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Abstract

In this study, we utilize various approaches for efficiency analysis to explore the

state of efficiency of public hospitals in Queensland, Australia in the year 2016/17.

Besides the traditional nonparametric approaches like DEA and FDH, we also use

a more recent and very promising robust approach–order-α quantile frontier esti-

mators (Aragon, Daouia, & Thomas-Agnan, 2005). Upon obtaining the individual

estimates from various approaches, we also analyse performance on a more aggregate

level – the level of Local Hospital Networks by using an aggregate efficiency measure

constructed from the estimated individual efficiency scores. Our analysis suggests

that the relatively low efficiency of some Local Hospital Networks in Queensland

can be partially explained by the fact that the majority of their hospitals are small

and located in remote areas.
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1 Introduction

In Australia, the provision of free public hospital services is the responsibility of the state

and territory governments. The management of public hospitals in states and territories

is usually geographically based. Since the National Health Reform Agreement in 2012

(Council of Australian Governments, 2011), the governance of public hospitals in Australia

has become more decentralised with the establishment of Local Hospital Networks. The

Local Hospital Network is an independent statutory body established by each Australian

state/territory government. Local Hospital Networks directly operate a group of public

hospitals and are directly responsible for their performance.

In Queensland, Local Hospital Networks are known as Hospital and Health Services

(HHSs). There are 16 HHSs in the state, of these 15 HHSs are geographically based, the

remaining one is a specialist statewide HHS dedicated to caring for children and young

people. Each HHS is independently and locally controlled by a Hospital and Health Board

and operated by a Health Service Chief Executive. HHSs relate to Queensland Depart-

ment of Health (Queensland Health) through a service agreement in which Queensland

Health acts as a system manager who has responsibility for purchasing healthcare services

to cover the healthcare needs of citizens as well as monitoring the performance of HHSs,

while each HHS acts as a provider whose function is to deliver healthcare services to its

local community.

Although state and territory governments are responsible for delivering public hospi-

tal services, funding for public hospitals is provided by both federal and state/territory

governments based on taxes collected from all states/territories across Australia. In the

year 2016/17, 50% of expenditure on public hospital services in Queensland came from

the state government, while 40% of the expenditure was provided by the Australian gov-

ernment (Australian Institute of Health and Welfare [AIHW], 2018). Public hospitals are

funded either via Activity Based Funding or a Block Funding model. In Queensland, 36

hospitals (predominantly large and urban hospitals) are funded by Activity Based Fund-

ing.1 Meanwhile, 87 hospitals (mainly small and rural hospitals) are funded by Block

Funding.

Public hospitals in Queensland are widely dispersed geographically with a relatively

high proportion in regional and remote areas, which in part reflects the share of the state’s

population living outside the major cities and the obligation of the state government to

provide equitable access to public hospital services for all residents. Public hospitals in

1Under Activity Based Funding, hospitals are reimbursed based on the number and the complexity of

patient care episodes they provide. Hospitals receive a fixed rate for each episode, and the value of the

fixed rate is determined by the DRG to which the episode belongs.
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the state are also diverse in terms of size: 91 out of 123 hospitals have 50 beds or fewer,

yet 19 out of 123 hospitals have more than 200 beds and account for 75% of Queensland’s

total hospital beds (AIHW, 2019).

As public hospitals are the key institution in the acute healthcare sector where the

majority of healthcare expenditure occurs, improving hospital efficiency has been viewed

as a fundamentally important means to contain healthcare costs in Australia.2 In the

study published in 2010, the Productivity Commission (PC, 2010) pointed out that the

average inefficiency level of Australian hospitals is around 10% and they would decrease

operating expenditures by about 7% if the inefficiency was eliminated. Given that the

efficiency of public hospitals is an important issue of public concern and has now become

the main responsibility of HHSs, it is crucial to analyse hospital performance at HHS level.

These analyses will provide useful information about the relative performance of HHSs

and possibly identify sources of efficiency differentials, which are imperatively needed for

any plan to promote hospital efficiency.

This study will provide such an analysis by exploring the state of efficiency of public

hospitals at the level of HHSs in Queensland, Australia in the year 2016/17. To analyse

performance on the aggregate level, we utilize an aggregate efficiency measure constructed

from individual efficiency scores estimated using various approaches. Besides the tradi-

tional nonparametric approaches like DEA and FDH, we also use a more recent and

very promising robust approach–order-α quantile frontier estimators (Aragon, Daouia,

& Thomas-Agnan, 2005). The order-α quantile frontier estimators appear to be more

appealing than the conventional nonparametric approaches because they are more robust

with respect to extreme values and/or outliers in a finite sample and do not suffer from

the well-known curse of dimensionality (Simar & Wilson, 2013).

