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1 Introduction

The focus of empirical analysis in this paper is to compare the efficiency of teaching and

non-teaching hospitals. Teaching hospitals are sometimes expected to be less efficient than

non-teaching hospitals because they have to utilise more resources to fulfil the educational

mission. The higher level of resource utilisation in teaching hospitals is not only because

more overheads and equipment are needed for teaching and research activities, but it is

also due to the increased use of ancillary services from residents in training, who tend to

keep patients longer and may over-prescribe medical tests (Cameron, 1985; Rich et al.,

1990). Moreover, the productivity of medical staff in teaching hospitals is expected to be

negatively impacted by their teaching mission, since they have to share their time between

providing patient care services and training residents (Jensen & Morrisey, 1986; Hao &

Pegels, 1994).

On the other hand, teaching hospitals are widely reputed for providing high-quality

care and are the places where many innovative medical techniques are first discovered and

applied (Ayanian & Weissman, 2002; Shahian et al., 2012). In addition, the involvement

in teaching and research activities might also help medical staff to develop professional

skills and to accumulate human capital, which in turn helps them to be more effective

in treating patients. As a result, the effectiveness of diagnosis and treatment in teaching

hospitals is expected to be higher than in non-teaching hospitals. With these two opposite

driving forces, the relative efficiency between teaching and non-teaching hospitals is not

known in prior, and thus is an empirical question.

The empirical evidence about the relationship is rather mixed in the literature. For

example, Lehner and Burgess (1995) and Grosskopf et al. (2001) found that teaching

hospitals are less efficient than non-teaching hospitals, but Nayar et al. (2013) found the

opposite evidence, while Burgess and Wilson (1998) did not find any evidence about the

difference in efficiency between teaching and non-teaching hospitals although all these

studies were undertaken in the U.S. context. This paper aims to shed more light on this

important debate in the literature. To do so, we adapt the most recent developments on

statistical analysis of aggregate efficiency and apply them to the data on public hospitals

in Australia.

1.1 The Importance of Measuring Aggregate Efficiency

Besides estimating the efficiency of individual production units, researchers often need

to obtain measures of efficiency at more aggregate levels, for example, the efficiency of

some groups of interest within an industry or the efficiency of the industry as a whole.
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Hereafter, we will call these measures with a common name: group efficiencies and will

distinguish between entire group efficiencies and sub-group efficiencies where needed.

A natural measure of group efficiencies is the simple average of individual efficiency

scores of production units within the group. It is a very simple approach, yet its drawback

is that it ignores the size and hence the economic influence or weight of each individual in

the aggregate. To make this point more intuitive, let us consider a hypothetical industry,

which includes one big firm and ten small firms. As is the reality, where many industries

are dominated by a few firms, suppose the big firm accounts for 90% of the industry

revenue, whereas each of the ten small firms makes up only 1% of the revenue. Let us

further assume that the big firm is very efficient, say, 100% efficient, meanwhile all the

small firms are only 50% efficient. If one looks at the simple average, the industry is only

55% efficient. Obviously, the simple average does not take into account the fact that the

industry is dominated by a very efficient firm - the big firm. One way to account for the

economic weight of each individual is to use the aggregate efficiency measure proposed

by Färe and Zelenyuk (2003), extended by Simar and Zelenyuk (2007). As compared to

the simple average, their approach is useful because it uses meaningful weights derived

from the economic optimization principle to aggregate individual efficiency scores, thus it

takes the relative economic importance of individual production units in the group into

account.

1.2 Statistical Inference of Aggregates of Envelopment Esti-

mates

It is well-known in the literature that the conventional statistical inferences fail to apply

to envelopment estimators of aggregate efficiency because these estimators inherit the

statistical properties from individual efficiency estimators, which are biased and the bias

is of a higher order than the variance when the dimension of the production model (the

number of inputs and outputs) increases (Kneip et al., 2015). Prior to this important

work, Simar and Zelenyuk (2007) attempted to correct the bias and perform statistical

inferences for the aggregate efficiency by adapting the subsample bootstrapping technique

proposed by Kneip et al. (2008) to the context of the group-wise heterogeneity.

Recently, Simar and Zelenyuk (2018) extended results from Kneip et al. (2015) by

developing central limit theorems for aggregate efficiency. They utilized appropriate tech-

niques to correct bias and control convergence rates for both bias and variance. The new

central limit theorem has opened the path for more precise and theoretically-grounded

statistical inference for aggregate efficiencies.

It is important to note that the results in Simar and Zelenyuk (2018) were developed
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only for the case of entire group aggregate efficiency. To adapt these developments, one

needs to carefully extend some of the results to the case when there are different sub-groups

in the population, which appear to be new and thus is a modest theoretical novelty of

this paper. Moreover, this paper is the first real use of these methods (with some novel

extensions) for an empirical study.

1.3 Empirical Findings

Using the data on public hospitals in Queensland, Australia, we found that the conclu-

sions about the relative efficiency between teaching and non-teaching hospitals dramat-

ically depended on the adopted reference technology. Specifically, when benchmarking

to the constant returns to scale (CRS) frontier, teaching hospitals are significantly less

efficient than non-teaching hospitals. However, teaching hospitals are significantly more

efficient than non-teaching hospitals when benchmarking to the variable returns to scale

(VRS) frontier. The difference in these opposite conclusions is largely explained by the

diseconomies of scales of teaching hospitals, which are primarily large (and perhaps ”too

large”?) hospitals. This raises a few natural questions for policy makers: Should the

teaching hospitals be so large? Or, more generally, should the government, instead of

expanding already large hospitals, invest into building new hospitals that are near the

socially-optimal scale of operations? Indeed, the hospitals operating near the optimal

scale must be more capable of expanding their operations (and at greater level of pro-

ductivity) when facing sudden needs for its services, e.g., as during pandemics or other

healthcare challenges to our society.

This paper is organized as follows. Section 2 discusses the methodologies. Section 3

describes the data and variables. Section 4 discusses the results, and Section 5 provides

concluding remarks.

2 Methodology

2.1 Individual and Aggregate Efficiency

Let us consider a production technology, in which Decision Making Units (DMUs) use p

inputs denoted as a p-dimensional column vector x ∈ <p+ to produce q outputs denoted

as a q-dimensional column vector y ∈ <q+. The corresponding prices are denoted by row

vectors v ∈ <p++ and w ∈ <q++, respectively. We assume that the technology can be
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characterized by a technology set defined as follows

Ψ = {(x, y) ∈ <p+ ×<
q
+ | x can produce y} , (1)

or equivalently an output set defined as

P (x) = {y ∈ <q+ | x can produce y} , (2)

and the technology or the production frontier is then defined based on the technology set

Ψ∂ =
{

(x, y) ∈ Ψ
∣∣ (δ−1x, δy) /∈ Ψ,∀δ > 1

}
. (3)

We also assume that the standard regularity conditions of production theory (Shephard,

1953, 1970; Färe & Primont, 1995) are satisfied. Specifically,1

A1. “No Free Lunch”, i.e., y /∈ P (0p) , ∀y ≥ 0q and y 6= 0q.

A2. “Producing Nothing is Possible”, i.e., 0q ∈ P (x) , ∀x ∈ <p+.

A3. “Boundedness of the Output Sets”, i.e., P (x) is a bounded set for all x ∈ <p+.

A4. “‘Closedness’ of the Technology set”, i.e., Ψ is a closed set.

A5. “Strong Disposability of All Inputs and Outputs”, i.e, (x0, y0) ∈ Ψ ⇒ (x, y) ∈
Ψ,∀x ≥ x0, y ≤ y0.

Farrell type efficiency measures appear to be the most widely-used measures of effi-

ciency in the literature and the most general measure of this type, which encompasses

other conventional Farrell-type measures as its multiplicative components, is Farrell profit

efficiency (recently developed by Färe et al., 2019). For a DMU with input-output alloca-

tion (x0, y0) facing input prices v0 and output prices w0, the output oriented Farrell profit

efficiency is defined as

PE = sup
θ,x,y
{θ : w0 (θy0)− v0x0 ≤ w0y − v0x, (x, y) ∈ Ψ ∩ Z} , (4)

where Z is a set imposing regularity conditions to ensure feasibility of the profit function

(see more details in Färe et al., 2019). The profit efficiency can be decomposed as

PE = AEre ×RE, (5)

where AEre is revenue-efficient allocative efficiency representing the improvement in profit

due to the reallocation of inputs, RE is revenue efficiency defined as

RE (x0, y0, w0) =
RF (x0, w0)

w0y0
, (6)

1See Sickles and Zelenyuk (2019) for more details and related discussion.
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where RF (x0, w0) is the classical revenue function defined as

RF (x0, w0) = max
y
{w0y | (x0, y) ∈ Ψ} . (7)

In practice, many inputs are relatively fixed in the short run or for a given year,

especially for the case of hospitals that plan a budget in advance, hire personnel on

relatively fixed (typically 12+ months) contracts, and put a lot of fixed inputs in (e.g.,

building, beds, equipment, etc.). Thus, revenue optimization becomes a natural special

case of profit optimization and it is reasonable to look at revenue efficiency to analyse

particular years or a short period of time. However, price information is not always

available or if available, it might not represent market valuations. As a result, researchers

often resort to analysing the technical efficiency part of revenue efficiency, and the most

popular here is the Farrell-Debreu technical efficiency, which is a natural component in the

decomposition of revenue efficiency (and thus of profit efficiency). The output oriented

Farrell-Debreu technical efficiency for a DMU with input-output allocation (x0, y0) is

defined as

λ (x0, y0) = sup
λ
{λ | (x0, λy0) ∈ Ψ} . (8)

Färe and Zelenyuk (2003) proposed an economic theory-based approach to obtain

aggregate efficiencies from individual efficiencies discussed above. Simar and Zelenyuk

(2007) (hereafter SZ2007) extended the result in Färe and Zelenyuk (2003) to the aggre-

gation within and between sub-groups in a given group. Here, we focus our discussion on

the aggregation of the technical efficiency.

