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1. Introduction

Index numbers play an essential role in the measurement of various economic
phenomena. Their importance have increased even more in the light of the vast amounts
of data becoming available to researchers. They provide effective tools for handling
and summarizing enormous amounts of information including what these days is often
referred to as ‘big data’.

Studies on index numbers have a long history and include the early classical works of
Fisher (1922), Koniis (1924) and Frisch (1930, 1936) to mention a few.! In this paper,
we contribute to this literature by introducing the quadratic-mean-of-order-r indexes of
output, input and productivity and show that each coincides with the corresponding
Malmaquist index under some mild conditions.? The Malmquist indexes were introduced
by Caves et al. (1982), and have been used and popularized in many studies since then
(e.g., see Fare et al. (1994), Kumar and Russell (2002), Henderson and Russell (2005),
Diewert and Fox (2010)).2 On the other hand, the application of the quadratic-mean-of-
order-r index has been limited to the cost of living index, as examined by Diewert
(1976) and Hill (2006).

Index numbers are widely used to measure the economic variables such as price,
quantity and productivity in the general situation of multiple products. There exist two
types of index numbers: the theoretical index number (simply, theoretical index) and
the empirical index number formula (simply, empirical index). The former is
constructed by making use of general aggregator functions such as revenue, cost and
distance function. It conceptualizes the measurement of changes in economic variables,
based on consumer and producer theory.* On the other hand, the latter is a formula of
prices and quantities observed in the two periods. It summarizes the price (quantity)
change of different goods by taking into account the information of the corresponding
quantities (prices).

A large number of empirical indexes have been proposed and a variety of formulae such
as the Laspeyres, Paasche, Fisher and Tornqvist indexes, are still widely used for
constructing various official statistics for observing important economic phenomena
(inflation, economic growth, etc.) as well as being used to facilitate academic research.
There has been an on-going debate regarding the appropriate choice of empirical
indexes. Historically, there are several approaches to this problem.> Among them, we
focus on two major approaches: economic and axiomatic (sometimes called test)
approaches.

The economic approach attempts to find the empirical index that is exactly equal to the
theoretical index under two conditions: optimizing behaviour of a household or a firm,

! See Diewert (1993b) and Balk (2008) for a historic overview.

2 Thus, the quadratic-mean-of-order-r output index coincides with the Malmquist output index, the
quadratic-mean-of-order-r input index coincides with the Malmquist input index and the quadratic-
mean-of-order-r productivity index coincides with the Malmquist productivity index.

3 Currently, the Malmquist indexes are widely adopted by many empirical applications as well as
theoretical studies. See Balk (1998) and Fére et al. (1998), and more recently Diewert and Fox (2010,
2014) and Sickles and Zelenyuk (2019).

4 For example, the Kons cost of living index intends to capture inflation by measuring the change in the
minimum cost of reaching a given level of utility. See Koniis (1924) and Diewert (1976).

5 Diewert (1993a, 1993b) summarizes the past studies on this problem into five approaches and calls the
economic and the axiomatic approaches ‘two major approaches’.



and a certain functional form for the aggregator function.® If, such an empirical index
exists, it is called an exact index.” By showing that an empirical index coincides with a
theoretical index, one can clarify what it really captures. However, this coincidence
between two indexes is valid only when the assumed functional form is an appropriate
representation of the underlying preferences or technology.®

A superlative index is a special case of exact indexes which coincides with a
corresponding theoretical index under the assumption of a flexible functional form for
the aggregator function.® Thus, the coincidence between superlative indexes and
corresponding theoretical indexes is robust to the specification of underlying
preferences and technology.!® Therefore, by showing that an empirical index is a
superlative index for some theoretical index, one effectively justifies the particular
empirical index on the grounds of economic theory.!! As a result, the use of superlative
indexes is strongly recommended.*?

So far, it is known that there exist two superlative indexes for output, input and
productivity. They are the Térngvist and the Fisher indexes. Caves et al. (1982) show
that the Torngvist indexes of output, input and productivity are superlative indexes in
the case of perfect competition, which Diewert and Fox (2010) later extend to the case
of monopolistic competition. On the other hand, Diewert (1992) shows that the Fisher
indexes of output, input and productivity are also superlative indexes.™ All the above
studies show that, under general conditions, the Tornqvist and the Fisher indexes of
output, input and productivity coincide with the corresponding Malmquist indexes.'*
The Malmquist indexes are the representative theoretical indexes for measurement of
output and input change and productivity growth, which are defined with the help of
distance functions.®®

The axiomatic approach is another popular approach to the selection of empirical
indexes. It proposes a set of axioms that an empirical index should satisfy and evaluates
competing empirical indexes on the basis of the axioms that each index satisfies or fails.
As Fisher (1922) and more recently Diewert (1992) and the International Labour Office

® By optimizing behaviour, here we mean the household’s utility maximizing or cost minimizing
behaviour, and the firm’s cost minimizing or revenue maximizing or profit maximizing behaviour.

" Koniis and Byushgens (1926) is the first study that showed that various empirical indexes are exact
indexes.

8 Here, the assumption of optimizing behaviour needs to be valid as well. Otherwise, it is necessary to
estimate underlying technology or preferences to implement theoretical indexes.

® The concept of a ‘superlative index’ is first introduced by Diewert (1976).

10 The flexible functional form can approximate the true function to the second order. See Lau (1986)
and Chambers (1988), and more recently Serletis and Feng (2015) and Serletis and Isakin (2017).

11 Barnett and Choi (2008) introduce the more general definition of superlative indexes than Diewert
(1976).

12 See International Labour Office et al. (2004).

13 Caves et al. (1982) employ the translog functional form and Balk (1998) calls it the Diewert distance
function.

14 The Hicks-Moorsteen productivity index, which is defined as the ratio of the Malmquist output and
input indexes, is another important theoretical productivity index. Mizobuchi (2017) also shows that the
Torngvist productivity index is a superlative index for the Hicks-Moorsteen productivity index.

15 Balk (1993, 1998) and Grifell-Tatjé et al. (2016) also explore the relationship between the Fisher and
the Malmquist indexes. While their approach has the advantage of assuming weaker regularity conditions
on underlying technology, the Fisher and the Malmquist indexes do not necessarily precisely coincide
with each other under their specification of technology. Since we are primarily interested in the
conditions that theoretical indexes turn out to be exactly equal to empirical indexes, we follow a different
approach from these studies.



et al. (2004) advocate, the Fisher index satisfies the largest number of axioms. While
the Tornqgvist index does not satisfy all the axioms that the Fisher index does, it satisfies
several important axioms such as the time reversal test. The Laspeyres and the Paasche
indexes, which are still widely used for official statistics, do not satisfy the time-reversal
test. Thus, both the Térnqvist and Fisher indexes are often deemed more desirable than
the Laspeyres and Paasche indexes under the axiomatic approach.

There also exist other empirical indexes that are justifiable from the axiomatic approach
such as the Walsh and implicit Walsh indexes. These two indexes satisfy several
important axioms (such as the time reversal test, which the Laspeyres and the Paasche
indexes do not satisfy) as well as some monotonicity axioms (such as monotonicity in
quantities, which the Térnqvist index does not satisfy). Thus, when we merely apply
the existing results in the economic approach, the Walsh and implicit Walsh indexes,
which are considered better than the Térngvist index from the axiomatic approach, are
at risk of being discarded.

The main purpose of this paper is to show that from the standpoint of the economic
approach, we can justify a much larger number of empirical indexes, which include
some empirical indexes that satisfy many desirable axioms yet are so far believed not
to be justifiable from the economic approach. In particular, in this paper, we introduce
the quadratic-mean-of-order-r indexes of output, input and productivity, which are
empirical index number formulae of observed prices and quantities. These indexes
generalize and unify many existing indexes, including the most popular ones.

We show that these indexes coincide with the Malmquist indexes of output, input and
productivity, provided that a firm engages in optimizing behaviour and the aggregator
function has a certain flexible functional form, which we introduce in this paper.*’ Since
there are no restrictions on the parameter r of the index, the quadratic-mean-of-order-r
index can be regarded as a family of empirical indexes. Thus, our result is interpreted
as showing all indexes that belong to this family are superlative indexes for the
Malmquist indexes.

The quadratic-mean-of-order-r index is a family of empirical indexes. Two important
special cases of the quadratic-mean-of-order-r index include the implicit Walsh index
(for r = 1) and the Fisher index (for r = 2). Therefore, by generalizing the result of
Diewert (1992), we explore the possibility of approximating theoretical indexes by
employing a variety of empirical indexes including the implicit Walsh indexes, which
are known to satisfy many desirable axioms.

The counterpart of our result is found in the literature of the consumer price index.
Diewert (1976) shows that the quadratic-mean-of-order-r price (quantity) index is a
superlative index for a theoretical price (quantity) index of consumption goods.'® While
being a fundamental result in itself, it does not guarantee that a similar conclusion holds

16 More precisely, the International Labour Office et al. (2004), which explores the axiomatic properties
of the Walsh index rather than the implicit Walsh, concludes that “The remaining two indexes, the Walsh
and Torngvist indexes, both satisfy the time reversal test but the Walsh index emerges as being ‘better’
since it passes 16 of 20 tests whereas the Torngvist only satisfies 11 tests.” As we show, this argument
holds for the implicit Walsh. While it mainly focuses on price index, all the analysis can be translated
into quantity index, which includes output and input indexes.

7 We introduce the flexible functional form based on the quadratic mean of order r that generalizes a
functional form adopted by Diewert (1992).

18 Theoretical price index of consumption goods is called a cost of living index.



in the context of the indexes of output, input and especially productivity, because three
additional complications come into play in those cases.!® Indeed, constructing a
productivity index is somewhat more complicated than constructing a price (quantity)
index for a household. While the latter is simply the aggregation of price (quantity)
relatives for consumption goods, the former involves the aggregations of quantity
relatives for outputs as well as inputs. Moreover, measuring output (input) changes is
also more complicated than constructing price changes for a household. While the latter
aggregates price relatives conditioning on a single index of utility, the former
aggregates quantity relatives for outputs (inputs) by conditioning on multiple inputs
(outputs) and technology. Furthermore, the underlying aggregator functions need to be
able to reflect technology change, possibly a non-neutral technology change allowing
for greater improvement in the use of some inputs or in producing more of some outputs
relative to others. Meanwhile, change in consumer’s preferences is rarely considered in
the cost of living index.?°

The quadratic-mean-of-order-r index is a family of empirical indexes. How much do
those indexes belonging to the same family differ? In order to answer this question, we
apply the quadratic-mean-of-order-r index as well as other well-known indexes to the
US industry-level production accounts. For this particular example, while all quadratic-
mean-of-order-r indexes are almost the same for the range of » from 0.5to 5, they could
significantly diverge from each other for » much larger than that. This is true for the
indexes of output, input and productivity.

The rest of the paper is organized as follows. Section 2 illustrates the model of
production and introduces the definitions of various index numbers. Section 3 compares
the axiomatic properties of a variety of empirical indexes with special attention to the
implicit Walsh indexes. Section 4 introduces a family of functional forms for the output
and input distance functions and shows that they are flexible functional forms. Section
5 demonstrates that the quadratic-mean-of-order-r indexes of output, input and
productivity are all superlative indexes. Section 6 is dedicated to an empirical
application of the quadratic-mean-of-order-r index under different values of r to US
industry data. Finally, Section 7 makes concluding remarks.

2. Two Types of Indexes

This section introduces a collection of index numbers. They are classified into two types
of indexes: theoretical index number and empirical index number formula. Later we
explore the exact relationships among several important indexes of these two types.

2.1. Theoretical Index Numbers

While the cost of living index, which is a theoretical index for consumer price, is
constructed based on consumer theory, theoretical indexes for measuring changes in
output, input and productivity are constructed based on production theory. Below we
summarize some key results of production theory that are needed for further
derivations.?

9 For example, according to the result by Diewert (1992), the quadratic-mean-of-order-r price index is
applicable to the consumer price index but it is not sure whether the quadratic-mean-of-order-r price
index is applicable to other price statistics such as the producer price index and GDP deflator..

20 Balk (1989) is a rare exception which disentangles the effect of preference changes from the cost of
living index.

21 See Fare and Primont (1995) for more details, which we follow here.



Suppose that a firm produces outputs y = (yq,...,yy) € R from inputs x =
(x1, ..., xy) € RY. The technology set T*, which is the set of all feasible combinations
of inputs and outputs, characterizes the firm’s technology available at period t. It is
formally defined as:

Tt = {(x,y) € RY*M: x can produce y in period t}. (1)

We assume that the technology satisfies the following regularity conditions: 22 (T.1) no
free lunch: (0y,y) € T* for any y # 0,; (T.2) inaction is possible with any input:
(x,0,) € T* forany x = 0; (T.3) strong disposability of inputs and outputs: if (x,y) €
Tt, then (x*, y*) € Ttfor any x* > x and any y* < y; (T.4) Tt is closed; (T.5) the
output set Pt(x) = {y € RY¥: (x,y) € Tt} is bounded for any x € RY; and (T.6) the
production function ff(y_,x) = max,, {y;: (x,y;,¥_1) € T*} is twice continuously
differentiable. These conventional axioms on the technology (T.1)-(T.5) guarantee that
the distance functions introduced below are well-defined.?® The boundary of the
technology set Tt is called the production frontier of period t. The last property (T.6)
indicates that the production frontier is smooth enough for the corresponding distance
function to be twice continuously differentiable.?*

The period t technology is alternatively represented by either the output set or the input
set, which is the subset of the technology set. They are defined as:

Pt(x) ={y e RY: (x,y) € T*}; ()
L'(y) = {x e RY: (x,y) € T*}. 3)

The boundaries of these sets are referred to as the output isoquant and the input isoquant,
respectively, and are defined as:

Isoq Pt(x) = {y € P!(x): 1y & P'(x),VA € (1,+x)}; (4)
Isoq t(y) = {x € L'(y): Ax & L*(y), VA € (0,1)}. )

The period t output distance function Di: RY*M — R, U{+oo} characterizes the
technology of period t.% It is defined as:

22 \Jector notation: vy > y' indicates y,, = yy, for any m; y > v’ indicates y,,, > y,, for any m; y >y’
indicates y,,, = y,, for any mand y # y'; 0, and 1,, denotes M dimensional vector of zeros and ones,
respectively; and x_; = (x5, ..., Xy).