Based on the robust estimates of aggregate efficiency, we use k-mean clustering tech-

nique (an unsupervised machine learning algorithm) to classify HHSs in Queensland into

three groups, namely relatively low, medium, and high efficiency. Moreover, our analysis

also suggests that the relatively low efficiency of some HHSs in Queensland can be par-

tially explained by the fact that the majority of their hospitals are small and located in

remote areas.

Our paper is organized as follows. Section 2 presents theoretical frameworks for ef-

ficiency measures and their nonparametric estimators. Section 3 provides a description

of the data sources and variables used in this study. Section 4 discusses the results, and

2In the fiscal year 2016/17, Australia spent $181 billion on healthcare (more than $7,400 per person

and 10% of its GDP), about a 57% increase since 2006/07 (after adjusting for inflation). This turns out

to be an average annual growth rate of 4.67% over the decade: around 2% higher than average growth

of GDP (AIHW, 2018).
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Section 5 provides concluding remarks.

2 Methodology

2.1 Theoretical concepts

Let us consider a production process in which a production unit uses a set of N inputs,

denoted as x = (x1, ..., xN)
′ ∈ <N+ , to produce a univariate output, denoted as y ∈ <+.3

According to the production theory (Shephard, 1953, 1970), the production technology

can be characterized by a technology set defined as

Ψ =
{

(x, y) ∈ <N+ ×<+ : x can produce y
}
. (1)

Some regularity conditions are usually assumed for the technology set, among those the

three most common assumptions are as follows 4

A1. Ψ is closed.

A2. The output sets (defined in (2) below) are bounded, ∀x ∈ <N+ .

A3. All inputs and outputs are strongly disposable, i.e, (x0, y0) ∈ Ψ⇒ (x, y) ∈ Ψ,∀x =

x0, y 5 y0.

The production technology can also be described mathematically in terms of its sections:

input requirement set and output attainable set. In this paper, we measure efficiency

in output direction, thus our discussion here focuses on the output attainable set. It is

defined as

P (x) = {y ∈ <+ : (x, y) ∈ Ψ} , x ∈ <N+ . (2)

When efficiency is a concern, the boundary of the technology set is of interest. For the

case of univariate output, the upper bound of the output attainable set (the production

frontier) is also referred to as production function and defined as

∂P (x) = max
y
{y | y ∈ P (x)} . (3)

3For the cases of multiple-output, one can either follow the multivariate conditional quantile approach

proposed by Daouia and Simar (2007) or utilize aggregation techniques to aggregate outputs. In this

study, we adopt Daraio and Simar’s (2007) approach (the approach based on Principal Component

Analysis) to aggregate hospital outputs into a single output measure. An alternative approach would be

to use a price-based aggregation approach (Zelenyuk, 2020).
4Other standard regularity conditions are ”No Free Lunch” and ”Producing Nothing is Possible” (see

more details in Sickles & Zelenyuk, 2019)
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The Farrell-type output oriented technical efficiency for the production unit is then defined

as a radial distance from a point in output space representing the production unit toward

the boundary and is defined mathematically as

λ (x, y) = sup
λ
{λ > 0 | λy ∈ P (x)} = sup

λ
{λ > 0 | (x, λy) ∈ Ψ} . (4)

One might find it more convenient to look at the reciprocal of the output oriented efficiency

(also known as the Shephard distance function) since it gives an efficiency measure between

0 and 1, where 1 stands for 100% efficiency.

Now let us look at a more aggregate level, consider a group, say group `, of n` pro-

duction units with input-output allocation being X `
n`

=
{(
X`
i , Y

`
i

) ∣∣ i = 1, . . . , n`
}

. One

can measure the efficiency of group ` by using the aggregate efficiency measure proposed

by Färe and Zelenyuk (2003), extended by Simar and Zelenyuk (2007) and further elab-

orated on in Simar and Zelenyuk (2018). The main advantage of this measure is that it

uses meaningful weights derived from the economic optimization principle to aggregate

individual efficiency scores in order to construct a group measure (see detail in Färe &

Zelenyuk, 2003). In the case of univariate output, the aggregate efficiency for group ` is

the weighted average of individual efficiency scores, where weights are output shares of

individual production units in the group and is defined as

TE
`

n`
=

n∑̀
i=1

λ
(
X`
i , Y

`
i

)
× S`i , S`i =

Y `
i∑n`

i=1 Y
`
i

. (5)

2.2 Nonparametric estimators

2.2.1 DEA and FDH

In practice, Ψ is unknown and thus needs to be estimated from a sample of produc-

tion units, Xn = {(Xi, Yi) | i = 1, . . . , n}. There have been two widely-used approaches

to estimate the production frontiers in the literature, usually referred to as the ‘deter-

ministic frontier models’ and the ‘stochastic frontier models’. The deterministic frontier

models assume all observed production units belong to the technology set with proba-

bility one, whereas the stochastic frontier models allow some observations to be outside

of the technology set by including two-sided random noise. The traditional stochastic

frontier approach (SFA) requires parametric restrictions on the shape of the production

frontier and on the data generating process to estimate the frontier and to identify the

inefficiency term from the random noise component.5 Recently, semiparametric and non-

5The traditional stochastic frontier approach was proposed independently by Aigner, Lovell, and

Schmidt (1977) and Meeusen and van Den Broeck (1977).
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parametric estimators have been developed for stochastic frontier models to mitigate the

parameterization of the approach (see more details in Parmeter & Zelenyuk, 2019).