To facilitate the discussion, let us assume we have a group of n DMUs with an input-

output allocation set Xn = {(Xi, Yi) | i = 1, . . . , n}, which come from Lmutually exclusive

and collectively exhaustive sub-groups (according to some exogenous economic criteria),

and all DMUs face the same output prices, denoted from now on as w. Now let us denote

the input-output allocation of each sub-group ` as X `
n`

=
{(
X`
i , Y

`
i

) ∣∣ i = 1, . . . , n`
}

, ` ∈
{1, · · · , L}. Following SZ2007, the sub-group aggregate technical efficiency for the sub-

group ` can be obtained as 2

TE
`

=

n∑̀
i=1

λ
(
X`
i , Y

`
i

)
× S`i , S`i =

wY `
i

w
∑n`

i=1 Y
`
i

, ` = 1, · · · , L, (9)

and the entire group aggregate technical efficiency can be obtained as

TE =
L∑
`=1

TE
` × S`, S` =

w
∑n`

i=1 Y
`
i

w
∑L

`=1

∑n`
i=1 Y

`
i

. (10)

2We use λ
(
X`

i , Y
`
i

)
and λ̂

(
X`

i , Y
`
i

∣∣ Xn

)
(will be discussed later) to denote respectively the true and

the estimate of true technical efficiency of a random point
(
X`

i , Y
`
i

)
in sub-group `, and we replace(

X`
i , Y

`
i

)
with

(
x`, y`

)
to denote the estimated and true efficiencies of a fixed point

(
x`, y`

)
.
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2.2 Envelopment Estimators

In practice, the true technical efficiency of each DMU is unknown, thus we need to obtain

its estimate to proceed with the estimation of the aggregate efficiencies. There are many

approaches in literature to estimate individual technical efficiencies, and here we focus on

envelopment estimators.

If the constant returns to scale (CRS) assumption is imposed on the technology fron-

tier, one can estimate technical efficiency for a random point
(
X`
i , Y

`
i

)
in sub-group `

using the CRS-DEA estimator 3, which is given by

λ̂
(
X`
i , Y

`
i

∣∣ Xn) ≡ max
ζ1,...,ζn,λ

{
λ :

n∑
k=1

ζkYk ≥ λY `
i ,

n∑
k=1

ζkXk ≤ X`
i ,

λ ≥ 0,∀ζk ≥ 0

}
. (11)

Alternatively, if the variable returns to scale is imposed on the technology frontier, one

can use the VRS-DEA estimator (Färe et al., 1983; Banker et al., 1984), which is given

by

λ̂
(
X`
i , Y

`
i

∣∣ Xn) ≡ max
ζ1,...,ζn,λ

{
λ :

n∑
k=1

ζkYk ≥ λY `
i ,

n∑
k=1

ζkXk ≤ X`
i ,

λ ≥ 0,∀ζk ≥ 0,
n∑
k=1

ζk = 1

}
. (12)

Moreover, if the convexity assumption is not imposed, one can use the FDH estimator

(Deprins et al., 1984) given by

λ̂
(
X`
i , Y

`
i

∣∣ Xn) ≡ max
ζ1,...,ζn,λ

{
λ :

n∑
k=1

ζkY
`
k ≥ λY `

i ,

n∑
k=1

ζkXk ≤ X`
i ,

λ ≥ 0, ζk ∈ {0, 1} ,
n∑
k=1

ζk = 1

}
. (13)

Here individual efficiencies in all sub-groups are estimated using the same technology,

allowing us to measure efficiencies across sub-groups of DMUs with respect to a common

benchmark (to make them comparable).

Although statistical properties of DEA and FDH estimators at a fixed point have

been well-established in the literature 4, their statistical properties at random points(
X`
i , Y

`
i

)
have recently been developed by Kneip et al. (2015) (hereafter, KSW). Under

3This approach was largely initiated by Farrell (1957) and then generalized and popularized by Charnes

et al. (1978), with many developments after.
4See details in Kneip et al. (1998), Park et al. (2000), Kneip et al. (2008), Park et al. (2010)
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the assumption that technology and data generating processes (DGP) satisfy regularity

conditions specified in KSW and as n→∞, the basic results established in KSW can be

stated as follows

E
[
λ̂
(
X`
i , Y

`
i

∣∣ Xn)− λ (X`
i , Y

`
i

)]
= C0n

−κ +Rn,κ (14)

E

[(
λ̂
(
X`
i , Y

`
i

∣∣ Xn)− λ (X`
i , Y

`
i

))2]
= o

(
n−κ

)
(15)∣∣∣COV [λ̂ (X`

i , Y
`
i

∣∣ Xn)− λ (X`
i , Y

`
i

)
, λ̂
(
X`
j , Y

`
j

∣∣ Xn)− λ (X`
j , Y

`
j

)]∣∣∣ = o
(
n−1
)

(16)

Here, the values of the constant term C0, the rate κ and the remainder term Rn,κ depend

on the dimension of input-output space and types of estimators used (see Table 1).

Table 1: Rate of convergence of envelopment estimators

Estimators κ Rn,κ

CRS-DEA 2/(p+ q) O
(
n−3κ/2 (log n)α1

)
VRS-DEA 2/(p+ q + 1) O

(
n−3κ/2 (log n)α2

)
FDH 1/(p+ q) O (n−2κ (log n)α3)

Notes:

* In all cases above, the values of αj > 1, j = 1, 2, 3 and other

details are given in KSW.

For the aggregate technical efficiency, one can obtain its estimators by plugging in the

envelopment estimators of individual technical efficiencies into equation (9). The asymp-

totic properties of aggregate technical efficiency have been recently developed by Simar

and Zelenyuk (2018) (hereafter SZ2018), with further improvements for finite samples

in Simar and Zelenyuk (2020) (hereafter SZ2020), and we will discuss them in the next

section.

2.3 Confidence intervals for aggregate efficiency

2.3.1 Bootstrapping approach

The envelopment estimators of aggregate efficiency inherit the statistical properties from

envelopment estimators of individual efficiency, which are biased and the bias is of a higher

order than the variance when the dimension of the production model (i.e., p+q) increases

(Kneip et al., 2015). As a result, the conventional statistical inferences fail to apply to

the aggregate efficiency.
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SZ2007 attempted to correct the bias and construct a confidence interval for the aggre-

gate efficiency. They extended the subsample bootstrapping technique proposed in Kneip

et al. (2008) to the context of the group-wise heterogeneity. Assuming that the DGP

characterising the technology satisfies the assumptions specified in SZ2007, we can follow

their bootstrap algorithm to obtain confidence intervals for the true aggregate technical

efficiencies of the entire group, TE, as well as of each sub-group, TE
`
, ` ∈ {1, · · · , L}.

The algorithm is summarised as follows

Step 1 Obtain estimates of TE and TE
`
, ` ∈ {1, · · · , L}: Utilise envelopment estimators

to obtain estimates of individual efficiency scores from the original sample on inputs

and outputs for all DMUs, Sn = {(xi, yi) | i = 1, . . . , n} 5. Obtain estimates of TE

and TE
`

by aggregating individual efficiency scores using formulas (9) and (10),

denote them as T̂E and T̂E
`

, respectively.

Step 2. Obtain bth bootstrap samples: For each sub-group, `, determine subsample size

s` = bnγ`` c (γ` ∈ (0, 1) and chosen by researchers). Generate a bootstrap sample

for each sub-group `, S∗`s`,b =
{(
x∗`j,b, y

∗`
j,b

) ∣∣ j = 1, . . . , s`
}

, by resampling (uniformly,

independently and with replacement) s` pairs out n` pairs
(
x`, y`

)
from the original

sample of each sub-group ` ∈ {1, · · · , L}. Do it separately for each sub-group

` ∈ {1, · · · , L} and construct a pooled bootstrap sample denoted as S∗s,b = ∪L`=1S∗`s`,b,
s =

∑L
`=1 s`

Step 3. Obtain bth bootstrap estimates of TE and TE
`
, ` ∈ {1, · · · , L}: Perform the

same procedure described in Step 1 to compute bootstrap estimates of TE and TE
`

but with respect to the frontier constructed from the pooled bootstrap sample S∗s,b,

denote them as T̂E
∗

b and T̂E
∗`

, respectively.

Step 4. Repeat Step 2 and Step 3 B times. At the end, we obtain B bootstrap esti-

mates of aggregate efficiencies for entire group
{
T̂E

∗

b

}B
b=1

and for each sub-group{
T̂E

∗`

b

}B
b=1

, ` ∈ {1, · · · , L}.

Step 5. Use
{
T̂E

∗

b

}B
b=1

and

{
T̂E

∗`

b

}B
b=1

with the formulas discussed below to construct

the bootstrap-based confidence intervals for TE and TE
`
, ` ∈ {1, · · · , L}, respec-

tively.

