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Abstract 

In data envelopment analysis (DEA), the curse of dimensionality problem may 

jeopardize the accuracy or even the relevance of results when there is a relatively 

large dimension of inputs and outputs, even for relatively large samples. Recently, a 

machine learning approach based on the least absolute shrinkage and selection 

operator (LASSO) for variable selection was combined with SCNLS (a special case of 

DEA), and dubbed as LASSO-SCNLS, as a way to circumvent the curse of dimensionality 

problem. In this paper, we revisit this interesting approach, by considering various 

data generating processes. We also explore a more advanced version of LASSO, the 

so-called elastic net (EN) approach, adapt it to DEA and propose the EN-DEA. Our 

Monte Carlo simulations provide additional and to some extent, new evidence and 

conclusions. In particular, we find that none of the considered approaches clearly 

dominate the others. To circumvent the curse of dimensionality of DEA in the context 

of big wide data, we also propose a simplified two-step approach which we call 

LASSO+DEA. We find that the proposed simplified approach could be more useful than 

the existing more sophisticated approaches for reducing very large dimensions into 

sparser, more parsimonious DEA models that attain greater discriminatory power and 

suffer less from the curse of dimensionality. 
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1. Introduction 

Data envelopment analysis (DEA) is a popular and effective tool to measure the 

relative efficiency of decision making units (DMUs) with multiple inputs and multiple 

outputs (Charnes et al., 1978). 2  DEA has been widely used to analyze many 

industries.3 It has also been used as a data-driven tool for building a composite index 

and for balanced benchmarking (Sherman and Zhu, 2013). Recently, it was advocated 

that DEA can be viewed as a method (or tool) for data-oriented analytics in 

performance evaluation and benchmarking, as part of a broader toolbox for data 

enabled analytics (Zhu, 2020). 

A well-known limitation of DEA (and virtually any non-parametric estimator) is the 

so-called curse of dimensionality—the dependency of the accuracy or explanatory 

power of the estimator on the dimension of the problem. This limitation becomes 

especially pronounced in the modern era of big wide data, which is often rich on 

dimensions describing various objects of interest, e.g., characteristics of customers, 

which can be viewed as numerous inputs of the customers being the DMUs. 

One of the popular approaches in general statistics for dealing with such big wide 

data is LASSO—the Least Absolute Shrinkage and Selection Operator, proposed by 

Tibshirani (1996) (Meinshausen and Bühlmann, 2006; Tibshirani, 2011). In a nutshell, 

the idea of LASSO is to select a sparse (i.e., smaller in dimension) model by ‘shrinking’ 

the estimated effect of some of the variables to zero through !"-type regularization 

or by penalty on the coefficients added to the standard (typically least squares) 

problem. Such shrinking or regularization usually leads to bias in the estimates of the 

coefficients, yet also helps in reducing the prediction error of the model (and the 

overall mean squared error), making it more parsimonious or sparse and easier to 

explain and use for modelling and, possibly, for predictive analytics. Such sparse 

models are then easier to handle and interpret in practice and have a higher out-of-

�������������������������
2 The roots of DEA also go back to economic theory (activity analysis) modelling of Debreu (1951), Koopmans 
(1951a, b) and, most prominently, the seminal work of Farrell (1957). 

3 Also see reviews by Cook and Seiford (2009), Liu et al. (2013, 2016) and more recently by Emrouznejad and Yang 
(2018). 
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sample prediction accuracy and avoid the over-fitting challenges. This method is 

especially useful when the dimension of the problem is greater than the sample size.4  

The first breakthrough in adapting LASSO to DEA appears to be due to Lee and Cai 

(2020), which is considered in the context of small datasets. In their interesting paper, 

Lee and Cai (2020) adapted LASSO by using the characterization of DEA known as the 

sign-constrained convex nonparametric least squares (SCNLS), proposed by 

Kuosmanen (2006) and Kuosmanen and Johnson (2010). They named it LASSO-SCNLS. 

This is the name we will also use here, interchangeably with the name LASSO-DEA, to 

attract the attention of a larger DEA audience, some of which might be less familiar 

with the interesting approach often referred to as SCNLS or by other names.5 

In their simulation study, Lee and Cai (2020) used 9 inputs in their data generating 

process (DGP) and proposed a comparison of different methods by reducing the 

dimension of DEA one-by-one. They concluded that for a single-output case PCA-DEA 

is superior in most dimensions and LASSO-SCNLS dominates Group LASSO-SCNLS 

(adapting group LASSO to SCNLS) in most cases. For a multiple-output case they 

concluded that PCA-DEA and random methods perform poorly, and Group LASSO-

SCNLS performs better than LASSO and generally dominates LASSO-SCNLS in most 

dimensions. They also concluded that the proposed LASSO-SCNLS method and its 

variants provide useful guidelines for the DEA with small datasets. 

A key question arises: What about other versions of LASSO when it is adapted to 

DEA? In this paper we consider an extension of the basic LASSO (i.e., elastic net or EN) 

and adapt it to DEA and then perform more comprehensive Monte Carlo (MC) analysis 

starting with the scenarios considered by Lee and Cai (2020) and then some more 

general scenarios. 

�������������������������
�� E.g., see Tibshirani (2011) and Bühlmann and van de Geer (2011) for more details and references about LASSO.�

5 As pointed out by Kuosmanen (2006), SCNLS is an equivalent characterization of the output-oriented variable 
returns to scale (VRS) DEA model with a single-output case, which is also proven in Seijo and Sen (2011). Some 
attempts have been recently made to generalize this framework to multioutput by Kuosmanen and Johnson (2017) 
using direction distance function. Also, encouraging results from Wilson (2018) and Zelenyuk (2020) suggest that 
often one may still retain most of the relevant information by proxying all dimensions of outputs either via PCA or 
via price-based aggregation into total revenue. 
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From our extensive simulations, we find that among the different approaches we 

considered, the winners (typically by a small margin) vary across the scenarios, with 

no clear winner overall. More importantly, the difference among the approaches is 

usually not statistically significant—it is typically within two standard errors or even 

much less so. 

Thus, while we believe that the theoretical contribution of Lee and Cai (2020), 

such as the pioneering work adapting Lasso for DEA context, is very important, it 

seems it would be fair to conclude from more extensive MC simulations that the other 

approaches are performing similarly well as LASSO-SCNLS. 

While most of the DEA studies focus on relatively small data sets, and with 

relatively small dimensions, the modern age of development is increasingly 

demanding the analysis of big and often wide data6, which has large dimensions. 

Current exceptions are the recent works by Misiunas et al. (2016), Khezrimotlagh et 

al. (2019), Charles et al. (2019) and Zelenyuk (2020) and we will try to contribute to 

this literature through this paper. In particular, for the big wide data cases where the 

true (yet unknown) model is sparse, we propose a simplified two-step approach to 

circumvent the curse of dimensionality of DEA. This approach involves two stages: 

standard LASSO methods are used to reduce the problem to a sparse problem at the 

first stage and then DEA is used at the second stage. Perhaps surprisingly, our MC 

simulations suggest this approach performs better than the more sophisticated 

LASSO-SCNLS. 

The rest of the paper is organized as follows. Section 2 describes the LASSO-SCNLS 

approach that was proposed by Lee and Cai (2020). Section 3 introduces another 

�������������������������

� Being a relatively new area of research, it appears that there is no one unanimously accepted definition of Big 

Data (Kitchin and McArdle, 2016). It is true that some scholars think of it as the case of a large number of 
observations—it is referred to as the ‘Big long data’ sometimes and was typically called ‘large samples’ in the past. 
Such data is actually a more preferred environment (in general and for DEA in particular) as it can enjoy the results 
of the large sample theories in statistics (e.g., see Zhu et al., 2018; Khezrimotlagh et al., 2019 on such contexts). 
Others think of Big Data as the environment where the number of variables is very large, potentially larger than the 
number of observations—it is a harder problem to deal with (especially for DEA), and is sometimes referred to as 
“Big wide data” (Lai et al., 2019; Zelenyuk, 2020). This area is what we will focus on, while acknowledging that there 
are also many other aspects of Big data, such as velocity, veracity (Erl et al., 2016), etc. Similar to Zelenyuk (2020), 
we focus on the case of very large input–output dimensions where the curse of dimensionality makes DEA 
applications practically infeasible.�
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(more advanced) version of LASSO, the so-called EN, adapting it to DEA and focuses 

on the case of variable correlation. Section 4 presents our simplified two-step 

approach. The results of MC simulations are presented in Section 5. Conclusions and 

directions for future research are discussed in Section 6. 

 

2. The LASSO-SCNLS method 

In this section, we first briefly describe LASSO--one of the main approaches in machine 

learning7. Then we describe SCNLS and then its combination with LASSO. 

 

2.1. LASSO and group LASSO 

For simplicity, consider a standard regression problem – a data set with # 

observations with standardized regressors $%& and a dependent variable '%  for ( =

1,… , # and - = 1,… , .. And the researcher wants to fit or estimate the coefficients 

of the following linear regression model, 

 

'% = / + ∑ $%&2&
3
&4" ,					( = 1,… , #                      (1) 

 

where / and 2&  are the intercept and coefficients of regressors in the regression. 

Ordinary least squares, OLS, or its weighted versions (WLS) are the most common 

approaches to do so. However, when the number of regressors is very large, the OLS 

or WLS might be not very reliable. OLS is especially problematic when the dimension 

is larger than the number of observations, which is a more and more common case 

for modern data environments, sometimes referred to as big wide data. As a way to 

resolve the problem, and effectively anticipate the advance of the big wide data wave 

several decades before their arrival, Tibshirani (1996) suggested regularizing it by 

imposing an !"-penalization or price on the total sum of coefficients, i.e., he suggested 

solving the following !"-penalized regression problem 

�������������������������
7 E.g., see Mullainathan and Spiess (2017), Athey and Imbens (2019) and Hastie et al. (2009) for more details. 
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min
9,:

		 "
;
∑ ('% − / − ∑ $%&2&

3
&4" );?