23 We follow the regularity conditions given by Féare and Primont (1995). The regularity conditions
proposed by Diewert and Fox (2010) can also be used.

24 We can also impose differentiability on the production frontier by adopting the input requirement
function rather than the production function. Or we can alternatively impose differentiability on the
distance function itself. The distance function does not need to be twice continuously differentiable for
defining productivity indexes, but its twice continuous differentiability appears to be indispensable for
implementing the exact index number approach.

25 See Shephard (1970).



Di(x,y) =inf{@ > 0:y/0 € P*(x)}. (6)

It measures the radial distance from outputs y to the output isoquant of period t by the
minimum contraction of outputs y. Therefore, the following equation is a necessary and
sufficient condition for outputs y to be on the output isoquant of Pt (x):

D5(x,y) = 1. (7)

By definition, the output distance function is linearly homogeneous in outputs, so that:

ADE(x,v) = DE(x, Ay), VA>0andV(x,y) € RYtM, (8)

Throughout this paper, we assume that the technology exhibits constant returns to
scale.?® Under this condition, the output distance function is homogeneous of degree
minus one in inputs, so that:

A™IDE(x,y) = Di(Ax,y), V1> 0andV(x,y) € RYtM, 9)

Thus, under constant returns to scale technology, the output distance function is a
homogeneous function with respect to outputs as well as inputs. By applying the Euler’s
theorem on differentiable homogeneous functions, we can derive the next lemma,
which play a key role in deriving the exact relationship between theoretical and
empirical indexes.

Lemma 1 (Diewert 1976): Suppose that the technology exhibits constant returns to
scale and the output distance function D, is twice differentiable at (x*,y*). Then, D,
satisfies the following equations:

N aD *’ *
_Z LG (10)
5 n=1 aXn
N 0°D,(x",y") 9D, (x,y")
2o A g0 7 vu€ell,.. N 11
Zv:l zaxu(axv )xv (axu )' “ [, ’ ], ( )
N 9 DO x*,y* aDo x*'y*
_ *:——, Ym € 1,--.,M- (12)
anl 6xn6y;,/; 6111) - *)a}’m [ ]
X 'y * * *
Z oa Ym = Do(x Yy ), (13)
e
6 R x*’y*
=0, Vkell, .., M], 14
Zj:l 0y; 0y Vi | ] -
M 32D, (x*,y") D, (x",y")
— 0 e =207 2 wne[l,..,N] 15
Zm=1 axn aym " axn [ ] ( )

26 Technology exhibits constant returns to scale if (x,y) € T* implies (Ax, Ay) € T forall 1 > 0.



The period t input distance function Df:RY*N - R, U{+o} is another
characterization of the technology of period t. ?’ It is defined as:

Df(y,x) = sup{f > 0:x/0 € L*(y)}. (16)

It measures the radial distance from inputs x to the input isoquant of period t by the
maximum contraction of x. Therefore, the following equation is a necessary and
sufficient condition for inputs x to be on the input isoquant of Lt (y):

Di(x) = 1. (17)

By construction, the input distance function is linearly homogeneous in inputs, so that:

AD{(y,x) = Df(y,Ax), =~ VA >O0andV(x,y) € RY*M. (18)

Since we assume constant returns to scale technology, the input distance function is
homogeneous of degree minus one in outputs, so that:

A7 1Df(y,x) = Df(Ay,x), VA>O0andV(x,y) € RY*M, (19)

Thus, under constant returns to scale technology, the input distance function is a
homogeneous function with respect to outputs as well as inputs. By applying the Euler’s
theorem on differentiable homogeneous functions, we can derive the next lemma,
which is the counterpart of Lemma 1 for the input distance function.

Lemma 2 (Diewert 1976): Suppose that the technology exhibits constant returns to
scale and the input distance function D; is twice differentiable at (x*,y*). Then, D;
satisfies the following equations:

N aD(y*:x*) % %
D =k = n), (20)

n=1 aXn

N 92D;(y*, x*)
— T = ef1,..,N 21
szl 0x, 0x,, X =0, vu €[l .., N], (21)

N 92Dy(y*, x") aD;(y", x")
—_  x* =, Ym € 1,...,M, (22)
anl axn 3)’11(41 aT;) . a*ym [ ]
_Z DOYLX) e by, (23)
m=1 0Ym

27 See Shephard (1953).



M azDi(}’*»x*) aDi(y*'X*)
— T sy T vk € [1,..,M], 24
Zj=1 ay] ayk y] ayk [ ] ( )
M aZDi(y*'X*) aDl(y*!X*)
— P Py = T 2 yne [, .., N 25
Zm=1 axn aym " axn [ ] ( )

Distance functions are convenient tools for characterizing the underlying technology
and are the key instruments for constructing theoretical indexes related to producers.
Caves et al. (1982) introduce the Malmquist indexes of input, output and productivity
by utilizing distance functions.?®

The period t Malmquist output index compares the radial distances of the output
vectors in two periods, relative to the technology of the period ¢, conditional on the
input vector of the period t for t = 0, 1, and is defined as:

moyt = 2G5y

= DG,y )

The period t Malmquist input index compares the radial distances of the input vectors
in two periods, relative to the technology of the period t, conditional on the output
vector of the period ¢ for t = 0, 1, and is defined as:

it = 205 XD

= @7

The output-oriented period t Malmquist productivity index (the period ¢ Malmquist
productivity index, hereafter) compares the radial distances of the output and input
vectors in two periods, relative to the technology of period ¢ for t = 0, 1.2° It is defined
as:

Di(x*, y1)

MPIt = :
D5(x%,y9)

(28)

In the single input-single output case, productivity is the ratio of output over input and
the productivity growth between two periods is measured by the firm’s output ratio
divided by its input ratio. The Hicks-Moorsteen productivity index, which is another

28 1t is possible that for some (x,y) € T*, we have D}(x,y) = 0 or Df(y,x) = 0 or D}(x,y) = +oo or
Df(y,x) = +o0. We rule out these extreme cases so as to ensure that the distance functions are well-
defined and they can be used as components of theoretical indexes.

29 While Caves et al. (1982) define the input-oriented Malmquist productivity by Df (x°, ¥°)/Df (x*, y1),
Fare and Grosskopf (1996) define it by Df(x*,y)/Df(x° ¥°). Our result on the output-oriented
Malmgquist index is directly applicable to the input-oriented Malmquist productivity index, no matter
which definition is adopted. We focus on the output-oriented Malmquist productivity index to avoid
unnecessary repetitions.



popular productivity index formulated by Bjurek (1996), directly generalizes this ratio
by utilizing the Malmquist output and input indexes.*® The period t Hicks-Moorsteen
productivity index is constructed by the period t Malmgquist output and input indexes
fort =0, 1. It is defined as:

t
ymprt = 49! (29)

T OMIIt

All these theoretical indexes are defined for the reference technology t. Since periods
0 and 1 are both reasonable candidates as the reference, Caves et al. (1982) and Bjurek
(1996) follow Fisher’s approach and adopt the geometric mean of period 0 index and
period 1 index to avoid the arbitrary choice of the reference technology. 3! The
Malmquist output index (MOI), the Malmquist input index (MII), the Malmquist
productivity index (MPI) and the Hicks-Moorsteen productivity index (HMPI) are,
respectively, defined as follows:

MOI =/ MOI° - MOI. (30)

MII = VMII® - MIIZ. (31)
MPI = /MPI® - MPI. (32)
HMPI = /HMPI® - HMPI™. (33)

All these theoretical indexes are defined by arbitrary distance functions, which are
typically unobserved and unspecified. Thus, one often needs to assume a certain
parametric form and estimate the parameters for the underlying distance functions in
order to implement these indexes. On the other hand, the indexes in the next sub-section
are empirical index number formulae of prices and quantities of inputs and outputs.
Thus, they are directly computable from price and quantity observations without
estimating distance functions.

2.2. Empirical Index Number Formulae

An empirical index number is a formula of prices and quantities of outputs and inputs.
Once price and quantity observations are available, they are directly computable.
Consider that outputs y = (yy, ..., yu) € RY, are sold at prices p = (py, ..., py) €
RY, and inputs x = (x4, ...,xy) € RY, are purchased at prices w = (wy, ..., wy) €
RY_ (all strictly positive).

The present paper deals with the quadratic-mean-of-order-r output index, which is a
quantity index introduced by Diewert (1976). It is defined for arbitrary non-zero real
number r as:

30 The idea of measuring productivity growth by the ratio of the Malmquist output and input indexes is
originally proposed by Diewert (1992).

31 Diewert and Fox (2017) show that the equally-weighted geometric mean such as MOI, MII and HMPI
is the only homogeneous mean that satisfies the desirable time reversal property.
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Since we can freely choose r, this is a family of output indexes, which embraces many
well-known indexes in the literature of index number theory. In particular, it yields the
implicit Walsh output index (IWOI) for r = 1 and the Fisher output index (FOI) for
r = 2.3 Two more indexes can be covered as limiting cases. Letting r —» 0 makes it
converge to the Tornqvist output index (TOI) and letting |r| — co makes it converge to
the geometric mean of maximum and minimum output relatives (GMOI). These indexes
are defined respectively as follows:

QMOI, = (34)

SHRS | SHiE

M M 0.,1Y1/2,.1
IWOI = QMOL, = ( i 1pmym>/ ( et Oindin). /me). (35)
m= 1pmym 1(3’mYm) p pm
M 1 1/2
FOI = QMO =< m= 1PmYm  Lm=1 PmYm ) _ (36)
m= 1pmym m=1pm3’m

Mo >2(pmym/ M 0y +phyh /S piv})
@37)

TOI = lim QMOI, = 1_[ <—’(;
r—0 y

m=1 m

GMOI = lim QMOL, = lim QMO

r—>4+00
. y%r AN (38)
=|_min max | =5 .
me[1,--M] ym me[1,-M] Ym

The term ‘implicit output Walsh index’ comes from the fact that IWOI equals the
revenue ratio between two periods deflated by the Walsh output price index

M (yOy i)Y 2pl /SM (v yL)1/2p8  The Walsh output index (WOI) is the direct
index counterpart of IWOI. Itis defined as follows:

Yo -1 (ompi) Y2y,

Similarly, the present paper also deals with the quadratic-mean-of-order-r input index.
It is defined for arbitrary non-zero real number r as:

o) G )

Ww. X
QMIIT = u 1"Yu’u . (40)
11 0 1"/2
n=INN_ witxd ) \xd

32 See Allen and Diewert (1981) for more on the latter.
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Since we can freely choose r, this is a family of input indexes, which incorporates many
well-known indexes in the literature of index number theory. In particular, the implicit
Walsh input index (IWII) and the Fisher input index (FII) can be regarded as special
cases of this family. Similarly, the Térngvist input index (T1I) and the geometric mean
of maximum and minimum input relatives (GMII) can also be regarded as its limiting
cases. These indexes are defined respectively as follows:

IWII = oMl _< ﬂ=1W%X%>/< ﬁ=1(x1‘3x%)1/zw,%> 41)
bR, wixg n=1(nx )Y 2wy
N 0,1 YN 1,1\ 1/2

1 W)X 1 WpX

FII = QMII, =< o~ o ’;) (42)
n=1WnXn Zin=1WnXn

Ny Z R /S wix b wich /S wiad)
TII = lim QMII, = H (—2) (43)
r—0 Xn

n=1

GMII = lim QMII, = lim QMII,
r——o0

r—+4+00
_ x} x; 12 (44)
= min ) max ) .
nef1, N1\ x, / n€l1,-N] \ x,

The term ‘implicit input Walsh index’ comes from the fact that IW1I equals the cost
ratio between two periods deflated by the Walsh input price index

N SV 2wlh /SN (x9xD)2w?. The Walsh input index (WII) is the direct
index counterpart of IWII. It is defined as follows:

WII = N 0,,,11/2,.0° (45)
n=1(Wan) Xn

A productivity index is often defined as the ratio of output index to input index. Thus,
we can introduce the quadratic-mean-of-order-r productivity index, which is the ratio
of the gquadratic-mean-of-order-r output index to the quadratic-mean-of-order-r input
index, for arbitrary non-zero real number r. It is defined as:

/2 l/T
M_1< DY >(ﬁ)r
TN\ p) Y] ) \vm
/2
M 1< Py )(@) /
m= 1,,1
i . y
OMPI, = =By ) — (46)
wlx? x1\"/? '
s (sra ) ()
Zu—lwuxu xn
e () ()
n=1 25—1W&x11¢ X3
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Again, since we can freely choose r, this is a family of productivity indexes, which
incorporates many well-known indexes in the literature of index number theory. In
particular, the implicit Walsh productivity index (IWPI) and the Fisher productivity
index (FPI) can be regarded as special cases of this family. Similarly, the Térngvist
productivity index (TPI) and the ratio of the geometric mean of maximum and
minimum output relatives to the geometric mean of maximum and minimum input
relatives (GMPI) can also be regarded as its limiting cases. These indexes are defined
respectively as follows:

<( %=1p3ny#1> /< %=1(y1%y7%)1/2p3n>>
1 DmYm M (o yh)/2pY

IWPI = QMPI, = : (47)
QML (( ﬁ=1w%x%) /( ﬁ=1(x2x%)1/2w&>>
11¥=1 ngr? Zgﬂ(xgx}l)l/jwfl)
1/2
(2%=1 pgny% DX p%ny%)
M M 1
FPI = QMPIZ — m=1pmym m=1pmym 1/2 ] (48)
( ¥=1Wr?x%, g=1W%x711)
Mo WaXn XN wixp
TPI = lirré QMPI,
r—
v (L (PRSI D00 +phyi/EM Py Y )
m=1 (_0) (49)
— ym [
iy Z(WRER /B, Wl rwiak /S, wid)
e
le
GMPI = lim QMPI, = lim QMPI,
r—>+00 r—>—00
1 1\ 1/2
( min (y—’g> max (y—’g» 50
_ \m€[1, M| \Yp,/ me[1,M] \Yp, (50)

1 1172
( min <X—’3> max (x—ﬁ»
nel1,-,N] \Xy/ ne[1,-N] \Xxp,

As the case of output and input indexes, we can define the Walsh productivity index
(WPI), which is based on the Walsh output and input indexes (WOI) and (WII), as
follows:

<2%=1(p9np}n)1/ 2%)

m=1(Pmps) Y2y,

( ?'l=1(Wr?W%)1/2x%)
N (wowi)/2x)

WPI = (51)

3. Axiomatic Properties and Implicit Walsh Index

Axiomatic properties for a variety of price and quantity indexes have been examined in
the literature of index number theory. The International Labour Office et al. (2004),
also referred to as ‘CPI Manual’, is the standard reference source for the consumer price
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index in terms of theory and practice. They deal with the following 20 tests (axioms),
which have been proposed in the past in the literature of the index number theory.33
While all the empirical indexes of output and input introduced in the previous section
are quantity indexes, International Labour Office et al. (2004) focus on the axioms for
price indexes. Thus, we provide the corresponding axioms for quantity indexes below.