The deterministic frontier models appear to be more appealing because they are usu-

ally handled via nonparametric estimators and rely on less restrictive assumptions. The

most flexible deterministic frontier model is the Free Disposal Hull (FDH) estimator intro-

duced by Deprins, Simar, and Tulkens (1984), which requires only the strong disposability

assumption on the technology set. If, in addition, one imposes the convexity assumption

on the technology set, one can use the Data Envelopment Analysis (DEA) estimator,

which was initiated by Farrell (1957) and popularized by Charnes, Cooper, and Rhodes

(1978). For DEA models, one can further impose constant returns to scale (CRS) or

variable returns to scale on the technology set to obtain CRS-DEA or VRS-DEA esti-

mators (Färe, Grosskopf, & Logan, 1983; Banker, Charnes, & Cooper, 1984). The three

estimators can be formulated respectively as follows

Ψ̂FDH ≡

{
(x, y) : y ≤

n∑
i=1

ζiYi, x ≥
n∑
i=1

ζiXi,
n∑
i=1

ζi = 1, ζi ∈ {0, 1} , i = 1, . . . , n

}
, (6)

Ψ̂CRS−DEA ≡

{
(x, y) : y ≤

n∑
i=1

ζiYi, x ≥
n∑
i=1

ζiXi, ζi ≥ 0, i = 1, . . . , n

}
, (7)

Ψ̂V RS−DEA ≡

{
(x, y) : y ≤

n∑
i=1

ζiYi, x ≥
n∑
i=1

ζiXi,

n∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . , n

}
. (8)

The FDH/DEA estimators of technical efficiency are then obtained by plugging Ψ̂FDH

or Ψ̂CRS−DEA or Ψ̂V RS−DEA in (4). The asymptotic properties of FDH/DEA estimators

have been well-established in the literature (e.g., see Kneip, Park, & Simar, 1998; Park,

Simar, & Weiner, 2000; Kneip, Simar, & Wilson, 2008; Park, Jeong, & Simar, 2010). In

summary, under appropriate assumptions, the estimators are consistent (converging to the

true values when sample sizes go to infinity) and have limiting distributions. Convergence

rates depend on the type of estimators and the dimension of input-output space (the

number of inputs, p, plus the number of outputs, q). To be more specific, the convergence

rates for FDH, CRS-DEA, VRS-DEA estimators are nκ , where κ = 1/(p+ q), 2/(p+ q),

or 2/(p+ q + 1), respectively (e.g., see more discussion in Simar & Wilson, 2015; Sickles

& Zelenyuk, 2019).

2.2.2 Partial frontiers

The deterministic frontier models, however, are particularly sensitive to extreme values

and/or outliers because by construction, they fully envelop all observed data. Various
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techniques have been proposed to deal with the disadvantage. One approach is to identify

and possibly delete any outliers in the data, but the approach, to some extent, depends

on how the researcher defines an ‘outlier’ (Simar & Wilson, 2015). As an alternative, one

can also use the stochastic versions of DEA and FDH, where data is prewhitened from the

noise and outliers using nonparametric SFA in the first stage and DEA/FDH is applied

to estimate efficiency in the second stage (e.g., see Simar, 2007; Simar & Zelenyuk, 2011).

Another approach is to use robust partial frontier estimators. There are mainly two

types of partial frontiers, which are: (i) order-m frontiers introduced by Cazals, Flo-

rens, and Simar (2002) and (ii) order-α quantile frontiers introduced by Aragon, Daouia,

and Thomas-Agnan (2005) and extended by Daouia and Simar (2007). The idea of par-

tial frontier estimators is to estimate something ”close” to but not the boundary of the

technology set (Simar & Wilson, 2013). For example, in output orientation, order-m

frontiers are defined as the expected maximum obtainable outputs among m production

units drawn randomly from the population of those using at most a given level of inputs.

Meanwhile, order-α quantile frontiers represent the expected maximum output levels that

are exceeded by 100 (1− α) % of production units using less than or equal to a given level

of inputs.

The nonparametric estimators of these frontiers turn out to be more appealing than

the conventional deterministic frontier models because they do not suffer from the well-

known curse of dimensionality and achieve the standard parametric root-n (
√
n) rate of

convergence (Cazals, Florens, & Simar, 2002; Aragon, Daouia, & Thomas-Agnan, 2005;

Daouia & Simar, 2007). Moreover, both the estimators are also consistent estimators of

the full frontier and share asymptotic properties with FDH estimators but are more robust

with respect to extreme values and/or outliers in finite sample than the conventional FDH

or DEA estimators (Simar & Wilson, 2013).

