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Abstract 

In data envelopment analysis (DEA), the curse of dimensionality problem may 

jeopardize the accuracy or even the relevance of results when there is a relatively 

large dimension of inputs and outputs, even for relatively large samples. Recently, an 

approach based on the least absolute shrinkage and selection operator (LASSO) for 

variable selection was combined with SCNLS (a special case of DEA), and dubbed as 

LASSO-SCNLS, as a way to circumvent the curse of dimensionality problem. In this 

paper, we revisit this interesting approach, by considering various data generating 

processes. We also explore a more advanced version of LASSO, the so-called elastic 

net (EN) approach, adapt it to DEA and propose the EN-DEA. Our Monte Carlo 

simulations provide additional and to some extent, new evidence and conclusions. In 

particular, we find that none of the considered approaches clearly dominate the 

others. To circumvent the curse of dimensionality of DEA in the context of big data 

with high dimensions, we also propose a simplified two-step approach which we call 

LASSO+DEA. We find that the proposed simplified approach could be more useful than 

existing more sophisticated approaches for reducing very large dimensions into 

sparser, more parsimonious DEA models that attain greater discriminatory power and 

suffer less from the curse of dimensionality. 

  

Keywords: DEA; sign-constrained convex nonparametric least squares (SCNLS); LASSO; 

elastic net; big data 
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1. Introduction 

Data envelopment analysis (DEA) is a popular and effective tool to measure the 

relative efficiency of decision making units (DMUs) with multiple inputs and multiple 

outputs (Charnes et al., 1978). 1  DEA has been widely used to analyze many 

industries.2 In the past few years, DEA has also been used as a data-driven tool for 

building a composite index and for balanced benchmarking (Sherman and Zhu, 2013). 

A well-known limitation of DEA (and virtually any non-parametric estimator) is the 

so-called curse of dimensionality—the dependency of the accuracy or explanatory 

power of the estimator on the dimension of the problem. This limitation becomes 

especially pronounced in the modern era of big data, which is often rich on dimensions 

describing various objects of interest, e.g., characteristics of customers, which can be 

viewed as numerous inputs of the customers being the DMUs. 

One of the popular approaches in general statistics for dealing with such (wide) 

big data is LASSO—the Least Absolute Shrinkage and Selection Operator, proposed by 

Tibshirani (1996) (Meinshausen and Bühlmann, 2006; Tibshirani, 2011). In a nutshell, 

the idea of LASSO is to select a sparse (i.e., smaller in dimension) model by ‘shrinking’ 

the estimated effect of some of the variables to zero through 𝑙1-type regularization 

or penalty on the coefficients added to the standard (typically least squares) problem. 

Such shrinking or regularization usually leads to bias in the estimates of the 

coefficients, yet also helps in reducing the prediction error of the model (and the 

overall mean squared error), making it more parsimonious or sparse and easier to 

explain and use for modelling and, possibly, for predictive analytics. Such sparse 

models are then easier to handle and interpret in practice and have a higher out-of-

sample prediction accuracy and avoid the over-fitting challenges. This method is 

especially useful when the dimension of the problem is greater than the sample size.3  

 
1 The roots of DEA also go back to economic theory (activity analysis) modelling of Debreu (1951), Koopmans 

(1951a, b) and, most prominently, the seminal work of Farrell (1957). 

2 Also see reviews by Cook and Seiford (2009), Liu et al. (2013, 2016) and more recently by Emrouznejad and Yang 

(2018). 

3 E.g., see Tibshirani (2011) and Bühlmann and van de Geer (2011) for more details and references about LASSO. 
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The first breakthrough in adapting LASSO to DEA appears to be due to Lee and Cai 

(2018), which is considered in the context of small datasets. In their interesting paper, 

Lee and Cai (2018) adapted LASSO by using the characterization of DEA known as the 

sign-constrained convex nonparametric least squares (SCNLS), proposed by 

Kuosmanen (2006) and Kuosmanen and Johnson (2010). They named it LASSO-SCNLS. 