We denote an arbitrary output index by 01(p°, pt,v°, y1), so as to emphasize that the
empirical output index is a function of price and quantity vector of two periods being
compared.3* Every test for output index in this list has a direct counterpart for input,
which we omit to avoid unnecessary repetition.

T1. Positivity: 0I(p°, pt,y°,y1) > 0.
T2. Continuity: 0I(p°,pt,v°, y1) is a continuous function of its arguments.
T3. Identity or constant quantities test: 01(p°, pt,vy,y) = 1.
T4. Fixed basket or constant prices test: 0I(p,p,y% yY) = XX _ poya/EM L DV
T5. Proportionality in current quantities:
0I1(p° pt,y° Ayt) = 201(p°, pt,y°, y1) forall 1 > 0.
T6. Inverse proportionality in base period quantities:
0I1(p° pt, 2y°, y1) = 27 101(®° pt, y°,y1) forall 2 > 0.
T7. Invariance to proportional changes in current prices:
0I(p°, Apt,y%, y1) = 0I1(»°,pt,y°, y1) forall 1 > 0.
T8. Invariance to proportional changes in base prices:
0I1(Ap°,pt,y°, y1) = 01(p°,pt,y°, y1) forall 2 > 0.
T9. Commodity reversal test: 01(p°",p'",y°",y'") = 0I1(p°,p*,y°,y*) where pt’

denotes a permutation of the components of the vector pt and yt~ denotes the same
permutation of the components of y¢ for ¢t = 0, 1.

T10. Invariance to changes in the units of measurement:
O1(a1p?, ..., APy A1DL, wovs A Pags AT YT woes A Vi AT V1, v, Cag Vit)
=0I(P?, ..o, i, . DXL VL, o VI VL, o yiy) Torall a = (ayq, ..., ay) > 0.
T11. Time reversal test: 0I(p°, pt, ¥, y1) = 1/01(p%, p°, y1,v°)
T12. Price reversal test: 01(p°,pt,v°, y1) = 01(pt, %, y°, y1)
T13. Quantity reversal test:

M 1.1 M 1.,0
(Ep=Brn) /01 (p0,p, y0, y) = (S22E222) 01 (p°, p*, v, y°).

DA IRYS Ym=1DPmYm

T14. Mean value test for quantities:

33 Also see Diewert (1992), which the International Labour Office et al. (2004) follow.

34 We sometimes adopt this type of notation for a specific index. For example, the Fisher, the implicit
Walsh, the quadratic-mean-of-order-r and the Malmquist output index applied to observations in periods
0 and 1 can be denoted by FOI(pt,p° y° y1), IWOI(p° pt,y° ¥1), QMOIL.(p° pt,v° y*) and
MOI(x% x1,y° y1), as an arbitrary output index denoted by 0I(p°, pt, %, y1).
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y 1 Vi
mln(yi,- ,y&)<01(20 phY° y)<maX(y ’yfw)'
T15. Mean value test for prices:
. (Pi  Pm Ym=1PmYm 1 P P
min (p;,, . ) < (Zm 1pm37m)/01(p ,pL,v% v < max (pl,. ,p&).

T16. Paasche and Laspeyres bounding test: output index OI(p° pt,v° y1) lies
between the Laspeyres and Paasche indexes, so that either of the following inequalities
holds:

Z—% PmYm Zm mem Z%: pmym

Zn- ipgnygl—OI(P LEMBRES ol S = 01(p%phy%y") <
Em 1pm3/'m

Zm 1pmJ’m

T17. Monotonicity in current quantities: 0I(p°, pt,v°% y1) < 0I(p° pt,y° v?) if

yt<y?

T18. Monotonicity in base quantities: 0I(p®,pt,v°, y1) > 0I1(° pt,y?%,y1) if y° <
2

y-.

T19. Monotonicity in current prices:

(—Zm LBnn) /0] (p°, p', y° y1)<(M)/01(P 0% y%yh) ifpt <p?.

Zm 1pm3’m Zm 1 mYm

T20. Monotonicity in base prices:

(M)/Ol(p ,pt, y° y1)>(M)/01(P 05 y° D) ifp® < p?

Zm 1pm3’m Zm 1 mYm

International Labour Office et al. (2004) contain extensive discussions on the axiomatic
properties of several commonly used indexes, such as the Laspeyres, Paasche, Fisher,
Tornqgvist and Walsh indexes. However, it does not deal with the implicit Walsh index.
To the best of our knowledge, no studies have comprehensively examined the implicit
Walsh index in terms of the axioms or tests that it satisfies.>> Thus, we try to fill this
apparent gap in the literature by examining its axiomatic properties below.

Proposition 1: The implicit Walsh output index IWOI satisfies the following 16 tests:
T1,T2,T3,T4,T5,T6,T7, T8, T9, T10, T11, T13, T14, T15, T19 and T20. However,
it does not satisfy the remaining 4 tests: T12, T16, T17 and T18.

Table 1 compares five widely used indexes as well as the implicit Walsh index in terms
of 20 tests. It also reports the number of tests each index satisfies. It summarizes the
analysis of International Labour Office et al. (2004) on these five indexes as well as our
analysis on the implicit Walsh index.

3 Balk (2008) empirically compares different implicit indexes including the implicit Walsh index.
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Table 1: Axiomatic properties of six empirical index number formulae

Test Fisher Tornqgvist Walsh implicit Walsh Laspeyres Paasche

T1 Positivity Yes Yes Yes Yes Yes Yes
T2 Continuity Yes Yes Yes Yes Yes Yes
T3 Identity or constant quantities test Yes Yes Yes Yes Yes Yes
T4 Fixed basket or constant prices test Yes No Yes Yes Yes Yes
T5 Proportionality in current quantities Yes Yes Yes Yes Yes Yes
T6 Inverse proportionality in base period quantities Yes Yes Yes Yes Yes Yes
T7 Invariance to proportional changes in current prices Yes Yes Yes Yes Yes Yes
T8 Invariance to proportional changes in base prices Yes Yes Yes Yes Yes Yes
T9 Commodity reversal test Yes Yes Yes Yes Yes Yes
T10 Invariance to changes in the units of measurement Yes Yes Yes Yes Yes Yes
Ti1 Time reversal test Yes Yes Yes Yes No No
T12 Price reversal test Yes No Yes No No No
T13 Quantity reversal test Yes No No Yes No No
Ti4 Mean value test for quantities Yes Yes Yes Yes Yes Yes
T15 Mean value test for prices Yes No Yes Yes Yes Yes
T16 Paasche and Laspeyres bounding test Yes No No No Yes Yes
T17 Monotonicity in current quantities Yes No Yes No Yes Yes
T18 Monotonicity in base quantities Yes No Yes No Yes Yes
T19 Monotonicity in current prices Yes No No Yes Yes Yes
T20 Monotonicity in base prices Yes No No Yes Yes Yes
Total 20 11 16 16 17 17

Note: The information for the Fisher, Tornqvist, Walsh, Laspeyres and Paasche indexes can be found in Diewert (1992) and International Labour Office et al. (2004). The
information for the implicit Walsh index is confirmed by Proposition 1.
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As Diewert (1992) initially shows, the Fisher index can be regarded as the best among
all popular indexes since it satisfies all 20 tests. 3 Although two most commonly used
indexes of the Laspeyres and Paasche satisfy 17 out of the 20 tests, they fail to satisfy
the essential time reversal test. While the Tornqvist, Walsh and implicit Walsh indexes
satisfy a smaller number of tests than the Fisher index, they satisfy the time reversal
test. While the Walsh and implicit Walsh indexes satisfy 16 tests, the Tornqvist index
satisfies 11 tests. Moreover, these two Walsh indexes satisfy all the tests which the
Torngvist index satisfies. Therefore, the Walsh and implicit Walsh indexes dominate
the Tornqvist index in terms of the 20 tests.*°

An empirical index is sometimes asked to satisfy the so-called circularity test, which is
formulated as:

T21. Circularity test: 0I(p°, p2, y°, y2) = 01(p°,pL,y°,y1) x 0I(pt, p% yt, y?).

To the best of our understanding, the mainstream view on this test is that it is too
restrictive. Indeed, as Funke et al. (1979) originally shows, the gquantity index that
satisfies this test T21 must aggregate quantity relatives using fixed weight or fixed
basket.*! As a result such index may (and often do) lead to significant substitution
bias.*? This is apparently a reason why International Labour Office et al. (2004) do not
include this test in the above 20 tests and do not ask the indexes to satisfy it.** For the
same reason, we also focus on only these 20 tests.

4. Flexible Functional Form

As we mentioned before, theoretical indexes are defined by using arbitrary distance
functions and thus, it is necessary to specify these functions so as to implement these
indexes. Many empirical applications assume a certain functional form and then
econometrically estimate its parameters.

It is desirable to adopt the functional form that is sufficiently flexible. If we adopt a
restricted functional form (e.g., linear and Cobb-Douglas) for distance functions in our
case, the pattern of substitutions among inputs and outputs may be severely limited a

39 It is worth noting that within the axiomatic studies on empirical index, there exist different points of
view. If one regards an empirical index as a function of prices and quantities, the Fisher index can be
regarded as ‘the best’. If one regards an empirical index as a function of prices and expenditures, or
quantities and expenditures, the Tornqvist index can be regarded as ‘the best’. If one focuses on the
empirical index that appropriately average the basket quantities or prices when aggregating price or
quantity relatives, the Walsh index can be regarded as ‘the best’. See International Labour Office et al.
(2004) for related discussion.

40 International Labour Office et al. (2004) concluded by saying “The remaining two indices, the Walsh
and Tornqvist price index, both satisfy the time reversal test but the Walsh index emerges as being “better”
since it passes 16 of the 20 tests whereas the Tornqgvist only satisfies 11 tests.” The same argument can
apply to the implicit Walsh index as well.

41 Strictly speaking, Funke et al. (1979) deal with only price indexes. However, their result is directly
applicable to quantity indexes as well. See Diewert and Fox (2014) for a discussion on the problems with
the fixed-weight index.

42 Most notably, Boskin et al. (1996), also referred to as ‘Boskin report’, provide clear evidence of
substitution bias in the fixed-weight price index.

43 See page 282 in International Labour Office et al. (2004).
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priori. As a result, it may prevent us from capturing the underlying technology
accurately, leading to a biased measure of output and input change and productivity
growth. ** A functional form that has a second order approximation property is
conventionally referred to as a ‘flexible functional form’.*® It nicely allows for many
types of substitutions among inputs and outputs.

Suppose a functional form f is a flexible functional form for the output distance
function. It means that f can approximate an arbitrary output distance function D, to
the second order at an arbitrary point at which f is twice continuously differentiable.
More specifically, the value, and the first and second derivatives of f can coincide with
those of D,, at an arbitrary point, by choosing parameters of f appropriately. In addition,
f also needs to satisfy (8) and (9), the homogeneity conditions which the output
distance function must satisfy by construction. Translog, generalized Leontief and
normalized quadratic functional forms are known to be flexible functional forms for the
output and input distance functions.*®

The present paper introduces the following family of functional form g, based on the
quadratic-mean-of-order-r for the output distance function.*’ It is defined for an
arbitrary non-zero real number r:

gr(x,y)
[/ M M N N -1
= z z a; kyjr/zy]:/z (Z z Cuw Z/Zx;ﬂ)
j=1k=1 u=1v=1 (52)
M N M N 1r
(2 ot (Yo (D2 Dt
m=1 n=1 m=1n=1
where
ajp = Qg j, vVjkell,.., M, (53)
Cuv = Cpwr vu,v € [1,...,N]. (54)

It is worth noting that g, is linearly homogeneous in outputs y and homogeneous of
degree minus one in inputs x (i.e., assuming a constant returns to scale technology).
The functional form g, generalizes the one proposed by Diewert (1992) and is reduced
to that for r = 2.8 The functional form g, coincides with the generalized Leontief

4 This paper adopts the index number approach to implement theoretical indexes. However, even when
we switch to the econometric approach, it is desirable to impose less restrictions on functional forms for
output distance functions.

%5 The concept of ‘flexible functional form’ is first introduced by Diewert (1973,1974).

4 Diewert (1971) shows the generalized Leontief functional form as a flexible functional form. The
translog functional form is originally introduced by Christensen et al. (1973). Diewert and Wales (1987)
introduce the normalized quadratic functional form and show that it is a flexible functional form.

47 Quadratic-mean-of-order-r function goes back to McCarthy (1967) and Kadiyala (1972). They adopt
it for production function with a single output.

48 Balk (1998) calls it the Diewert output distance function or simply the Diewert form.
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functional form for r = 1.%° Also, if a;, = 0 for all j # k, c,,, = 0 for all u # v,
@, = 0 forall m, g, = 0 forall n, and b,, , = 0 for all m and n, g, is reduced to the
constant-elasticity-of-substitution (CES) functional form. > However, the limits (as r
goes to zero or infinity) of g, are unknown unlike the case of the quadratic-mean-of-
order-r indexes such as QMOI,., QMII, and QMPI,..> The following proposition
shows that this functional form g,. is a flexible functional form, irrespective of the value
of r.