Among the two above-mentioned partial frontier approaches, the order-α quantile

frontier estimators are argued to have better robustness properties than the order-m

frontier estimators. For example, Aragon, Daouia, and Thomas-Agnan (2005) compared

the two estimators with various simulated data sets, and reached the same conclusion

with all the data sets that the order-m frontier estimators are less resistant to outliers

than the order-α quantile frontier estimators. Daouia and Simar (2007) examined the

robustness properties of the two estimators from the theoretical points of view using the

concept of influence function, and came up with the same conclusion. Thus, we will use

the order-α quantile frontier estimators in our analysis and focus our discussion on these

estimators.

Let us define the technology set Ψ as the support of the joint distribution of a random
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variable (X, Y ), which generates the random sample Xn. Here, we focus on the interior of

the set, Ψ∗ = {(x, y) ∈ Ψ|FX (x) > 0}, where FX (·) represents the marginal distribution

of X. As in Cazals, Florens, and Simar (2002), the production function defined in (3) can

be rewritten in a probabilistic representation as

∂P (x) = sup
y

{
y
∣∣ FY |X (y|x) < 1

}
, (9)

where FY |X (y|x) is the conditional distribution of Y given X ≤ x, i.e.,

FY |X (y|x) =
FXY (x, y)

FX (x)
, (10)

where FXY (x, y) = Prob (X ≤ x, Y ≤ y) is the joint distribution of (X, Y ).

Equivalently, ∂P (x) can be formulated as the order one quantile of the distribution

of Y given X ≤ x as

q1 (x) = inf
y

{
y ≥ 0

∣∣ FY |X (y|x) = 1
}
. (11)

One can interpret q1 (x) as the minimum output level not exceeded by any production

unit using at most x inputs. Based on the formulation, Aragon, Daouia, and Thomas-

Agnan (2005) introduced a concept of order-α quantile frontiers as the quantile functions

of order α, α ∈ [0, 1], of the distribution of Y given that X is less than or equal to a given

level of inputs and defined as

qα (x) = inf
y

{
y ≥ 0

∣∣ FY |X (y|x) ≥ α
}
. (12)

The order-α quantile frontier, qα (x), represents the output threshold exceeded by

100 (1− α) % of production units using at most x inputs. The efficiency measure with

respect to the frontier is referred to as the order-α quantile efficiency and defined as

λα (x, y) = inf
λ

{
λ
∣∣ FY |X (λy|x) ≥ α

}
. (13)

The order-α quantile efficiency represents the radial distance from a point in output

space representing the production unit toward the order-α quantile frontier. The measure

λα (x, y) can have values between 0 and +∞, where λα (x, y) < 1 indicates that the

production unit with input-output allocation (x, y) is above the order-α quantile frontier

(i.e., super-efficient production unit).

To estimate order-α quantile frontiers and order-α quantile efficiency, we can again

apply the plug-in principle by replacing FY |X (·|·) in (12) and (13), respectively, by its

empirical analogue

q̂α,n (x) = inf
y

{
y ≥ 0

∣∣∣ F̂Y |X (y|x) ≥ α
}

(14)
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and

λ̂α,n (x, y) = inf
λ

{
λ
∣∣∣ F̂Y |X (λy|x) ≥ α

}
. (15)

As an extension of Theorem 4.1 in Aragon, Daouia, and Thomas-Agnan (2005), Daouia

and Simar (2007) show that under appropriate assumptions, order-α quantile efficiency

estimators have asymptotic normality with the standard parametric root-n (
√
n) rate of

convergence. Mathematically, the result is stated in Theorem 3.2 in Daouia and Simar

(2007) as follows

Theorem 2.1. Let 0 < α < 1 be a fixed order and let (x, y) ∈ Ψ be a fixed production

unit in interior of Ψ. Assume that G (λ) = 1 − FY |X (λy|x) is differentiable at λα (x, y)

with negative derivative G′ (λα (x, y)). Then,

√
n
(
λ̂α,n (x, y)− λα (x, y)

)
d−→ N

(
0, σ2

α (x, y)
)

as n→∞, (16)

where σ2
α (x, y) = α (1− α) / [G′ (λα (x, y))]2 FX (x).

Moreover, the order-α quantile efficiency estimators converge to the FDH estimator

as α→ 1

lim
α→1

λ̂α,n (x, y) = λ̂FDH (x, y) (17)

More details on this interesting method can be found in Aragon, Daouia, and Thomas-

Agnan (2005) and Daouia and Simar (2007), while in the next section we will apply it to

analyse the efficiency of public hospitals in Queensland, Australia.

