proxy) in the models for forecasting recessions and perhaps

other macroeconomic models. We acknowledge that there, of course, could be many other

good predictors or proxies for similar or different reasons and they could be fruitful avenues

for future research. Also, development of the asymptotic theory for the statistical inference

in the nonparametric approach (e.g., via bootstrap) would be an important direction for

future theoretical research.

23



Table 1: Correlation between W = time and pure inputs εX1, εX2 and pure output εY .

Pearson correlations

εX1 εX2 εY
W 0.000184 0.000102 0.000192

Spearman rank correlations

εX1 εX2 εY
W -0.003584 -0.018066 -0.009535

Kendall correlations

εX1 εX2 εY
W 0.002918 -0.011346 -0.004158
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Table 2: Parametric and Nonparametric Estimates of the Dynamic Probit Model of Reces-
sions in Italy, 1995-2019 (when lag of X1 = 2, lag of X2 = 2, lag of Z = 1)

Specification 1
ParamEst s.e. t-stat p-val NPEst

β0 -0.430 0.186 -2.309 0.021 -0.033
β1 0.364 0.140 2.598 0.009 0.184

Max.Log-Likelihood -0.654 -0.615
Estrella Pseudo-R2 0.074 0.148

Specification 2
ParamEst s.e. t-stat p-val NPEst

β0 -0.165 0.136 -1.209 0.227 0.091
β2 1.444 0.534 2.704 0.007 1.531

Max.Log-Likelihood -0.629 -0.610
Estrella Pseudo-R2 0.123 0.158

Specification 3
ParamEst s.e. t-stat p-val NPEst

β0 -0.657 0.211 -3.116 0.002 0.147
β1 0.470 0.152 3.082 0.002 0.230
β2 1.809 0.600 3.018 0.003 2.002

Max.Log-Likelihood -0.573 -0.522
Estrella Pseudo-R2 0.229 0.321

Specification 4
ParamEst s.e. t-stat p-val NPEst

β0 -1.198 0.228 -5.263 0.000 NaN
β3 2.406 0.337 7.136 0.000 NaN

Max.Log-Likelihood -0.356 NaN
Estrella Pseudo-R2 0.600 NaN

Specification 5
ParamEst s.e. t-stat p-val NPEst

β0 -1.443 0.287 -5.025 0.000 -0.040
β1 0.267 0.180 1.487 0.137 0.671
β3 2.366 0.343 6.893 0.000 NaN

Max.Log-Likelihood -0.344 -0.303
Estrella Pseudo-R2 0.619 0.679

Specification 6
ParamEst s.e. t-stat p-val NPEst

β0 -1.190 0.230 -5.166 0.000 0.222
β2 0.807 0.680 1.187 0.235 0.854
β3 2.296 0.346 6.635 0.000 NaN

Max.Log-Likelihood -0.346 -0.332
Estrella Pseudo-R2 0.615 0.638

Specification 7
ParamEst s.e. t-stat p-val NPEst

β0 -1.500 0.300 -5.000 0.000 0.001
β1 0.326 0.184 1.771 0.076 0.355
β2 1.096 0.753 1.456 0.145 4.801
β3 2.211 0.355 6.225 0.000 NaN

Max.Log-Likelihood -0.329 -0.286
Estrella Pseudo-R2 0.641 0.705

25



-4

-3

-2

-1

0

1

2

Q
1-

19
95

Q
3-

19
96

Q
1-

19
98

Q
3-

19
99

Q
1-

20
01

Q
3-

20
02

Q
1-

20
04

Q
3-

20
05

Q
1-

20
07

Q
3-

20
08

Q
1-

20
10

Q
3-

20
11

Q
1-

20
13

Q
3-

20
14

Q
1-

20
16

Q
3-

20
17

Q
1-

20
19

Growth Rate

Figure 1: The growth rate of GDP in Italy during 1995 - 2019.
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Figure 2: The spread variable during 1995 - 2019, calculated as the difference between the
10-year Italy Treasury bond rate and 10-year Germany Treasury bond rate in per cent.
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Figure 3: The percentage of points left above the order-m frontier, as a function of m. We
selected m = 1500 letting less than 5% of data points above the frontier.
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Figure 5: Evolution of GAP of Italy over time.