%4" + @∑ |2&|
3
&4"               (2a) 

 

where @ is a penalty price or tuning parameter chosen by the researcher (typically 

via some data-driven procedure like cross-validation).8 

As pointed out by Tibshirani (1996) and exploited by many other works since then, 

the problem (2a) is also equivalent to setting B = 1 when solving the following more 

general constrained optimization problem (sometimes referred to as a bridge or 

general ridge regression) 

 

min
9,:

		 "
;
∑ ('% − / − ∑ $%&2&

3
&4" );?

%4" ,			C. E.		‖2‖G ≤ C         (2b) 

 

where 2 = I2",… , 23J
K

 and ‖2‖G  denotes a suitable !G -norm (e.g., ‖2‖" =

∑ |2&|
3
&4"  and ‖2‖; = L∑ 2&;

3
&4" , which are the most common choices in practice) 

and C can be understood as the `budget’ on the coefficients (which has one-to-one 

correspondence with @).  

It is also worth noting that choosing B = 2 leads to the so-called basic `ridge 

regression’, 9  while choosing B = 0  leads to the so-called `best subset selection’ 

approach, which is an interesting alternative to LASSO, although typically much more 

computer intensive than LASSO and we leave its exploration regarding DEA for future 

research. As pointed out by Tibshirani (1996), the LASSO estimate can be interpreted 

as a Bayesian posterior mode estimate when the regression parameters have 

independent Laplace (i.e., double-exponential) priors. The spirit of the LASSO is to use 

a prior which relies on the Laplace rather than the (more familiar) normal distribution. 

�������������������������
8 This implicitly assumes that the data for each input $% is either in logs or standardized (by subtracting its sample 
mean and then dividing by its sample standard deviation), to ensure the same unit of measurement of the 
corresponding coefficients (2%).  

9 It is in fact a special case of the so-called Tikhonov regularization for ill-posed problems, due to Tikhonov (1943) 
and later adapted to statistics by Foster (1961) who interpreted it as a Wiener–Kolmogorov filter and Hoerl (1962) 
who called it ridge regression. 
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A normal prior, essentially, imposes a quadratic penalty or !;-norm, if centered at 

zero and, therefore, it allows for small coefficients but not coefficients being exactly 

zero which are corresponding to exclusion restrictions and are quite important in our 

framework as well as the ‘large ., small #’ framework. The Laplace prior is associated 

with a !"(rather than !;) penalty and can deal more effectively with the problem of 

proliferation of (irrelevant) regressors.  

While being just a special case of (2b), an important distinctive feature of LASSO 

(e.g., relative to the ridge regression), is that besides shrinking the coefficients (to 

reduce the variance at the expense of inducing some bias), as is also done by the ridge 

regression, LASSO also (more importantly) does the variable selection, by shrinking 

some (and often many) coefficients of the regressors to zero, depending on the 

positive penalty parameter @  or the budget C . In particular, the larger is @  (or, 

equivalently, the smaller is C) the more regressors will be shrunk to zero. This, indeed, 

appears to be the most important aspect of LASSO in general when it is adapted to 

DEA. 

The best subset selection approach also shrinks some coefficients to zero, yet 

does so algorithmically, with much more computational burden, because this is a non-

convex optimization problem. Meanwhile, LASSO, uses the smallest order of the norm 

(!") in the penalty that guarantees the problem is convex and so is much easier to 

handle, especially with modern computing power and optimization methods. 

Slightly different from the standard LASSO, the group LASSO considers the 

problem of selecting grouped variables (regressors) for accurate prediction in 

regression and shrinks the selected group of regressors simultaneously (Yuan and Lin, 

2006). To be precise, let O  be the set of input groups, and P ∈ O . The set RS 

represents the set of input variables in P -th group. The group LASSO is then 

represented by10 

 

�������������������������
��� Here we use a similar notation as in Friedman et al. (2010) and Meier et al. (2008) also provided a similar notation.�
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min
9,:

		 "
;
∑ ('% − / − ∑ ∑ $%S&2S&&∈TUS∈V );?
%4" + @∑ LWRSWL∑ 2S&;&∈TUS∈V         (3) 

 

where / and 2S&  are the intercept and coefficients of the regressors in the P-th 

group, and LWRSW accounts for the varying group sizes. That is, the group LASSO 

removes an entire group of input variables simultaneously when @ becomes larger 

(Hastie et al., 2009; Yuan and Lin, 2006). The group LASSO reflects many practical 

situations such as the multifactor analysis-of-variance problem and enjoys excellent 

performance (Yuan and Lin, 2006). It inherits the convex penalty and acts like the lasso 

at the group level (Meier et al., 2008). In fact, the group LASSO simplifies into the 

standard LASSO with a constant group size 1. 

The last few decades witnessed many other variations of LASSO to address 

different aspects of modelling, some of which along with their comparisons can be 

found in Zou and Hastie (2005), Zou (2006), Meinshausen (2007), Tibshirani (2011) 

and Hastie et al. (2017), etc. Obviously, it is infeasible to adapt all of them to DEA in 

one modest paper such as ours and so we will consider just a few that we conjecture 

are among the most appealing for the context and also hope that future research will 

complete the rest of the picture. 

 

2.2. SCNLS 

DEA is usually known as a nonparametric linear programming approach for measuring 

productive efficiency. More recently, it was also interpreted as nonparametric least-

squares regression with convexity constraints. In particular, Kuosmanen (2006) and 

Kuosmanen and Johnson (2010) showed that the inefficiency estimated by the output-

oriented DEA with a variable returns to scale (VRS) approach (often referred to as the 

BCC model, due to Banker et al. (1984)) is equivalent to the efficiency estimated by 

SCNLS in a single-output case. In particular, the SCNLS representation is given by: 

 

min
9,:,X

		 ∑ Y%;?
%4"   
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C. E. '% = /% + ∑ 2%&$%&
3
&4" + Y%, 	∀( = 1, . . . , #  

/% + ∑ 2%&$%&
3
&4" ≤ /[ + ∑ 2[&$%&

3
&4" , 	∀(, ℎ = 1, . . . , #                   (4) 

2%& ≥ 0, 	∀( = 1, . . . , #, 	- = 1, . . . , .  

Y% ≤ 0, 	∀( = 1, . . . , #  

 

where Y%  is the (additive) inefficiency term and represents the deviation of a ^_ %̀ 

from the estimated SCNLS frontier, and variables /%, and 2%&  are the intercept and 

slope parameters, respectively.  

Note that the objective function in (4) minimizes the sum of squared residuals, 

just like in the standard least-squares regression, except that there are also additional 

constraints, turning the problem into a convex regression-type estimator of the 

boundary of the support of the data.11 This similarity to the regression approach 

makes this form useful for adapting the LASSO, as was first noted by Lee and Cai (2020), 

which we discuss in the next section.12 Moreover, in the second constraint of (4), we 

use the same notation ∀(, ℎ = 1, . . . , # with Kuosmanen (2006) and Kuosmanen and 

Johnson (2010) while the notation ∀(, ℎ = 1, . . . , #	a#b	( ≠ ℎ is used in Lee and Cai 

(2020). 

 

2.3. LASSO-SCNLS 

By combining SCNLS with LASSO, Lee and Cai (2020) proposed a LASSO-SCNLS method 

for variable selection (in a single-output case) as follows: 

 

min
9,:,X

		 ∑ Y%;?
%4" + @∑ ∑ 2%&

3
&4"

?
%4"   

C. E. '% = /% + ∑ 2%&$%&
3
&4" + Y%, 	∀( = 1, . . . , #  

�������������������������
11 Model (4) is under an assumption of variable returns to scale (VRS). To get a constant returns to scale (CRS) 
version of model (4), one needs to add the following constraints: /% = 0, ∀( = 1, . . . , #. If model (4) is adapted to 
sign-constrained isotonic nonparametric least squares (INLS), then we have a FDH model (Keshvari and Kuosmanen, 
2013). 

12 Also see Tsionas and Izzeldin (2018) for related discussions. 
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/% + ∑ 2%&$%&
3
&4" ≤ /[ + ∑ 2[&$%&

3
&4" , 	∀(, ℎ = 1, . . . , #                   (5) 

2%& ≥ 0, 	∀( = 1, . . . , #, 	- = 1, . . . , .  

Y% ≤ 0, 	∀( = 1, . . . , #  

 

Note that the only difference between formulation (4) and (5) is its objective function: 

there is an additional penalty term in (5) for shrinking 2%&, just like LASSO has in (2a). 

For a given choice of @, if 2%& = 0 for all DMUs for a certain input, then this input is 

removed from the analysis13. In particular, Lee and Cai (2020) use a binary search to 

identify the best @ to control the number of selected input variables and remove less 

correlated variables.14  

 

2.4. Group LASSO-SCNLS15 

Similar to LASSO-SCNLS, Group LASSO-SCNLS proposed in Lee and Cai (2020) adapts 

SCNLS by adding a penalty term with group variables in a similar fashion as was done 

for the standard group LASSO in Yuan and Lin (2006). In this way, it also shrinks the 

variables in the same group simultaneously. Specifically, Group LASSO-SCNLS shrinks 

2%&  for all observations in the same input ( simultaneously as follows:16 

 

min
9,:,X

		 ∑ Y%;?
%4" + @∑ L∑ 2%&;?

%4"
3
&4"   

C. E. '% = /% + ∑ 2%&$%&
3
&4" + Y%, 	∀( = 1, . . . , #  

/% + ∑ 2%&$%&
3
&4" ≤ /[ + ∑ 2[&$%&

3
&4" , 	∀(, ℎ = 1, . . . , #                   (6) 

�������������������������
��� It should be noted that we did not use model (9) in Lee and Cai (2020) for computing the optimal 2%& because 

the lower bounds for the alternate optima of Kuosmanen and Kortelainen (2012) is developed for CNLS rather than 
LASSO-SCNLS. In fact, we also run model (9) in Lee and Cai (2020). And the results show that each 2%& based on 
model (9) is larger than that based on model (8) in most cases. 