3 Variables and Data

In this study, we compare the technical efficiency of public hospitals across 15 geograph-

ically based HHSs in Queensland in the financial year 2016/17.6 Our sample includes

111 public acute hospitals.7 The hospital data are sourced from two data collections of

Queensland Health, namely Financial and Residential Activity Collection (FRAC) and

Monthly Activity Collection (MAC). We obtained the information about hospital staffing

and drug, surgical and medical supply expenditures from the FRAC, while the MAC

6There are 16 HHSs in Queensland, but only 15 HHSs directly manage and operate public hospitals

in defined local geographical areas, the remaining HHS is a specialist statewide HHS dedicated to caring

for children and young people from across Queensland.
7Public hospitals in Queensland include acute hospitals, mixed sub- and non-acute hospitals, early

parenting centres, women’s and children’s hospitals, and psychiatric hospitals. We only consider public

acute hospitals, which account for more than 90% of inpatient cases treated. Our sample does not include

hospitals that were just opened in 2017 and hospitals that are not operated by a HHS.
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provided us with the data on the number of beds, non-admitted patient activities, and

admitted patient episodes of care by diagnosis related groups (DRGs).

Following the common practice in the literature on performance analysis of hospitals
8, to model the production process of hospitals, we use full-time equivalent (FTE) staff

as a proxy for labour input, the number of bed (BEDS) as a proxy for capital input,

and drug, surgical and medical supply expenditure (DMSEXP) as a proxy for consum-

able input (see more detailed discussion about the selection and construction of hospital

inputs and outputs in Grosskopf, Nguyen, Yong, & Zelenyuk, 2020). Regarding hospital

staffing, we adopt Daraio and Simar’s (2007) approach (the approach based on Principal

Component Analysis) to aggregate six labour categories into a single measure of labour

input, called labour factor (FLABOUR).9 The aggregation approach helps to increase

the discriminant power of the nonparametric envelopment estimator, but still covers the

information contained in all the labour categories.

Similarly, using Daraio and Simar’s (2007) approach, we aggregate two widely-used

measures of hospital outputs, namely (i) non-admitted occasions of services and (ii)

casemix weighted inpatient episodes, into a single output measure, called output factor

(we denote as FOUTPUT). The information about non-admitted occasions of services,

which include both outpatient visits and emergency department services, is readily avail-

able in our datasets. Meanwhile, the casemix weighted inpatient episode is constructed

as the weighted sum of the number of inpatient episodes by DRG, where the weight is

the inlier DRG cost weight obtained from the Independent Hospital Pricing Authority.10

In addition, we obtain information about hospital peer groups and geographic location

from AIHW (2015). Based on hospital peer groups, in our study, hospitals are classified

as large hospitals if they are principal referral hospitals, public acute group A hospitals,

or public acute group B hospitals, and classified as small hospitals if they are public acute

group C hospitals, or public acute group D hospitals. 11 Moreover, hospitals in our sample

8See the reviews in O’Neill, Rauner, Heidenberger, and Kraus (2008), Kohl, Schoenfelder, Fügener,

and Brunner (2019).
9Data on hospital staffing is provided in the form of FTE staff in six major categories including salaried

medical officers, nurses, diagnostic and health professionals, other personal care staff, administrative and

clerical staff, and domestic and other staff.
10Ideally, outputs of hospitals should be measured by the improvement in medical condition of patients.

However, it is technically difficult to obtain this measure in practice, thus most of the hospital efficiency

studies use quantities of services as an alternative measure of hospital outputs (Hollingsworth, 2008).
11Public acute hospitals in Australia are divided into five groups listed in descending order of activity

volume and service diversification, as follows: principal referral hospitals, public acute group A hospitals,

public acute group B hospitals, public acute group C hospitals, public acute group D hospitals. According

to AIHW (2015), hospitals in the first three groups are generally larger than hospitals in the last two

groups.
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are also categorized into two groups based on their geographic location, namely remote

hospitals (located in remote and very remote areas), and non-remote hospitals (located

in major cities, inner regional, or outer regional areas). 12

Table 1 provides information about the proportion of remote and small hospitals as

well as total inputs utilised and total outputs provided by all hospitals belonging to each

HHS in our sample. We can see that HHS 402, HHS 403, and HHS 436 are the only

HHSs where all hospitals are small hospitals.13 Moreover, almost all of their hospitals

are located in remote areas. Meanwhile, the majority of hospitals managed by HHS 408,

HHS 431, HHS 487, and HHS 494 are large hospitals and located in non-remote areas.