1 2 3

-2

-1

0

1

2

3

4

5

6

Local values of (
0i

,
1i

,
2i

) : Group Y=1 (Recession Years)

1 2 3

-2

-1

0

1

2

3

4

5

6

Local values of (
0i

,
1i

,
2i

): Group Y=0 (No-Recession Years)

Figure 6: Boxplots of the estimated local β’s, with the full sample of n = 98 data points.
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A Sensitivity Analysis and Model Validation

Table 3: Parametric and Nonparametric Estimates of Dynamic Probit Model of Recessions
in Italy, 1995-2019 (when lag of X1 = 1, lag of X2 = 2, lag of Z = 1)

Specification 1
ParamEst s.e. t-stat p-val NPEst

β0 -0.432 0.188 -2.298 0.022 0.020
β1 0.358 0.140 2.562 0.010 -0.277

Max.Log-Likelihood -0.654 -0.580
Estrella Pseudo-R2 0.073 0.214

Specification 2
ParamEst s.e. t-stat p-val NPEst

β0 -0.165 0.136 -1.209 0.227 0.091
β2 1.444 0.534 2.704 0.007 1.531

Max.Log-Likelihood -0.629 -0.610
Estrella Pseudo-R2 0.123 0.158

Specification 3
ParamEst s.e. t-stat p-val NPEst

β0 -0.624 0.209 -2.985 0.003 0.154
β1 0.434 0.148 2.939 0.003 -0.033
β2 1.730 0.594 2.913 0.004 1.466

Max.Log-Likelihood -0.578 -0.479
Estrella Pseudo-R2 0.219 0.397

Specification 4
ParamEst s.e. t-stat p-val NPEst

β0 -1.198 0.228 -5.263 0.000 NaN
β3 2.406 0.337 7.136 0.000 NaN

Max.Log-Likelihood -0.356 NaN
Estrella Pseudo-R2 0.600 NaN

Specification 5
ParamEst s.e. t-stat p-val NPEst

β0 -1.424 0.285 -4.998 0.000 0.007
β1 0.249 0.177 1.403 0.161 0.177
β3 2.360 0.343 6.888 0.000 NaN

Max.Log-Likelihood -0.346 -0.309
Estrella Pseudo-R2 0.617 0.671

Specification 6
ParamEst s.e. t-stat p-val NPEst

β0 -1.190 0.230 -5.166 0.000 0.222
β2 0.807 0.680 1.187 0.235 0.854
β3 2.296 0.346 6.635 0.000 NaN

Max.Log-Likelihood -0.346 -0.332
Estrella Pseudo-R2 0.615 0.638

Specification 7
ParamEst s.e. t-stat p-val NPEst

β0 -1.465 0.294 -4.978 0.000 0.066
β1 0.293 0.180 1.634 0.102 -0.021
β2 1.024 0.730 1.402 0.161 1.446
β3 2.215 0.355 6.248 0.000 NaN

Max.Log-Likelihood -0.332 -0.287
Estrella Pseudo-R2 0.637 0.703
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Table 4: Parametric and Nonparametric Estimates of Dynamic Probit Model of Recessions
in Italy, 1995-2019 (when lag of X1 = 3, lag of X2 = 2, lag of Z = 1)

Specification 1
ParamEst s.e. t-stat p-val NPEst

β0 -0.441 0.187 -2.359 0.018 0.360
β1 0.397 0.144 2.760 0.006 0.653

Max.Log-Likelihood -0.650 -0.604
Estrella Pseudo-R2 0.083 0.171

Specification 2
ParamEst s.e. t-stat p-val NPEst

β0 -0.152 0.137 -1.109 0.267 0.101
β2 1.444 0.537 2.690 0.007 1.525

Max.Log-Likelihood -0.629 -0.611
Estrella Pseudo-R2 0.123 0.157

Specification 3
ParamEst s.e. t-stat p-val NPEst

β0 -0.699 0.217 -3.226 0.001 0.505
β1 0.535 0.164 3.265 0.001 0.757
β2 1.885 0.616 3.059 0.002 1.628

Max.Log-Likelihood -0.564 -0.505
Estrella Pseudo-R2 0.245 0.353

Specification 4
ParamEst s.e. t-stat p-val NPEst

β0 -1.187 0.229 -5.189 0.000 NaN
β3 2.394 0.338 7.088 0.000 NaN

Max.Log-Likelihood -0.358 NaN
Estrella Pseudo-R2 0.597 NaN

Specification 5
ParamEst s.e. t-stat p-val NPEst

β0 -1.385 0.282 -4.908 0.000 0.140
β1 0.233 0.191 1.220 0.222 0.614
β3 2.330 0.343 6.803 0.000 NaN