Proposition 2: Let D} be an arbitrary output distance function and let (x*, y*) € RYIM
be an arbitrary point on the production frontier. Suppose that D} is twice continuously
differentiable at (x*,y*). Then for any a,, form=1,..M and 8, forn=1,..N
satisfying

Smo1 @mym "2 # 0and TN Boxn T2 # 0, (55)

there exist a;, forjandk = 1, ...,M, ¢, , foruand v = 1,...,N and b, , form =
1,..,Mand n = 1,...N such that

MOSM ay Py =12, (56)
25:1 ley=1 Cu,vx;x; =1r/2, (57)

171‘/11:1 bm,ny;tr/z = 01 vn € [11 ---;N]' (58)
Zﬁ=1 bm,nxr*l_r/z = OI vm e [11 "'lM]I (59)

and g, defined by (52)-(54) can provide a second order approximation to D; at
(x*,y").%

Generally, it is possible that the restrictions of (55)-(59) limit the selection of the
parameters of g, and thus, destroy its flexibility. However, the above proposition shows
that even under these restrictions, g, can approximate any arbitrary output distance
function D, to the second order at an arbitrary production plan (x*, y*) by choosing its
parameters in Equation (52) appropriately. Thus, g, is shown to be a flexible functional
form with these restrictions.>® Moreover, since g, is the family of functional forms, this
proposition also implies that every functional form of this family is a flexible functional
form.>*

Similarly, the present paper also introduces the following family of functional form h,
based on the quadratic-mean-of-order-r for input distance function. It is defined for
arbitrary non-zero real number r:

49 A variety of functional forms for output distance function based on the generalized Leontief functional
form are possible with multiple outputs and multiple inputs. The functional form g, is an example of one
of these.

%0 See Hasenkamp (1976) for the CES functional form with multiple outputs and multiple inputs.

51 Diewert (1980) and Hill (2006) derive the limit of the aggregator function based on the quadratic mean
of order r, as r converges to 0 or infinity. However, since they only deal with a simplified version of g,.,
we cannot deduce the limit of g,. from their results.

52 |t is worth noting that this proposition can apply to the distance functions which are not differentiable
in some domains, such as the case of a piece-wise linear functional form.

53 It is worth noting that g,., defined by (52)-(54), is already a flexible functional form without imposing
any restrictions (55)-(58).

% In the special case when r = 2, Proposition 2 coincides with Theorem 7 of Diewert (1992), where g,
was shown to be a flexible functional form.
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hy(y, x)

zza, (zzcw i

u=1v=1

60
1/r ( )

M M N

+ Z amyr;r/ )(Z T/2><Z Z mny;lr/z r/2>
m=1 =1 1n=1
where

a’j,k = ak,j; V],k € [1, ...,M], (61)
Cu,v = Cv,u; Vu,v € [1, ,N] (62)

It is worth noting that h, is linearly homogeneous in inputs x and homogeneous of
degree minus one in outputs y. The functional form h,. generalizes the one proposed by
Diewert (1992) and is reduced to it for r = 2. It includes other popular functional
forms such as the generalized Leontief as well as the constant-elasticity-of-substitution
(CES) functional forms as special cases.*® The following proposition shows that this
functional form is a flexible functional form, irrespective of the value of r.

Proposition 3: Let D; be an arbitrary input distance function and let (x*, y*) € RYI™
be an arbitrary point on the production frontier. Suppose that D;" is twice continuously
differentiable at (x*,y*). Then for any a,, form=1,...,Mand 8, forn=1,...,N
satisfying

Smo1@mym % # 0and BN Buxi 2 # 0, (63)

there exist a;, for jandk =1,..,M, ¢, foruandv =1, ...,N and b,,,, for m =
1,..,Mandn =1, ..., N such that

WSy =12, (64)
f=1 Xb=1Cu, vx*r/z 2 =1/2, (65)

M by * =0, Vne[l,..,N], (66)
N bpaxi? =0, vme[1,.., M]. (67)

and h, defined by (60)-(62) can provide a second order approximation to D; at
(x*, y).%

%5 Balk (1998) calls it the Diewert input distance function or simply Diewert form.

%6 A variety of functional forms for input distance function based on the generalized Leontief functional
form are possible with multiple outputs and multiple inputs. The functional form h, is an example of one
of these.

57 It is worth noting that this proposition can apply to the distance functions which are not differentiable
in some domains, such as the case of a piece-wise linear functional form.
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Like Proposition 2, the above proposition also shows that even under these restrictions
(63)-(67), h, can approximate any arbitrary input distance function D; to the second
order at an arbitrary production plan (x*,y*). Thus, h, is shown to be a flexible
functional form with these restrictions.>® Moreover, since h,. is the family of functional
forms, this proposition implies that every functional form of this family is a flexible
functional form. °

How do these two flexible functional forms g,- and h,. relate to each other? It is known
that when the technology exhibits constant returns to scale, then (and only then) the
output distance function is a reciprocal of the input distance function:®°

1

Do(x,y) = D.(y, %)

(68)

It is worth noting that while we assume constant returns to scale technology, both g,
and h,. do not satisfy (68). In other words, when we assume g, for the output distance
function, the corresponding input distance function has a functional form different from
h,.. Similarly, when we assume h,. for the input distance function, the corresponding
output distance function has a functional form different from g,. Therefore, it is
inappropriate to assume g, for the output distance function and h, for the input
distance function at the same time.®! Thus, we only assume either g,. or h,. but not both
in the results that will be obtained in the next section.®

By dealing with the quadratic-mean-of-order-r functional forms similar to one used in
the present paper, Fare and Sung (1986) show that it belongs to the family of flexible
functional forms called the generalized quadratic functional form. While they only
deal with the function being linearly homogeneous in all variables, we deal with the
function which is linearly homogeneous in all inputs and homogeneous of degree minus
one in all outputs, or linearly homogeneous in all outputs and homogeneous of degree
minus one in all inputs. Thus, while their result is only applicable to the distance
functions with a single output or a single input, our results characterize the flexible
functional form for the distance function in the more general case of multiple outputs
and multiple inputs.

58 Needless to say, h,., defined by (60)-(62), is already a flexible functional form without imposing any
restrictions (63)-(67).

%9 In the special case when r = 2, Proposition 3 coincides with Theorem 5 of Diewert (1992), where h.,
was shown to be a flexible functional form.

60 See Fare and Primont (1995).

61 That is why we fail to derive the superlative index for the Hicks-Moorsteen productivity index from
the superlative index results for output and input index, unlike for the case of the translog functional form.
See Mizobuchi (2017) for more details.

62 Similar phenomena appears in Diewert (1992) for his functional forms.

8 This functional form has an advantage of being linear in the parameters, which is convenient for
estimation. However, both functional forms g, and h,. defined by (52) and (60) do not belong to this
family of functional form. Even if we transform g,. and h,. into (g,)" and (h,)", these functions (g,.)"
and (h,.)" are not linear in the parameters. See Chambers (1988) for more on the generalized quadratic
functional form.
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5. Superlative indexes

Here, we show that the quadratic-mean-of-order-r indexes of output, input and
productivity such as QMOI,., QMII,. and Q MPI,. coincide with the Malmquist indexes
of output, input and productivity such as MOI, MII and MPI under the assumption of
optimizing behaviour as well as functional forms introduced in the previous section.
This generalizes the results of Diewert (1992) obtained for the Fisher indexes.

5.1. Output Index

As is common in the literature (e.g., Caves et al. (1982), Diewert and Morrison (1986)
and Diewert (1992)), we assume that a firm is engaged in revenue maximizing
behaviour. Thus, outputs y¢ observed in period t are considered as a solution to the
following problem:

max{p® - y|Dg(x",y) < 1} (69)

Two implications can be drawn from it. First, the revenue maximization motive
excludes inefficient use of inputs and outputs and induces production to take place on
the output isoquant, which implies (7). Second, the above optimization problem implies
the following first-order conditions:

aDt xt, t t
oCOY) P et M (70)
0Ym j=1PjY;j

Equation (70) allows us to compute the derivatives of output distance functions without
estimating its parameters. This information on the derivatives plays a key role in
establishing the exact relationship between the quadratic-mean-of-order- » and
Malmquist output indexes, as stated by the next proposition.

We also assume that the period t output distance function has the following functional
form for t = 0, 1. This generalizes the functional form characterized in (52) by
allowing technology to change over time. It is also defined for arbitrary non-zero real
number r.

9+, x)
M M N N -1
=o! Z Z a kyjr/ZyI:/Z <Z Z ct, Z/Zx;‘/2>
j=1k=1 u=1v=1 (71)
M N M N 1/r
2 -r/2 2 _-1/2
(2 ot )(3 ) (3 il
m=1 n=1 m=1n=1
where
A k = Qg j» Vj,k (S [1, ...,M], (72)
chv=ckty vu,v € [1,...,N]. (73)
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While a change in o affects the effective production of outputs and the effective use
of inputs evenly, a change in other parameters such as cf,,, af,, B5 and bf, , has a
different impact on inputs and outputs. Thus, the technical change we consider here is
not limited to Hicks neutral and a variety of types of biased technical change are allowed.

Proposition 4: The quadratic-mean-of-order-r output index defined by (34) is equal to
the Malmquist output indexes defined in (26) and (30), so that QMOI, = MOI°® =
MOI* = MOI, if the following two conditions are satisfied:

(1) the firm is engaged in revenue maximizing behaviour during periods 0 and 1, so
that y¢ € RY, is a solution to the optimization problem (69) for t = 0, 1;

(2) the period t output distance function Df has the quadratic-mean-of-order- r
functional form gt as defined by (71)-(73), so that D} = gt for t = 0, 1 and its
parameters satisfy either the restrictions (74)-(75) or the restrictions (76) and (77):

N=1bmaxn "2 =0, vme[l,..,M], (74)
N Bkt T2 =0 (75)
N=1bmaXy "2 =0, yme[1,..,M], (76)
Zn 1'30 0-T/2 _ —0. (77)

It shows that the two indexes coincide under several restrictions. Now, we examine
their implications. As Proposition 2 shows, while the restrictions (74) and (75) allow
g2 to approximate an arbitrary output distance function to the second order at (x°, y?),
the restrictions (76) and (77) allow g} to approximate an arbitrary output distance
function to the second order at (x*, y1). Thus, according to Proposition 4, the quadratic-
mean-of-order-r and Malmquist output indexes can coincide when we assume the
period 0 output distance function being flexible at (x° y°) or the period 1 output
distance function being flexible at (x*,y'). Moreover, since QMOI, is a family of
output indexes, this proposition also implies that every output index of this family is a
superlative index.%*

While QMOI, is a formula of prices and quantities, the proof of the Proposition 4 shows
that it can be transformed into a formula of quantities and parameters of the output
distance function only. This transformation has an interesting implication for the
axiomatic property of QMOI,., namely that it satisfies T21, as the following corollary
shows:

Corollary 1 : The quadratic-mean-of-order-r output index QMOI, defined by (34)
satisfied T21 (circularity test), if the conditions (1) and (2) of Proposition 4 are satisfied.

The conditions of Proposition 4 impose weaker restrictions on the underlying
technology as well as the type of technical change. Thus, Corollary 1 implies that while

8 In the special case when r = 2, Proposition 4 coincides with Theorem 8 of Diewert (1992), where the
Fisher output index was shown to be a superlative index.
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QMOI, does not generally satisfy the circularity test, it could satisfy this test under
some mild conditions.®®

5.2. Input Index

Here, as in Diewert (1992), we assume that a firm is engaged in cost minimizing
behaviour. Thus, inputs x* observed in period ¢ are considered as a solution to the
following problem:

min{w?® - x|Df (%, x) = 1}. (78)
X

Two implications can be drawn from it. First, the cost minimization motive excludes
inefficient use of inputs and induces production to take place on the input isoquant,
which implies (17). Second, the above optimization problem implies the following first-
order conditions:

aD; (y',x")  wf

t,t’

- vne[l,..,N]. (79)
0x,, N wixl

Thus, equation (79) allows us to compute the derivatives of input distance functions
without estimating its parameters. This information on the derivatives plays a key role
in establishing the exact relationship between the quadratic-mean-of-order-r and
Malmgquist input indexes, as stated by the next proposition.

We also assume that the period t input distance function has the following functional
form for t = 0, 1. This generalizes the functional form characterized in (55) by
allowing technology to change over time. It is also defined for arbitrary non-zero real
number 7.

hy-(y, x)
M M 1N W
=gt z Z a};'ky]r/zy’:/z (Z z Cy vx:;/Zx:;/Z)
j=1k=1 u=1v=1 80
- (80)
(z )(z it )(z D i7"
m=1 m=1n=
where
ajy = A j, Vi k €[1,..,M], (81)
Cup = Cpwr vu,v € [1,...,N]. (82)

8 Obviously, Proposition 4 and Corollary 1 imply that the Malmquist output index also satisfies the
circularity test.
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Just like the case of g&, a variety of parameters of ht are allowed to vary across time.
Thus, the technical change we consider is not limited to Hicks neutral and a variety of
types of biased technical change are allowed.

Proposition 5: The quadratic-mean-of-order-r input index defined by (40) is equal to
the Malmaquist input indexes defined in (27) and (31), so that QMII, = MII° = MII* =
MI1I, if the following two conditions are satisfied:

(1) the firm is engaged in cost minimizing behaviour during periods 0 and 1, so that
xt € RY, is a solution to the optimization problem (78) for t = 0, 1;

(2) the period t input distance function D} has the quadratic-mean-of-order- r
functional form ht as defined by (80)-(82), so that Df = ht fort = 0, 1, and its
parameters satisfy either the restrictions (83)-(84) or the restrictions (85) and (86):

M byt =0, vnel,..,N], (83)
M byl TP =0 (84)
M_pLayiT? =0, vnell, .., N], (85)
M_ %yl =0. (86)

It shows that the two indexes coincide under several restrictions. Now, we examine
their implications. As Proposition 3 shows, while the restrictions (83) and (84) allow
h? to approximate an arbitrary input distance function to the second order at (x°, y?),
the restrictions (85) and (86) allow hl to approximate an arbitrary input distance
function to the second order at (x*, y1). Thus, according to Proposition 5, the quadratic-
mean-of-order-r and Malmquist input indexes can coincide when we assume the period
0 input distance function being flexible at (x°,y°) or the period 1 input distance
function being flexible at (x1,y'). Moreover, since QMII, is a family of input indexes,
this pggposition also implies that every input index of this family is a superlative
index.

The proof of Proposition 5 allow us to draw an implication of the axiomatic property
that QMII,. satisfies, as the following corollary shows:

Corollary 2 : The quadratic-mean-of-order-r input index QMII, defined by (40)
satisfied T21 (circularity test), if the conditions (1) and (2) of Proposition 5 are satisfied.