5Here, we change notations to emphasize that estimates are obtained at fixed points.
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The formula to construct (1− α) bootstrap confidence interval for the entire group ag-

gregate technical efficiency, TE, is

T̂E + âα ≤ TE ≤ T̂E + b̂α, (17)

where b̂α and âα are (α/2)−quantile and (1− α/2)−quantile of the set
{
T̂E

∗

b − T̂E
}B
b=1

,

respectively. Similarly, the formula to construct (1− α) bootstrap confidence interval for

each sub-group aggregate technical efficiency, TE
`
, ` ∈ {1, · · · , L}, is

T̂E
`

+ â`α ≤ TE
` ≤ T̂E

`

+ b̂`α, (18)

where b̂`α and â`α are (α/2)−quantile and (1−α/2)−quantile of the set

{
T̂E

∗`

b − T̂E
`
}B
b=1

,

respectively. The interested reader can find formulas to calculate bootstrap estimates of

bias and standard error for aggregate efficiencies in SZ2007.

The main complication of the subsampling bootstrap approach is that the choice of

a subsample size (determined by γ`) is important in practice and the conclusions for

empirical studies might be different quantitatively and even qualitatively for different

subsample sizes.

2.3.2 Central Limit Theorem Approach

SZ2018 proposed a novel approach for interpreting the aggregate efficiencies as estimators

of the ratio of two population means, which is useful for deriving asymptotic properties

of these aggregate efficiencies. The goal of this section is to extend their approach to

the context when there are several sub-groups in the population, as for those discussed

above and earlier in SZ2007 for the bootstrap approach. Specifically, equation (9) can be

rewritten as

TE
`

=
(1/n`)

∑n`
i=1wY

`∂
i

(1/n`)
∑n`

i=1wY
`
i

=
(1/n`)

∑n`
i=1 Z

`∂
i

(1/n`)
∑n

i=1 Z
`
i

, (19)

where, Z`
i ≡ wY `

i is the revenue of DMU i and Z`∂
i ≡ wY `∂

i = λ
(
X`
i , Y

`
i

)
wY `

i can be

viewed as the monetary value (under prices w) of the projection of the observation Y `
i on

the boundary of the technology set.

Adapting the notation of SZ2018 to the sub-group case, let
{(
Z`∂
i , Z

`
i

) ∣∣ i = 1, . . . , n`
}

be a set of random realizations of a random vector[
Z`∂

Z`

]
=

[
λ
(
X`, Y `

)
Z`

Z`

]
, (20)
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with its first two moments denoted as

µ` =

[
E
(
Z`∂
)

E
(
Z`
) ] =

[
µ`1

µ`2

]
, (21)

Σ` =

[
V AR

(
Z`∂
)

COV
(
Z`∂, Z`

)
COV

(
Z`∂, Z`

)
V AR

(
Z`
) ]

=

[(
σ`1
)2

σ`12

σ`12
(
σ`2
)2
]
. (22)

As a result, the aggregate technical efficiency in equation (19) can be viewed as a natural

estimator - the ratio of the sample means - for our parameter of interest τ ` =
µ`1
µ`2

, i.e.,

τ̂ ` =
µ̂`1
µ̂`2

=
(1/n`)

∑n`
i=1 Z

`∂
i

(1/n`)
∑n`

i=1 Z
`
i

. (23)

2.3.2.1 Central Limit Theorems

As pointed out by SZ2018, if Z`∂
i is observable, one can use the conventional method to

derive the asymptotic distribution for τ̂ `

√
n`
(
τ̂ ` − τ `

) d−→ N
(

0,
(
σ`τ
)2)

, (24)

where (
σ`τ
)2

= n`
(
σ`τ̂`
)2

=
(
τ `
)2((σ`1)2(

µ`1
)2 +

(
σ`2
)2(

µ`2
)2 − 2

σ`12
µ`1µ

`
2

)
. (25)

In practice, we do not observe Z`∂
i since the values of function λ

(
X`
i , Y

`
i

)
are unknown.

However, we can obtain the estimates of λ
(
X`
i , Y

`
i

)
using nonparametric envelopment

estimators discussed in the previous section. With those estimates, one can replace the

unknowns in the numerator of equation (23) with their estimated values to obtain another

estimator of τ `

ˆ̂τ ` =
ˆ̂µ`1
µ̂`2

=
(1/n`)

∑n`
i=1 Ẑ

`∂
i

(1/n`)
∑n`

i=1 Z
`
i

, (26)

where Ẑ`∂
i = λ̂

(
X`
i , Y

`
i

)
wY `

i .

The conventional central limit theorem, however, fails to apply to ˆ̂τ ` since envelopment

estimators of λ
(
X`
i , Y

`
i

)
are biased and, in most instances, the bias does not converge to

zero fast enough with the increase of sample size (e.g., it happens for CRS-DEA when

p + q > 3, for VRS-DEA when p + q > 2 and for FDH when p + q > 1). SZ2018 have

overcome the issue and developed new central limit theorems for the aggregate efficiency

for the entire group by adapting and generalizing the results from KSW to correct bias

and control convergence rates for both bias and variance. In the following, we will adapt

the theorems developed in SZ2018 for the sub-group aggregate efficiency and theorems

developed in KSW for sub-group mean efficiency with the assumption that n`/n → c`
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as n → ∞, for any constant c` ∈ (0, 1). To prepare the notations, let us denote the

sub-group mean efficiency as λ
`
, i.e.,

λ
`

=
1

n`

n∑̀
i=1

λ̂
(
X`
i , Y

`
i |Xn

)
, (27)

and the sub-group average efficiency in population as µ`λ, i.e.,

µ`λ = E
(
λ
(
X`, Y `

))
, (28)

and the variance of sub-group efficiency scores in the population as
(
σ`λ
)2

, i.e.,(
σ`λ
)2

= Var
(
λ
(
X`, Y `

))
. (29)

The adapted results for the sub-group context can be summarised in the following two

theorems.

Theorem 2.1. Under the appropriate set of assumptions described in Theorem 3.1, 3.2

or 3.3 of KSW, for p + q ≤ 5 if a CRS- DEA estimator is used and Ψ is CRS and is

convex, for p+q ≤ 4 if VRS-DEA estimator is used and Ψ is convex, for p+q ≤ 3 if FDH

estimator is used and satisfies free disposability of inputs and outputs, and if n`/n → c`

as n→∞, when n→∞ we have
√
n`

σ̂`λ

(
λ
` − B̂`

µ`λ,κ
− µ`λ +R`

n,κ

)
d−→ N (0, 1) , (30)

and √
n`

ˆ̂σ`
τ`

(
ˆ̂τ ` − B̂`

τ`,κ − τ
` +R`

n,κ

)
d−→ N (0, 1) , (31)

where R`
n,κ = o (n−κ), B̂`

µ`λ,κ
and B̂`

τ`,κ
are respectively the generalized jackknife estimators

of biases of λ
`

and ˆ̂τ `, σ̂`λ is the empirical version of σ`λ, and ˆ̂σ`
τ`

is a consistent estimate

of σ`
τ`

given by (
ˆ̂σ`τ`
)2

= ˆ̂τ `


(

ˆ̂σ`1

)2
(

ˆ̂µ`1

)2 +

(
σ̂`2
)2(

µ̂`2
)2 − 2

ˆ̂σ`12
ˆ̂µ`1µ̂

`
2

 , (32)

with ˆ̂σ`1, σ̂
`
2, and ˆ̂σ`12 being empirical versions of σ`1, σ

`
2, and σ`12, respectively.

Theorem 2.2. Under the appropriate set of assumptions described in Theorem 3.1, 3.2

or 3.3 of KSW, for p + q ≥ 5 if a CRS- DEA estimator is used and Ψ is CRS and is

convex, for p+q ≥ 4 if VRS-DEA estimator is used and Ψ is convex, for p+q ≥ 3 if FDH

estimator is used and satisfies free disposability of inputs and outputs, and if n`/n → c`

as n→∞, when n→∞ we have
√
n`,κ

σ̂`λ

(
λ
`

κ − B̂`
µ`λ,κ
− µ`λ +R`

n,κ

)
d−→ N (0, 1) , (33)
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and √
n`,κ
ˆ̂στ`

(
ˆ̂τ `κ − B̂`

τ`,κ − τ
` +R`

n,κ

)
d−→ N (0, 1) (34)

where λ
`

κ and ˆ̂τ `κ are respectively subsample versions of λ
`

and ˆ̂τ `, in the sense that the

averages are taken over a random subsample X `∗
n`,κ
⊆ X `

n`
of size n`,κ = min (bn2κc , n`).

Formally

λ
`

κ = n−1`,κ
∑

{
i
∣∣∣(X`

i ,Y
`
i )∈X `∗n`,κ

} λ̂
(
X`
i , Y

`
i

∣∣Xn) , (35)

and

ˆ̂τ `κ =
n−1`,κ

∑{
i
∣∣∣(X`

i ,Y
`
i )∈X `∗n`,κ

} Ẑ`∂
i (Xn)

n−1`,κ
∑{

i
∣∣∣(X`

i ,Y
`
i )∈X `∗n`,κ

} Z`
i

, (36)

where Ẑ∂
i (Xn) = λ̂

(
X`
i , Y

`
i

∣∣Xn)Z`
i

The above theorems are adaptations of Theorems 4.3 and 4.4 in KSW and Theorems 2

and 3 in SZ2018. Some elaborations are needed, particularly, to determine the order of the

remainder term, R`
n,κ. If one directly applies the theorems in KSW and SZ2018, one should

estimate the efficiency scores of sub-group ` using the sub-group sample only (a sample

of size n`). As such, the order of the remainder term should be o
(
n−κ`

)
. However, in our

context, we have several sub-groups in the population and more importantly, efficiencies

of individual DMUs in all sub-groups are measured using the common benchmark (to

make them comparable), i.e., estimated using the entire sample (a sample of size n). As

a result, the remainder term, R`
n,κ, has the order of o (n−κ). To accommodate this, we

assume that n`/n → c` as n → ∞, for any constant c` ∈ (0, 1), and thus when n → ∞,

we obtain the same results as in KSW and SZ. The subsample sizes n`,κ in Theorem 2.2

are also modified to reflect this fact.