This is the name we will also use here, interchangeably with the name LASSO-DEA, to 

attract the attention of a larger DEA audience, some of which might be less familiar 

with the interesting approach often referred to as SCNLS or by other names.4 

In their simulation study, Lee and Cai (2018) used 9 inputs in their data generating 

process (DGP) and proposed a comparison of different methods by reducing the 

dimension of DEA one-by-one. They concluded that for a single-output case PCA-DEA 

is superior in most dimensions and LASSO-SCNLS dominates Group LASSO-SCNLS 

(adapting group LASSO to SCNLS) in most cases. For a multiple-output case they 

concluded that PCA-DEA and random methods perform poorly, and Group LASSO-

SCNLS performs better than LASSO and generally dominates LASSO-SCNLS in most 

dimensions. They also concluded that the proposed LASSO-SCNLS method and its 

variants provide useful guidelines for the DEA with small datasets. 

A key question arises: What about other versions of LASSO when it is adapted to 

DEA? In this paper we consider an extension of the basic LASSO (i.e., elastic net or EN) 

and adapt it to DEA and then perform more comprehensive Monte Carlo (MC) analysis 

starting with the scenarios considered by Lee and Cai (2018) and then some more 

general scenarios. 

From our extensive simulations, we find that among the different approaches we 

considered, the winners (typically by a small margin) vary across the scenarios, with 

no clear winner overall. More importantly, the difference among the approaches is 

 
4 As pointed out by Kuosmanen (2006), SCNLS is an equivalent characterization of the output-oriented variable 

returns to scale (VRS) DEA model with a single-output case, which is also proved in Seijo and Sen (2011). Some 

attempts have been recently made to generalize this framework to multioutput by Kuosmanen and Johnson (2017) 

using direction distance function. Also, encouraging results from Wilson (2018) and Zelenyuk (2019) suggest that 

often one may still retain most of the relevant information by proxying all dimensions of outputs either via PCA or 

via price-based aggregation into total revenue. 
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usually not statistically significant—it is typically within two standard errors or even 

much less so. 

Thus, while we believe that the theoretical contribution of Lee and Cai (2018) is 

very important, such as the pioneering work adapting Lasso for DEA context, it seems 

it would be fair to conclude from more extensive MC simulations that the other 

approaches are performing similarly well as LASSO-SCNLS. 

While most of the DEA studies focus on relatively small data sets, and with 

relatively small dimensions, the modern age of development is increasingly 

demanding the analysis of big and often wide data, which has large dimensions.  

Current exceptions are the recent works by Misiunas et al. (2016), Khezrimotlagh et 

al. (2019), Charles et al. (2019) and Zelenyuk (2019) and we will try to contribute to 

this literature through this paper. In particular, for the wide big data cases where the 

true (yet unknown) model is sparse, we propose a simplified two-step approach to 

circumvent the curse of dimensionality of DEA. This approach involves two stages: 

standard LASSO methods are used to reduce the problem to a sparse problem at the 

first stage and then DEA is used at the second stage. Perhaps surprisingly, our MC 

simulations suggest this approach performs better than the more sophisticated 

LASSO-SCNLS. 

The rest of the paper is organized as follows. Section 2 describes the LASSO-SCNLS 

approach that was proposed by Lee and Cai (2018). Section 3 introduces another 

(more advanced) version of LASSO, the so-called EN, adapting it to DEA and focuses 

on the case of variable correlation. Section 4 presents our simplified two-step 

approach. The results of MC simulations are presented in Section 5. Conclusions and 

directions for future research are discussed in Section 6. 

 

2. The LASSO-SCNLS method 

In this section, we first briefly describe LASSO and group LASSO, followed by SCNLS. 

Then we describe the LASSO-SCNLS technique and its variants. 

 

2.1. LASSO and group LASSO 
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For simplicity, consider a standard regression problem – a data set with 𝑛 

observations with standardized regressors 𝑥𝑖𝑗 and a dependent variable 𝑦𝑖 for 𝑖 =

1, … , 𝑛 and 𝑗 = 1, … , 𝑝. And the researcher wants to fit or estimate the coefficients 

of the following linear regression model, 

 

𝑦𝑖 = 𝛼 + ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 ,     𝑖 = 1, … , 𝑛                      (1) 

 

where 𝛼 and 𝛽𝑗  are the intercept and coefficients of regressors in the regression. 