14 E.g., if the total number of dimensions is 10 (9 inputs and 1 output), in order to get a full sequence of reduced 
dimensions from 2 (one input and one output) to 9 (eight inputs and one output), Lee and Cai (2020) search for the 
tuning parameter @ by using a binary search to get a specific reduced dimension b =2, ..., 9� 

15 Lee and Cai (2020) actually used a notation ‘Group LASSO-SCNLS’. In this paper we use ‘Group LASSO-SCNLS’ as 
an alternative to highlight the combination of group LASSO and SCNLS. 

16 Compared with the standard group LASSO in equation (3), Group LASSO-SCNLS proposed in Lee and Cai (2020) 
actually assumes a constant group size 1.�
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2%& ≥ 0, 	∀( = 1, . . . , #, 	- = 1, . . . , .  

Y% ≤ 0, 	∀( = 1, . . . , #  

 

Except for the above methods, Lee and Cai (2020) also considered what they 

called the ‘Random’ method as well as what they called the ‘PCA-DEA’ method for 

reducing the dimensions and compared them to the LASSO-type approaches. To be 

more precise, their RM obtains a random sequence of removed variables by randomly 

selecting one input variable and removing it, one by one, until only one variable 

remains. Moreover, their PCA-DEA method replaces the input variables with fewer 

principal components (PCs) and thus the dimension (number of variables) is reduced 

by selecting fewer PCs. 

 

3. Some generalizations 

While having great advantages in optimally balancing the bias and variance and 

making the model sparse or parsimonious with potentially greater prediction accuracy, 

as with any method LASSO also has its limitations, which are expected to be inherited 

by the LASSO-SCNLS. In particular, as was noticed from the seminal work of Tibshirani 

(1996) and in many papers since then, one of the main weaknesses of the basic LASSO 

is that it may perform poorly in the case of high correlations among regressors. To 

address such data, Zou and Hastie (2005) proposed an improved version of LASSO that 

they called elastic net (EN) and we will adapt it to the DEA (via SCNLS representation) 

in this section. To do so, recall that the EN estimator is defined by the following 

problem: 

 

min
9,:

		 "
;
∑ ('% − / − ∑ $%&2&

3
&4" );?

%4" + @[e ∑ |2&|
3
&4" + (1 − e)∑ 2&;

3
&4" ]      (7) 

 

i.e., it combines the benefit of the ridge regression and the LASSO, and remains a 

convex optimization problem.  

Zou and Hastie (2005) pointed out that various real-world data and simulations 

showed that EN often outperforms LASSO, while enjoying a similar sparsity of 
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representation. In particular, EN encourages a grouping effect, such that strongly 

correlated regressors tend to be in or out of the model together.17 

 The EN-DEA (or EN-SCNLS) can be characterized by 

 

min
9,:,X

		 ∑ Y%;?
%4" + @[e ∑ ∑ 2%&?

%4"
3
&4" + (1 − e)∑ ∑ 2%&;?

%4"
3
&4" ]  

C. E. '% = /% + ∑ 2%&$%&
3
&4" + Y%, 	∀( = 1, . . . , #  

/% + ∑ 2%&$%&
3
&4" ≤ /[ + ∑ 2[&$%&

3
&4" , 	∀(, ℎ = 1, . . . , #                   (8) 

2%& ≥ 0, 	∀( = 1, . . . , #, 	- = 1, . . . , .  

Y% ≤ 0, 	∀( = 1, . . . , #  

 

Note that, as is similar to EN, we add the ridge-type (or !;) penalty into SCNLS. 

Different from EN but similar to LASSO-SCNLS, we shrink 2%&  in model (8) rather than 

2&  of EN. When e = 1, model (8) becomes LASSO-SCNLS. When e = 0, model (8) is 

an adaptation of the ridge regression, and could be called ‘Ridge-DEA’ (or Ridge-

SCNLS).18 The Ridge-DEA could be more useful than LASSO-DEA for usual #	 > 	. 

where . is relatively small situations, if there are high correlations between inputs. 

Indeed, in this case the prediction performance of ridge regression is likely to 

dominate LASSO in standard regression setups (Tibshirani, 1996). In model (8), if 

2%& = 0 for all DMUs for a certain input, then this input is removed from the analysis. 

 

4. A simplified two-step approach 

In the previous section, we described several approaches for circumventing the curse 

of dimensionality in DEA. We also noted that Lee and Cai (2020) were using a binary 

search to get a tuning parameter @ corresponding to a specific reduced dimension. 

However, from their study it is unclear whether the true relevant regressors are 

�������������������������
��� EN also removes the limitation on the number of selected variables and is therefore useful when the number of 

regressors is much bigger than the number of observations, where LASSO may often encounter more difficulties.�

18 In this paper, we set e = 0.5 for EN+DEA and EN-SCNLS. By following a similar rule for choosing the tuning 
parameters in Zou and Hastie (2005), we also tried other different values of e (0.1, 0.3, 0.7 and 0.9) and re-ran 
the results. The main results were qualitatively the same as the findings in section 5.2.2.  
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identified in this way and if all the irrelevant regressors are set to zero. Indeed, the 

shrinkage of coefficients of the irrelevant regressors to zero (even if at the expense of 

potential bias for the coefficient of the relevant regressors) is one of the most 

important aspects of LASSO. For this reason, methods like cross-validation LASSO are 

usually used to obtain an `optimal’ (under a certain criterion) value for the tuning 

parameter that attempts to identify which coefficients are set to zero and which are 

not. Lee and Cai (2020) have not discussed such an approach, perhaps because it is 

not working as well as it is in the standard LASSO cases. Indeed, our attempts to adapt 

a cross-validation to the LASSO-SCNLS also have not provided any optimistic evidence, 

and so we leave it for future research. Meanwhile, here we propose a simplified two-

step approach to handle the curse of dimensionality of DEA via LASSO, which we will 

call ‘LASSO+DEA’. Particularly, the algorithm could be summarized as follows: 

Step 1. As an exploration of the first order approximation of the complex multi-

dimensional world, using standard cross-validation LASSO or its more advanced 

versions (e.g. EN) to select an optimal number of regressors due to an optimal choice 

of the tuning parameter @ (e.g., selected via 10-fold cross validation or other popular 

methods). 

Step 2. Run DEA (or SCNLS) on only the variables selected as relevant in Step 1. 

 

It should be noted that the LASSO approach built in Lee and Cai’s (2020) section 

4.1.2 is a two-step approach, although there is still an important difference between 

our approach and theirs. In their work, they were “manually” choosing the tuning 

parameter @. What we proposed and extensively investigated in simulations for the 

first stage is to use LASSO with data-driven selection of the tuning parameter @ (e.g., 

based on optimizing the classical cross validation criterion) to select the relevant 

variables optimally, before deploying the DEA on those selected variables. In spite of 

this difference, we benefit a lot from the interesting work of Lee and Cai’s (2020). 

An important advantage of this simplified approach is that many packages in 

popular software (Matlab, R, Python, etc.) are available to implement both stages, 

which have been tested on many synthetic and real data. We will discuss the 
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implementation of this approach in Matlab and compare how it performs relative to 

LASSO-SCNLS in the next section.  

A disadvantage of this approach is, of course, that the first stage is only looking at 

the first order approximation (possibly in logs, so potentially modelling some 

curvature). On the other hand, when the dimension is very large such approximation 

of the more complex and highly multi-dimensional world might be the only feasible 

way to proceed. 

 

5. Monte Carlo evidence and comparison 

In this section, we first compare the above methods in the small data setting as was 

in Lee and Cai (2020). Then, we compare the LASSO+DEA and LASSO-SCNLS (EN-SCNLS) 

under the ‘big wide data’ context. 

The performance and comparison of methods is analyzed with the help of 

approximate (or estimated) mean squared error (MSE), i.e., 

 

_hij = "
?
∑ k'%jl − (m%j∗ × '%j)p

;
?
%4"  ∀q = 1, . . . , _             (9a) 

 

where '%jl  is the true efficient output and m%j∗ × '%j is the estimate and _ is the 

number of Monte Carlo replications for the scenario of interest. Here m%j∗  is 

calculated by output-oriented BCC model (Lee and Cai, 2020), and m%j∗ = 1 −

Y%j '%j⁄ , ∀( = 1, . . . , # as shown in Kuosmanen and Johnson (2010). When efficiency 

scores are compared (e.g., Wilson, 2018; Zelenyuk, 2020), equation (9a) is changed to: 

 

_hij = "
?
∑ (m%jl − m%j∗ );?
%4"  ∀q = 1, . . . ,_             (9b) 

 

where m%jl  is the true efficiency for a DMU. 

Then, _hij is averaged over the number of Monte Carlo replications (_), i.e.,  

 

s_hit = "
t
∑ _hijt
j4" 	                  (10) 
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To get a sense of significance in the differences of average MSE (AMSE)19 across 

different methods, we also present the Monte Carlo standard errors for the averages 

of MSE, computed as  

 

Cu(s_hit) =
"
t
v∑ (_hij − s_hit);t

j4" 	              (11) 

 

As pointed out by Lee and Cai (2020), their PCA-DEA uses PCs as inputs and 

therefore cannot generate a `meaningful’ DEA-estimated frontier and that it is also 

difficult to interpret the relationship of new PCs with respect to the original input 

variables. Hence, in this paper, we exclude PCA-DEA from the performance 

comparison of dimension reduction methods. In particular, we compare the following 

six methods: 1) Random; 2) LASSO; 3) LASSO-SCNLS; 4) Group LASSO-SCNLS; 5) EN; 6) 

EN-SCNLS. Note that only parts of the six methods are compared in different 

simulations and scenarios. 

The computer used in this paper is a MacBook Pro laptop with a 2.9 GHz dual-core 

Intel Core i5 CPU, 16 GB memory and a MacOS High Sierra 10.13.6 operating system. 

All the computations were done in MATLAB R2016a using codes programmed by the 

authors, involving the standard MATLAB library. Besides our own programming we 

adapted some earlier codes of Leopold Simar.�It should be noted that the computing 

time significantly increases as the number of replications and/or the sample goes up. 