As Corollary 1 claims for QMOI,., Corollary 2 also implies that QM11,. could satisfy the
circularity test under some mild conditions.®’

% In the special case when r = 2, Proposition 5 coincides with Theorem 6 of Diewert (1992), where the
Fisher input index was shown to be a superlative index.

57 Note that Proposition 5 and Corollary 2 imply that the Malmquist input index also satisfies the
circularity test.
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5.3. Productivity Index

Again, following the literature, we assume that a firm is engaged in profit maximizing
behaviour, which implies revenue maximizing and cost minimizing behaviour at the
same time. Thus, the production plan (xt, y*) observed in period ¢ is considered as a
solution to the following problem:®8

max{p® -y - wt - x|D(x,y) < 1. (87)
x,y

Two implications can be drawn from it. First, the revenue maximization motive
excludes inefficient use of inputs and outputs and induces production to take place on
the production frontier, which implies (7). Second, the above optimization problem
implies the following first-order conditions:

aDt t, t t
oY) _ _ Pm ,  Vmel[l,.., M], (88)
P M et
ym ]=1p]y]
M
DL (xt, yt
%=_Wrg/§ ptyt,  vnel[l,..N] (89)
Xn m=1

Along with (10) and (13), they lead to the following zero economic profit condition:

M
D Phyi = ) wixh, (90)
m=1

Equations (88) and (89) allow us to compute the derivatives of output distance function
without estimating its parameters. This information on the derivatives plays a key role
in establishing the exact relationship between the quadratic-mean-of-order-r and
Malmgquist productivity indexes, as stated by the next proposition.

We also assume that the period t output distance function has the following functional
form for t = 0, 1. This generalizes the functional form characterized in (52) by
allowing technology to change over time. It is also defined for arbitrary non-zero real
number r.

8 While the profit maximization problem (87) is formulated by the output distance function, it is possible
to define it by the input distance function.
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j=1k=1 u=1v=1
M N M N ir
2 —r/2 2 _—1/2
+<z abyym! )(Z Bix,"! ><2 Ebﬁl,ny,f/ xn! )
m=1 n=1 m=1n=1

where

(91)

(92)
(93)

Just like the case of gt and hf, a variety of parameters of gt are allowed to vary across
time. Thus, the technical change we consider is not limited to Hicks neutral and a variety

of types of biased technical change are allowed.%®

Proposition 6: The quadratic-mean-of-order-r productivity index defined by (46) is
equal to the Malmquist productivity indexes defined in (28) and (32), so that QMPI,. =

MPI® = MPI* = MPI, if the following two conditions are satisfied:

(1) the firm is engaged in profit maximizing behaviour during periods 0 and 1, so that
(x%, yY) € RY*M js a solution to the optimization problem (87) for t = 0, 1;

(2) the period t output distance function Df has the quadratic-mean-of-order-
functional form gt as defined by (91)-(93), so that D = gt fort = 0, 1, and its
parameters satisfy either the restrictions (94)-(99) or the restrictions (100)-(105):

Vb x0T =0, vme[1, ..., M],
M by =0, vne(l, ..., NI,

M 17/2 X1~ r/2 _
m= 1amym Z =1 n Xn - 0'
M 1 11"/2 _ O
m=1“m>m — Y,

N_ Bl 177/2 _
=1Pnt*n - 0
07'/2 0~ T/Z .
12n 1bmnyn Xn - Or

1bmn 711 T/ =0, Vme [1,...,M],

YM_ b yh? =0, vne[1,..,N],
r/2 r/2
% 1amy7(r)1 n 1 711 2 - O

M 01'/2 O
m=1 mm -

N 0,0 7/2 _ 0,
n=1~MFn+*n -

12 lr/le T/Z—O.

mnyn n

(94)
(95)
(96)
(97)
(98)
(99)

(100)
(101)
(102)
(103)
(104)
(105)

8 Unlike the case of gf, a parameter c,, ,, is fixed. However, a change in other parameters such as a,,
BE and b, , has a different impact on inputs and outputs. Thus, it is possible to deal with the biased

technical change under a functional form gt
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It shows that the two indexes coincide under several restrictions. Now, we examine the
implications of the first set of restrictions (94)-(99). As Proposition 2 shows, the
restrictions (94)-(96) allow g? to approximate an arbitrary output distance function to
the second order at (x°, y®). The remaining restrictions (97)-(99) are imposed on the
parameters of . ’® Next, we examine the implications of the second set of restrictions
(100)-(105). As Proposition 2 shows, the restrictions (100)-(102) allow §i to
approximate an arbitrary output distance function to the second order at (x*,y'). The
remaining restrictions (103)-(105) are imposed on the parameters of §2.”* Therefore,
there is a possibility that these remaining restrictions (97)-(99) and (103)-(105) might
limit the way the underlying technology changes.”> However, it is worth noting that
these remaining restrictions (97)-(99) and (103)-(105) disappear under Hicks neutral
technical change. It means that & is allowed to capture some types of bias associated
with technical change, even under these remaining restrictions.

Thus, as Propositions 4 and 5 show for QMOI, and QMI11,., Proposition 6 also indicates
that even in the existence of biased technical change, the quadratic-mean-of-order-r
and Malmquist productivity indexes can coincide when we assume the period 0 output
distance function being flexible at (x°, y°®) or the period 1 output distance function
being flexible at (x1, y1). Moreover, since QMPI, is a family of productivity indexes,
this pr%portion also implies that every productivity index of this family is a superlative
index.’

The proof of Proposition 6 allows us to draw an implication of the axiomatic property
that QM P, satisfies, as the following corollary shows:

Corollary 3 : The quadratic-mean-of-order-r output index QMPI, defined by (46)
satisfied T21 (circularity test), if the conditions (1) and (2) of Proposition 6 are satisfied:

As Corollaries 1 and 2 claim for QMOI, and QMII,., Corollary 3 also implies that
QMPI, could satisfy the circularity test under some mild conditions. *

0 As Proposition 2 shows, since a2, and B2 for all m and n can be freely chosen without destroying the
flexibility of g2, the restrictions (97) and (98) are harmless.

L As Proposition 2 shows, since a2, and g2 for all m and n can be freely chosen without destroying the
flexibility of g2, the restrictions (103) and (104) are harmless.

2 As mentioned in the previous footnotes, the restrictions (97), (98), (103) and (104) do not lose the
flexibility for g° and g to represent the underlying technology. Thus, only the restrictions (99) and
(105) may matter.

3 In the special case when r = 2, Proposition 6 coincides with Theorem 9 of Diewert (1992), where the
Fisher productivity index was shown to be a superlative index.

4 Note that Proposition 6 and Corollary 3 imply that the Malmquist productivity index also satisfies the
circularity test. Thus, while Fare and Grosskopf (1996) and Sickles and Zelenyuk (2019) point out that
the Malmquist productivity index satisfies the circularity test under Hicks neutral technical change, we
show that the Malmquist productivity index could satisfy the circularity test even under biased technical
change.
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6. Empirical Application

In the previous sections, we showed that the quadratic-mean-of-order-r indexes of
output, input and productivity are superlative indexes. Since each quadratic-mean-of-
order-r index is a family of indexes, our results are interpreted as showing that all
indexes that belong to these families are superlative indexes.” This justifies an infinite
number of empirical index numbers. Naturally, it raises the question of which index
one should use.

Importantly, Diewert (1978) shows that all quadratic-mean-of-order-r price (quantity)
indexes approximate each other to the second order around the point that price and
quantity vectors in two periods coincide. It indicates that when the changes in prices
and quantities are small enough, the difference among indexes in the family of the
quadratic-mean-of-order-r output (input) indexes also becomes small. On the other
hand, by using datasets for the US and OECD countries, Hill (2006) shows that the
spread between quadratic-mean-of-order-r price indexes would be significant and the
quadratic-mean-of-order-r price index could exceed the spread between Laspeyres and
Paasche indexes, when the parameter r increases in absolute terms.

Since Diewert (1978) and Hill (2006) deal with price and quantity indexes, their
analysis is only applicable to the quadratic-mean-of-order-r output and input indexes.
However, to the best of our knowledge, no study so far has implemented the quadratic-
mean-of-order-r productivity indexes under different values of r. In this section, we fill
this gap in the literature by empirically comparing the quadratic mean of order r
indexes of output, input and productivity with other index number formulae by using
the most recent integrated industry-level production accounts for the US economy. It
has been published by the key authorities on US data: the Bureau of Economic Analysis
(BEA) and the Bureau of Labor Statistics (BLS). This database consists of price and
quantities of output and input for 63 detailed industries during the period 1998-2017.
It has the advantage of being constructed in a manner consistent with the National
Income and Product Accounts (NIPAS).

While aggregating the inputs and outputs for 63 industries, we can measure the
aggregate output and input change and the aggregate productivity growth. In this
exercise, since we presume that each industry produces a single output (industry value
added) from seven inputs (five types of capital and two types of labour), the output
index aggregates change in quantities of 63 outputs and the input index aggregates
change in quantities of 441 inputs in this particular case.”

> To be more precise, we deal with three families of indexes: the quadratic-mean-of-order-r indexes of
output, of input and of productivity.

76 Five types of capital input include: IT Capital, R&D Capital, Software Capital, Entertainment Originals
Capital, Other Capital. The two types of labour input include College Labour, Non-College Labour There
are also three types of intermediate inputs: Energy, Materials and Purchased-services. Prices of distinct
input vary across industries by reflecting the difference in its composition. Thus, we consider that each
industry uses unique and different seven inputs. Thus, for example, IT capital for the machinery industry
is regarded as different from that for the wholesale trade industry.

29



Table 2: Quadratic-mean-of-order-r output index

Quadratic-mean-of-order-r Laspeyres Paasche Tornqvist Walsh

r=20.5 r=1 r=1.5 r=2 r=25 r=3 r=5 r=10 r=20 r=>50 r=100

annual growth rate (%)

2002 2.03 2.03 2.03 2.03 2.03 2.03 2.04 2.06 2.15 0.18 -1.21 2.05 2.01 1.87 2.03
2003 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.79 2.95 4.23 4.71 2.83 2.69 2.68 2.76
2004 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.72 3.74 3.88 411 3.75 3.66 3.64 3.71
2005 3.46 3.46 3.46 3.46 3.46 3.46 3.47 3.48 3.53 3.79 3.64 3.53 3.40 3.43 3.46
2006 2.90 2.90 2.90 2.90 2.90 2.91 2.92 2.98 3.39 9.80 14.57 2.96 2.84 2.83 2.90
2007 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.65 1.49 0.22 -0.52 1.75 1.62 1.57 1.68
2008 -0.22 -0.21 -0.20 -0.20 -0.21 -0.23 -0.36 -1.53 -9.26 -20.03 -21.19 -0.19 -0.22 -0.65 -0.20
2009 -2.52 -2.52 -2.52 -2.50 -2.48 -2.45 -2.22 -0.34 5.11 3.85 3.20 -2.15 -2.86 -2.96 -2.54
2010 2.36 2.36 2.36 2.36 2.36 2.36 2.41 2.84 1.77 21.21 23.56 2.47 2.24 2.23 2.36
2011 1.46 1.46 1.46 1.46 1.46 1.46 1.45 1.40 1.19 -0.15 -0.32 1.54 1.38 1.40 1.46
2012 2.10 2.10 2.10 2.10 2.10 2.10 2.11 2.15 2.28 0.61 -2.92 2.15 2.06 2.03 2.10
2013 1.56 1.56 1.56 1.56 1.56 1.56 1.57 1.60 1.75 3.32 5.93 1.58 1.53 1.50 1.56
2014 2.19 2.19 2.19 2.19 2.19 2.19 2.20 2.26 3.09 14.12 17.96 2.23 2.15 2.10 2.19
2015 2.75 2.76 2.76 2.76 2.76 2.77 2,77 2.76 2.34 -3.17 -5.35 2.92 2.61 2.74 2.74
2016 1.60 1.60 1.60 1.60 1.60 1.60 1.58 1.42 -0.55 -12.53 -15.62 1.63 1.57 1.50 1.61
2017 1.81 1.81 1.81 1.81 1.81 1.81 1.82 1.82 1.85 2.09 2.85 1.85 1.78 1.80 1.82
average 1.85 1.85 1.85 1.86 1.86 1.86 1.87 1.94 2.05 1.96 2.09 1.93 1.78 1.73 1.85

cumulative growth rate (%)
2002-2017 29.65 29.66 29.67 29.69 29.71 29.73 29.88 31.05 32.82 31.42 33.42 30.91 28.47 27.72 29.65

2002-2007  16.55 16.55 16.55 16.55 16.55 16.55 16.57 16.67 17.26 22.09 25.31 16.87 16.23 16.02 16.55
2007-2009  13.11 13.11 13.12 13.14 13.16 13.18 13.31 14.38 15.56 9.33 8.11 14.04 12.24 11.70 13.09
2009-2017  13.33 13.32 13.33 13.34 13.37 13.41 13.68 15.91 24.82 29.36 29.30 14.23 12.46 12.35 13.30

Note: Bold numbers indicate the violations of the Paasche and Laspeyres bounding test. The quadratic-mean-of-order-r index coincides with the implicit Walsh index for » = 1 and the Fisher index for r = 2.
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Table 3: Quadratic-mean-of-order-r input index

Quadratic-mean-of-order-r Laspeyres Paasche Tornqvist Walsh

r=20.5 r=1 r=1.5 r=2 r=25 r=3 r=5 r=10 r=20 r=>50 r=100

annual growth rate (%)