Ordinary least squares, OLS, or its weighted versions (WLS) are the most common 

approaches to do so. However, when the number of regressors is very large, the OLS 

or WLS might be not very reliable. OLS is especially problematic when the dimension 

is larger than the number of observations, which is a more and more common case 

for modern data environments, sometimes referred to as wide big data. As a way to 

resolve the problem, and effectively anticipate the advance of the big wide data wave 

several decades before their arrival, Tibshirani (1996) suggested regularizing it by 

imposing an 𝑙1-penalization or price on the total sum of coefficients, i.e., he suggested 

solving the following 𝑙1-penalized regression problem 

  

min
𝛼,𝛽

  
1

2
∑ (𝑦𝑖 − 𝛼 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )2𝑛

𝑖=1 + 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1               (2a) 

 

where 𝜆 is a penalty price or tuning parameter chosen by the researcher (typically 

via some data-driven procedure like cross-validation).5 

As pointed out by Tibshirani (1996) and exploited by many other works since then, 

the problem (2a) is also equivalent to setting 𝑟 = 1 when solving the following more 

general constrained optimization problem (sometimes referred to as a bridge or 

general ridge regression) 

 
5 This implicitly assumes that the data for each input 𝑥𝑖 is either in logs or standardized (by subtracting its sample 

mean and then dividing by its sample standard deviation), to ensure the same unit of measurement of the 

corresponding coefficients (𝛽𝑖).  
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min
𝛼,𝛽

  
1

2
∑ (𝑦𝑖 − 𝛼 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )2𝑛

𝑖=1 ,   𝑠. 𝑡.  ‖𝛽‖𝑟 ≤ 𝑠         (2b) 

 

where 𝛽 = (𝛽1, … , 𝛽𝑝)
′

 and ‖𝛽‖𝑟  denotes a suitable 𝑙𝑟 -norm (e.g., ‖𝛽‖1 =

∑ |𝛽𝑗|𝑝
𝑗=1  and ‖𝛽‖2 = √∑ 𝛽𝑗

2𝑝
𝑗=1 , which are the most common choices in practice) 

and 𝑠 can be understood as the `budget’ on the coefficients (which has one-to-one 

correspondence with 𝜆).  

It is also worth noting that choosing 𝑟 = 2  leads to the so-called basic `ridge 

regression’, 6  while choosing 𝑟 = 0  leads to the so-called `best subset selection’ 

approach, which is an interesting alternative to LASSO, although typically much more 

computer intensive than LASSO and we leave its exploration regarding DEA for future 

research. It also has a nice Bayesian interpretation that we discuss briefly in Section 3. 

While being just a special case of (2b), an important distinctive feature of LASSO 

(e.g., relative to the ridge regression), is that besides shrinking the coefficients (to 

reduce the variance at the expense of inducing some bias), as is also done by the ridge 

regression, LASSO also (more importantly) does the variable selection, by shrinking 

some (and often many) coefficients of the regressors to zero, depending on the 

positive penalty parameter 𝜆  or the budget 𝑠 . In particular, the larger is 𝜆  (or, 

equivalently, the smaller is 𝑠) the more regressors will be shrunk to zero. This, indeed, 

appears to be the most important aspect of LASSO in general when it is adapted to 

DEA. 

The best subset selection approach also shrinks some coefficients to zero, yet 

does so algorithmically, with much more computational burden, because this is a non-

convex optimization problem. Meanwhile, LASSO, uses the smallest order of the norm 

(𝑙1) in the penalty that guarantees the problem is convex and so is much easier to 

handle, especially with modern computing power and optimization methods. 

 
6 It is in fact a special case of the so-called Tikhonov regularization for ill-posed problems, due to Tikhonov (1943) 

and later adapted to statistics by Foster (1961) who interpreted it as a Wiener–Kolmogorov filter and Hoerl (1962) 

who called it ridge regression. 
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Slightly different from the standard LASSO, the group LASSO considers the 

problem of selecting grouped variables (regressors) for accurate prediction in 

regression and shrinks the selected group of regressors simultaneously (Yuan and Lin, 