Remark. As in KSW and SZ2018, with p+ q = 5 for CRS-DEA estimator, p+ q = 4 for

VRS-DEA estimator, and p+q = 3 for FDH estimator, both Theorem 2.1 and Theorem 2.2

are applicable because of the specific forms of the remainder term, but Theorem 2.2 is

more preferable since the neglected term in Theorem 2.2 (the remainder term scaled by
√
n`,κ) converges to zero faster than the neglected term in Theorem 2.1 (the remainder

term scaled by
√
n`) (see more related discussion in KSW and SZ2018).

2.3.2.2 Implementation of the Bias Correction

The generalized jackknife estimator of bias for the sub-group aggregate and mean efficien-

cies can be deployed by adapting the procedure discussed in KSW and SZ2018. Following

KSW and SZ2018, we utilise the generalized jackknife technique to estimate the bias of
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λ
`

and ˆ̂µ`1, and then estimate the bias B̂`
τ`,κ

of ˆ̂τ ` using the relationship in (26). The

procedure is as follows.

First, let us randomly split the samples of each group ` ∈ {1, · · · , L}, into two parts

with their sizes being m`1 = bn`/2c and m`2 = n` −m`1 . Obviously, for each sub-group

`, the sample X `
n`

is split evenly if n` is even or almost evenly if n` is odd, and there

are
(
n`
m`1

)
possible ways to split the sample X `

n`
. Now let us consider a random split, say

h, and denote a random subset of size m`1 of each X `
n`

as X `(1)
m`1 ,h

, and let X `(2)
m`2 ,h

be the

set of remaining input-output pairs in each X `
n`

. The entire group sample is also split

accordingly. Without loss of generality, let us construct two random subsets of the entire

group as X 1
m1,h

= ∪L`=1X
`(1)
m`1 ,h

and X 2
m2,h

= ∪L`=1X
`(2)
m`2 ,h

.6

For j ∈ {1, 2}, let

λ
`(j)

h =
(
m`j

)−1 ∑
(X`

i ,Y
`
i )∈X `(j)m`j

,h

λ̂
(
X`
i , Y

`
i |X

(j)
mj ,h

)
, ` = 1, · · · , L, (37)

and

ˆ̂µ
`(j)
1,h =

(
m`j

)−1 ∑
(X`

i ,Y
`
i )∈X `(j)m`j

,h

Ẑ∂
i

(
X (j)
mj ,h

)
, ` = 1, · · · , L. (38)

Now, define

λ
`∗
h =

1

2

(
λ
`(1)

h + λ
`(2)

h

)
, ` = 1, · · · , L, (39)

and

ˆ̂µ`∗1,h =
1

2

(
ˆ̂µ
`(1)
1,h + ˆ̂µ

`(2)
1,h

)
, ` = 1, · · · , L. (40)

Then

(2κ − 1)−1
(
λ
`∗
h − λ

`
)
, ` = 1, · · · , L, (41)

and

(2κ − 1)−1
(

ˆ̂µ`∗1,h − ˆ̂µ`1

)
, ` = 1, · · · , L, (42)

provides estimators of the bias terms of λ
`

and ˆ̂µ`1, respectively. Repeating the operations

above for h = 1, . . . , H, with H �
((

n1

n1/2

)
∧ · · · ∧

(
nL
nL/2

))
and averaging (41) and (42),

we obtain jackknife estimators of the bias terms of λ
`

and ˆ̂µ`1, of which variance is reduced

by a factor of H−1 compared to (41) and (42), respectively

B̂`
µ`λ,κ

= H−1
H∑
h=1

(2κ − 1)−1
(
λ
`∗
h − λ

`
)
, ` = 1, · · · , L, (43)

and

B̂`
µ`1,κ

= H−1
H∑
h=1

(2κ − 1)−1
(

ˆ̂µ`∗1,h − ˆ̂µ`1

)
, ` = 1, · · · , L. (44)

6We have 2L different ways to construct 2 subsets of entire group from 2 subsets of L sub-groups.
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The jackknife estimator of bias of ˆ̂τ` is then given by

B̂`
τ`,κ =

H−1
∑H

h=1 (2κ − 1)−1
(

ˆ̂µ`∗1,h − ˆ̂µ`1

)
µ̂`2

, ` = 1, · · · , L. (45)

2.3.2.3 Implementation of the Variance Correction

KSW and SZ2018 suggest to use empirical estimators of true variance of individual and

aggregate efficiency, respectively, to make practical inference using the new central limit

theorems developed therein. They proved that the empirical estimators of the variances

are consistent estimators and the central limit theorems are still applicable when these

estimators are used in place of the true values. However, as discussed in SZ2020, these

estimators are biased by construction. Specifically, for the case of individual efficiency, a

well-known result is

1 ≤ λ̂ (X, Y |Xn) ≤ λ (X, Y ) , (46)

with probability one. This result implies that the empirical version of variance of indi-

vidual efficiency underestimates the population variance. The same logic is applied to

the case of the aggregate efficiency since the biases in estimating aggregate efficiency

come from individual efficiency estimators. The biases of the variances might reduce the

accuracy of statistical inference using the new central limit theorems in finite samples.

To improve finite sample approximation by the central limit theorems, SZ2020 propose

using the bias corrected versions for the estimators of variance of individual and aggregate

efficiencies. Adapting SZ2020, the bias-corrected estimators of variance for sub-group

mean and aggregate efficiency are given respectively by

σ̃`λ = σ̂`λ +
(
B̂`
µ`λ,κ

)2
, ` = 1, · · · , L, (47)

and

σ̃`τ` = ˆ̂τ `

 (σ̃`1)2(
ˆ̂µ`1

)2 +

(
σ̂`2
)2(

µ̂`2
)2 − 2

ˆ̂σ`12
ˆ̂µ`1µ̂

`
2

 , ` = 1, · · · , L, (48)

where

σ̃`1 = ˆ̂σ`1 +
(
B̂`
µ`1,κ

)2
, ` = 1, · · · , L. (49)

As in SZ2020, Theorem 2.1 and Theorem 2.2 also apply if σ̃`λ and σ̃`
τ`

are used in place of

σ̂`λ and ˆ̂σ`
τ`

, respectively.
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2.3.2.4 Confidence Intervals

The (1− α) confidence interval for the sub-group mean and aggregate efficiency can be

constructed respectively as[
λ
` − B̂`

µ`λ,κ
± z1−α/2

σ̂`λ√
n`

]
, ` = 1, · · · , L, (50)

and [
ˆ̂τ ` − B̂`

τ`,κ ± z1−α/2
ˆ̂σ`
τ`√
n`

]
, ` = 1, · · · , L, (51)

when Theorem 2.1 can be applied (here z1−α/2 is the corresponding quantile of the stan-

dard normal distribution), and[
λ
`

κ − B̂`
µ`λ,κ
± z1−α/2

σ̂`λ√
n`,κ

]
, ` = 1, · · · , L, (52)

and [
ˆ̂τ `κ − B̂`

τ`,κ ± z1−α/2
ˆ̂σ`
τ`√
n`,κ

]
, ` = 1, · · · , L, (53)

when Theorem 2.2 can be applied.

Following SZ2020, we can use the bias corrected version for the estimators of variance

to obtain the improved estimates of the (1− α) confidence interval for sub-group mean

and aggregate efficiency respectively as[
λ
` − B̂`

µ`λ,κ
± z1−α/2

σ̃`λ√
n`

]
, ` = 1, · · · , L, (54)

and [
ˆ̂τ ` − B̂`

τ`,κ ± z1−α/2
σ̃`
τ`√
n`

]
, ` = 1, · · · , L, (55)

when Theorem 2.1 can be applied, and[
λ
`

κ − B̂`
µ`λ,κ
± z1−α/2

σ̃`λ√
n`,κ

]
, ` = 1, · · · , L, (56)

and [
ˆ̂τ `κ − B̂`

τ`,κ ± z1−α/2
σ̃`
τ`√
n`,κ

]
, ` = 1, · · · , L, (57)

when Theorem 2.2 can be applied.7

In their study, SZ2020 present results from many Monte-Carlo experiments showing

that the improved estimates of confidence intervals persistently have better coverage, thus

better accuracy and more reliability, especially in the cases of relatively large dimensions

or a relatively small sample size. As a result, we will rely more on the improved confidence

intervals in this study, although we will present results from both approaches.

7For the entire group confidence intervals, one can directly apply the relevant formulas in KSW,

SZ2018 and SZ2020.

16



3 Data and Variables

3.1 Sample

In this study, we use annual data from public hospitals in Queensland, Australia in the

period from FY 2012/13 to FY 2016/17 (the period after the National Health Reform

Agreement).8 Australia has a universal healthcare with a mix of private and public

providers, and public hospitals are unarguably the most important institutions in the

sector. Public hospital services in Australia are available free of charge for all persons

who are eligible for Medicare and can access public hospitals as a public patient. Based on

the data in FY 2016/17, public hospitals accounted for two-thirds of total hospital beds,

three-fifths of total hospitalisations, and 30% of total healthcare expenditure in Australia.