For example, the computing time for Tables 1, 3 and 4 was about 3 hours, 8 hours, 

and 25 days, respectively. 

 

5.1. Comparisons for small data environments 

�������������������������
�
� Besides the average MSE comparison, in this paper, we also examine the comparison for average mean absolute 

deviation (MAD), average bias, average Pearson coefficient, average Spearman coefficient and average Kendall 
coefficient.�Because the definitions of other indicators such as MAD and bias are well-known and their formulations 
could be easily obtained by modifying (9a) or (9b), we did not show all of them for conciseness.�
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In this section, we first try to replicate the simulations of Lee and Cai (2020) using their 

DGP with 10 dimensions (9 inputs and 1 output).20 Table 1 shows the results. 

 

Table 1. AMSE and standard errors of four variable selection methods 

 AMSE (s. e.) 

Dimensions Random LASSO LASSO-SCNLS Group LASSO-SCNLS 

10 20.705 (0.890) 20.705 (0.890) 20.705 (0.890) 20.705 (0.890) 

9 19.616 (0.834) 19.416 (1.020) 19.217 (0.919) 19.904 (0.882) 

8 18.217 (0.786) 17.899 (1.008) 17.766 (0.929) 18.288 (0.906) 

7 16.246 (0.869) 16.265 (0.996) 15.958 (0.872) 16.504 (0.889) 

6 13.619 (0.836) 14.305 (1.049) 13.867 (0.879) 13.841 (0.876) 

5 10.480 (0.850) 11.215 (0.881) 11.818 (0.862) 11.275 (0.898) 

4 7.541 (0.720) 8.580 (0.680) 8.828 (0.651) 8.240 (0.644) 

3 5.298 (0.541) 5.762 (0.640) 6.187 (0.451) 5.516 (0.526) 

2 2.630 (0.343) 3.169 (0.399) 3.580 (0.309) 2.767 (0.312) 

Note: The standard error of AMSE is shown in parenthesis. And equation (9a) is used 

for calculation. 

As shown in Table 1, the AMSE decreases as the dimension goes down, which is 

the same as the results in Table 2 of Lee and Cai (2020). For each row or dimension, 

the AMSE in Table 1 of this paper is close to that in Table 2 of Lee and Cai (2020). And 

the AMSE under LASSO-SCNLS is larger than that under Group LASSO-SCNLS for a 

dimension no larger than 6. So LASSO-SCNLS does not always show better 

performance for higher dimensions than Group LASSO-SCNLS, which is a different 

conclusion from that in Lee and Cai (2020). Most importantly, when we take into 

account the standard errors of AMSE, our results suggest there is no clear dominance 

of any of the methods because the AMSE for the four methods is well within two 

standard errors from each other for most dimensions. 

 

�������������������������
20 See Appendix A for more details on their DGP setting. 
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Figure 1. Box plot of MSEs 

 

Figure 1 further shows the box plots for the MSEs and one can see that the 

difference in performance for the above four methods (Random, LASSO, LASSO-SCNLS 

and Group LASSO-SCNLS) is indeed fairly small. Taking into account the variation (e.g., 

via estimated iqr, standard errors, etc.), we can also conclude that there is no clear 

dominance for certain methods. We also explore more scenarios such as more general 

settings of the above DGP in Lee and Cai (2020) and the DGP setting considered in 

Wilson (2018) and other works and reach the same conclusion. Namely, none of these 

four approaches dominate the other, especially when considering measures of 

accuracy and variation. See appendix B for the details. 

 

5.2. Comparisons for ‘big wide data’ environments 

In this section, we first compare the shrinkage ability of cross-validation LASSO and 

LASSO-SCNLS to illustrate the rationale of our proposed LASSO+DEA. Then we 

compare the performance between the LASSO+DEA and LASSO-SCNLS (EN-SCNLS). 
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5.2.1. Shrinkage ability of cross-validation LASSO and LASSO-SCNLS 

Consider a simple scenario where the total number of observations is # = 100, the 

total number of regressors is . = 50 , while the total number of truly relevant 

regressors is x = 5. To be more precise and without loss of generality, suppose the 

first five regressors are regarded as the true regressors, corresponding to assumed 

beta coefficients 2&l = -, - = 1, . . . ,5. Meanwhile, the other regressors are irrelevant 

regressors in the sense that their coefficients are zero. As is typical in practice, suppose 

the researcher does not know which regressors are relevant and what their relations 

to the dependent variable are and he/she needs to rely on LASSO to identify them. 

To generate the synthetic data to illustrate the performance of different methods, 

we follow a DGP setting similar to Hastie et al. (2017), adapting it to the usual context 

considered in efficiency analysis. In particular, the dependent variable is generated as 

 

'%j = ∑ $%&j2&j
3
&4" + y%j − z%j,					( = 1, … , #,q = 1, . . . , _       (12) 

 

where 	z%j~|}(0,e~
;)  and y%j~|(0, e�

;) , i.i.d. for all ( = 1, … , #  while 

regressor $%  is generated from the multinormal. To be more precise, $%  are row 

entries of matrix Ä ∈ ℝ?×3 generated from |3(0, ΣÉ), where ΣÉ = ζe�Σ	 and ζ is 

the signal-to-noise parameter that we vary to explore its influence and Σ ∈ ℝ.×. has 

an entry (Ö, E) equal to Ü|áàâ|  which allows for different degrees of correlation 

between the inputs.  

For the results presented below, we have set e~ = 0.5 and e� = 0.05, while the 

signal-to-noise ratio (SNR)21 is set to ζ = 10 and Ü = 0.7. 

We will compare the performance of cross-validation LASSO and LASSO-SCNLS.22 

Besides the two methods, we also present ordinary least squares (OLS) as a 

�������������������������
21 This is a similar setting as in Hastie et al. (2017) and Bertsimas et al. (2016). 

22 Note that in Matlab, the LASSO procedure standardizes inputs Ä prior to fitting the model sequence by default, 
so we also do this to Ä prior to using it in LASSO-SCNLS. Moreover, for LASSO-SCNLS we use the same tuning 
parameter as the one identified by cross-validation LASSO. 
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benchmark. Note that because the true model is linear, the standard LASSO is indeed 

a suitable approach here, as is the OLS, except for modelling the inefficiency, which is 

effectively ignored by the LASSO and by the OLS. On the other hand, due to no 

correlation of the inefficiency with the regressors, ignoring the inefficiency term here 

should not affect the estimates of the slopes (which is the main focus here) and only 

affects the intercept, which is typically not important for LASSO and its variants (and 

can also be recovered if needed in the style done in SFA literature). 

In principle, the performance of LASSO-SCNLS should also be reasonably good 

here because it is nonparametric and should be able to estimate the truth whether it 

is linear or not (although it is less efficient than the parametric LASSO). The only 

problem is the noise, however, this is fairly small relative to the inefficiency.23 

Table 2 presents the results from a typical draw from the DGP described above in 

this section. The second column shows the true coefficients 2&l . The third column 

shows the estimated coefficients with the tuning parameter selected via 10-fold cross-

validation LASSO. The fourth column presents LASSO-SCNLS with the same tuning 

parameter as was used for the standard LASSO. Here we report the average of all the 

observations’ coefficient β%&  for the - th regressor, i.e. 
"
?
∑ 2%&?
%4" . The fifth to 

seventh columns present the OLS-estimated coefficients, the corresponding t-

statistics and the standard errors respectively, to get a sense of the performance of 

the simplest approach among those we consider. 

Note that despite the very large dimension of regressors or inputs, OLS is still 

doing reasonably well and is able to identify correctly all the relevant regressors, and 

just very few of the irrelevant regressors are identified at different levels of 

significance. This was persistent across many replications and for various values of 

parameters. Of course, when the number of regressors is increasing, the degrees of 

freedom decrease and thus the reliability of OLS also decreases but when it gets larger 

than the sample size, OLS is unavailable. In this case the LASSO becomes particularly 

�������������������������
��� An alternative is to use StoNED (Kuosmanen and Kortelainen, 2012) here to model the noise explicitly.�
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useful, and in general, although it tends to introduce some bias, the prediction 

accuracy usually improves relative to OLS (Tibshirani, 1996). Moreover, it is still 

possible to obtain standard errors and related statistics even if . > #. From Table 2 

one can see that LASSO indeed performed well, often better than OLS, which persisted 

across most replications and for different values of parameters. Most importantly, it 

was able to correctly identify the relevant regressors and set all others to zero in the 

draw below as well as in most (yet of course not all) of the replications in our study.24 

  

Table 2. Performance comparison between cross-validation LASSO and LASSO-SCNLS 

Inputs 2&l  LASSO LASSO_SCNLS OLS t_stat se_b 

1 1 0.781  0.527  1.000  72.623  0.014  
2 2 1.934  0.893  2.015  105.403  0.019  
3 3 3.049  2.810  2.989  156.760  0.019  
4 4 3.922  2.446  3.992  211.507  0.019  
5 5 4.802  3.555  4.993  284.720  0.018  
6 0 0 0.061  -0.005  -0.241  0.020  
7 0 0 0.012  0.003  0.145  0.019  
8 0 0 0.025  -0.017  -1.009  0.017  
9 0 0 0.165  -0.001  -0.089  0.016  

10 0 0 0.055  0.021  1.114  0.019  
11 0 0 0.021  -0.003  -0.159  0.018  
12 0 0 0.028  0.001  0.051  0.018  
13 0 0 0.087  0.033  1.695  0.020  
14 0 0 0.067  -0.041  -2.655  0.015  
15 0 0 0.003  0.024  1.497  0.016  
16 0 0 0.008  -0.029  -1.626  0.018  
17 0 0 0.099  0.024  1.531  0.016  
18 0 0 0.000  -0.024  -1.218  0.019  
19 0 0 0.059  -0.004  -0.229  0.017  
20 0 0 0.001  0.011  0.567  0.019  
21 0 0 0.033  -0.022  -1.247  0.018  
22 0 0 0.037  0.031  1.831  0.017  
23 0 0 0.090  -0.035  -1.851  0.019  
24 0 0 0.096  0.011  0.642  0.018  
25 0 0 0.081  0.050  2.468  0.020  
26 0 0 0.212  -0.027  -1.393  0.019  
27 0 0 0.068  0.020  1.161  0.017  
28 0 0 0.013  -0.012  -0.879  0.014  
29 0 0 0.019  0.001  0.058  0.020  
30 0 0 0.156  0.008  0.423  0.019  
31 0 0 0.124  0.016  0.924  0.017  
32 0 0 0.016  0.000  -0.002  0.017  
33 0 0 0.018  -0.038  -1.710  0.022  
34 0 0 0.001  0.005  0.273  0.019  