Max.Log-Likelihood -0.350 -0.294
Estrella Pseudo-R2 0.611 0.694

Specification 6
ParamEst s.e. t-stat p-val NPEst

β0 -1.178 0.231 -5.091 0.000 0.241
β2 0.810 0.682 1.188 0.235 0.845
β3 2.284 0.347 6.587 0.000 NaN

Max.Log-Likelihood -0.349 -0.334
Estrella Pseudo-R2 0.613 0.635

Specification 7
ParamEst s.e. t-stat p-val NPEst

β0 -1.453 0.298 -4.871 0.000 0.128
β1 0.311 0.201 1.548 0.122 0.600
β2 1.113 0.761 1.463 0.144 1.578
β3 2.163 0.356 6.077 0.000 NaN

Max.Log-Likelihood -0.334 -0.282
Estrella Pseudo-R2 0.634 0.711
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Table 5: Parametric and Nonparametric Estimates of Dynamic Probit Model of Recessions
in Italy, 1995-2019 (when lag of X1 = 3, lag of X2 = 3, lag of Z = 1)

Specification 1
ParamEst s.e. t-stat p-val NPEst

β0 -0.441 0.187 -2.359 0.018 0.360
β1 0.397 0.144 2.760 0.006 0.653

Max.Log-Likelihood -0.650 -0.604
Estrella Pseudo-R2 0.083 0.171

Specification 2
ParamEst s.e. t-stat p-val NPEst

β0 -0.117 0.134 -0.869 0.385 -0.128
β2 0.665 0.385 1.726 0.084 1.073

Max.Log-Likelihood -0.666 -0.630
Estrella Pseudo-R2 0.051 0.122

Specification 3
ParamEst s.e. t-stat p-val NPEst

β0 -0.559 0.200 -2.792 0.005 0.261
β1 0.446 0.149 2.993 0.003 0.491
β2 0.822 0.405 2.028 0.043 1.764

Max.Log-Likelihood -0.616 -0.541
Estrella Pseudo-R2 0.149 0.288

Specification 4
ParamEst s.e. t-stat p-val NPEst

β0 -1.187 0.229 -5.189 0.000 NaN
β3 2.394 0.338 7.088 0.000 NaN

Max.Log-Likelihood -0.358 NaN
Estrella Pseudo-R2 0.597 NaN

Specification 5
ParamEst s.e. t-stat p-val NPEst

β0 -1.385 0.282 -4.908 0.000 0.140
β1 0.233 0.191 1.220 0.222 0.614
β3 2.330 0.343 6.803 0.000 NaN

Max.Log-Likelihood -0.350 -0.294
Estrella Pseudo-R2 0.611 0.694

Specification 6
ParamEst s.e. t-stat p-val NPEst

β0 -1.184 0.231 -5.132 0.000 0.070
β2 0.017 0.184 0.093 0.926 0.954
β3 2.387 0.345 6.920 0.000 NaN

Max.Log-Likelihood -0.358 -0.270
Estrella Pseudo-R2 0.597 0.728

Specification 7
ParamEst s.e. t-stat p-val NPEst

β0 -1.383 0.283 -4.885 0.000 -0.098
β1 0.237 0.191 1.241 0.215 0.762
β2 0.045 0.213 0.211 0.833 0.988
β3 2.312 0.352 6.570 0.000 NaN

Max.Log-Likelihood -0.349 -0.250
Estrella Pseudo-R2 0.611 0.756
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Table 6: Parametric and Nonparametric Estimates of Dynamic Probit Model of Recessions
in Italy, 1995-2019 (when lag of X1 = 2, lag of X2 = 3, lag of Z = 1)

Specification 1
ParamEst s.e. t-stat p-val NPEst

β0 -0.494 0.191 -2.587 0.010 0.666
β1 0.449 0.148 3.025 0.002 0.864

Max.Log-Likelihood -0.640 -0.594
Estrella Pseudo-R2 0.102 0.190

Specification 2
ParamEst s.e. t-stat p-val NPEst

β0 -0.117 0.134 -0.869 0.385 -0.128
β2 0.665 0.385 1.726 0.084 1.073

Max.Log-Likelihood -0.666 -0.630
Estrella Pseudo-R2 0.051 0.122

Specification 3
ParamEst s.e. t-stat p-val NPEst

β0 -0.593 0.202 -2.940 0.003 0.469
β1 0.480 0.151 3.175 0.001 0.661
β2 0.788 0.409 1.927 0.054 1.768