2002 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.98 1.03 1.89 3.73 0.97 0.95 0.81 0.95
2003 1.44 1.44 1.44 1.44 1.44 1.44 1.45 1.45 1.46 1.56 1.41 1.47 1.41 1.33 1.44
2004 2.27 2.27 2.27 2.27 2.217 2.27 2.28 2.29 2.37 2.38 0.03 2.29 2.25 2.20 2.27
2005 2.21 2.21 2.22 2.22 2.22 2.22 2.22 2.25 2.43 7.67 10.29 2.24 2.19 2.17 2.21
2006 2.88 2.88 2.88 2.88 2.88 2.88 2.89 291 3.03 5.56 8.53 2.92 2.84 2.84 2.88
2007 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.99 211 5.77 11.51 2.01 1.91 1.91 1.96
2008 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.76 9.73 1.00 0.96 0.89 0.98
2009 -2.02 -2.02 -2.02 -2.02 -2.02 -2.02 -2.04 -2.11 -2.43 5.42 13.01 -1.93 -2.12 -2.14 -2.02
2010 0.59 0.58 0.58 0.58 0.58 0.58 0.57 0.48 -0.66 -4.53 0.21 0.62 0.55 0.54 0.59
2011 1.76 1.76 1.76 1.76 1.76 1.76 177 1.79 1.90 8.10 18.20 1.78 1.74 1.70 1.76
2012 1.76 1.76 1.77 1.77 1.77 1.77 1.77 1.79 1.89 7.78 18.25 1.79 1.74 1.73 1.76
2013 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.81 1.87 2.65 6.41 1.81 1.78 1.76 1.79
2014 1.85 1.85 1.85 1.85 1.86 1.86 1.86 1.88 2.00 5.36 14.53 1.86 1.85 1.81 1.85
2015 2.27 2.27 2.27 2.27 2.21 2.27 2.27 2.21 2.27 1.59 -0.80 2.26 2.27 2.20 2.27
2016 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.07 -0.38 -0.66 2.13 2.14 2.05 2.13
2017 1.52 1.562 1.52 1.52 1.562 1.52 1.52 1.53 1.52 0.17 -3.47 1.55 1.50 1.48 1.52
average 1.52 1.52 1.52 1.52 1.562 1.52 1.52 1.53 1.49 3.30 6.93 1.55 1.50 1.46 1.52

cumulative growth rate (%)
2002-2017 24.36 24.36 24.36 24.37 24.37 24.37 24.38 24.40 23.85 52.75 110.93 24.78 23.95 23.29 24.35
2002-2007 11.73 11.73 11.73 11.73 11.73 11.74 11.76 11.87 12.45 24.82 35.51 11.91 11.55 11.28 11.71
2007-2009 12.63 12.63 12.64 12.64 12.63 12.63 12.62 12.53 11.40 27.93 75.42 12.87 12.40 12.02 12.64
2009-2017 11.66 11.66 11.66 11.66 11.66 11.66 11.64 11.55 10.42 26.17 65.69 11.88 11.44 11.12 11.66

Note: Bold numbers indicate the violations of the Paasche and Laspeyres bounding test. The quadratic-mean-of-order-r index coincides with the implicit Walsh index for » = 1 and the Fisher index for r = 2.
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Table 4: Quadratic-mean-of-order-r productivity index

Quadratic-mean-of-order-r Laspeyres Paasche Toérnqvist Walsh
r=0.5 r=1 r=15 r=2 r=25 r=3 r=5 r=10 r=20 r=50 r =100
annual growth rate (%)
2002 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.07 1.10 -1.68 -4.76 1.07 1.05 1.05 1.07
2003 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.32 1.47 2.63 3.26 1.33 1.26 1.33 1.30
2004 1.40 1.40 1.40 1.41 1.41 1.40 1.40 1.39 1.34 1.46 4.07 1.43 1.38 1.41 1.40
2005 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.20 1.08 -3.61 -6.03 1.25 1.19 1.23 1.22
2006 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.07 0.35 4.02 5.56 0.04 0.00 -0.01 0.02
2007 -0.27 -0.27 -0.27 -0.27 -0.27 -0.27 -0.28 -0.33 -0.61 -5.24 -10.79 -0.25 -0.28 -0.34 -0.27
2008 -1.19 -1.18 -1.17 -1.17 -1.18 -1.19 -1.33 -2.48 -10.15 -21.42 -28.17 -1.17 -1.17 -1.53 -1.17
2009 -0.51 -0.51 -0.51 -0.49 -0.47 -0.44 -0.19 181 7.73 -1.49 -8.68 -0.22 -0.76 -0.84 -0.53
2010 1.77 1.76 1.76 1.76 1.77 1.77 1.83 2.35 8.49 26.96 23.30 1.84 1.68 1.68 1.76
2011 -0.29 -0.29 -0.29 -0.30 -0.30 -0.30 -0.31 -0.38 -0.70 -7.63 -15.67 -0.24 -0.35 -0.29 -0.29
2012 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.35 0.38 -6.65 -17.90 0.35 0.31 0.29 0.33
2013 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.21 -0.12 0.66 -0.46 -0.22 -0.24 -0.25 -0.23
2014 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.38 1.07 8.32 3.00 0.37 0.30 0.29 0.33
2015 0.47 0.48 0.48 0.48 0.48 0.49 0.49 0.48 0.07 -4.69 -4.59 0.64 0.33 0.53 0.46
2016 -0.62 -0.52 -0.562 -0.52 -0.52 -0.562 -0.54 -0.70 -2.57 -12.19 -15.06 -0.49 -0.55 -0.54 -0.52
2017 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.32 1.91 6.55 0.30 0.28 0.32 0.29
average 0.32 0.33 0.33 0.33 0.33 0.33 0.34 0.41 0.58 -1.16 -4.15 0.38 0.28 0.27 0.32
cumulative growth rate (%)
2002-2017 5.20 5.20 5.21 5.22 5.24 5.26 5.41 6.62 9.26 -18.64 -66.37 6.02 4.42 433 5.19
2002-2007 4.74 4.74 4.74 4.73 4.73 4.73 4.73 4.72 4.72 -2.42 -8.69 4.88 4.59 4.67 4.75
2007-2009 0.46 0.46 0.47 0.49 0.51 0.53 0.68 1.90 453 -16.22 -57.68 1.15 -0.17 -0.34 0.44
2009-2017 1.64 1.64 1.64 1.66 1.69 1.72 2.01 4.38 14.68 5.19 -29.51 2.32 1.00 1.19 1.61

Note: Bold numbers indicate the violations of the Paasche and Laspeyres bounding test. The quadratic-mean-of-order-r index coincides with the implicit Walsh index for » = 1 and the Fisher index for r = 2.
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Table 2, Table 3Table 4 show the annual growth rate of output and input computed by
different quantity indexes.’” It turns out that for this particular data set, all quadratic-
mean-of-order r indexes are almost the same for the range of r from 0.5 to 5. They are
also very close to the Walsh indexes as well. Thus, the popular indexes of Fisher (r =
2), implicit Walsh (r = 1) and the Walsh index almost coincide with each other.”® This
is true for the indexes of output, input and productivity.

While Hill (2006) theoretically showed that the quadratic-mean-of-order-r quantity
index never exceeds the spread between the Paasche and Laspeyres indexes only for
the case r = 2, the quadratic-mean-of-order-r output and input indexes are found to lie
between the Paasche and Laspeyres indexes for a wider range of r for this particular
example: the range from 1 to 2.5 for output index and the range from 0.5 to 5 for the
input index.”® Meanwhile, the productivity indexes considered here are defined as the
ratios of output indexes to corresponding input indexes and thus are subject to the
fluctuation of both output and input indexes. Thus, the quadratic-mean-of-order-r
productivity index lies between the Paasche and Laspeyres indexes for the range of r
from 1.5 to 2, which is considerably smaller than the range of  where the quadratic-
mean-of-order-r output and input indexes lie between those indexes.&

However, when r gets large enough, the quadratic-mean-of-order-r index would
largely exceed the spread between the Paasche and Laspeyres indexes. As Figure
1,Figure 2Figure 3 highlight, the quadratic-mean-of-order-r index starts showing
distinctly different pictures from those indexes when r approaches 10 for the case of
output index, 20 for the case of input index and 7 for the case of productivity index.
Moreover, Table 2Table 3Table 4 show that the quadratic-mean-of-order-r indexes
start fluctuating widely, when r is around 20 or larger. The growth rates of output and
input index change even from positive to negative value or vice versa.8!

We also found that while the spread among the quadratic-mean-of-order-r index is
likely to be small for a longer time period, it could become significantly larger even
during very short periods of time. The difference in the cumulative growth for the entire
period 2002-2017 between the index for r = 2 and the index for r = 20 is 3.13 percent
for output index, 0.52 percent for input index, and 4.03 percent for productivity index.
On the other hand, the difference in the cumulative growth rate during the great
recession (2007—-2009) between the index for r = 2 and the index for r = 20 is 2.42
percent for output index, 1.23 percent for input index, and 4.04 percent for productivity
index. Thus, the magnitude of the cumulative difference made for the two years of the
great recession is comparable with that accumulated for the 15 years.

Thus for this particular example, all quadratic-mean-of-order-r indexes approximate
each other well and are almost the same for the range of  from 0.5 to 5. On the other

" More detailed comparisons under a different specification of r is available upon request.

8 Interestingly, the Tornqvist index, which is another popular superlative index, is shown to be slightly
different from those indexes.

" The quadratic-mean-of-order-r output index exceeds the spread between the Paasche and Laspyeres
indexes in some years even in the range of r from 0.5 to 5 (for example, » = 3). However, the dispersion
from those indexes is very small.

81t is also worth noting that so far no studies examine the Paasche and Laspeyres bounding test for
productivity index.

81 Since the drastic changes of output and input indexes are somehow cancelled in the productivity index,
r needs to be much larger, say 50 (for this data set), so that the sign of the growth rate of productivity
changes. See Table 4.
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hand, as r gets bigger, the spread between them expands. Indeed, note that especially
for some large r (e.g., such as 20 for this data set), the quadratic-mean-of-order-r index
could lead to somewhat unreasonable estimates. This is consistent with what Diewert
(1978) and Hill (2006) find for the price index. Here we see that this conclusion applies
not only to the output and the input indexes but also to the productivity index.
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7. Concluding Remarks

The Fisher and Tornqvist indexes of output, input and productivity were known to be
only superlative indexes for the corresponding Malmquist indexes. The present paper
deals with the quadratic-mean-of-order-r indexes, which are families of empirical
indexes of output, input and productivity. We show that all indexes of this family
coincide with the corresponding Malmquist indexes under a new family of functional
forms based on the quadratic-mean-of-order-r, which is shown to be a flexible
functional form. Therefore, this generalizes the existing results of superlative indexes,
offering many more alternatives to practitioners.

The quadratic-mean-of-order-r index includes many important index numbers as
special cases. Most importantly, two indexes deserve a mention here. When r = 2, that
index is reduced to the Fisher index, which Diewert (1992) shows is a superlative index.
When r = 1, that index is reduced to the implicit Walsh index. Although the implicit
Walsh index has been recognized before, it has not attracted much attention and its
axiomatic properties are not well exploited.

The implicit Walsh quantity index is the change in a value aggregate deflated by the
Walsh price index. Thus, measuring quantity changes by the implicit Walsh quantity
index implies measuring price changes by the Walsh price index. Therefore, as Diewert
(1976) provides a theoretical justification to the Walsh price index by showing that the
implicit Walsh quantity index is a superlative index, our result also justifies measuring
output and input price changes by using the Walsh price index.®?

All propositions for superlative indexes need to impose several restrictions on the
parameters of underlying distance function. These restrictions specify the point where
the distance function can approximate an arbitrary function to the second order. We
require either the period O distance function to be flexible at the period O observation
or the period 1 distance function to be flexible at the period 1 observation. These are
deemed as reasonable restrictions.

By finding an entire family of superlative indexes, we enrich the applicable instruments
for analysing output and input growth and productivity growth. On the other hand, it
naturally raises the question of which superlative index one should use? Diewert (1978)
shows that all quadratic-mean-of-order-r quantity indexes approximate each other to
the second order when price and quantity vectors are fixed over time. He suggests that
all these superlative indexes are similar when the changes in prices and quantities are
small between the two periods. Meanwhile, Hill (2006) demonstrates that the difference
among superlative indexes can be significant and sometimes even bigger than that
between the Laspeyres and Paasche indexes by using two data sets from US national
accounts and OECD.® Using the most recent US industry-level production accounts,
we arrive at similar conclusions for the indexes of output, input and productivity.

82 Statistics Sweden switched to the Walsh price index as its consumer price index only in 2005
(Edvinsson and Soédergerg (2011)). As pointed out by Dalén (1999), one of the main reason for this
change is that Diewert (1976) justifies using the Walsh price index. Thus, the results of this paper allows
one to use the Walsh price index as other price statistics such as the GDP deflator and the Producer Price
Index.

8 Hill (2006) points out that as the parameter r increases in absolute value, the quadratic-mean-of-order-
r index becomes increasingly sensitive to outliers in the distribution of price and quantity changes. In the
range 0 < r < 2, these superlative indexes are relatively unaffected by outliers and the difference among
them almost never exceeds that between Paasche and Laspeyres indexes.
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Finally, an interesting future direction of research would be to combine the economic
approach (which we used here to justify the use of superlative indexes with axiomatic
approach. Indeed, the existence of a large number of superlative indexes demonstrated
by the present paper reminds us about the limitation of solely relying on the economic
approach and confirms the importance of combining the economic and axiomatic
approaches (and possibly other approaches) for selecting an appropriate empirical index
that will measure the reality in the best feasible way.
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Appendix

Proof of Proposition 1:

Since p° > 0, pt » 0, y1 > 0 and y! > 0, IWOI(p° pt, y° y1) > 0 by definition
(35). Thus, IWOI(p®, p?, y°, y1) satisfies T1.

By definition (35), IWOI(p°, pt,y° y1) is continuous in p°, pt, y! and y1. Thus,
IWOI(p®, pt,y° yt) satisfies T2.
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Thus, IWOI(p°,pt,y°, y1) can be considered as the geometric mean of the weighted
mean of order 2 and the weighted mean of order —2. As Hardy et al. (1934) verify, both
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It implies the inequality of T15. Thus, IWO0I(p°,pt,y°, y1) satisfies T15.

Let p° = (1,1,1), p* = (1.23,13), y° = (1.21,2), and p* = (0.7,1.1,3) . Then
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IWoI(p°pt,y° y1) does not satisfy T16.

Let p° = (1,1,1), p' = (0.8,1.1,3), y° = (1.2,1,2), y* = (0.01,12,0.00004) and
y? =(0.101,12.000001,0.000041) . Then IWOI(p®, pt,y°, y') = 2.8704594 and
IWoI(p° pt,y° y?) = 2.870441 : Thus, woI(° pt,y° yt) =
IWoI(p°pt,y° y?). Thus, IWOI(p°, pt, y°,y*') does not satisfy T17.