�������������������������
24 For example, according to our results from 1000 replications, in all 1000 replications our approach selected all 
five true regressors and discarded all irrelevant regressors. See more discussions in the Appendix C. Also see Hastie 
et al. (2017) for more examples of the performance of LASSO and other methods in other contexts. 
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35 0 0 0.011  -0.015  -0.684  0.022  
36 0 0 0.012  0.041  1.930  0.021  
37 0 0 0.009  -0.030  -1.722  0.018  
38 0 0 0.010  0.007  0.373  0.017  
39 0 0 0.018  0.028  1.787  0.015  
40 0 0 0.139  -0.023  -1.071  0.022  
41 0 0 0.002  -0.007  -0.358  0.019  
42 0 0 0.017  0.012  0.608  0.020  
43 0 0 0.002  0.008  0.474  0.017  
44 0 0 0.039  0.006  0.318  0.020  
45 0 0 0.045  -0.006  -0.331  0.017  
46 0 0 0.022  0.013  0.645  0.020  
47 0 0 0.035  0.001  0.041  0.018  
48 0 0 0.032  -0.012  -0.645  0.019  
49 0 0 0.029  -0.006  -0.254  0.022  
50 0 0 0.001  -0.004  -0.233  0.016  

 

On the other hand, note that the estimated slope coefficients via LASSO-SCNLS 

are fairly far from the given (true) beta coefficients. Moreover, in virtually all the 

replications we analyzed, it seems that LASSO-SCNLS fails to discard the irrelevant 

regressors, i.e., it does not shrink the corresponding beta coefficients to zero even 

though we used the same tuning parameter that was optimal for the LASSO for the 

linear model (which is true here) and so, in a sense, is the best one can get here so far. 

In principle, it might be possible to develop a better method for an optimal selection 

of the tuning parameter @ specifically for LASSO-SCNLS that would help the latter 

perform well relative to the simplified approach, yet we were not able to do so (as 

apparently also the case for Lee and Cai (2020)) and hope that future research will 

help in this direction. Meanwhile, the simplified approach can already utilize many 

existing resources (available for Matlab, R, Python, etc.) and as a result, appears to be 

a more reliable approach to use in practice so far.  

Indeed, since LASSO-SCNLS showed very poor performance in a very simple (linear) 

world, it would be hard to believe that somehow it gets better for a more complicated 

world and so we therefore, do not expect it. To explore this conjecture, we also 

considered other scenarios when the true output has a non-linear relationship to 

inputs, yet satisfies convexity and monotonicity (as required by SCNLS). Here it is 

worth noting that the latter two requirements (convexity and monotonicity) limit the 

degree of non-linearity substantially, making the linear approximation a fairly close 
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approximation and so the simplified approach is still expected to work reasonably well, 

especially in combination with the use of log-log (yet linear in parameters) or other 

popular in practice specifications.  

In various simulations that look at different degrees of non-linearity and different 

noise, we indeed noted that as the magnitude of the error term goes up compared 

with the input values, or if the degree of nonlinearity of the true output increases, the 

accuracy of the cross-validation LASSO identifying the true regressors decreases, 

leading to more instances of irrelevant regressors identified as relevant (See the next 

sub-section and Appendix C for more discussions and details). 

 

5.2.2. Comparisons of the simplified two-step approach and LASSO-SCNLS (EN-SCNLS) 

Here, we will compare the performance between the LASSO+DEA (EN+DEA)25 and 

LASSO-SCNLS (EN-SCNLS). We use the same DGP as Zelenyuk’s (2020, Section 4.1), but 

only consider the single output case and keep only a few of many inputs as relevant 

(and set other coefficients to zero). In particular, note that the relationship between 

the output and the inputs is non-linear here (Cobb-Douglass) and so the standard 

LASSO that uses a linear model in original units would be misspecified here, yet may 

still provide a fair approximation. Taking logarithmic transformation would obviously 

make this relationship linear, and we indeed do so here. Also, note that there is no 

noise in this DGP.    

In the following part, we consider 100 inputs and 1 output, three sample sizes (20, 

50 and 100) with 200 replications in our Monte Carlo simulations. Note that only 5 out 

of 100 inputs are relevant (i.e. true regressors) under the so-called sparsity 

assumption. As shown above, the goal is first to see if cross validation LASSO is able to 

select a good value for @ that helps identify the true relevant regressors and discard 

the irrelevant regressors, and then to compare the performance by comparing the 

�������������������������
25 We consider the simplified two-step approach for both cross-validation LASSO and cross-validation EN because 
we consider both LASSO-SCNLS and EN-SCNLS in the following part. And we call it LASSO+DEA and EN+DEA, 
respectively. 
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true efficiency scores to their estimates between the LASSO+DEA (EN+DEA) and 

LASSO-SCNLS (EN-SCNLS). We use a similar procedure in section 5.2.1 for assigning the 

optimal tuning parameter @  of LASSO (EN) to LASSO-SCNLS (EN-SCNLS). We also 

consider two cases of γ, i.e. 1 and 0.5, which show different degrees of returns to 

scale in Zelenyuk (2020). Table 3 reports the results. Similar to Zelenyuk (2020), 

equation (9b) is used for calculation and result comparison. 
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Table 3. Monte Carlo Comparisons of LASSO+DEA (EN+DEA) and LASSO-SCNLS (EN-SCNLS) 

 Sample size: 20 Sample size: 50 Sample size: 100 

Indicators 
LASSO+

DEA 

LASSO-

SCNLS 
EN+DEA EN-SCNLS 

LASSO+
DEA 

LASSO-

SCNLS 
EN+DEA EN-SCNLS 

LASSO+
DEA 

LASSO-

SCNLS 
EN+DEA EN-SCNLS 

! = 1 

Ave. MSE 0.061 0.128 0.072 0.128 0.056 0.126 0.063 0.126 0.064 0.124 0.074 0.124 
s. e. 0.003 0.002 0.003 0.002 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 

Ave. MAD 0.193 0.307 0.210 0.307 0.178 0.302 0.191 0.302 0.194 0.299 0.211 0.299 
s. e. 0.005 0.003 0.005 0.003 0.005 0.002 0.006 0.002 0.005 0.001 0.005 0.001 

Ave. bias -0.115 -0.307 -0.135 -0.307 -0.115 -0.302 -0.132 -0.302 -0.162 -0.299 -0.183 -0.299 
s. e. 0.010 0.003 0.011 0.003 0.009 0.002 0.009 0.002 0.008 0.001 0.008 0.001 
Ave. 

Pearson 0.524 0.024 0.452 0.025 0.542 0.077 0.491 0.079 0.544 0.076 0.477 0.076 

s. e. 0.018 0.016 0.020 0.016 0.019 0.010 0.020 0.010 0.016 0.007 0.017 0.007 
Ave. 

Spearman 0.505 0.046 0.451 0.047 0.541 0.121 0.505 0.122 0.552 0.140 0.490 0.140 

s. e. 0.017 0.015 0.018 0.016 0.016 0.010 0.017 0.010 0.013 0.007 0.015 0.007 
Ave. 

Kendall 0.377 0.032 0.334 0.033 0.400 0.084 0.371 0.084 0.404 0.095 0.356 0.095 

s. e. 0.014 0.011 0.014 0.011 0.013 0.007 0.013 0.007 0.011 0.005 0.012 0.005 
Ave. input 2.700 78.215 3.670 74.430 4.705 99.435 5.850 99.630 6.075 100.000 7.680 100.000 

s. e. 0.219 1.644 0.284 1.264 0.413 0.185 0.461 0.117 0.350 0.000 0.421 0.000 
Ave. 

selected 
relevant 

regressors 

1.015 4.025 1.015 4.045 1.755 4.970 1.725 4.985 2.845 5.000 2.855 5.000 

s. e. 0.036 0.089 0.038 0.077 0.068 0.014 0.065 0.009 0.078 0.000 0.078 0.000 
Ave. 

selected 
irrelevant 
regressors 

1.685 74.190 2.655 70.385 2.950 94.465 4.125 94.645 3.230 95.000 4.825 95.000 

s. e. 0.202 1.572 0.265 1.218 0.366 0.175 0.414 0.114 0.304 0.000 0.374 0.000 
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! = 0.5 

Ave. MSE 0.058 0.128 0.071 0.128 0.031 0.126 0.044 0.126 0.026 0.124 0.037 0.124 
s. e. 0.003 0.002 0.003 0.002 0.002 0.001 0.003 0.001 0.002 0.001 0.003 0.001 

Ave. MAD 0.188 0.307 0.211 0.307 0.124 0.302 0.151 0.302 0.111 0.299 0.134 0.299 
s. e. 0.005 0.003 0.005 0.003 0.005 0.002 0.006 0.002 0.004 0.001 0.005 0.001 

Ave. bias -0.165 -0.307 -0.188 -0.307 -0.095 -0.302 -0.127 -0.302 -0.070 -0.299 -0.101 -0.299 
s. e. 0.007 0.003 0.008 0.003 0.006 0.002 0.007 0.002 0.006 0.001 0.007 0.001 
Ave. 

Pearson 0.599 0.033 0.508 0.030 0.754 0.108 0.669 0.104 0.783 0.090 0.709 0.090 

s. e. 0.020 0.017 0.023 0.017 0.015 0.010 0.018 0.010 0.012 0.007 0.016 0.007 
Ave. 