2006). To be precise, let 𝐿  be the set of input groups, and 𝑔 ∈ 𝐿 . The set 𝐼𝑔 

represents the set of input variables in 𝑔 -th group. The group LASSO is then 

represented by7 

 

min
𝛼,𝛽

  
1

2
∑ (𝑦𝑖 − 𝛼 − ∑ ∑ 𝑥𝑖𝑔𝑗𝛽𝑔𝑗𝑗∈𝐼𝑔𝑔∈𝐿 )2𝑛

𝑖=1 + 𝜆 ∑ √|𝐼𝑔|√∑ 𝛽𝑔𝑗
2

𝑗∈𝐼𝑔𝑔∈𝐿         (3) 

 

where 𝛼 and 𝛽𝑔𝑗  are the intercept and coefficients of the regressors in the 𝑔-th 

group, and √|𝐼𝑔|  accounts for the varying group sizes. That is, the group LASSO 

removes an entire group of input variables simultaneously when 𝜆 becomes larger 

(Hastie et al., 2009; Yuan and Lin, 2006). The group LASSO reflects many practical 

situations such as the multifactor analysis-of-variance problem and enjoys excellent 

performance (Yuan and Lin, 2006). It inherits the convex penalty and acts like the lasso 

at the group level (Meier et al., 2008). In fact, the group LASSO simplifies into the 

standard LASSO with a constant group size 1. 

The last few decades witnessed many other variations of LASSO to address 

different aspects of modelling, some of which along with their comparisons can be 

found in Zou and Hastie (2005), Zou (2006), Meinshausen (2007), Tibshirani (2011) 

and Hastie et al. (2017), etc. Obviously, it is infeasible to adapt all of them to DEA in 

one modest paper such as ours and so we will have a more modest task here: we will 

consider just a few that we conjecture are among the most appealing for the context 

and also hope that future research will complete the rest of the picture. 

 

2.2. SCNLS 

 
7 Here we use a similar notation as in Friedman et al. (2010) and Meier et al. (2008) also provided a similar notation. 
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DEA is usually known as a nonparametric linear programming approach for measuring 

productive efficiency. More recently, it was also interpreted as nonparametric least-

squares regression with convexity constraints. In particular, Kuosmanen (2006) and 

Kuosmanen and Johnson (2010) showed that the inefficiency estimated by the output-

oriented DEA with a variable returns to scale (VRS) approach (often referred to as the 

BCC model, due to Banker et al. (1984)) is equivalent to the efficiency estimated by 

SCNLS in a single-output case. In particular, the SCNLS representation is given by: 

 

min
𝛼,𝛽,𝜀

  ∑ 𝜀𝑖
2𝑛

𝑖=1   

𝑠. 𝑡. 𝑦𝑖 = 𝛼𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑝
𝑗=1 + 𝜀𝑖 ,  ∀𝑖 = 1, . . . , 𝑛  

𝛼𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑝
𝑗=1 ≤ 𝛼ℎ + ∑ 𝛽ℎ𝑗𝑥𝑖𝑗

𝑝
𝑗=1 ,  ∀𝑖, ℎ = 1, . . . , 𝑛                   (4) 

𝛽𝑖𝑗 ≥ 0,  ∀𝑖 = 1, . . . , 𝑛,  𝑗 = 1, . . . , 𝑝  

𝜀𝑖 ≤ 0,  ∀𝑖 = 1, . . . , 𝑛  

 

where 𝜀𝑖 is the (additive) inefficiency term and represents the deviation of a 𝐷𝑀𝑈𝑖 

from the estimated SCNLS frontier, and variables 𝛼𝑖, and 𝛽𝑖𝑗 are the intercept and 

slope parameters, respectively.  

Note that the objective function in (4) minimizes the sum of squared residuals, 

just like in the standard least-squares regression, except that there are also additional 

constraints, turning the problem into a convex regression-type estimator of the 

boundary of the support of the data. 8  This similarity to the regression approach 

makes this form useful for adapting the LASSO, as was first noted by Lee and Cai (2018), 

which we discuss in the next section.9 Moreover, in the second constraint of (4), we 

use the same notation ∀𝑖, ℎ = 1, . . . , 𝑛 with Kuosmanen (2006) and Kuosmanen and 

 
8 Model (4) is under an assumption of variable returns to scale (VRS). To get a constant returns to scale (CRS) 

version of model (4), one needs to add the following constraints: 𝛼𝑖 = 0, ∀𝑖 = 1, . . . , 𝑛. If model (4) is adapted to 

sign-constrained isotonic nonparametric least squares (INLS), then we have a FDH model (Keshvari and Kuosmanen, 

2013). 