Table 1: Descriptive Statistics of variables by HHSs

Random

ID

Proportion

of Remote

hosptials

Proportion

of Small

hospitals

No. of

Beds

(Total)

DMSEXP

(Total)

($ millions)

FLABOUR

(Total)

FTE

FOUTPUT 14

(Total)

402 1.00 1.00 104 3.33 159.42 0.39

403 0.91 1.00 166 5.09 190.88 0.53

408 0.00 0.00 1167 170.77 3849.69 8.34

418 0.00 0.80 509 44.25 1270.69 3.19

423 0.25 0.88 335 50.44 1033.18 2.74

431 0.00 0.20 2354 387.34 5516.82 16.14

435 1.00 0.83 119 8.76 331.07 1.04

436 1.00 1.00 69 2.95 110.71 0.27

442 0.17 0.83 526 64.35 1211.94 3.17

451 0.00 0.86 843 112.95 2420.74 5.04

468 0.38 0.88 823 97.46 2207.21 5.25

478 0.00 0.70 584 64.53 1406.52 4.01

481 0.11 0.95 701 70.22 1624.25 3.98

487 0.00 0.25 300 90.02 1772.83 4.23

494 0.00 0.20 1937 316.03 5647.32 13.65

From Table 1, we also see that the utilisation of inputs and the provision of services

varies significantly across the HHSs in our sample. For instance, HHS 436 has the total

12The classification is based on the remoteness area information provided in the Australian hospital

peer groups in which the remoteness of a hospital is measured by the physical road distance to its nearest

urban center.
13Note that the IDs here are not the real ID but randomly generated for each HHS.
14Since the unit of measurement of non-admitted occasions of services and casemix weighted inpatient

episodes are different, we normalize them by their standard deviations before the aggregation.
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number of beds of only 69. Meanwhile, the total number of beds operated by HHS 431

is 2354, being nearly 35 times higher than that of HHS 436. The similar pattern is also

observed on the output side, where the highest figure of output factor is around 60 times

higher than its lowest figure.

4 Results and Discussions

4.1 Univariate Input-Output Illustration

In this subsection, we aim at providing a graphical illustration of different types of frontier

estimators. To do so, we utilize the same technique as discussed in Section 3 to aggregate

inputs further into a single variable, we denote as FINPUT, representing all resources

utilized by hospitals. In the case of univariate input-output production technology, we

can present the estimated production frontiers (i.e., production functions) on a 2-D graph

together with data points as shown in Figure 1. As we can see, DEA and FDH estimators

envelope all the data points, whereas some data points are above the estimated order-α

quantile frontiers (even for a relatively high value of α, say, α = 0.99). Moreover, when α

increases to 1, the estimated order-α quantile frontiers get closer to the estimated FDH

frontier. Actually, as pointed out in Section 2, the FDH frontier is a special case of order-α

quantile frontiers when α = 1.

4.2 Main Analysis: Multiple inputs case

Before discussing the results, it is worth mentioning here that the results in this study

are reported based on the reciprocal of the output oriented efficiency score, which gives

an efficiency measure between 0 and 1 for FDH and DEA estimators, and an efficiency

measure between 0 and +∞ for order-α quantile frontier estimators. As a result, if a

hospital has an efficiency score from the order-α quantile frontier estimators in (0, 1),

{1}, or (1,+∞), then it is interpreted, respectively, as ”below”, ”on”, or ”above” the

corresponding order-α quantile frontier..

Figure 2 shows how p (α), the percentage of hospitals being above the estimated order-

α quantile frontier, changes when the order α increases. It is remarkable that when the

order α increases from 0 to 0.8, p (α) decreases slowly, indicating that the quantile frontiers

of orders α in this range are very tight. From the order of around 0.8, the decreasing rate

of p (α) increases significantly, showing that the quantile frontiers become more spaced.

The values of p (α) are, however, still relatively high for the values of α close to one. For

example, p (α) is 51% for α = 0.95, 30% for α = 0.98 and still 5% for α = 0.99. This
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Figure 1: Estimated frontiers for the case of univariate input and output

fact suggests that only quantile frontiers of orders extremely close to one are possibly

influenced by extreme values.

In the following analysis, we measure hospital efficiency with respect to the quantile

frontiers of order α = 0.99. This quantile frontier is less likely to be affected by extreme

values/outliers (justified by the value of p (α)) and still represents the output threshold

exceeded by only 1% of hospitals in population using at most a given level of inputs. In

our sample, all of those super-efficient hospitals are large and non-remote hospitals.

We are interested in comparing hospital efficiency across HHSs, thus after obtaining

the individual estimates from various estimators (including order-0.99 quantile frontier,

FDH, VRS-DEA, and CRS-DEA), we utilize the aggregate efficiency measure discussed

in Section 2 to analyse the performance of HHSs. Table 2 reports the estimated aggregate

efficiencies and Figure 3 presents histograms of the estimated aggregate efficiencies for

different types of estimators.