Let p° = (1,1,1), p* = (0.1,0.5,10), y° = (0.5,10,2), y* = (0.6,0.002,0.0005) and
y2 = (0.5001,10.0001,2.0001) . Then IWOI(p° pt,v° y1) = 0.00861570 and
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IWoI(p°,pt,y?,y') = 0.00861590 . Thus, IWoI(p®, pt,y°,y) <
IWoI(p°, p,y?,y*). Thus, IWOI(p°,p*, y°, y*) does not satisfy T18.

Mt .1 M 0.,1\1/2 ¢
Since (M)/IWOI(pS,pt,yo,yl) — Zm=amyin) _Pin o the \Walsh output price

M s 1/2
Zm=1 PmYm Z%:l(y;‘)nyrln p?n.

index, we denote it by WOPI(pt, p%,y° y?1) in the proof of T19 and T20 below.

0.1\1/2
OWOPI _ _ (yyi) >0 for m=1,..,M. Thus, IWOI(p® p*,y° y') satisfies
opl M 0.,1\2 s
m L)) e
T19.
/
aworI Z}Vil(y}’y})l v}

J 0.,,1 1/2
ap-fn M o1 1/2 . 2 x (ymym) > 0
<2j=1(3’j v}) pj)

form =1,..,M. Thus, IWOI(p° pt,v°, y1) satisfies T20. QED.

Adopting the notation of Proof of T19,
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Proof of Proposition 2: This proposition claims that even under the restrictions of (55)-
(59), g, can approximate any arbitrary output distance function D, to the second order
at (x*,y*). Stated differently, the following equations are satisfied:3

gr(x*,y*) =Dy (x",y") =1, (106)

won Jamen e, o
agT;;;y*> - aD;a(;;y*)' m € [1, .., M], (108)
T = TR, vu vl N], (109)
azf;;;;f) = afyj(zy: 2, Vi kell,.,M], (110)
Loy OBUN) yn e[, N],vme [1,.., M, (111)

We define the parameters in g, as follows:®

«1-1/2_ 41-1/2 [0%2D(x*,y*) N 9D5(x"y") aDE(X*y*)]
Ajk = Yj Yk [ 3y,;9vx (1= ay; VK (112)
Vi+ke€ell,.
_ e 2-r [02D(y) o\ (9D 0y )\ _ T\ 9Ds(x"y )L
Amm = Ym [ ay12n (1 T') ( YVm ) T (1 2) 0ym y;n]' (113)

vm € [1,...,M],
w1-1/2_x1— r/Z[ OZDZ(x*.y*)+ (1+7) D5 (x*y*) 0D$(X*,y*)]

Cup = Xu Xv 0x, 0% 0xy 0y (114)
Vu#ve€ll,.., N
«2— 0%D5(x*,y") 9Dg (x*,y™)
o = 3377 [ A (141 (L) (1
Z)Mi (115)
2 axn,  xn|
vn € [1,..,N],
b _ i y;nl T/Z ;14‘7"/2 [_ aZDZ(x*,y*) aDé(x*,y*) aDs(x*'y*)
T (M gy ) (S BT L Oymdn oym  oxa I (116)

vn € [1,..,N],vm € [1, ..., M].

First, we show that these parameters specified by (112)-(116) satisfy the restrictions
(56)- (59). By summing a;, ky*r/2 over k, we can derive the following equation.

«1r/2 «7/2 «T/2
Zk 14j, kykr/ _Zk;t] a;, kykr/ +a”y]r

$1-1/2 92D (x*,y*) 1 D5 (x",y™) dD5(x*,y™)
=i Yi Yk | Tayp AT T
Vjoyi Vj Vi
2
2—r/2 02D} (x*,y* oD} (x*,y* \ 0D} (x*y*) 1
[ (5 (-
Vi YVj YVj Vi

from (112) and (113),
2% * ok * S * S
x1-1/2 k L [0 Do(x*,y") & _ (1 _ T') D5 (x",y*) 8D (x*,y™) ;;:I +

—Jj 0y oy k 0yj Oyk
_ T\ 1-r/20D0CN YY) 4 _TY)\,x1-7/2 0Do(x"y")
(1 2) Yj ay; ( A-r+ (1 2)) Yi 0yj

from (7), (13) and (14),

8 For simplicity, we adopt the notation such as agr;i 24 69;)(:"” l=xy=y+ throughout this paper.
n n

8 This specification of parameters is just an example. There might exist an alternative specification
which guarantees the second order approximation property.
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_ (T, x1-71/208D5(x",y")
= (5 (117)
Then, it implies (56) as follows:
sT/2 w7/2 _ «7/2 (T . +1-1/2 0D5(x",y")
ZM=1Z%I=1 aj, ky]r yi 't = j= 1y]r (5) Vi " oy,
r * 0Dy (x*,y™") r
= DL ()0 25, =50y =3
from (7) and (13).
By summing ¢, ,,x*r/2 over v, we can derive the following equation.
11y 1 Cu vx;r/z Zviu Cu vx;r/z + Cu ux*r/z
* « [ 9*Ds(x*y") BDo( “y") 8Dg (x,y™)
B R R e e o
+2-1/2 62D23(x*,y*) aD; (x",y") _T\9Ds(x"y") 1
Yu [ ax2 +(1+ )( Axy ) (1 2) dxy x;]
from (114) and (115),
x ?D5(x"y") 0Dg(x*y") 0D5 (x*y™) _ 4
- xul i v 1 [_ 0xy,0x, X+ (1+7) Axy dxy Xv] N
_ T\ . x1-1/2 0Dg(x", y*)
(1 ) Yu Oxy
—(_(_> _ (1 "\, x1-7/20Do(x"y")
— ( 2-a+n-(1 2))xu o
from (7), (10) and (11),
_ +1-1/2 0D5(x",y")
=—(5) xR (119
Then, it implies (57) as follows:
N *r/z *r/z _ N «7/2 +1-7/2 0D5(x",y™)
—1 D= 1 CupXu — Xn=1%y (2) Xy T ox,
r * aDo(x*:y*) * * * r * * * r
= —Zﬁﬂ(g)qu = —>x (=D(x",y")) =5 Dy(x",y") =~
from (7) and (10).
By sUmming by, »yr."'* over m, we obtain (58) so as
M b r/2 4 x,’al_r/z
" X
1 m,nym (ZJ 16{Jy;?‘/z)(z:u 1Bu u—r/z)
[_ 92D5(x"y ) ot 0Dy (x"y") 0Do(X*y*)]
0Yymoxn 0Ym
from (116),
4 x;al—r/z

9D (x*y")
X(-14+1)——=—==0
(Z] 1(l]y;r/2)(2 =1Bux u—r/z) ( ) 0xn

from (7), (13) and (15).

By summing bmnxs /% over n, we obtain (59) so as
T/Z y* 1-r/2
bmnXxn = = —7 X
SN e
N [_9%Do(xy?) . | 9D5(x*y*) AD(x* YY) .
n=1[ 0ymdxny Xn + 0Vm 0xn xn]
from (116),
4 xy7T/? aDg(x*,y™*)
n X (—(—1) - 1) B _ g
(Z] 10-'13’]* /2)(2u 1 Buxy, /2) 0ym

from (7), (10) and (12).

46



Second, we show that these parameters specified by (112)-(116) satisfy the equations
for the second order approximation (106)-(111).

As we show, (112)-(116) imply (56)-(59). Substituting (56)-(59) into (52), we obtain
g-(x*, vy = [(r/2)/(r/2)]" = 1, which implies (106) along with (7).

The second-order derivatives of g, with respect to inputs x evaluated at (x*, y*) are
given by the following equations, using (56)-(59).8°

P (a-n @) 40 )

(119)
x;r/z 1 r/2 1(Zn 1Cunxnr/2)(zn 1Cvnxnr/2)_cuvx;r/2 1x*r/2 1’
Vu=+ve€l[l,..N]
r( ") -2 -1
ga;fny 4 <(1 T‘) (g) +4(£) )xan Z(Zu 1Cnuxur/Z) n
(120)

-1
—ennxi 2 (1-3)(5) = e ™?),
vn € [1,..,N].
Substituting (118) into (119) and (120), we obtain (109).

The second-order derivatives of g, with respect to outputs y evaluated at (x*, y*) are
given by the following equations, using (56)-(59).
Ca - (1-
ay,ayk

r) (—) ¥y T (M gy ) (EM s i) + (121)

*T'/Z 1 *T/Z 1
ajkYj Vi ’
Vj +kell,.., M|,

Zeled) - (=) () i (S an )+ i+

- . 122
G- v (S om ™) e
vm € [1,...,M],
Substituting (117) into (121) and (122), we obtain (110).

The second-order cross-derivatives of g, with respect to inputs x and outputs y
evaluated at (x*, y*) are given by the following equation, using (58) and (59).

= (216 —20) )
y;lr/z 1x*r/2 1 (ZM 1am]y]*r/z) (Zu 1Cnuxur/2) (123)
(D) (21 a977) (Zhes B ™2) by 77727,
vm € [1, ...,M],Vn € [1,..,N].
Substituting (116)-(118) into (123), we obtain (111).

Since D; and g, are linearly homogeneous in outputs y and homogeneous of degree
minus one in inputs x, (10)-(15) hold for both of them. Equations (11), (12) and (15)

8 Without any restrictions on the parameters on g,., its second derivatives are too complicated to be
written down explicitly here. The restrictions by (56)-(59) cause their representation to be in much
simpler forms such as (119)-(123).
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guarantee that if the second derivatives of D, and g, are the same, their first derivatives
are also the same. Therefore, (109) and (110) imply (107) and (108). QED.
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Proof of Proposition 3:%” This proposition claims that even under the restrictions of
(63)-(67), h,- can approximate any arbitrary output distance function D;" to the second
order at (x*,y*). Stated differently, the following equations are satisfied.

h(y*,x*) =D (y",x") = 1, (124)

PR = 0D € [L,.., M) (125)
ahrglx*) - "’DZ?;"*), vme€[1,.., M], (126)
D = T uv e (1.0, N) (127)
S = S, Wik e [, M) (128)
626}2:;2;:) = azj;gyz) vn € [1,..,N],vm € [1,..., M]. (129)

We define the parameters in g, as follows:®

«1-1/2_s1-r/2 | 0*D{(y*x") ap; (y*x*)aD (y*,x*)
Ak =Y eyt [ Py +(1+7) oo ] (130)
v] +kell,.
«2-1|_ 9*Di(y*x")
= Ym ay;0yK
aD; ' xN? _ (, _r\opjix) 1] (131)
+(1+r)( Oym ) (1 2) 0vm vl

vm € [1,..,M],
«1-1/2_«1-1/2 [0%D] (y*x*) 9Dy x") oD (y*.x")
Cup = Xu Xv [ 0x,0xy (1 T') 0xy 0xy ]' (132)
Vu#ve€ll,.., N

Con = X2 [5205‘(3/2*,96*) (-7 (aD?(y*.x*))z n (1 _ g) aDE‘(y*,x*)i]

9x2 dxn 0xn  x5| (133)
vn € [1,..,N],
b, =% y;‘nl’;:: 25,1772 __ [_ 92D} (y*x*) |, 0D} (y*x*) aD{(y*.x*)]
(e ) (S B F) L OymOn Oym  Oxn (134)

vn € [1,..,N],ym € [1,..., M].

First, we show that these parameters specified by (130)-(134) satisfy the restrictions

(64)-(67). By summing a; ;v "/2 over k, we can derive the following equation.

«T/2 _ «7/2 *T/2
ZM 14, kykr Zkij a;, RYkr + a;,;y;

" . 6 *,* aD* *,*a:k *'*
= Se Y] 1-1/2 [ D(yx)+(1+r) Dl(yx)Dl(yx)]_I_

Yie |~ "oy 0w vio
x2-1/2 92D} (y*.x*) <6D (v x )) ( r) oD{ (y*x*) 1
: — T2V () (2 1—o) i
Yj [ oy? (1+7) ay;j 2/  dy; i

from (130) and (131),

8 This proof is similar to the proof of Proposition 1. We provide it for completeness.
8 This specification of parameters is just an example. There might exist an alternative specification
which guarantees the second order approximation property. All the specifications are reduced to those
adopted by Diewert (1992) for r = 2, except for (134). Equation (87) in page 233 of Diewert (1992)
vl 8%D; (x*,y*) , 8D} (x*y*) D] (x*y*) _ _
(B ;™) (ENoy Buxyt) [_ 3ymdxn ym o ] form=1,.,Mandn =
1, ..., N. Itis not true. The right hand side of the equation needs to be multiplied by two as (134) suggests
for the case r = 2.

indicates b, , =
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«1-7/2 92D] (y*x*) aD; (y*.x*) aD; (y*x*)
=y Z’{Ll[—# Vi + (14 7r) =222 s ;vk]—

0y;j0yk 9y; oy
_ ) yr1mr/2 9000577
—(_(—2) — _(1_T +1-1/2 0D; (y"x")
= ( (=2)-(1+r) (1 2)) Y] o

from (17), (23) and (24),

— (T} yr1T/2 900070
=-()y g (135)
Then, it implies (64) as follows:
«T/2 x7/2 «1/2 (1Y . «1-1/2 0D; (¥*,x*)
y=1211?=1a1k3’1r/ vt = - 1y (E)yf ' oy
__yM (T), D7D T r
= Zj=1(2) Yj 2y, D(y x)_z
from (17) and (23).
By summing ¢, 1,x*r/z over v, we can derive the following equation.
ZN 1Cy, vx;r/z = Yvzu Cuy, vx*r/z tcy uX*T/2
«1-1/2_ [0°D{ (" x") _ 9D (y"x") 9D (" x")
- Zv::u xv[ 0x,0xy (1 T') 0xy 0%y ] T
+2-1/2 [0*D{ (" x") _ 9D; (" x)\? IAYACESES
Xu [ ox2 (1 T)( 0xy ) + (1 2) Oxy x;]
from (132) and (133),
«1-7/2 92D (y* x*) _ 4 op; (y*,x*) ap; (y*x*)
= ”1[axuax,, x - (1-m)=5 ]+
_ T\, +1-1/20D;(y"x")
(1 ) Yu Oxy
—(_1_ _ 7Y\, «1-1/20D;(¥"x")
—( (1 r)+(1 2)>xu ™
from (17), (20) and (21),
_ (7). x1-1/20D{(y"x")
= (%) . (136)
Then, it implies (65) as follows:
N—1Zv 1Cuvxur/2 vr/z = 1I\¢’=1xur/2 (E) xul " laT

= 2l (5) P = 500y =
' from (17) and (20).