9 Also see Tsionas and Izzeldin (2018) for related discussions. 
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Johnson (2010) while the notation ∀𝑖, ℎ = 1, . . . , 𝑛 𝑎𝑛𝑑 𝑖 ≠ ℎ is used in Lee and Cai 

(2018). 

 

2.3. LASSO-SCNLS 

By combining SCNLS with LASSO, Lee and Cai (2018) proposed a LASSO-SCNLS method 

for variable selection (in a single-output case) as follows: 

 

min
𝛼,𝛽,𝜀

  ∑ 𝜀𝑖
2𝑛

𝑖=1 + 𝜆 ∑ ∑ 𝛽𝑖𝑗
𝑝
𝑗=1

𝑛
𝑖=1   

𝑠. 𝑡. 𝑦𝑖 = 𝛼𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑝
𝑗=1 + 𝜀𝑖 ,  ∀𝑖 = 1, . . . , 𝑛  

𝛼𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑝
𝑗=1 ≤ 𝛼ℎ + ∑ 𝛽ℎ𝑗𝑥𝑖𝑗

𝑝
𝑗=1 ,  ∀𝑖, ℎ = 1, . . . , 𝑛                   (5) 

𝛽𝑖𝑗 ≥ 0,  ∀𝑖 = 1, . . . , 𝑛,  𝑗 = 1, . . . , 𝑝  

𝜀𝑖 ≤ 0,  ∀𝑖 = 1, . . . , 𝑛  

 

Note that the only difference between formulation (4) and (5) is its objective function: 

there is an additional penalty term in (5) for shrinking 𝛽𝑖𝑗, just like LASSO has in (2a). 

For a given choice of 𝜆, if 𝛽𝑖𝑗 = 0 for all DMUs for a certain input, then this input is 

removed from the analysis. In particular, Lee and Cai (2018) use a binary search to 

identify the best 𝜆 to control the number of selected input variables and remove less 

correlated variables.10  

 

2.4. Group LASSO-SCNLS11 

Similar to LASSO-SCNLS, Group LASSO-SCNLS proposed in Lee and Cai (2018) adapts 

SCNLS by adding a penalty term with group variables in a similar fashion as was done 

for the standard group LASSO in Yuan and Lin (2006). In this way, it also shrinks the 

 
10 E.g., if the total number of dimensions is 10 (9 inputs and 1 output), in order to get a full sequence of reduced 

dimensions from 2 (one input and one output) to 9 (eight inputs and one output), Lee and Cai (2018) search for the 

tuning parameter 𝜆 by binary search to get a specific reduced dimension 𝑑 =2, ..., 9. 

11 Lee and Cai (2018) actually used a notation ‘GroupLASSO-SCNLS’. In this paper we use ‘Group LASSO-SCNLS’ as 

an alternative to highlight the combination of group LASSO and SCNLS. 
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variables in the same group simultaneously. Specifically, Group LASSO-SCNLS shrinks 

𝛽𝑖𝑗 for all observations in the same input 𝑖 simultaneously as follows:12 

 

min
𝛼,𝛽,𝜀

  ∑ 𝜀𝑖
2𝑛

𝑖=1 + 𝜆 ∑ √∑ 𝛽𝑖𝑗
2𝑛

𝑖=1
𝑝
𝑗=1   

𝑠. 𝑡. 𝑦𝑖 = 𝛼𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑝
𝑗=1 + 𝜀𝑖 ,  ∀𝑖 = 1, . . . , 𝑛  

𝛼𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑝
𝑗=1 ≤ 𝛼ℎ + ∑ 𝛽ℎ𝑗𝑥𝑖𝑗

𝑝
𝑗=1 ,  ∀𝑖, ℎ = 1, . . . , 𝑛                   (6) 

𝛽𝑖𝑗 ≥ 0,  ∀𝑖 = 1, . . . , 𝑛,  𝑗 = 1, . . . , 𝑝  

𝜀𝑖 ≤ 0,  ∀𝑖 = 1, . . . , 𝑛  

 