The data is provided by Queensland Health, from two data collections namely Finan-

cial and Residential Activity Collection (FRAC) and Monthly Activity Collection (MAC).

We obtain additional information, such as hospital peer groups and geographic location,

from the Australian Institute of Health and Welfare (AIHW, 2015). Our sample includes

only public acute hospitals.9 Moreover, we only include hospitals that have complete data

on all inputs and outputs for the entire study period, except for the case of the Gold Coast

Hospital and the Gold Coast University Hospital, where we combine their data together.10

Our final dataset contains 520 observations including 104 public acute hospitals over a

five-year period.

We use three different criteria to classify public hospitals in Queensland into different

sub-groups, which are: (i) Teaching status, (ii) Geographical location and (iii) Hospital

size. For teaching status, hospitals in our sample are classified into two sub-groups which

are non-teaching hospitals and teaching hospitals.11 We obtain information about teaching

status from FRAC. Our sample includes 29 teaching hospitals in FY 2016-17 and 118

observations with teaching status over the five-year period.12

For geographical location, hospitals are classified into non-remote sub-group (located

8FY stands for Financial Year, which in Australia starts on 1 July and ends on 30 June of the next

calendar year.
9Public hospitals in Queensland include acute hospitals, women’s and children’s hospitals, and psychi-

atric hospitals. Women’s and children’s hospitals and psychiatric hospitals can be viewed as specialized

hospitals (i.e., providing healthcare services to a specific target population or group of conditions).
10In 2013, the Gold Coast Hospital closed, and the Gold Coast University Hospital subsequently opened

to replace it (all patients treated at the Gold Coast Hospital were transferred to the Gold Coast University

Hospital).
11A hospital is defined as a teaching hospital if it affiliates with universities to provide undergraduate

medical education as advised by the relevant state health authority.
12There are some hospitals changing teaching status during the studied period.
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in major cities, inner regional and outer regional areas) and remote sub-group (located in

remote and very remote areas). We obtain information about the remoteness of hospitals

from AIHW (2015) in which remoteness of a hospital is measured by the physical road

distance to its nearest urban center. The non-remote sub-group has 375 observations

including 75 hospitals over five-year period. The remote sub-group has 145 observations

including 29 hospitals over the five-year period.

For hospital size, we have two sub-groups which are a sub-group of small hospitals

and a sub-group of large hospitals. Hospitals are classified as small or large based on

their hospital peer groups developed by AIHW (2015). Specifically, the large sub-group

is composed of principal referral hospitals, public acute group A hospitals, public acute

group B hospitals, while the small sub-group includes public acute group C hospitals and

public acute group D hospitals.13 The large sub-group has 120 observations including 24

hospitals over the five-year period. The small sub-group has 400 observations including

80 hospitals over the five-year period.

3.2 Variables

In this study, we use three inputs and two outputs to model the production process of

hospitals. The three inputs are: (i) Labour input, (ii) Capital input, and (iii) Consumable

input. The two outputs are: (i) Outpatient output and (ii) Inpatient output. Each input

and output will be discussed in detail in the below sections.

3.2.1 Input

3.2.1.1 Labour Input

Labour is the most important input of the hospital production process and has been

incorporated into almost all studies in the literature on hospital efficiency (O’Neill et al.,

2008). Following the common practice in the literature (e.g., Hao & Pegels, 1994; Burgess

& Wilson, 1996; Magnussen, 1996; Harris et al., 2000; Grosskopf et al., 2001; Berta et al.,

2010; Ferrier & Trivitt, 2013; Nayar et al., 2013; Chowdhury & Zelenyuk, 2016), we utilize

full-time equivalent (FTE) staff as a proxy for labour input in our model.

Data on hospital staff is composed of six main categories which are salaried medical

officers (MEO), nurses (NUR), diagnostic and health professionals (DHP), other personal

care staff (OPCS), administrative and clerical staff (ACS), and domestic and other staff

13The five peer groups are listed in descending order of service diversification and volume of activities

as follows: principal referral, acute group A, acute group B, acute group C, and acute group D. As

indicated in AIHW (2015), the last two are usually smaller than the first three.
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(DOS). Ideally, these six categories of personnel should be included in DEA models as

separate inputs since personnel in different categories have different duties and contribute

differently to the performance of hospitals (e.g. the first four categories directly perform

clinical related activities while the duties of the last two are mainly administrative and

clerical). However, as discussed in Section 2.2, when the dimension of input-output space

increases, the convergence rates of envelopment estimators decrease significantly, reduc-

ing the reliability of analysis. To remedy the issue, observing that the six labour cate-

gories are highly correlated (see Table 2), we follow Daraio and Simar’s (2007) approach

(the approach based on Principal Component Analysis), to aggregate them into a single

measure of labour input, called ‘labour factor’ (FLABOUR). Specifically, FLABOUR is

constructed as follows

FLABOUR = 0.30MEO+ 0.84TNUR+ 0.24DHP + 0.05OPCS+ 0.29ACS+ 0.22DOS (58)

The constructed ‘labour factor’ explains 98.79% of total inertia of the original data on

different types of labour and has high correlations with each of the six labour categories

(see Table 2). As a result, the dimension of production space is reduced without losing

much information, and the ‘labour factor’ is a good representative of hospital labour

input.

Table 2: Correlation matrix of labour inputs

MEO TNUR DHP OPCS ACS DOS FLABOUR

MEO 1.00

TNUR 1.00 1.00

DHP 0.97 0.98 1.00

OPCS 0.95 0.96 0.96 1.00

ACS 0.98 0.99 0.98 0.95 1.00

DOS 0.91 0.91 0.88 0.84 0.92 1.00

FLABOUR 1.00 1.00 0.98 0.96 0.99 0.92 1.00

3.2.2 Capital input

The most appropriate measure of capital input for studying hospital efficiency is argued to

be the utilization of capital in the production process (Worthington, 2004). Measurements

of capital utilization are, however, usually not available in practice. As a result, researchers

often utilize alternative measures that are proportional to the capital usage. The number
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of beds is such a measure and is widely-used in hospital efficiency studies (see the review

in O’Neill et al., 2008). Following the common practice in the literature, we use the

number of beds (BEDS) as a proxy for the utilization of capital in this study. The data

for the number of beds in Queensland is recorded at the end of each financial year and

includes both the number of available beds and bed alternatives.

3.2.3 Consumable input

Following Biørn et al. (2003), Productivity Commission (PC, 2010), Chua et al. (2011),

Besstremyannaya (2013), Chowdhury and Zelenyuk (2016), expenditures on drug, surgical

and medical supplies (DMSUP) are used to represent hospital consumable input. The

drug, surgical and medical supply expenditures are recorded at the current price at the

end of each financial year, thus we utilize the consumer price index obtained from the

Australian Bureau of Statistics to convert them to the constant price (using the year

2013/14 as the base year)

3.2.4 Outputs

3.2.4.1 Outpatient and Inpatient Outputs

Following the common practice in the literature (e.g., Zuckerman et al., 1994; Magnussen,

1996; Harris et al., 2000; Nayar & Ozcan, 2008; Nayar et al., 2013; Chowdhury & Ze-

lenyuk, 2016), in this study, outpatient outputs of Queensland public hospitals (OUT) are

measured by the number of non-admitted occasions of service including both emergency

and non-emergency services for non-admitted patients.

For inpatient service quantities, it is not sufficient to measure the output by the

raw counts of admitted patient episodes because of the need to distinguish inpatient

care services based on their complexity and resources required. In our data, admitted

patient episodes are categorised into more than 700 Diagnosis-Related Groups (DRGs),

grouping together patients with similar diagnoses who require similar hospital services.

In principle, each DRG represents a separate output, yet they need to be aggregated

to make the model feasible. Following Burgess and Wilson (1996, 1998), Hofmarcher

et al. (2002), Biørn et al. (2003), Clement et al. (2008), Nayar and Ozcan (2008), we use

casemix weights to aggregate admitted patient episodes into a single measure of inpatient

output, called casemix weighted inpatient episode (WEPS). Specifically, we multiply the

number of inpatient episodes in each DRG by the DRG cost weight, then sum them up

to get the number of casemix weighted inpatient episodes.14 As discussed and illustrated

14We use the constant inlier cost weights of the year 2013/14 obtained from the Independent Hospital
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by extensive Monte Carlo experiments in Zelenyuk (2020), this price-based aggregation

approach in DEA often leads to some aggregation biases, but the biases are bounded by

allocative efficiency and expected to be small and justifiable for practical reasons.

3.2.4.2 Output Prices

In order to obtain the technical aggregate efficiency, we need information about the relative

price of inpatient output to outpatient output. For inpatient output, the price can be

determined based on the Activity Based Funding models in which hospitals are paid

one national efficient price (NEP) for each WEPS.15 For outpatient output, we need an

assumption to derive its price due to data limitation. As discussed above, outpatient

output in our study is measured by the raw counts of non-admitted occasions of service.

To derive the price for one raw count, we assume that the compositions of non-admitted

occasions of service are the same across all hospitals in Queensland and utilise industry

level data to calculate the expected price. With this assumption, the expected price of

one non-admitted occasion of service is 0.09 NEP. As a result, the expected relative price

of inpatient output to outpatient output is 1/0.09.