Max.Log-Likelihood -0.608 -0.537
Estrella Pseudo-R2 0.163 0.295

Specification 4
ParamEst s.e. t-stat p-val NPEst

β0 -1.187 0.229 -5.189 0.000 NaN
β3 2.394 0.338 7.088 0.000 NaN

Max.Log-Likelihood -0.358 NaN
Estrella Pseudo-R2 0.597 NaN

Specification 5
ParamEst s.e. t-stat p-val NPEst

β0 -1.467 0.291 -5.034 0.000 0.184
β1 0.316 0.193 1.637 0.102 1.132
β3 2.332 0.345 6.752 0.000 NaN

Max.Log-Likelihood -0.343 -0.297
Estrella Pseudo-R2 0.621 0.690

Specification 6
ParamEst s.e. t-stat p-val NPEst

β0 -1.184 0.231 -5.132 0.000 0.070
β2 0.017 0.184 0.093 0.926 0.954
β3 2.387 0.345 6.920 0.000 NaN

Max.Log-Likelihood -0.358 -0.270
Estrella Pseudo-R2 0.597 0.728

Specification 7
ParamEst s.e. t-stat p-val NPEst

β0 -1.463 0.292 -5.005 0.000 -0.024
β1 0.318 0.193 1.648 0.099 1.054
β2 0.038 0.209 0.181 0.857 1.623
β3 2.317 0.355 6.534 0.000 NaN

Max.Log-Likelihood -0.343 -0.265
Estrella Pseudo-R2 0.622 0.735
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Table 7: Parametric and Nonparametric Estimates of Dynamic Probit Model of Recessions
in Italy, 1995-2019 (when lag of X1 = 1, lag of X2 = 3, lag of Z = 1)

Specification 1
ParamEst s.e. t-stat p-val NPEst

β0 -0.522 0.194 -2.685 0.007 0.538
β1 0.464 0.148 3.130 0.002 0.808

Max.Log-Likelihood -0.636 -0.583
Estrella Pseudo-R2 0.109 0.210

Specification 2
ParamEst s.e. t-stat p-val NPEst

β0 -0.117 0.134 -0.869 0.385 -0.128
β2 0.665 0.385 1.726 0.084 1.073

Max.Log-Likelihood -0.666 -0.630
Estrella Pseudo-R2 0.051 0.122

Specification 3
ParamEst s.e. t-stat p-val NPEst

β0 -0.631 0.206 -3.071 0.002 0.508
β1 0.504 0.151 3.333 0.001 0.755
β2 0.816 0.413 1.976 0.048 2.031

Max.Log-Likelihood -0.602 -0.518
Estrella Pseudo-R2 0.174 0.330

Specification 4
ParamEst s.e. t-stat p-val NPEst

β0 -1.187 0.229 -5.189 0.000 NaN
β3 2.394 0.338 7.088 0.000 NaN

Max.Log-Likelihood -0.358 NaN
Estrella Pseudo-R2 0.597 NaN

Specification 5
ParamEst s.e. t-stat p-val NPEst

β0 -1.462 0.292 -5.001 0.000 0.207
β1 0.313 0.196 1.596 0.110 1.336
β3 2.320 0.345 6.718 0.000 NaN

Max.Log-Likelihood -0.344 -0.304
Estrella Pseudo-R2 0.620 0.680

Specification 6
ParamEst s.e. t-stat p-val NPEst

β0 -1.184 0.231 -5.132 0.000 0.070
β2 0.017 0.184 0.093 0.926 0.954
β3 2.387 0.345 6.920 0.000 NaN

Max.Log-Likelihood -0.358 -0.270
Estrella Pseudo-R2 0.597 0.728

Specification 7
ParamEst s.e. t-stat p-val NPEst

β0 -1.459 0.293 -4.983 0.000 -0.027
β1 0.318 0.196 1.619 0.105 1.286
β2 0.052 0.210 0.245 0.806 1.937
β3 2.299 0.355 6.480 0.000 NaN

Max.Log-Likelihood -0.343 -0.264
Estrella Pseudo-R2 0.621 0.736
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Table 8: Parametric and Nonparametric Estimates of Dynamic Probit Model of Recessions
in Italy, 1995-2019 (when lag of X1 = 2, lag of X2 = 2, lag of Z = 2)