By summing b, ny;;l_r/z over m, we obtain (66) so as

b —1"/2 x*l -r/2
y = = Tn %7 X
=1Ymnym (Z] LY /2)(2 L Buxs, /2)
M [_9*DiGx) . | D] (y*x*) 0D (y*x*)
Z 0ymdxn Ym + 0ym
from (134),
4 X172 aD; (y*.x*)
=2 — X (1-1)———"==0
T(Z] 1955 /2)(2u 1Buxy, /2) 0xn

from (17), (23) and (25).

By summing b,,, nx;‘lr/z over n, we obtain (67) so as
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x 1+71/2
N b *T/Z 4 Ym v/
1

X X

e (Zm 1AmYm T/z)(Z =1 Bux :Lr/z)
N [_ 0%D] (y*,x*) X+ aD; (y*.x*) aD; (y*x*) x*]
n=1 0ymdxn n 0Yym Oxp n

from (134),

4 y:n1+r/2 oD (y*,x*)

_ 4 X(-1+4+1)—————
T (Z%zl amy;‘n_r/z)(z =1Bux ZT/Z) (= : 9ym

from (17), (20) and (22).

Second, we show that these parameters specified by (130)-(134) satisfy the equations
for the second order approximation (124)-(129).

As we show, (130)-(134) imply (64)-(67). Substituting (64)-(67) into (60), we obtain
h.(y*, x*) = [(r/2)/(r/2)]Y" = 1, which implies (124) along with (17).

The second-order derivatives of h, with respect to inputs x evaluated at (y*, x*)are
given by the following equations, using (64)-(67).8°

PO XD () (g)‘z y

=0

0x,0%y
w2 (N cunn ) (En o) (137)
«1/2-1_x1r/2-1
—CypXy Xy ,

Yu#v€ll,..,N],
PR - (- () % (S )’

0x2
N
. VAN . 138
—Cn, nxnr g (1 - E) (E) xnr/z 2 <z Cn uxur/2>; ( )

u=1
vn € [1,...,N].
Substituting (136) into (137) and (138), we obtain (127).

The second-order derivatives of h, with respect to outputs y evaluated at (y*, x*) are
given by the following equations, using (64)-(67).

o) (a-n () +4()")

X y]*r/Z ' *7‘/2 1(ZM 14, mymr/z)(ZM 1Qk mymr/z) (139)

*T/Z 1 *T/Z 1
ajky] Vi ’

P (a-n(©) +4(9))

Vi+ke€ell,.., M|,

X YTy T (M gy ) (M i) — (140)
-1
aj, ky]*r/z 1y;r/2 1+(1_g) (g) }’%r/z 2( i 1am,y,*[r/2), ]
vme|l,.., M|.

Substituting (135) into (139) and (140), we obtain (128).

8 Without any restrictions on the parameters on g,., its second derivatives are too complicated to be
written down explicitly here. The restrictions by (64)-(67) cause their representation to be in much
simpler forms such as (137)-(141).
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The second-order cross-derivatives of g, with respect to inputs x and outputs y
evaluated at (y*, x*) are given by the following equation, using (66) and (67).
0%hy (y*x")
0Yymoxn
-2
% - * —_— * 2 *
= - (g) Ymr/z 1xnr/2 1( ?/I=1 am,jy'r/ )(Zﬁ:lcn,uxur/z) (141)
= (%) (B1s ;) (Zhes Buti ™) by ™27,
vn€|[l,..,N],vme€ [1,..., M].

Substituting (134)-(136) into (141), we obtain (129).

Since D; and h, are linearly homogeneous in inputs x and homogeneous of degree
minus one in outputs y, (20)-(25) hold for both of them. Equations (22), (24) and (25)
guarantee that if the second derivatives of D; and h,. are the same, their first derivatives
are also the same. Therefore, (127) and (128) imply (125) and (126). QED.
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Proof of Proposition 4: The revenue maximization implies (7). Substituting either (7),
(74) and (75) or (7), (76) and (77) into (71), we obtain the following equation:

/2 cr/2\T 2 2\~ /7T
ot (Zﬁ"ﬂZk 14, ky]tr YIgr ) ( =1 - 1Cuvxzt¢r/ xtr/ ) =1 (142)
fort =0, 1.
The first-order derivatives of g& with respect to output y,,, are given by the following
equations for t = 0, 1, using (74) or (77) for g2 and (75) and (76) for g} along with

(142) for both g2 and g;:
aDs(xtyt)  agk(xty?)

0ym 0ym
/2 _¢7/2 /2—1 +7/2 143
= (O.t)r ( 1217 1 Cu vxftr xgr ) X Zk 1 am kyfnr yli § ( )

vm € [1,...,M].
Substituting (143) into (70), we obtain the following equations:

2
( PRy )(ﬁ)r/
S p%y?) \vm,

/2_or/2 /2 or/2 (144)
=(0.0)r( 1217 1Cuvx3r xgr ) XZk 1amky1r YIS ’
vm € [1,...,M],
( Py )(ﬁ)”z
sapivi) \vi
or/2_q7/2 (145)

/2 11/2
= (Gl)r ( 1ZN 1 Cuvxlltr x%r ) X Zk 1AmkYm Yk
vm € [1,...,M].

Substituting (144) and (145) into (34), we obtain the following equation using (142):

/2 or/2\” r/2 or/2\M7T
00(2 =1 2051 Cipx o xg ) (Z] »a 1a]ky]1 e )

r/2 qr/2\"Y r/2 ir/2\YT
01(2u 1217 1Cuvx111 xp ) (Zﬁd—lﬁk 1ajky]0 3’1% )

QMOI, =
(146)

T T 1/T
(EJ 1 Ske1 aj Y] /23”% /2)

T T 1/T'
(20, 2 0?2007
Substituting (71) into M0OI° and MOI* defined by (26) and using either (74), (75) and
(142) or (76), (77) and (142) we obtain the following equation:

r/2 q1/2 i/r
(20 Sh @y} P

& QMOL, =

MOI° = MOI* = T (147)
(2] 1 Tk 1a1k10 Vi )
Thus, (146) and (147) implies the following equation.
QMOI, = MOI° = MOI* = MOI. (148)

QED.
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Proof of Proposition 5: The cost minimization implies (17). Substituting either (17),
(83) and (84) or (17), (85) and (86) into (80), we obtain the following equation:

r/2 +r/2 r /2 /2 yr
ot (Th Zhs ey Py ) (B Bt PxEE) T =1 (14
fort =0, 1.

The first-order derivatives of ht with respect to input x,, are given by the following
equations for t = 0, 1, using (83) or (86) for A2 and (84) or (85) for h! along with (149)
for both A% and h}:

apf(ytxt) _ ank(ytxt)

0xn 0xm
/2 2 /2—1 /2 150
= @ (S S af ™) S et g, 090
vn € [1, .., N].
Substituting (150) into (79), we obtain the following equations:
wlx9 xi r/2
(ngl ngg) (E)
r/2 or/2 /2 /2 (151)
= (0% (T T %) I ot 0,
vn € [1,..,N].
ann x5 r/2
Gy (_3)
/2_qr/2\71 /2_q7/2 (152)
=(0'1)r( kyjlr ylr ) v= 1Cnvx2r xgr )
vn € [1,...,N].

Substituting (151) and (152) into (40), we obtain the following equation using (149):

r/2_or/2\" YT 2_or/2\YT
(2] 1Zk 1 ]kyo y}? ) (Zu 12 1Cuvxlr/ xOT )

QMII, = 7 7
01(2j=12k 1 ]ky]lr/zy;r/Z) (Zg 121: 1Cuvx3r/2xgr/2)
r/2 {1/2 /r
> =1E 1Cuvx111 xl
© QMII, = (s 20 )1 = (153)

/2 /2
(Zu 120= 1Cuvxor xgr )

Substituting (80) into M1I° and MII* defined by (27) and using either (83), (84) and
(149) or (85), (86) and (149), we obtain the following equation:

r/2 41/2 i/r
M = ppt = B2l ) (154)
(Zu:lzv 1Cuvxgr/z Sr/z)l/r.
Thus, (153) and (154) implies the following equation:
QMII. = MII® = MII' = MII. (155)

QED.
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Proof of Proposition 6: The profit maximization implies (7). Substituting either (7)
and (94)-(99) into (91) or (7) and (100)-(105) into (91), we obtain the following
equation:

/2 /2 1/7' 2 2 —1/r
at (Z?‘/Iﬂ Y1 aj.k)’jtr y}ér ) ( t=1 Lp=1 Cu,vxﬁr/ xzt;r/ ) =1 (156)
fort =0, 1.
The first-order derivatives of g& with respect to output y,, are given by the following
equations for t = 0, 1, using (94) or (104) for g2 and (98) or (100) for §! along with

(156) for both G2 and g}:
aDs(xtyt)  agi(xtyt)

0Yym 0Yym
T/2 +7/2 =1 r/2—-1 r/2 157
= ()" (Zor B cunt2x?) " X B a2, (490
vm € [1, ..., M].

Substituting (157) into (88), we obtain the following equations:

Pl \ (v
(Zﬂ‘ilp?y,‘-’) (E)

-1
— N N
- (O-O)T ( u=1 2v=1 Cu,vxu Xy ) X ZII:I=1 am,kym Yk ’

vm € [1,..,M],
( PhYh )(ﬁ)
2iLpiyi) \vm

r/2 q71/2 -1 r/2 qr/2
= (o) (ZNy Ty et ™) T X T ey i,
vm € [1, .., M].

The first-order derivatives of g& with respect to input x,, are given by the following
equations for t = 0, 1, using (95) or (103) for g2 and (97) or (101) for g} along with
(156) for both G2 and g;:

aDs(xtyt)  agi(xtyt)

/2

(159)

Oxn Oxn
r o ory—2
r/2 +1/2 e
= (") (B)L T @yt Y ) (BN B cupxiixE) X (160)
r/2—1 +1/2
=1 Cn,vxwl; L
vn € [1,...,N].
Substituting (160) into (89), we obtain the following equations:
wlx9 X% r/2
(Zﬁqwﬂxg) (E)
roory—2
r/2 or/2 - 0=
:_(UO)T( ?‘/Izlsz=1aj,kyjo yl(c) )( gzlzgzlcu,vxgzxé)z) X (161)
T a2,
vn € [1,..,N],
wixk x9 r/2
(Zﬂnw&x}l) (E)
roor\—2
r/2 q1r/2 - 4=
=~ (T B ) (B Bl cupdind®) X (162)
r/2 41/2
=1 Cn,vXSL 5
vn € [1,..,N].
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Substituting (158), (159), (161) and (162) into (46), we obtain the following equation
using (156):

r rj2\ YT r r/ 1/r
QMPIr — O'_O(Zg=lzy=1 Cu'vxg /zx](; /2) (Zy:1zll:1=1 aj,kyl /Zylg 2)

ol r/2 41/2 -1/r r/2 41/2 1/r
(ﬁ:lzg=1cu,l7x%£ Xy ) (Zﬁ‘ilﬁ’;?:laj,ky}’ YI% )

M M or/2_or/2\1/T r/2_or/2\ " 2/T
o0 (Zj=1 Yk=1 ajkyi Yk ) (Zﬁ=1 Z]IY=1 Cu,vx3 xg )
ol i/r r/2 q1/2
(Zg=1 29’:1 CupXy Xy )

-1

ol M M 1r/2_q7/2 —2/r
(Zj=12k=1 aj,kyj ZVk )

r/2 or/2 i/r
% (Zg=1 Zy=1 Cu,vx%L xg ) )

or/2_47/2 i/r

(211\1=1 Zy=1 CuvXy Xy )
M M T/Z T/Z —1/7" 2 2 1/?"
(Zj:l The1 iKYy VR ) (Eﬂﬂ N, cu‘,,xgr/ xBr/ )

r/2 41/2 —1/r r/2 41/2
(ZM, S apy ) T (BN B cuprd )

< QMPI,. = 6°/c. (163)

& QMPI, =

1/r

Substituting (91) into MPI® and MPI* defined by (28) and using either (94)-(99) and
(156) or (100)-(105) and (156), we obtain the following equation:

MPI® = MPI* = ¢1/c°. (164)

Thus, (163) and (164) implies the following equation:
QMPI, = MPI° = MPI' = MPI. (165)

QED.
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Proof of Corollary 1: First, we substitute (146) into the following equation:
r/2 or/2\T r/2 qr/2\ YT r/2 or/2\YT
(BMamiap? P8 ) T (S Eiaut )T (S e )
r/2 or/2 i/r = r/2 or/2 i/r r/2 41/2 i/r
(S0, M a0 (S e ) (S S g} )

Then, we obtain QMOI.(p°,p?,¥° y?) = QMOL.(p°, pt,y°, y1) x
QMOI,.(pt,p? y1,v?). Therefore, QMOI, satisfies T21. QED.

Proof of Corollary 2: First, we substitute (153) into the following equation:

1
7 17,/ler/z)l/r 1/r
v

/2 /2
( g=1Z1I>I=1 CuvXu 2"/ x‘lzl / )

N N
( u=12v=1 CuvXu

N N 17/2_47/2
( u=12v=1CuvXy Xy

N N 2 r/2 27"/2
(Zu=1 Yv=1 CuvXu Xy

/2 oT/2\T N N o7/2 07/2)
(Zg=1211y=1 Cu,vx1‘1 / x]? /) (Zu:lZv:lCu,vxu Xp

=

1/r 1/r*

Then, we obtain OMIL.(Ww° w?,x% x2) = QMIL. (W%, w?, x° x1) x
QMII.(wt,w?, x1, x?). Therefore, QMII, satisfies T21. QED.

Proof of Corollary 3: First, we substitute (163) into the equation 62 /a° = (¢1/5°) x
(c?/at) . Then, we obtain  QMPI.(W° w?,p° p? x% x2%,y%,y%) =
QMPI. (w°, w, po’ pl, X0 x1, yo, y1) x QMPIL.(w',w?, pl, p2, x1,x2, y1’ y2)
Therefore, QMPI,. satisfies T21. QED.
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