The descriptive statistics of all inputs and outputs are provided in Table 3 and their

histograms are shown in Figure 1. We can see from Figure 1 that hospital inputs and

outputs show substantial positive skewness, but this is typical for any healthcare data.
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Figure 1: Histograms of hospital inputs and outputs.

Pricing Authority (IHPA, 2013).
15The NEP is determined by the Independent Hospital Pricing Authority for public hospital services

through the analysis of data on actual activity and costs in public hospitals.
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Table 3: The descriptive statistics of all variables used in this study

Variables Description Mean Std. Dev. Min Max

Input variables

FLABOUR Labour aggregation using Daraio

and Simar’s (2007) approach

246.82 549.42 3.20 3211.24

BEDS Total beds 99.67 196.48 3.00 1055.00

DMSUP Drug and medical supply

expenditure (2013/14 constant

price) ($1,000,000s)

13.09 35.87 0.03 354.24

Output variables

OUT Non-admitted occasions of

service (1,000s)

100.95 191.88 1.25 1190.22

WEPS Casemix weighted inpatient

episodes(1,000s)

11.47 25.78 0.03 154.66

4 Results and discussion

4.1 Individual efficiency

In this study, we obtain both the output oriented CRS-DEA and VRS-DEA estimates of

individual efficiencies with respect to the grand frontier (i.e., pooling data over 5 years).

In Figure 2 and Figure 3, we present the boxplots of estimated efficiency scores across

years. For both estimators, we can see that the distribution of estimated efficiency scores

are quite similar across years and in each year there are from 5 to 6 outliers (hospitals that

are very inefficient relative to the majority of hospitals) which are mainly small and non-

teaching hospitals. These outliers might face a different production environment (possibly

more disadvantageous) compared to the others in our sample and deserve to be studied

separately. We decided to not include these outliers and follow Zelenyuk and Zheka (2006)

to trim 5% of outliers in the right tail of the estimated efficiency distributions. This results

in a trimmed sample of 494 observations.16

As a sensitivity analysis, we compare the estimated densities of efficiency distributions

16The trimming is based on the distribution of estimated efficiency scores using the CRS-DEA esti-

mator, but it is very similar to the case of VRS-DEA in terms of the number of and the composition of

trimmed observations.
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for the sample before and after trimming, as well as test for the hypothesis of equality

of the two efficiency distributions using the adapted Li test (Simar & Zelenyuk, 2006).

The estimated densities show that the data trimming does not significantly influence the

distributions of efficiency scores (see Figures 4 and 5) and it is confirmed by the results

of the adapted Li test.17

2012-13 2013-14 2014-15 2015-16 2016-17 All years
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Figure 2: Boxplots of the estimated efficiency scores using the CRS-DEA estimator for

different years.
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Figure 3: Boxplots of the estimated efficiency scores using the VRS-DEA estimator for

different years.

17The p-values of the adapted Li test for the null hypotheses of equality of distributions of efficiency

scores before and after trimming the data for CRS-DEA and VRS-DEA cases are 0.16 and 0.35, respec-

tively, thus we do not reject the null hypotheses.
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Figure 4: Density estimates of the estimated efficiency scores using the CRS-DEA esti-

mator: Pre- vs. Post-trimming sample. Kernel-based with Silverman’s (1986) reflection

method: Gaussian kernel and bandwidth is selected by the method of Sheather and Jones

(1991).
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Figure 5: Density estimates of the estimated efficiency scores using the VRS-DEA esti-

mator: Pre- vs. Post-trimming sample. Kernel-based with Silverman’s (1986) reflection

method: Gaussian kernel and bandwidth is selected by the method of Sheather and Jones

(1991).
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4.2 Entire group efficiency

Before going to discussions about confidence intervals obtained using bootstrap and cen-

tral limit theorem approaches, it is worth recalling that the choice of subsample sizes

(determined by γ) is important in applied works, and the optimal choice of γ is still a

largely unresolved question in the literature.18 We propose here a method to choose γ,

guided by the new central limit theorems. The optimal γ is chosen such that the resulted

bootstrap standard deviation of aggregate efficiency estimators are equal to its asymptotic

standard deviation (biased corrected) derived using the central limit theorems. Interest-

ingly, the optimal γ determined by our method, γ = 0.65, happened to be very close

to the rule-of-thumb γ, γ = 0.7, chosen in SZ2007 in their simulations and empirical

illustration.19

4.2.1 Results for CRS-DEA

In this section and the following sections, the results reported include the DEA point

estimates of aggregate and simple mean efficiencies, their bias corrected versions and

the estimated standard deviations (using both bootstrap and central limit theorem ap-

proaches), the bias corrected standard deviations (using central limit theorem approach),

and the corresponding lower bounds and upper bounds of confidence intervals using the

bootstrap approach (SZ2007) and the central limit theorem approaches (KSW, SZ2018,

SZ2020).

Table 4 shows the results for the case of the CRS-DEA estimator. Looking at Table 4,

few remarks are in order. First, the CRS-DEA point estimates of aggregate and mean

efficiencies are very similar, at 1.6 (i.e., efficiency level of 0.62) and 1.65 (i.e., efficiency level

of 0.61), respectively. Second, the bias correction is substantially large for both aggregate

and mean efficiencies, and for aggregate efficiency the bias correction is substantially

different between the bootstrap and central limit theorem approaches, e.g., aggregate

efficiency is corrected from 1.6 to 2.01 using the bootstrap approach but from 1.6 to 2.16

using the central limit theorem approach. Third, it turns out that under the central

limit theorem approach biased corrected aggregate efficiency is higher (i.e., showing a

lower average efficiency level) than biased corrected mean efficiency, indicating that some

18Simar and Wilson (2011) adapted the data-driven approach proposed in Politis et al. (2001) and

Bickel and Sakov (2008) to select a subsample size in subsampling bootstrap for envelopment estimators

and demonstrated its good performance by Monte Carlo evidence (see more discussions in Sickles &

Zelenyuk, 2019).
19The optimal γ is tuned using a CRS-DEA model and will also be used for the sub-group analysis in

the next section.
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hospitals that are given larger weights (i.e., more economically important) in calculating

aggregate efficiency are less efficient than the average when benchmarking toward the

CRS frontier – the frontier that identifies the best practice socially-optimal scale.

The 95% confidence intervals for the entire group aggregate efficiency are also different

between the two approaches. For the bootstrap approach, the confidence interval is from

1.62 to 2.13 (i.e., efficiency levels from 0.47 to 0.62), meanwhile for the central limit

theorem approach (SZ2020) the confidence interval is from 1.87 to 2.39 (i.e., efficiency

levels from 0.42 to 0.52).

Table 4: CRS-DEA Estimates of Aggregate Efficiency and Simple Mean Efficiency and

their 95% Confidence Intervals for Entire Group

Aggregate Efficiency Sample Mean

Bootstrap

DEA estimate 1.60 1.65

Bias corrected 2.01 1.98

Est. Std 0.13 0.07

LB of est. CI 1.62 1.83

UB of est. CI 2.13 2.10

CLT

DEA estimate 1.60 1.65

Bias corrected 2.16 1.98

Est. Std 0.12 0.03

Bias corrected Std 0.13 0.04

LB est. CI 1.89 1.90

UB of est. CI 2.38 2.03

LB of est. CI-Improved 1.87 1.88

UB of est. CI-Improved 2.39 2.05

CLT: Central Limit Theorems, LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std: Standard

Deviation, CI: Confidence Interval.

4.2.2 Results for VRS-DEA

The first important point to discuss when looking at the results using the VRS-DEA

estimator is that both point estimates of aggregate and mean efficiencies and their bias

corrected versions are substantially lower than their counterparts using the CRS-DEA

estimator, especially for aggregate efficiency, e.g., the VRS-DEA estimate of aggregate

efficiency is 1.13 (i.e., efficiency level of 0.88) and its biased corrected version (using

central limit theorem approach) is 1.25 (efficiency level of 0.80). Moreover, for the VRS-
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DEA estimator, the aggregate efficiency is significantly lower (i.e., showing a higher level

of average efficiency) than the mean efficiency. Using the bootstrap approach, the 95%

confidence interval of aggregate efficiency, which ranges from 1.18 to 1.24 (i.e., efficiency

levels from 0.81 to 0.85), is on the left of and does not overlap with the the 95% confidence

interval of the mean efficiency, which ranges from 1.62 to 1.81 (i.e., efficiency levels from

0.55 to 0.62). Similarly, with the central limit theorem approach, the 95% confidence

interval of aggregate efficiency, which ranges from 1.00 to 1.41 (i.e., efficiency levels from

0.71 to 1.00), is on the left of and does not overlap with the 95% confidence interval of

mean efficiency, which ranges from 1.58 to 1.84 (i.e., efficiency levels from 0.54 to 0.63).