Spearman 0.577 0.063 0.497 0.052 0.734 0.139 0.658 0.140 0.764 0.143 0.695 0.143 

s. e. 0.019 0.016 0.021 0.016 0.013 0.010 0.016 0.010 0.011 0.008 0.015 0.008 
Ave. 

Kendall 0.444 0.045 0.378 0.037 0.573 0.096 0.506 0.096 0.601 0.097 0.540 0.097 

s. e. 0.016 0.012 0.017 0.011 0.011 0.007 0.014 0.007 0.010 0.005 0.013 0.005 
Ave. input 2.605 76.935 3.680 71.025 2.210 99.640 3.530 99.450 2.435 100.000 3.570 100.000 

s. e. 0.200 1.669 0.240 1.210 0.209 0.108 0.318 0.144 0.231 0.000 0.288 0.000 
Ave. 

selected 
relevant 

regressors 

1.055 4.055 1.075 3.870 1.185 4.995 1.270 4.995 1.465 5.000 1.625 5.000 

s. e. 0.027 0.085 0.028 0.081 0.034 0.005 0.040 0.005 0.056 0.000 0.060 0.000 
Ave. 

selected 
irrelevant 
regressors 

1.550 72.880 2.605 67.155 1.025 94.645 2.260 94.455 0.970 95.000 1.945 95.000 

s. e. 0.187 1.604 0.229 1.162 0.189 0.107 0.295 0.144 0.195 0.000 0.246 0.000 
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As can be seen in Table 3, the results based on LASSO+DEA and EN+DEA show 

better performance than those based on LASSO-SCNLS and EN-SCNLS. For example, 

for 20 observations and γ = 1, the average MSE is 0.061 and 0.072 for LASSO+DEA 

and EN+DEA while it is 0.128 for LASSO-SCNLS and EN-SCNLS. The average MAD for 

LASSO+DEA and EN+DEA are smaller than those for LASSO-SCNLS and EN-SCNLS, while 

the average bias for LASSO+DEA and EN+DEA are larger (due to negative bias) than 

those for LASSO-SCNLS and EN-SCNLS. And all three correlation indicators (Pearson, 

Spearman and Kendall) for LASSO+DEA and EN+DEA are also significantly higher than 

those for LASSO-SCNLS and EN-SCNLS. 

For the simplified two-step approach, according to our results in Table 3, for γ =

0.5 , as the sample size gets larger, the average MSE, MAD and bias reduce and 

continue to be much smaller while the average Pearson, Spearman and Kendall 

increase and continue to be much larger for LASSO+DEA and EN+DEA relative to 

LASSO-SCNLS or EN-SCNLS. For the LASSO-SCNLS or EN-SCNLS, for γ = 0.5, as the 

sample size gets larger, there is only a slight decrease for the average MSE, MAD and 

bias while the average Pearson even reduces for the 100-observation case. It should 

be noted that for γ = 1, as the sample size gets larger from 20 to 100, the shrinkage 

performance for the simplified two-step approach does not work as well as expected 

(a slight increase in MSE, MAD and bias for LASSO+DEA and EN+DEA, and a slight 

decrease in Pearson, Spearman and Kendall for EN+DEA). For both cases of returns to 

scale, the performance for LASSO+DEA is slightly better than that for EN+DEA. And the 

results for LASSO-SCNLS and EN-SCNLS are almost the same with small differences of 

correlation coefficients. 

Most importantly, for different sizes of observations, the average number of 

selected inputs is small for the simplified two-step approach, which shows a stable 

shrinkage of coefficients of irrelevant variables to zero while it is fairly large and varies 

too much for LASSO-SCNLS and EN-SCNLS. Moreover, the simplified two-step 

approach shows significantly better performance for excluding irrelevant regressors 
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although LASSO-SCNLS and EN-SCNLS select more relevant regressors. In fact, the 

reasons for LASSO-SCNLS and EN-SCNLS’s better performance in selecting more 

relevant regressors is due to its lower ability for input shrinkage (e.g. for 100 

observations, LASSO-SCNLS and EN-SCNLS cannot shrink any regressors).� Besides 

substantially lower shrinkage ability we also observe a substantially larger bias in the 

estimate of ' coefficients for LASSO-SCNLS and EN-SCNLS relative to LASSO and EN, 

suggesting that SCNLS does not perform well when embedded with LASSO, at least in 

the current form26. 

This Monte Carlo evidence suggests that LASSO+DEA and EN+DEA performs 

better than LASSO-SCNLS and EN-SCNLS in MSE, MAD and bias, while LASSO-SCNLS 

and EN-SCNLS performed better than LASSO+DEA and EN+DEA in the average selected 

relevant regressors, yet poorer in the average selected irrelevant regressors. However, 

note that LASSO+DEA is a two-step approach and LASSO-SCNLS is all-in-one with more 

constraints, and so the two approaches have different model structures. This 

difference should be kept in mind when comparing these two approaches. As a 

potential caveat though, such comparisons are quite common in practice. In particular, 

while LASSO-SCNLS selected the irrelevant regressors more frequently, there might be 

a way to improve it with another step or with additional constraints or other 

refinements to shrink away the irrelevant regressors, which might be a fruitful 

direction for future research 27 . Nevertheless, the simplified two-step approach 

appears to show better performance. 

 

5.2.3. MC simulations of LASSO+DEA and EN+DEA for big wide data 

In this section, we will show the performance of the LASSO+DEA and EN+DEA for the 

contexts of big wide data using a same DGP setting in section 5.2.2. In the following 

part, we consider four cases of MC simulations: (Case 1) ( = 100, * = 1000; (Case 2) 

�������������������������
���We thank anonymous referee for pointing this out.�

�	�We thank anonymous referee for pointing this out.�
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( = 1000, * = 1000; (Case 3) ( = 1000, * = 5000; (Case 4) ( = 5000,* = 5000. 

Note that we consider 200 replications in all the four cases. Table 4 reports the MC 

results. 

 
Table 4. MC results of LASSO+DEA and EN+DEA 

 
Case 1: 
( = 100, 
	* = 1000 

Case 2: 
( = 1000, 
	* = 1000 

Case 3: 
( = 1000, 
	* = 5000 

Case 4: 
( = 5000, 
	* = 5000 

Indicators 
LASSO+

DEA 
EN+DEA 

LASSO+
DEA 

EN+DEA 
LASSO+

DEA 
EN+DEA 

LASSO+
DEA 

EN+DEA 

, = 1 
Ave. MSE 0.052 0.057 0.033 0.051 0.036 0.058 0.010  0.014  

s. e. 0.003 0.003 0.002 0.002 0.002 0.002 0.000  0.001  
Ave. MAD 0.170 0.179 0.132 0.169 0.136 0.182 0.068  0.079  

s. e. 0.005 0.005 0.003 0.004 0.004 0.004 0.001  0.002  
Ave. bias -0.088 -0.095 -0.131 -0.168 -0.135 -0.182 -0.068  -0.079  

s. e. 0.010 0.010 0.003 0.004 0.004 0.004 0.001  0.002  
Ave. 

Pearson 0.576 0.531 0.791 0.683 0.772 0.632 0.925  0.900  
s. e. 0.018 0.019 0.009 0.014 0.012 0.016 0.002  0.005  
Ave. 

Spearman 0.581 0.546 0.785 0.692 0.770 0.646 0.916  0.890  
s. e. 0.016 0.016 0.008 0.011 0.010 0.013 0.002  0.005  
Ave. 

Kendall 0.432 0.402 0.639 0.540 0.624 0.496 0.813  0.779  
s. e. 0.013 0.013 0.009 0.011 0.010 0.012 0.003  0.006  

Ave. input 6.130 7.170 6.000 8.410 6.430 9.640 4.835  5.525  
s. e. 0.586 0.697 0.267 0.369 0.305 0.457 0.068  0.135  
Ave. 

selected 
relevant 

regressors 
1.835 1.685 4.450 4.515 4.395 4.445 4.665  4.695  

s. e. 0.065 0.062 0.046 0.044 0.046 0.044 0.039  0.038  
Ave. 

selected 
irrelevant 
regressors 

4.295 5.485 1.550 3.895 2.035 5.195 0.170  0.830  

s. e. 0.549 0.657 0.254 0.359 0.294 0.448 0.053  0.122  
, = 0.5 

Ave. MSE 0.023 0.035 0.017 0.023 0.016 0.024 0.011  0.012  
s. e. 0.002 0.003 0.001 0.001 0.001 0.002 0.000  0.000  

Ave. MAD 0.103 0.127 0.086 0.103 0.083 0.103 0.064  0.069  
s. e. 0.004 0.005 0.003 0.003 0.003 0.004 0.001  0.001  

Ave. bias -0.055 -0.088 -0.070 -0.090 -0.065 -0.087 -0.026  -0.032  
s. e. 0.006 0.007 0.003 0.004 0.003 0.005 0.001  0.001  
Ave. 

Pearson 0.782 0.707 0.865 0.824 0.864 0.814 0.880  0.870  
s. e. 0.016 0.018 0.006 0.009 0.008 0.012 0.002  0.003  
Ave. 

Spearman 0.767 0.686 0.853 0.812 0.854 0.807 0.885  0.874  
s. e. 0.015 0.017 0.006 0.009 0.007 0.010 0.002  0.003  
Ave. 

Kendall 0.608 0.538 0.718 0.673 0.718 0.668 0.776  0.763  
s. e. 0.013 0.015 0.007 0.009 0.008 0.010 0.002  0.004  

Ave. input 3.025 4.255 4.165 5.080 4.040 5.090 4.215  4.545  
s. e. 0.505 0.483 0.206 0.251 0.198 0.256 0.060  0.086  
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Ave. 
selected 
relevant 

regressors 
1.155 1.195 3.535 3.685 3.340 3.470 4.175  4.315  

s. e. 0.028 0.033 0.058 0.057 0.056 0.058 0.052  0.049  
Ave. 

selected 
irrelevant 
regressors 

1.870 3.060 0.630 1.395 0.700 1.620 0.040  0.230  

s. e. 0.492 0.470 0.185 0.230 0.174 0.230 0.026  0.062  

 

As can be seen in Table 4, for both cases of returns to scale, the performance 

indicators (average MSE, MAD, bias, Pearson, Spearman, Kendall, the number of 

selected irrelevant regressors) of LASSO+DEA are slightly better than those of EN+DEA 

for the above four cases from Case 1 to Case 4, although the average number of 

selected relevant regressors of LASSO+DEA is slightly smaller than that of EN+DEA in 

most cases. In Case 4, the performance difference between LASSO+DEA and EN+DEA 

is small. 