Except for the above methods, Lee and Cai (2018) also considered what they 

called the ‘Random’ method as well as what they called the ‘PCA-DEA’ method for 

reducing the dimensions and compared them to the LASSO-type approaches. To be 

more precise, their RM obtains a random sequence of removed variables by randomly 

selecting one input variable and removing it, one by one, until only one variable 

remains. Moreover, their PCA-DEA method replaces the input variables with fewer 

principal components (PCs) and thus the dimension (number of variables) is reduced 

by selecting fewer PCs. 

 

3. Some generalizations and Bayesian interpretations 

3.1. EN-DEA 

While having great advantages in optimally balancing the bias and variance and 

making the model sparse or parsimonious with potentially greater prediction accuracy, 

as with any method LASSO also has its limitations, which are expected to be inherited 

by the LASSO-SCNLS. In particular, as was noticed from the seminal work of Tibshirani 

(1996) and in many papers since then, one of the main weaknesses of the basic LASSO 

is that it may perform poorly in case of high correlations among regressors. To address 

such data, Zou and Hastie (2005) proposed an improved version of LASSO that they 

 
12 Compared with the standard group LASSO in equation (3), Group LASSO-SCNLS proposed in Lee and Cai (2018) 

actually assumes a constant group size 1. 
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called elastic net (EN) and we will adapt it to the DEA (via SCNLS representation) in 

this section. To do so, recall that the EN estimator is defined by the following problem: 

 

min
𝛼,𝛽

  
1

2
∑ (𝑦𝑖 − 𝛼 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )2𝑛

𝑖=1 + 𝜆[𝛿 ∑ |𝛽𝑗|𝑝
𝑗=1 + (1 − 𝛿) ∑ 𝛽𝑗

2𝑝
𝑗=1 ]      (7) 

 

i.e., it combines the benefit of the ridge regression and the LASSO, and remains a 

convex optimization problem.  

Zou and Hastie (2005) pointed out that various real-world data and simulations 

showed that EN often outperforms LASSO, while enjoying a similar sparsity of 

representation. In particular, EN encourages a grouping effect, such that strongly 

correlated regressors tend to be in or out of the model together.13 

 The EN-DEA (or EN-SCNLS) can be characterized by 

 

min
𝛼,𝛽,𝜀

  ∑ 𝜀𝑖
2𝑛

𝑖=1 + 𝜆[𝛿 ∑ ∑ 𝛽𝑖𝑗
𝑛
𝑖=1

𝑝
𝑗=1 + (1 − 𝛿) ∑ ∑ 𝛽𝑖𝑗

2𝑛
𝑖=1

𝑝
𝑗=1 ]  

𝑠. 𝑡. 𝑦𝑖 = 𝛼𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑝
𝑗=1 + 𝜀𝑖 ,  ∀𝑖 = 1, . . . , 𝑛  

𝛼𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗
𝑝
𝑗=1 ≤ 𝛼ℎ + ∑ 𝛽ℎ𝑗𝑥𝑖𝑗

𝑝
𝑗=1 ,  ∀𝑖, ℎ = 1, . . . , 𝑛                   (8) 

𝛽𝑖𝑗 ≥ 0,  ∀𝑖 = 1, . . . , 𝑛,  𝑗 = 1, . . . , 𝑝  

𝜀𝑖 ≤ 0,  ∀𝑖 = 1, . . . , 𝑛  

 

Note that, as is similar to EN, we add the ridge-type (or 𝑙2) penalty into SCNLS. 

Different from EN but similar to LASSO-SCNLS, we shrink 𝛽𝑖𝑗 in model (8) rather than 

𝛽𝑗  of EN. When 𝛿 = 1, model (8) becomes LASSO-SCNLS. When 𝛿 = 0, model (8) is 

an adaptation of the ridge regression, and could be called ‘Ridge-DEA’ (or Ridge-

SCNLS).14 The Ridge-DEA could be more useful than LASSO-DEA for usual 𝑛 >  𝑝 

where 𝑝 is relatively small situations, if there are high correlations between inputs. 