The results discussed in this section and the previous section indicate that there exist

substantial scale inefficiencies in the industry and particularly for the hospitals that are

economically more important (i.e., hospitals receive high weights in the calculation of

aggregate efficiency due to attaining higher revenue shares, as computed in (9)). To

further investigate this, we examine the scale efficiencies of observations that are in the

top 5% highest weights, those turn out to be very large hospitals with the number of beds

being more than 434 beds - the 0.925-quantile of the number of beds in our sample. The

result shows that all of these observations exhibit diseconomies of scale with the scale

inefficiency level ranging from 0.21 to 0.47.20

20The scale efficiency score is computed as a ratio of the CRS-DEA technical efficiency score to the

VRS-DEA technical efficiency score. The scale inefficiency level is obtained by subtracting the reciprocal

of the scale efficiency score from one.
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Table 5: VRS-DEA Estimates of Aggregate Efficiency and Simple Mean Efficiency and

their 95% Confidence Intervals for Entire Group

Aggregate Efficiency Sample Mean

Bootstrap

DEA estimate 1.13 1.46

Bias corrected 1.21 1.73

Est. Std 0.01 0.05

LB of est. CI 1.18 1.62

UB of est. CI 1.24 1.81

CLT

DEA estimate 1.13 1.46

Bias corrected 1.25 1.76

Est. Std 0.10 0.05

Bias corrected Std 0.10 0.07

LB est. CI 1.00 1.61

UB of est. CI 1.41 1.82

LB of est. CI-Improved 1.00 1.58

UB of est. CI-Improved 1.41 1.84

CLT: Central Limit Theorems, LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std: Standard

Deviation, CI: Confidence Interval.

4.3 Sub-group Efficiency by Teaching Status

In this section we investigate the sub-group efficiency of teaching and non-teaching hos-

pitals in the industry.21 As in the case of entire group efficiency, we also look at both

CRS-DEA and VRS-DEA estimators.

4.3.1 Results for CRS-DEA

To compare the efficiency of teaching and non-teaching hospitals, we first estimate and

visualize the density of estimated efficiency scores for each sub-group (Figure 6). The

estimated density of the teaching sub-group is below the density of the non-teaching

sub-group in the region of low efficiency scores (i.e., high efficiency levels), but also in a

lower position in the region of high efficiency scores (i.e., low efficiency levels), thus it is

ambiguous to conclude which sub-group has a more favourable density.

Next, we examine the confidence intervals of sub-group efficiencies. With the bootstrap

approach, it is not statistically sufficient to conclude which sub-group is more efficient.

21Results for sub-group efficiencies based on hospital size and geographical location are provided in the

Appendix.
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However, using the central limit theorem approach, we see that the aggregate efficiency of

the non-teaching sub-group is significantly lower (i.e., more efficient) than the aggregate

efficiency of the teaching sub-group. Specifically, the confidence interval for the non-

teaching sub-group, which ranges from 1.58 to 1.97 (i.e., efficiency levels from 0.51 to

0.63), is on the left of and does not overlap with the confidence interval for the teaching

subgroup, which ranges from 2.04 to 2.35 (i.e., efficiency levels from 0.43 to 0.49). The

result is consistent with those in Grosskopf et al. (2001) and Chowdhury and Zelenyuk

(2016), who also compare the efficiency of teaching and non-teaching hospitals relative

to the CRS frontier. Specifically, Grosskopf et al. (2001) benchmark teaching hospitals

against the production frontier estimated using a non-teaching hospital sample and show

that about 90% of the teaching hospitals could not efficiently “compete” with the “best

practice” non-teaching hospitals. Chowdhury and Zelenyuk (2016) utilize the double

bootstrap truncated regression to examine the impact of a set of explanatory variables

including teaching status on hospital efficiency and find that teaching hospitals are, on

average and ceteris paribus, less efficient than non-teaching hospitals.
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Figure 6: Density estimates of the estimated efficiency scores using the CRS-DEA estima-

tors: non-teaching vs. teaching hospitals. Kernel-based with Silverman’s (1986) reflection

method: Gaussian kernel and bandwidth is selected by the method of Sheather and Jones

(1991).
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Table 6: CRS-DEA Estimates of Aggregate Efficiency and Simple Mean Efficiency and

their 95% Confidence Intervals for Non-teaching and Teaching Hospitals

Aggregate Efficiency Simple Mean

Non-teaching Teaching Non-teaching Teaching

Bootstrap

DEA estimate 1.53 1.61 1.66 1.59

Bias corrected 1.79 2.02 1.96 1.96

Est. Std 0.06 0.14 0.07 0.12

LB of est. CI 1.65 1.60 1.81 1.63

UB of est. CI 1.91 2.14 2.10 2.09

CLT

DEA estimate 1.53 1.61 1.66 1.59

Bias corrected 1.83 2.19 1.96 2.10

Est. Std 0.10 0.06 0.04 0.02

Bias corrected Std 0.10 0.08 0.04 0.05

LB est. CI 1.58 2.08 1.85 2.05

UB of est. CI 1.96 2.30 1.99 2.15

LB of est. CI-Improved 1.58 2.04 1.83 1.99

UB of est. CI-Improved 1.97 2.35 2.01 2.22

CLT: Central Limit Theorems, LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std: Standard

Deviation, CI: Confidence Interval.

4.3.2 Results for VRS-DEA

As in the case of the CRS-DEA estimator, we first estimate and compare the density

of estimated efficiency scores of the each sub-group. Figure 7 shows that the teaching

sub-group has a more favourable density compared to the non-teaching sub-group, i.e.,

its density is above in the area of low efficiency scores (i.e., high efficiency levels) and is

below in the area of high efficiency scores (i.e., low efficiency levels).

Looking at confidence intervals, one can see that the results using the VRS-DEA

estimator are opposite to those obtained using the CRS-DEA estimator. The teaching

sub-group turns out to be significantly more efficient than the non-teaching sub-group

regardless of the measures and approaches employed to compare them. For example, with

the bootstrap approach, the confidence interval for the aggregate efficiency of the teaching

sub-group, which ranges from 1.11 to 1.16 (i.e., efficiency levels from 0.86 to 0.90), is on

the left of and does not overlap with the confidence interval for the aggregate efficiency

of the non-teaching sub-group, which ranges from 1.48 to 1.65 (i.e., efficiency levels from

0.61 to 0.68). Similarly, the confidence interval estimated using the central limit theorem
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Figure 7: Density estimates of the estimated efficiency scores using VRS-DEA estimators:

non-teaching vs. teaching hospitals. Kernel-based with Silverman’s (1986) reflection

method: Gaussian kernel and bandwidth is selected by the method of Sheather and Jones

(1991).

approach for the aggregate efficiency of the teaching sub-group, which ranges from 1.12 to

1.29 (i.e., efficiency levels from 0.77 to 0.89), is also on the left of and does not overlap with

the confidence interval for the aggregate efficiency of the non-teaching sub-group, which

ranges from 1.29 to 1.74 (i.e., efficiency levels from 0.57 to 0.77). Interestingly, the result

is consistent with the finding in Nayar et al. (2013) – a study in which the VRS-DEA

approach was employed. Specifically, Nayar et al. (2013) utilize the VRS input-oriented

and slack-based additive DEA model with Tobit regression to examine the efficiency of

acute care hospitals in the U.S and find that among other factors, the teaching status is

positively related to hospital efficiency level.22

4.3.3 CRS vs. VRS

As teaching hospitals are mainly large hospitals, the differences in the conclusions about

the relative efficiency of teaching and non-teaching subgroups when benchmarking to

CRS frontier compared to VRS frontier can be explained by the scale inefficiency of the

teaching subgroup.23 Indeed, all except one observation in the teaching sub-group exhibit

diseconomies of scale with the average scale inefficiency level of 0.27. Meanwhile, the

average scale inefficiency level of the non-teaching subgroup is only 0.07. The result that

teaching hospitals are less likely to be at optimal scale compared to non-teaching hospitals

22It is worth mentioning here that the use of Tobit regression in two-stage DEA context is not appro-

priate (see more discussion in Simar & Wilson, 2007).
23In our sample, 81% of teaching hospitals are large hospitals.
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Table 7: VRS-DEA Estimates of Aggregate Efficiency and Simple Mean Efficiency and

their 95% Confidence Intervals for Non-teaching and Teaching Hospitals

Aggregate Efficiency Simple Mean

Non-teaching Teaching Non-teaching Teaching

Bootstrap

DEA estimate 1.37 1.09 1.55 1.18

Bias corrected 1.57 1.14 1.85 1.28

Est. Std 0.04 0.01 0.06 0.04

LB of est. CI 1.48 1.11 1.72 1.20

UB of est. CI 1.65 1.16 1.95 1.34

CLT

DEA estimate 1.37 1.09 1.55 1.18

Bias corrected 1.65 1.18 1.92 1.32

Est. Std 0.11 0.04 0.05 0.03

Bias corrected Std 0.11 0.04 0.07 0.04

LB est. CI 1.30 1.13 1.69 1.29

UB of est. CI 1.73 1.28 1.90 1.42

LB of est. CI-Improved 1.29 1.12 1.65 1.28

UB of est. CI-Improved 1.74 1.29 1.93 1.47

CLT: Central Limit Theorems, LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std: Standard

Deviation, CI: Confidence Interval.

can also be found in Grosskopf et al. (2001).

It also appears to be the fact that the high efficiency level of teaching hospitals under

the VRS assumption is because those hospitals are so large that there are not many (or

even any) peers around them to be compared to reveal their true inefficiency. Absence

of such peers also implies less (or no) competition, meaning less of the natural force

from “the invisible hand” (noted by Adam Smith’s), that much like gravity in physics,

should pressure the decision making units (hospitals here) to be more efficient and more

productive. If it is the case, then is it justified to deem them as efficient from a social point

of view? It also raises natural questions for policy makers: Should the teaching hospitals

be so large? And more generally, should the policy makers, instead of expanding already

large public hospitals, invest into building new hospitals that are near the socially-optimal

scale of operations? It is largely an open question for the judgement of experts and up

for a healthy debate. Here, instead of directly answering the question, let us discuss an

example to rationalise the importance of a socially-optimal scale for hospitals.