In the above four cases, the performance of LASSO+DEA and EN+DEA is the best 

in Case 4. As the sample size gets larger, the performance of LASSO+DEA and EN+DEA 

generally gets better. Namely, the average MSE, MAD and bias reduce and the average 

Pearson, Spearman and Kendall increase. Most importantly, the average number of 

selected relevant regressors increases to nearly 5, and the average number of selected 

irrelevant regressors almost decreases to 0. It implies that the proposed approach 

identifies most of the true regressors and discards most of the irrelevant regressors. 

Overall, the simplified two-step approach seems to show good performance for 

small data, and even better performance for big wide data. 

 

6. Conclusions 

This study revisits the LASSO variable selection or dimension reduction in DEA by Lee 

and Cai (2020). Using the same idea, we also adapted the EN approach (known to 

perform better for correlated data) to the SCNLS. Unlike previous results, our Monte 

Carlo simulations suggest that none of the considered approaches generally dominate 

the others in the scenarios considered by Lee and Cai (2020). The degree of 
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complication of these methods appears not to be justified by their capabilities, even 

for the simple scenarios that we considered. This encouraged us to consider a 

simplified two-step approach for addressing the curse of dimensionality in DEA. 

Namely, we suggest using standard LASSO or its extensions (like EN or other variants) 

at the first stage to identify the relevant inputs and then, at the second stage, use the 

desired DEA approach on the relevant inputs. Our Monte Carlo simulations suggest 

this approach can indeed be not just much simpler but also much more useful for 

addressing the big wide data context where dimensions are very large. 

The idea of this paper is to propose promising innovations to DEA, by adapting 

some discoveries from statistical and Machine Learning literatures. Obviously, this is 

just the beginning and there is still a lot of work to do and in many directions. One of 

such directions is to develop statistical theory, including asymptotic theory for such 

an approach or its variations. While developing such theory may require years or even 

decades (and would require a separate paper(s) for a statistical journal), we believe 

the proposed approach can still be useful as an exploratory tool even before such 

technical papers are completed. A good example of such step-wise approach in 

research is, in fact, the DEA method itself—it was proposed and became very popular 

in both theory and practice decades before its statistical properties were established. 

Other fruitful directions for future research may include an extension of this approach 

to take into account the network structure of production processes, encompassing 

various interesting developments in Network DEA. 

Moreover, this paper extends the LASSO-based DEA approach to encompass its 

generalized version such as EN. How to select the value of - is an additional and 

separate issue, although Zou and Hastie (2005) provided a solution for the choice of 

the two tuning parameters in the EN. The two tuning parameters (. and -) in model 

(8) may potentially have some ‘interaction effect’ in the process of variable selection, 

which may depend on the design of the scenarios or real data or the sampling design 

in practice (i.e., depend on the data generating process). Considering different 
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approaches for such selections and investigating their performance is a challenging 

computational task in itself that requires a separate paper and so we leave it for future 

research. 

Recently, DEA has also been applied to streaming data for identifying outliers 

(Dulá and López, 2013) and a future direction of research can be to synthesize such 

approaches with our simplified approach. It is also worth noting that for high-

dimensional data streams in big data context, outlier detection may fail as data tends 

to become equally distant from each other and such approaches as Zhang et al. (2009) 

can also be explored for adaptation to the DEA context. 

Finally, in the era of big data, it becomes challenging to deal not only with a large 

number of observations but a large number of inputs or environmental (contextual) 

variables as well. Efficient ways to deal with these problems remain open in the 

agenda and are likely to use novel techniques, for example, Bayesian compression 

(Guhaniyogi and Dunson, 2015) that accommodates uncertainty in the subspace 

reduction and exhibits a near parametric rate of convergence of the predictive 

distribution in the ‘large *, small (’ case. Moreover, an adaptation of the so-called 

two-stage-DEA (typically done via truncated regression and bootstrap as proposed by 

Simar and Wilson (2007)) can also be adapted to the context of big wide data featuring 

very large dimensions of environmental variables, where a few key regressors need to 

be selected via LASSO. In this context, a fruitful subject in itself left for future research 

is to consider the issues of potential endogeneity and the questions of performing 

causal inference, e.g. by adapting ideas from Belloni et al. (2012, 2013) and Athey 

(2015), to mention a few. All in all, we hope our paper will encourage more research 

on these interesting questions that are important for both theorists and practitioners. 
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Appendixes 
 
Appendix A. The DGP setting in Lee and Cai (2020) 

Lee and Cai (2020) considered three cases of Monte Carlo simulations for numerical 

comparison: 

(1) Case 1: 25 observations with 10 dimensions (9 inputs and 1 output);  

(2) Case 2: 100 observations with 10 dimensions (9 inputs and 1 output); 

(3) Case 3: 25 observations with 11 dimensions (9 inputs and 2 outputs). 

Cases 1 and 2 are for a single-output scenario while case 3 is for a two-output scenario. 

In each case, Lee and Cai (2020) replicated the DGP 30 times (i.e. 30 Monte Carlo 

replications) for calculating AMSE. Below we briefly describe the DGP for Monte Carlo 

simulations with a single output in Lee and Cai (2020). 

Assume that the values of inputs are independently and identically distributed 

(i.i.d.) and generated from a uniform distribution of the interval (10, 20), i.e. 

/012~4(10, 	20). The inefficiency term is 802~9:(0, ;<), where ; = 0.7. Consider 

a Cobb-Douglas (CD) production function with multiple inputs and a single output >02?  

as a true “smooth” frontier. In particular, the true output >02?  and the observed 

output >02  are calculated by the following equations, respectively: 

 

>02
? =@/012

(
A

B:A)

1

, 	∀D = 1, . . . (, E = 1, . . . , *,F = 1, . . . , G 

 

>02 = ∏ /012
(
I

JKI
)

1 × MNOPQ, 	∀D = 1, . . . (, E = 1, . . . , *,F = 1, . . . , G             

(A.1) 

 

The methods described in Section 2 are used for dimension reduction. Then the 

output-oriented BCC model is used to calculate an observation or DMU’s efficiency 
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R02
∗ . Run the DGP G  times, and calculate the AMSE from G  replications using 

equations (9a) and (10). 

 

Appendix B. Performance comparison with more scenarios 

B.1. Results based on more general DGP 

Here we further analyze the performance of four different methods using more 

general DGPs. We consider two generalizations of DGP with a single output used in 

Lee and Cai (2020): 

(1) DGP 1: more general production function. Following Zelenyuk (2020), we assume 

the power T  ( A

B:A
 in the Appendix A) of inputs is a random variable, i.e. 

T~4(0, 	1); 

(2) DGP 2: more general production function and distribution of inefficiency. Except 

for the assumption in DGP 1, following Simar and Zelenyuk (2011), we assume that 

the standard deviation of the inefficiency term depends on the inputs, i.e. 

802~9:U0, ;V<W , where we set ;V = (/A + /< +⋯+ /B)/180 . Namely, the 

standard deviation varies in an interval [0.5, 1]. 

Due to space limitations, here we only report the results for DGP 2 with 200 

replications, which are shown in Figure B1. 

As shown in Figure B1, there is still no clear dominance for the four methods. The 

random method shows a worse performance for small dimensions while it shows a 

better performance for the results in Figure 1. Meanwhile, LASSO here appeared to 

be better than LASSO-SCNLS for small dimensions. 
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Figure B1. Results with 200 replications for DGP 2 

 

B.2. MSE results of efficiency scores 

Considering the average MSE are small and almost the same28 in Table 6 of Lee and 

Cai (2020), the scale transformation used in Lee and Cai (2020) may play an important 

role. As a result, instead of using the average MSE of outputs in Lee and Cai (2020), it 

may be better to compare the average MSE of efficiency scores (equation (9b) in 

Section 5), as is often done in other studies (e.g., Wilson, 2018; Zelenyuk, 2020). In 

this section, we further compare the results of different methods based on the MSE 

of efficiency scores for DGP 2. We consider 200 replications and the results are shown 

�������������������������
28 We also re-run the simulations by using the same DGP in their paper as well as more general DGPs (our DGP 1 
and DGP 2), and get similar results. 
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in Figure B2. We also find that there is no clear dominance of a certain method and 

no statistically significant difference among the methods. 

 

 

Figure B2. Results with 200 replications for MSE of efficiency scores 

 

B.3. Results based on the DGP in Wilson (2018) 

In order to show the performance of dimension reduction by EN-SCNLS and further 

compare the performance based on the introduced methods above, some Monte 

Carlo simulations are provided here. We consider four simulations based on the 

experiments used in Wilson (2018). 