For both VRS-DEA and CRS-DEA estimators, some HHSs turn out to be very in-

efficient, especially for CRS-DEA estimators, where 9 out of 15 HHSs are at least 40%
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Figure 2: Evolution of the proportion of hospitals being above the estimated order-α

quantile frontier

inefficient (see Figure 3). On the other hand, these models give a high variation in ef-

ficiency (or have high discriminative power) that might be explained through additional

analysis. The prevalence of inefficient HHSs might be attributed to the fact that the

frontiers estimated by DEA estimators are particularly sensitive to extreme values. A

very few super-efficient production units can possibly shift the whole estimated frontiers

outward and substantially change the distribution of the estimated efficiency scores. Iden-

tifying and removing these outliers from the sample (and studying them separately) may

be useful for further analysis with the CRS-DEA model since it has value in itself. In-

deed, provided there are no outliers, CRS-DEA can be considered as the most appropriate

benchmark from a social point of view to evaluate the performance of production units in

the public sector because it identifies the level of highest utilization of inputs into outputs

(or highest average productivity) and the best practice socially-optimal scale.15 In our

sample, five hospitals are on the CRS-DEA frontier, which are hospital 1119, hospital

1031, hospital 1035, hospital 1095 and hospital 1001.16 Among these five hospitals, four

15See more discussion in Grosskopf, Nguyen, Yong, and Zelenyuk (2020) and Nguyen and Zelenyuk

(2020)
16Note that the IDs here are not the real ID but randomly generated for each hospital.
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Figure 3: Histograms of aggregate efficiencies for different types of estimators

hospitals are small and located in remote areas. It might be an indicator that large hos-

pitals in our sample are not operating near the socially-optimal scale, and this can be

explored in future research.

Compared to DEA estimators, FDH estimators are less sensitive to extreme values.

The estimated aggregate efficiencies obtained from FDH estimators are relatively reason-

able ranging from 0.8 to 1. However, the FDH model has low discriminative power with

many observations attaining high or 100% efficiency scores, of these some appear to be

very inefficient when benchmarking using DEA. Moreover, for some HHSs, the evalua-

tion of relative performance seems still to be influenced by the presence of super-efficient

production units. For example, looking at Figure 4, where we present the estimated

order-0.99 quantile aggregate efficiencies and FDH aggregate efficiencies on a heatmap,

we can see that HHS 494 is in the top highest performance HHSs based on order-0.99

quantile aggregate efficiency, but it is in the bottom lowest performance HHSs based on

FDH aggregate efficiencies. Due to the limited space, in the following discussion, we focus

exclusively on the results obtained from order-0.99 quantile frontier estimators.

Based on order-0.99 quantile aggregate efficiencies, we use k-mean clustering technique

to classify HHSs in Queensland into three groups, namely relatively low, medium, and
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Table 2: Estimated Aggregate Efficiencies

Random ID
Efficiency Estimators

Clusters

Order-0.99

quantile

frontiers

FDH VRS-

DEA

CRS-

DEA

436 0.82 0.82 0.57 0.53 3

403 0.87 0.87 0.69 0.62 3

402 0.89 0.89 0.68 0.54 3

442 0.93 0.93 0.76 0.59 2

481 0.97 0.97 0.80 0.56 2

478 0.98 0.98 0.88 0.64 2

423 0.98 0.98 0.93 0.63 2

435 0.98 0.98 0.91 0.74 2

418 0.99 0.99 0.93 0.57 2

487 0.99 0.99 0.96 0.84 2

451 1.04 1.00 0.76 0.48 2

494 1.06 0.92 0.91 0.57 2

408 1.24 1.00 0.99 0.50 1

468 1.27 0.99 0.95 0.54 1

431 1.36 1.00 0.96 0.64 1

high efficiency (denoted as clusters 3, 2, and 1 respectively in Table 2).17 The relatively

low efficiency group (in dark yellow colour on the heatmap) includes HHS 402, HHS

403, and HHS 436. The relatively high efficiency group (in light yellow colour on the

heatmap) includes HHS 408, HHS 431 and HHS 468. The relatively medium efficiency

group is composed of the remaining HHSs.

To further investigate the differences in efficiency of HHSs, we look at characteristics

of their hospitals. As discussed in Section 3, HHS 402, HHS 403, and HHS 436 are the

only HHSs with all their hospitals being small hospitals. Moreover, almost all of their

hospitals are located in remote areas. The boxplots in Figure 5 provide some insights

about the relative performance of hospitals according to these characteristics. In our

sample, large hospitals and hospitals in non-remote areas are relatively more efficient

than small hospitals and hospitals in remote areas, respectively.

The above explanatory analysis suggests that the relatively low efficiency of HHS

17K-mean clustering is an unsupervised machine learning algorithm helping cluster data into a prede-

termined number of clusters so as to minimize the within-cluster sum of squares.
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402, HHS 403, and HHS 436 with respect to the order-0.99 quantile frontier can be

partially explained by the fact that the majority of their hospitals are small and located

in remote areas. Rural hospitals are argued to face many disadvantageous conditions

(e.g., shortages of medical staff, high chronic illness rate in the rural population, and

stagnation in the rural economy); thus they might not provide health services as efficiently

as urban hospitals do (Weisgrau, 1995). Similarly, compared to large hospitals, small

hospitals might be less efficient because they usually have a lower level of standardization

and specialization, resulting in weaker communication and coordination between hospital

facilities (Munson & Zuckerman, 1983).