Specification 1
ParamEst s.e. t-stat p-val NPEst

β0 -0.430 0.186 -2.309 0.021 -0.033
β1 0.364 0.140 2.598 0.009 0.184

Max.Log-Likelihood -0.654 -0.615
Estrella Pseudo-R2 0.074 0.148

Specification 2
ParamEst s.e. t-stat p-val NPEst

β0 -0.165 0.136 -1.209 0.227 0.091
β2 1.444 0.534 2.704 0.007 1.531

Max.Log-Likelihood -0.629 -0.610
Estrella Pseudo-R2 0.123 0.158

Specification 3
ParamEst s.e. t-stat p-val NPEst

β0 -0.657 0.211 -3.116 0.002 0.147
β1 0.470 0.152 3.082 0.002 0.230
β2 1.809 0.600 3.018 0.003 2.002

Max.Log-Likelihood -0.573 -0.522
Estrella Pseudo-R2 0.229 0.321

Specification 4
ParamEst s.e. t-stat p-val NPEst

β0 -0.751 0.191 -3.930 0.000 NaN
β3 1.481 0.285 5.206 0.000 NaN

Max.Log-Likelihood -0.538 NaN
Estrella Pseudo-R2 0.292 NaN

Specification 5
ParamEst s.e. t-stat p-val NPEst

β0 -1.018 0.238 -4.284 0.000 0.021
β1 0.296 0.150 1.973 0.049 0.755
β3 1.430 0.290 4.930 0.000 NaN

Max.Log-Likelihood -0.518 -0.464
Estrella Pseudo-R2 0.330 0.424

Specification 6
ParamEst s.e. t-stat p-val NPEst

β0 -0.727 0.193 -3.764 0.000 0.210
β2 0.962 0.575 1.673 0.094 1.416
β3 1.325 0.297 4.460 0.000 NaN

Max.Log-Likelihood -0.518 -0.486
Estrella Pseudo-R2 0.329 0.385

Specification 7
ParamEst s.e. t-stat p-val NPEst

β0 -1.061 0.247 -4.287 0.000 0.233
β1 0.366 0.157 2.330 0.020 0.627
β2 1.263 0.636 1.986 0.047 0.649
β3 1.207 0.306 3.941 0.000 NaN

Max.Log-Likelihood -0.488 -0.417
Estrella Pseudo-R2 0.382 0.502
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B Data Description

Country Y K L

Austria Mean 3.35E+05 1.25E+06 3963.9
SD 40359 1.13E+05 235.81

Belgium Mean 4.11E+05 1.43E+06 4403.5
SD 48008 2.16E+05 285.89

Denmark Mean 2.34E+05 9.16E+05 2777.3
SD 21562 2.10E+05 78.092

Finland Mean 1.94E+05 7.41E+05 2405.5
SD 25712 41161 156.8

France Mean 2.24E+06 6.87E+06 26681
SD 2.34E+05 2.15E+06 1356.2

Germany Mean 3.14E+06 1.02E+07 40683
SD 3.02E+05 6.55E+05 2052.3

Ireland Mean 1.95E+05 2.48E+06 1854.3
SD 63151 2.48E+06 250.37

Israel Mean 2.01E+05 7.37E+05 3193.9
SD 51294 1.37E+05 596.6

Italy Mean 2.03E+06 5.78E+06 23710
SD 92116 1.53E+06 1146

Korea Mean 1.38E+06 6.84E+06 23429
SD 3.92E+05 1.08E+06 2170.3

Netherlands Mean 7.07E+05 2.31E+06 8412.5
SD 84283 3.30E+05 485.19

New Zealand Mean 1.27E+05 3.98E+05 2096.1
SD 24578 1.06E+05 276.78

Norway Mean 2.71E+05 8.50E+05 2498.4
SD 34325 2.09E+05 221.85

Spain Mean 1.36E+06 5.07E+06 18192
SD 1.89E+05 9.93E+05 2143

Sweden Mean 3.67E+05 1.24E+06 4480.6
SD 59666 2.82E+05 336.44

United Kingdom Mean 2.19E+06 5.69E+06 29036
SD 2.93E+05 7.03E+05 1878.7
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C Measures of Efficiencies