For simplicity, consider the single-input-single-output example that is easy to illustrate
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pictorially. Suppose we observe six hospitals, namely A, B, C, D, E, and F with their

input-output combinations being (5; 3), (5; 3), (10; 10), (20; 15), (30; 17), and (40; 17)

respectively (Figure 8). All the six hospitals A, B, C, D, E, and F are on the boundary

of the VRS technology, but only hospital B is on the CRS frontier–the frontier that

identifies the best practice socially-optimal scale. One can see that society can benefit from

utilizing resources more efficiently and provide relatively more services from relatively less

resources. For example, it can have 4 more units of hospital outputs by merging hospital

A and hospital B. More gains can be attained by splitting hospital D into two smaller

hospitals of the same size as hospital C, thus producing 5 more units of hospital output

without increasing the total number of inputs. Even many more gains can be attained

when splitting hospital E or especially hospital F into, respectively, 3 or 4 smaller hospitals

of the same size as hospital C, i.e, the society has, respectively, 13 or even 23 more units

of hospital output with the same utilization of inputs. Therefore, from a social point of

view, hospitals D, E, and F use too many resources to deliver what can be otherwise done

by smaller size hospitals using much less resources.

Indeed, operating at the socially-optimal scale is of particular importance when the

healthcare systems get sudden shocks, like pandemics, e.g., the one experienced by the

world as this paper is being scribbled. The hospitals that operate at the socially-optimal

scale are more flexible to expand their operations, while those that operate on the de-

creasing scale already, especially if they are far from the optimal scale like the hospital

F in Figure 8, may have a hard time expanding their operations or will do so with even

greater drainage or inefficient use of resources to deliver the necessary healthcare services

to society.

Moreover, by becoming larger and larger, some organisations (including hospitals) may

be turning into “too big to fail” entities that are not only experiencing the diseconomies

of scale (as we see evidence here) and thus defeating the idea of their growth, but also

suppressing the growth of others. Very large organizations may also tend to exhibit a

weaker collegial culture of interpersonal professional relationships (Indik, 1963; Ingham,

1967). Indeed, and in general, when organizations become so big that an average employee

is implicitly viewed like a little bolt in a big machine rather than an important member of

a team, the productivity and efficiency of such organisations can be jeopardised leading

to waste of resources for society.
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Figure 8: Socially-optimal scale illustration

5 Concluding Remarks

This paper explores the efficiency of different groups of hospitals in Queensland, Australia,

focusing on teaching and non-teaching hospitals, by adapting the most recent develop-

ments on statistical analysis of aggregate efficiency. We focus on the two approaches:

the bootstrap approach proposed by Simar and Zelenyuk (2007) and the central limits

theorems recently developed by Simar and Zelenyuk (2018, 2020). To adapt these de-

velopments, we had to extend the central limit theorems to the context where there are

several sub-groups in the population, which is a modest theoretical novelty of this paper.

Moreover, this paper is the first real use of these methods (with some novel extensions)

for an empirical study.

We found that the conclusions about the relative efficiency between teaching and non-

teaching hospitals dramatically depend on the reference technology. Specifically, when

benchmarking to the constant returns to scale frontier, teaching hospitals are significantly

less efficient than non-teaching hospitals. However, teaching hospitals are significantly

more efficient than non-teaching hospitals when benchmarking to the variable returns to

scale frontier. The difference is largely explained by the diseconomies of scales of teaching

hospitals.

It is worth mentioning here that the focus of this paper was on analysing unconditional
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moments (simple and equally weighted) as well as unconditional densities, and thus a

future direction of research would be to analyse conditional moments. For example, this

can be done using the truncated regression with the bootstrap approach of Simar and

Wilson (2007) or other alternatives.24 Another fruitful direction for future research would

be to use robust (order-α or order-m) frontiers, with or without conditioning on other

variables.25
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Appendix
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Figure 9: Density estimates of the estimated efficiency scores using the CRS-DEA estima-

tors: small vs. large hospitals. Kernel-based with Silverman’s (1986) reflection method:

Gaussian kernel and bandwidth is selected by the method of Sheather and Jones (1991).
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Figure 10: Density estimates of the estimated efficiency scores using the VRS-DEA estima-

tors: small vs. large hospitals. Kernel-based with Silverman’s (1986) reflection method:

Gaussian kernel and bandwidth is selected by the method of Sheather and Jones (1991).
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Figure 11: Density estimates of the estimated efficiency scores using the CRS-DEA esti-

mators: non-remote vs. remote hospitals. Kernel-based with Silverman’s (1986) reflection

method: Gaussian kernel and bandwidth is selected by the method of Sheather and Jones

(1991).
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Figure 12: Density estimates of the estimated efficiency scores using the VRS-DEA esti-

mators: non-remote vs. remote hospitals. Kernel-based with Silverman’s (1986) reflection

method: Gaussian kernel and bandwidth is selected by the method of Sheather and Jones

(1991).
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Table 8: CRS-DEA Estimates of Aggregate Efficiency and Simple Mean Efficiency and

their 95% Confidence Intervals for Small and Large Hospitals

Aggregate Efficiency Simple Mean

Large Small Large Small

Bootstrap

DEA estimate 1.60 1.56 1.55 1.68

Bias corrected 1.98 1.81 1.90 1.97

Est. Std 0.16 0.07 0.13 0.07

LB of est. CI 1.58 1.68 1.58 1.82

UB of est. CI 2.12 1.94 2.02 2.10

CLT

DEA estimate 1.60 1.56 1.55 1.68

Bias corrected 2.16 1.81 2.06 1.94

Est. Std 0.05 0.07 0.02 0.04

Bias corrected Std 0.07 0.07 0.05 0.04

LB est. CI 2.06 1.66 2.02 1.86

UB of est. CI 2.27 1.93 2.10 2.01

LB of est. CI-Improved 2.02 1.66 1.96 1.85

UB of est. CI-Improved 2.31 1.94 2.16 2.01

CLT: Central Limit Theorems, LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std: Standard

Deviation, CI: Confidence Interval.
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Table 9: VRS-DEA Estimates of Aggregate Efficiency and Simple Mean Efficiency and

their 95% Confidence Intervals for Small and Large Hospitals

Aggregate Efficiency Simple Mean

Large Small Large Small

Bootstrap

DEA estimate 1.09 1.46 1.13 1.57

Bias corrected 1.15 1.69 1.20 1.87

Est. Std 0.01 0.05 0.02 0.06

LB of est. CI 1.12 1.57 1.16 1.75

UB of est. CI 1.17 1.78 1.23 1.98

CLT

DEA estimate 1.09 1.46 1.13 1.57

Bias corrected 1.19 1.75 1.25 1.94

Est. Std 0.03 0.09 0.02 0.05

Bias corrected Std 0.04 0.10 0.02 0.07

LB est. CI 1.12 1.55 1.22 1.78

UB of est. CI 1.26 1.91 1.29 1.99

LB of est. CI-Improved 1.12 1.53 1.21 1.75

UB of est. CI-Improved 1.26 1.93 1.30 2.03

CLT: Central Limit Theorems, LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std: Standard

Deviation, CI: Confidence Interval.
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Table 10: CRS-DEA Estimates of Aggregate Efficiency and Simple Mean Efficiency and

their 95% Confidence Intervals for Non-remote and Remote Hospitals

Aggregate Efficiency Simple Mean

Non-remote Remote Non-Remote Remote

Bootstrap

DEA estimate 1.59 1.76 1.57 1.86

Bias corrected 1.99 2.12 1.86 2.22

Est. Std 0.14 0.11 0.07 0.11

LB of est. CI 1.59 1.88 1.69 1.99

UB of est. CI 2.12 2.33 1.98 2.41

CLT

DEA estimate 1.59 1.76 1.57 1.86

Bias corrected 2.16 2.27 1.90 2.25

Est. Std 0.11 0.17 0.03 0.05

Bias corrected Std 0.12 0.18 0.04 0.06

LB est. CI 1.94 1.93 1.84 2.16

UB of est. CI 2.36 2.60 1.95 2.34

LB of est. CI-Improved 1.92 1.92 1.82 2.14

UB of est. CI-Improved 2.38 2.62 1.97 2.35

CLT: Central Limit Theorems, LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std: Standard

Deviation, CI: Confidence Interval.
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Table 11: VRS-DEA Estimates of Aggregate Efficiency and Simple Mean Efficiency and

their 95% Confidence Intervals for Non-Remote and Remote Hospitals

Aggregate Efficiency Simple Mean

Non-remote Remote Non-remote Remote

Bootstrap

DEA estimate 1.12 1.43 1.38 1.70

Bias corrected 1.20 1.63 1.58 2.06

Est. Std 0.01 0.09 0.05 0.09

LB of est. CI 1.16 1.44 1.48 1.86

UB of est. CI 1.22 1.77 1.66 2.21

CLT

DEA estimate 1.12 1.43 1.38 1.70

Bias corrected 1.24 1.72 1.63 2.15

Est. Std 0.09 0.12 0.05 0.06

Bias corrected Std 0.09 0.13 0.05 0.09

LB est. CI 1.04 1.43 1.53 2.02

UB of est. CI 1.40 1.92 1.71 2.27

LB of est. CI-Improved 1.04 1.42 1.51 1.97

UB of est. CI-Improved 1.40 1.93 1.73 2.30

CLT: Central Limit Theorems, LB: Lower Bound, UB: Upper Bound, Est.: Estimated, Std: Standard

Deviation, CI: Confidence Interval.
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