The evidence about the relative inefficiency in utilizing healthcare resources of small

and remote hospitals might have useful policy implications for managers of relevant HHSs

as well as Queensland Health. The presence of public hospitals in remote and very remote

areas is an important vehicle to ensure equitable access to health services for all residents in

Queensland given its geographically dispersed population. However, given the inefficiency

of small and remote hospitals, other models of health service delivery, such as Telehealth,

perhaps should be given a higher priority to develop as an alternative measure to better

meet the healthcare needs of communities in rural areas.

It is worth recalling here that with the robust order-α quantile frontier estimator,

hospitals are benchmarked relative to the frontier non-parametrically estimated from its

closest peers, without imposing any assumptions of returns to scale, monotonicity or

convexity. This flexibility may be viewed both as an advantage in some respects as well

as a limitation in other respects. For example, the estimated efficiency scores could be

very high, e.g., 100% or higher, for some very large hospitals perhaps because there are

not many (or even any) peers to compare them with and reveal their inefficiency. In

particular, all such large hospitals could be very large and very inefficient relative to the

socially- optimal scale frontier (see more discussion in Nguyen & Zelenyuk, 2020).

In previous studies in the Australian context, large and urban hospitals were also found

to be more efficient than small and rural hospitals (Paul, 2002; PC, 2010). However, as

in the current paper, the constant returns to scale assumption is not imposed in all these

studies, and thus hospitals are not benchmarked with respect to the socially-optimal scale

frontier. In future research, it might be useful to explore hospital efficiency with respect

to the socially-optimal scale frontier using a CRS-DEA model, since the scale efficiency

might possibly be substantially different between small and large hospitals and might

influence their relative efficiency.
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Figure 4: Aggregate Efficiencies of Queensland Local Hospital Networks (HHSs)

Figure 5: Boxplots of individual hospital order-0.99 quantile efficiencies by size and loca-

tion
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5 Conclusion Remarks

In this study, we explored the state of the efficiency of public hospitals at the level of Hos-

pital and Health Services – independent statutory bodies who directly operate a group

of public hospitals in a defined geographical area, in Queensland, Australia. To analyse

their performance on the aggregate level, we utilize an aggregate efficiency measure con-

structed from individual efficiency scores which were estimated using various approaches.

Besides the traditional nonparametric approaches like DEA and FDH, we also use a more

recent and very promising robust approach–order-α quantile frontier estimators (Aragon,

Daouia, & Thomas-Agnan, 2005). Our analysis suggests that efficiency scores of some Lo-

cal Hospital Networks in Queensland are relatively low, which can be partially explained

by the fact that the majority of their hospitals are small and located in remote areas.

Care is, however, needed when interpreting the results. High efficiency scores of large

hospitals with respect to the order-α quantile frontier do not necessarily mean that they

are efficient from a social point of view. These hospitals might utilise too many resources

to deliver what can be otherwise done by smaller size hospitals that operate at a socially-

optimal scale (see more discussion with intuitive examples in Nguyen & Zelenyuk, 2020).

Indeed, operating at a socially-optimal scale is of vital importance for the healthcare sys-

tems, particularly in urgent circumstances, like pandemics. It allows hospitals to flexibly

expand their operations to efficiently deliver the necessary healthcare services to society.

Moreover, the relatively low aggregate efficiency scores of some HHSs do not necessar-

ily mean that they are not as efficient as other HHSs in operating public hospitals. There

might possibly be other factors beyond the control of managers that are negatively af-

fecting the performance of their hospitals. Remoteness and size are just two among many

factors that are necessary to take into account. Moreover, although the above explanatory

analysis is an important step to identify sources of efficiency differentials, more analysis

that will account for other confounding factors is needed (e.g., see Grosskopf, Nguyen,

Yong, and Zelenyuk (2020) for such an analysis in the context of Queensland, Australia).

Similar to many other studies in the literature, due to data availability, this study does

not take into account quality dimension when estimating hospital efficiency and comparing

the performance of HHSs. This might be unfair for those who have to utilize more

resources to maintain the high quality of services. Therefore, a natural recommendation

is to gather more data to incorporate the output quality indicator(s) in the analysis.

Another fruitful direction of research would be to develop and apply statistical tests

based on Central Limit Theorems for aggregate efficiency recently developed by Simar
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and Zelenyuk (2018) to statistically compare the performance of hospitals at HHS level.18
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Färe, R., Grosskopf, S., & Logan, J. (1983). The relative efficiency of illinois electric

utilities. Resources and Energy, 5 (4), 349–367.
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