Date δ δm λ λm GAP GAPm

1995.1 0 -0.21851 1 0.98365 0 -0.22212

1995.2 0 -0.26505 1 0.98018 0 -0.26932

1995.3 0.000446 -0.033551 1 0.99749 0.000453 -0.034077

1995.4 0 -0.035272 1 0.99737 0 -0.03581

1996.1 0 -0.21622 1 0.98387 0 -0.21942

1996.2 0 -0.215 1 0.98397 0 -0.21809

1996.3 0.012553 0.012265 1.0009 1.0009 0.012727 0.012435

1996.4 0 -0.21445 1 0.98402 0 -0.21732

1997.1 0 -0.21437 1 0.98404 0 -0.21714

1997.2 0 -0.21643 1 0.98391 0 -0.21913

1997.3 0 -0.21701 1 0.98388 0 -0.21961

1997.4 0 -0.11868 1 0.9912 0 -0.12004

1998.1 0.010762 -0.015923 1.0008 0.99882 0.01088 -0.016098

1998.2 0.011665 -0.01464 1.0009 0.99892 0.011787 -0.014793

1998.3 0.014662 0.011138 1.0011 1.0008 0.014808 0.011249

1998.4 0.023339 -0.003768 1.0017 0.99972 0.023559 -0.0038035

1999.1 0.022348 -0.004278 1.0017 0.99968 0.022546 -0.004316

1999.2 0.022951 0.020456 1.0017 1.0015 0.023142 0.020627

1999.3 0.019401 0.016882 1.0014 1.0012 0.019552 0.017014

1999.4 0.010497 0.00794 1.0008 1.0006 0.010573 0.0079975

2000.1 0.004246 0.002897 1.0003 1.0002 0.0042744 0.0029164

2000.2 0.00207 0.001371 1.0002 1.0001 0.0020827 0.0013794

2000.3 0.001275 0.000977 1.0001 1.0001 0.0012821 0.00098242

2000.4 0 -0.002169 1 0.99984 0 -0.0021798

2001.1 0 -0.00206 1 0.99985 0 -0.002069

2001.2 0 -0.000543 1 0.99996 0 -0.00054506

2001.3 0.015874 0.015159 1.0012 1.0011 0.015925 0.015208

2001.4 0.019816 0.01909 1.0015 1.0014 0.019868 0.01914

2002.1 0.024743 0.02401 1.0018 1.0018 0.024792 0.024058

2002.2 0.024744 0.023996 1.0018 1.0018 0.024778 0.024029

2002.3 0.026664 0.025895 1.0019 1.0019 0.026685 0.025915

2002.4 0.027563 0.026776 1.002 1.002 0.027567 0.02678

Continued on next page
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Date δ δm λ λm GAP GAPm