Particularly, *  inputs and \  outputs are generated as follows: Using the 

method in Muller (1959) and Marsaglia (1972) to generate (* + \ )-tuples ] =

[]B, ]_] uniformly distributed on the surface of a closed (* + \)-ball with radius one 

centered at the origin. Here ]B and ]_  are column vectors of lengths * and \, 

respectively. Set /012 = R02
NA(1 − b]Bb) and >02 = b]_b where R02 = (1 + 802)NA, 
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802  is drawn from 9:(0, ;O<) , and ;O = 0.25cπ/2 so that e(R02NA) = 1.25 and 

e(R02) ≈ 0.8169 . Similarly, we can consider the case with ;O = 0.75cπ/2  as 

shown in Wilson (2018). Note that the inefficiency term R02  is used to obtain 

observed inputs (the true input is divided by the inefficiency term). Similarly, we can 

use the inefficiency term to get observed outputs, and set /012 = b]Bb and >02 =

R02(1 − b]_b). Then, we have four cases of simulations as follows: 

l Case A: Output-oriented with ;8 = 0.25√π/2 

l Case B: Output-oriented with ;8 = 0.75√π/2 

l Case C: Input-oriented with ;8 = 0.25√π/2 

l Case D: Input-oriented with ;8 = 0.75√π/2 

We consider nine inputs and two outputs with 200 replications in our Monte Carlo 

simulations. And the outputs are aggregated into one output using a weighted 

Euclidian function used in (Zelenyuk, 2020) before dimension reduction. Similar to 

Section B.2, we focus on the comparison of efficiency scores. Due to space limitations, 

we only show the graphical results for the average MSE comparison, which are shown 

in Figures B3-B6. As can be seen in the figures below, the results based on different 

methods are similar. There is only a small average MSE difference for them. 
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Figure B3. AMSE with 200 replications for Case A 

 

 

Figure B4. AMSE with 200 replications for Case B 
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Figure B5. AMSE with 200 replications for Case C 

 

  

Figure B6. AMSE with 200 replications for Case D 
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Appendix C. More scenarios for shrinkage performance of cross-validation LASSO  

C.1. More replications for cross-validation LASSO 

We have run results for 1000 replications using the same DGP setting in Section 5.2.1. 

Here we only show the results of the first five replications (Rep. 1 to Rep. 5) in Table 

C1. As shown in Table C1, the cross-validation LASSO identifies all the true regressors 

and discards all the irrelevant regressors. In the last column of Table C1, we report the 

average coefficient for all regressors over 1000 replications. And the average 

estimated coefficients for the relevant regressors are very close to the corresponding 

true coefficients. 

 

Table C1. Performance comparison for four cases 

Inputs '1
?  

Cross-validation LASSO 

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Average 
1 1 0.781  0.824  0.815  0.884  0.848  0.830  
2 2 1.934  2.038  1.942  1.938  1.992  1.950  
3 3 3.049  2.899  2.952  2.912  2.920  2.951  
4 4 3.922  3.977  3.950  3.984  3.968  3.950  
5 5 4.802  4.818  4.842  4.833  4.825  4.831  
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 
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34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 0 0 0 0 0 
42 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 
50 0 0 0 0 0 0 0 

 

C.2. More cases of noise 

In this section we consider six different cases of noise relative to inefficiency. All the 

other parameters are the same with the setting in Section 5.2.1, except for the -j. 

And the results are shown in Table C2. In all six cases, the cross-validation LASSO 

identifies all the true regressors but also discards all irrelevant regressors. 

 

Table C2. Estimated coefficients for different noises 

Inputs '1
?  

Cross-validation LASSO 

-j=0.001 -j=0.005 -j=0.01 -j=0.05 -j=0.1 -j=0.5 
1 1 0.787  0.814  0.838  0.853  0.839  0.877  
2 2 1.926  1.966  1.968  1.920  1.915  1.927  
3 3 3.050  2.951  2.946  2.967  2.945  3.002  
4 4 3.929  3.923  3.907  3.964  4.023  3.967  
5 5 4.802  4.849  4.884  4.809  4.787  4.819  
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
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23 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 0 0 0 0 0 
42 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 
50 0 0 0 0 0 0 0 

 

C.3. More cases of SNR 

Moreover, we also consider different cases of SNR. Similarly, all the other parameters 

are the same with the setting in Section 5.2.1, except for the SNR. And the results are 

shown in Table C3. As shown in Table C3, the estimated coefficients of irrelevant 

regressors are close to their corresponding true coefficients. Note that irrelevant 

regressors may be selected although the number of the selected irrelevant regressors 

is very small. 

 

Table C3. Estimated coefficients for different SNRs 

Inputs '1
?  

Cross-validation LASSO 

SNR=0.05 SNR=0.14 SNR=0.42 SNR=�1.22 SNR=3.52 SNR=6.00 

1 1 0.730  0.781  0.970  0.888  0.840  0.864  
2 2 2.019  2.148  1.896  1.951  1.907  1.931  
3 3 3.018  2.889  2.932  2.955  2.946  2.987  
4 4 3.833  4.138  3.970  3.974  4.028  3.945  
5 5 4.804  4.803  4.889  4.816  4.787  4.834  
6 0 0 0 0 0 0 0 
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7 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 0 0 0 0 0 
42 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 
50 0 0 0 0 0 0 0 

 

C.4. Linearity and non-linearity 

Except for the DGP setting in Section 5.2.1, we also consider the following cases:  

I) /012~4(1, 	20): -k = 2; -j = 0.5; 
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II) /012~4(1, 	20): -k = 2; -j = 1; 

III) /012~4(1, 	20): -k = 2; -j = 2; 

IV) >02 = ∑ /012m
1nA + 0.2 × /0A2

< ; 

V) >02 = ∑ /012m
1nA + /0A2

< ; 

VI) >02 = ∑ /012m
1nA + 2 × /0A2

<
. 

Note that in each case all the other settings are the same with Section 5.2.1 if not 

explicitly declared. In case I, II and III, except for the distribution of /012, the value of 

-k and -j, all the other parameter settings are the same with Section 5.2.1. In case 

IV, V and VI29, the distribution of /012  and other parameters are the same with 

Section 5.2.1, except for the non-linear assumption. 

Comparing case I with case II and III, case III and II show more noise than case I. 

Case IV is slightly non-linear while case V and VI are more non-linear. And the results 

of cross-validation LASSO are shown in Tables C4, respectively. 

 

Table C4. Estimated coefficients for four cases 

Inputs '1
?  

Cross-validation LASSO 

I II III IV V VI 

1 1 0.911  0.931  0.931  0.782  0.801  0.630  
2 2 1.907  1.930  1.927  1.915  1.847  1.695  
3 3 2.892  2.914  2.901  3.092  3.263  3.522  
4 4 3.912  3.935  3.937  3.835  3.491  2.996  
5 5 4.905  4.935  4.940  4.848  5.051  5.125  
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 -0.020  0 0 0 
15 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 

�������������������������
���We take the first five inputs as relevant regressors for convenience as the order of the inputs is not important 
(due to the randomness of the simulated data).�
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17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 -0.006  -0.052  0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0.004  0 0 0 
24 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 
32 0 0 0 0.000  0 0 0 
33 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 0 0 0 0 0 
42 0 0 0 0 0 0 0 
43 0 0 0 0.031  0 0 0 
44 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 -0.003  -0.035  0 0 0 
50 0 0 0 0 0 0 0 

 

For case I, the cross-validation LASSO identifies the first five true inputs or 

regressors and discards all the other unnecessary regressors. The estimated beta 

coefficients are close to the given (true) beta coefficients. For case II, the cross-

validation LASSO also identifies five true regressors. However, two unnecessary 

regressors are also identified. For case III, the cross-validation LASSO also identifies 

five true regressors but more (six) unnecessary regressors are identified. Hence, if the 

magnitude of the noise increases, the accuracy of the cross-validation LASSO 

discarding the unnecessary regressors decreases. 
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For case IV, the cross-validation LASSO still identifies the first five true regressors, 

and discards all the other unnecessary regressors. The estimated beta coefficients are 

also close to the given (true) beta coefficients. Hence, if the true output is non-linear 

but is not too far from linear, the cross-validation LASSO could still work reasonably 

well. For case V and VI, the cross-validation LASSO still identifies all five true regressors. 

However, it is possible that the cross-validation LASSO fails to identify all true 

regressors in case V and VI (as shown in the table below). Moreover, the estimated 

coefficients of the true regressors deviate from the corresponding true coefficients in 

cases V and VI. Hence, the further from the linearity, the less accurate the cross-

validation LASSO should be expected to perform, yet there are apparently no better 

alternatives so far and a call for further research on this is in order. 

 

Table C5. Results for performance statistics 

 I II III IV V VI 

Ave. selected relevant regressors 5 5 5 5 4.995 4.836 
Ave. selected irrelevant regressors 0.003 0.302 2.605 0.001 0.153 0.148 
The number of correctness of 
regressor selection/discard 

997 790 211 999 879 728 

Ave. estimated 	'A2  0.90 0.93  0.92  0.84  0.76  0.56  

Ave. estimated 	'<2  1.90 1.93  1.92  1.95  1.92  1.81  

Ave. estimated 	'o2  2.90 2.92  2.91  2.95  2.93  2.86  

Ave. estimated 	'p2  3.90 3.93  3.92  3.95  3.93  3.85  

Ave. estimated 	'm2  4.90 4.93  4.92  4.84  4.75  4.49  

 

In fact, we try each case in Table C4 for 1000 replications. And the results for the 

performance statistics are shown in Table C5. In case I to IV, as shown in the first row 

of Table C5, in all the 1000 replications the cross-validation LASSO selected all five true 

regressors. However, in case I to IV the cross-validation LASSO may select irrelevant 

regressors. In case I, as shown in the third row of Table C5, in 997 replications the 

cross-validation LASSO selected all five true regressors and discarded all irrelevant 

regressors while the number decreases to 790 in case II. And as shown in the second 

row of Table C5, on average (over the 1000 replications) about 0.003 and 0.302 of 45 
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irrelevant regressors were selected in case I and II, respectively. In case III, only in 211 

replications did the cross-validation LASSO select all five true regressors and discard 

all irrelevant regressors. While the method is not perfect and in some peculiar 

replications the number of selected irrelevant variables was relatively large, on 

average about 2.605 of 45 irrelevant regressors were selected. In case I to III, as shown 

in the last five rows of Table C5, the average estimated coefficients of the first five 

regressors were almost the same and close to their corresponding true coefficients. 

In case IV, the cross-validation LASSO performed quite well. It selected all five true 

regressors and discarded all irrelevant regressors in 999 out of 1000 replications. In 

case V and VI, if the true output goes further away from the linearity, the performance 

decreases. Over the 1000 replications, on average about 4.836 of 5 relevant regressors 

were selected, and about 0.148 of 45 irrelevant regressors were selected in case VI. 

Moreover, from case IV to VI, the average estimated coefficients of the first five 

regressors decrease and gradually deviate from their corresponding true coefficients. 
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