2003.1 0.034427 0.033625 1.0025 1.0025 0.034411 0.033609

2003.2 0.041866 0.041056 1.0031 1.003 0.04182 0.041011

2003.3 0.044656 0.043837 1.0033 1.0032 0.044579 0.043761

2003.4 0.041716 0.040892 1.003 1.003 0.041617 0.040795

2004.1 0.041579 0.040754 1.003 1.003 0.041454 0.040632

2004.2 0.042656 0.041826 1.0031 1.003 0.042501 0.041674

2004.3 0.045739 0.044903 1.0033 1.0033 0.045543 0.044711

2004.4 0.04872 0.047879 1.0035 1.0035 0.04848 0.047643

2005.1 0.055213 0.054366 1.004 1.0039 0.054905 0.054063

2005.2 0.050126 0.049274 1.0036 1.0036 0.049814 0.048967

2005.3 0.048081 0.047228 1.0035 1.0034 0.04775 0.046903

2005.4 0.049974 0.049115 1.0036 1.0035 0.049598 0.048745

2006.1 0.050511 0.04964 1.0036 1.0036 0.050098 0.049234

2006.2 0.049037 0.04815 1.0035 1.0035 0.048604 0.047725

2006.3 0.049926 0.049049 1.0036 1.0035 0.049452 0.048584

2006.4 0.042162 0.041261 1.003 1.003 0.041735 0.040843

2007.1 0.044862 0.043961 1.0032 1.0032 0.044378 0.043487

2007.2 0.049876 0.04896 1.0036 1.0035 0.049305 0.0484

2007.3 0.054173 0.053248 1.0039 1.0038 0.053518 0.052604

2007.4 0.059529 0.058596 1.0043 1.0042 0.058771 0.05785

2008.1 0.053911 0.052988 1.0039 1.0038 0.05319 0.052279

2008.2 0.067195 0.066277 1.0048 1.0047 0.066253 0.065348

2008.3 0.084608 0.083695 1.0061 1.006 0.083367 0.082468

2008.4 0.11102 0.11012 1.008 1.0079 0.10932 0.10843

2009.1 0.14186 0.14097 1.0102 1.0101 0.1396 0.13872

2009.2 0.1445 0.14278 1.0104 1.0103 0.14211 0.14042

2009.3 0.14355 0.14056 1.0103 1.0101 0.14108 0.13815

2009.4 0.14433 0.10546 1.0103 1.0076 0.14175 0.10358

2010.1 0.004596 0.003892 1.0003 1.0003 0.0045113 0.0038203

2010.2 0.001087 0.00084 1.0001 1.0001 0.0010663 0.000824

2010.3 0 -0.001903 1 0.99986 0 -0.0018656

2010.4 0 -0.001183 1 0.99992 0 -0.001159

2011.1 0 -0.00195 1 0.99986 0 -0.0019093

2011.2 0 -0.003906 1 0.99972 0 -0.0038222

Continued on next page
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Date δ δm λ λm GAP GAPm

2011.3 0 -0.004637 1 0.99967 0 -0.0045348

2011.4 0 -0.004595 1 0.99967 0 -0.004491

2012.1 0 -0.006826 1 0.99951 0 -0.0066676

2012.2 0 -0.003307 1 0.99976 0 -0.0032284

2012.3 0 -0.003546 1 0.99975 0 -0.0034597

2012.4 0 -0.003994 1 0.99972 0 -0.0038945

2013.1 0 -0.001276 1 0.99991 0 -0.0012435

2013.2 0 -0.000628 1 0.99996 0 -0.00061167

2013.3 0 -0.004447 1 0.99968 0 -0.004329

2013.4 0 -0.036703 1 0.99739 0 -0.035709

2014.1 0 -0.00407 1 0.99971 0 -0.0039576

2014.2 0 -0.002331 1 0.99983 0 -0.0022654

2014.3 0 -0.001315 1 0.99991 0 -0.0012773

2014.4 0 -0.000639 1 0.99995 0 -0.00062037

2015.1 0 -0.00888 1 0.99937 0 -0.0086167

2015.2 0 -0.037797 1 0.99732 0 -0.036658

2015.3 0 -0.038495 1 0.99727 0 -0.037316

2015.4 0 -0.006379 1 0.99955 0 -0.0061805

2016.1 0 -0.001171 1 0.99992 0 -0.001134

2016.2 0 -0.000165 1 0.99999 0 -0.00015971

2016.3 0 -0.005117 1 0.99964 0 -0.0049506

2016.4 0 -0.000651 1 0.99995 0 -0.00062954

2017.1 0 -0.000332 1 0.99998 0 -0.00032091

2017.2 0 -0.000683 1 0.99995 0 -0.00065988

2017.3 0 -0.000485 1 0.99997 0 -0.00046837

2017.4 0 -0.001568 1 0.99989 0 -0.0015136

2018.1 0 -0.00429 1 0.9997 0 -0.0041393

2018.2 0 -0.001815 1 0.99987 0 -0.0017505

2018.3 0 -0.00188 1 0.99987 0 -0.0018124

2018.4 0 -0.009783 1 0.99931 0 -0.0094274

2019.1 0 -0.009008 1 0.99937 0 -0.0086771

2019.2 0 -0.034192 1 0.9976 0 -0.032923

Table 9: Different measures of efficiency: Efficiency δ, Order-m Efficiency δm, Time Conditional

Efficiency λ, Order-m Time Conditional Efficiency λm, Pure Time Conditional Efficiency GAP ,

Order-m Pure Time Conditional Efficiency GAPm.
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Figure 9: Our estimates of Output Gap for a sample of 16 countries from for 1995 and 2019.
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Basu, S. and J. G. Fernald (2009). What do we know (and not know) about potential output? Federal

Reserve Bank of St. Louis Review 91, 187–213.

Baxter, M. and R. King (1999). Measuring business cycles: Approximate band-pass filters for economic time

series. Review of Economics and Statistics 81, 575–593.

Beveridge, S. and C. Nelson (1981). A new approach to the decomposition of economic time series into

permanent and transitory components with particular attention to the measurement of the business cycle.

Journal of Monetary Economics 7, 151–174.
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