Indeed, in this case the prediction performance of ridge regression is likely to 

 
13 EN also removes the limitation on the number of selected variables and is therefore useful when the number of 

regressors is much bigger than the number of observations, where LASSO may often encounter more difficulties. 

14 In this paper, we set 𝛿 = 0.5 for EN and EN-DEA. 
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dominate LASSO in standard regression setups (Tibshirani, 1996). In model (8), if 

𝛽𝑖𝑗 = 0 for all DMUs for a certain input, then this input is removed from the analysis. 

 

3.2. Bayesian interpretations 

As pointed out by Tibshirani (1996), LASSO also has an interesting Bayesian 

interpretation. The same is true when it is adapted to SCNLS. In particular, the Bayesian 

approach to SCNLS allows a straightforward interpretation in terms of a linear 

statistical model with slacks or one-sided error terms. Therefore, this makes it possible 

to tap on several advances not only in terms of Bayesian analysis via Markov Chain 

Monte Carlo (MCMC) but also on recent advances in terms of dealing with models in 

the so-called ‘large 𝑝, small 𝑛’ paradigm (𝑝 being the number of parameters and 𝑛 

being the number of observations in a standard linear model).  

The spirit of the LASSO is to use a prior which relies on the Laplace rather than the 

(more familiar) normal distribution. A normal prior, essentially, imposes a quadratic 

penalty or 𝑙2-norm, if centered at zero and, therefore, it allows for small coefficients 

but not coefficients being exactly zero corresponding to exclusion restrictions which 

are quite important in our framework as well as the ‘large 𝑝, small 𝑛’ framework. 

The Laplace prior is associated with a 𝑙1(rather than 𝑙2) penalty and can deal more 

effectively with the problem of proliferation of (irrelevant) regressors.  

The EN, combines the 𝑙1 - and 𝑙2 -penalties using certain weights so that it 

combines a normal and a Laplace prior. Whether this is better than either of the two 

methods separately, is an open question. 𝑙2 -penalty operates more like a ridge-

regression based prior while 𝑙1-prior takes care of regressors with small coefficients 

which can, in effect, be set to zero. 

 

4. A simplified two-step approach 

In the previous section, we described several approaches for circumventing the curse 

of dimensionality in DEA. We also noted that Lee and Cai (2018) were using a binary 

search to get a tuning parameter 𝜆 corresponding to a specific reduced dimension. 

However, from their study it is unclear whether the true relevant regressors are 
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identified in this way and if all the irrelevant regressors are set to zero. Indeed, the 

shrinkage of coefficients of the irrelevant regressors to zero (even if at the expense of 

potential bias for the coefficient of the relevant regressors) is one of the most 

important aspects of LASSO. For this reason, methods like cross-validation LASSO are 

usually used to obtain an `optimal’ (under a certain criterion) value for the tuning 

parameter that attempts to identify which coefficients are set to zero and which are 

not. Lee and Cai (2018) have not discussed such an approach, perhaps because it is 

not working as well as it is in the standard LASSO cases. Indeed, our attempts to adapt 

a cross-validation to the LASSO-SCNLS also have not provided any optimistic evidence, 

and so we leave it for future research. Meanwhile, here we propose a simplified two-

step approach to handle the curse of dimensionality of DEA via LASSO, which we will 

call ‘LASSO+DEA’. Particularly, the algorithm could be summarized as follows: 

Step 1. As an exploration of the first order approximation of the complex multi-

dimensional world, use standard cross-validation LASSO or its more advanced versions 

(e.g. EN) to select an optimal number of regressors due to an optimal choice of the 

tuning parameter 𝜆  (e.g., selected via 10-fold cross validation or other popular 

methods). 

Step 2. Run DEA (or SCNLS) on only the variables selected as relevant in Step 1. 

 

An important advantage of this simplified approach is that many packages in 

popular software (Matlab, R, Python, etc.) are available to implement both stages, 

which have been tested on many synthetic and real data. We will discuss the 

implementation of this approach in Matlab and compare how it performs relative to 

LASSO-SCNLS in the next section.  

A disadvantage of this approach is, of course, that the first stage is only looking at 

the first order approximation (possibly in logs, so potentially modelling some 

curvature). On the other hand, when the dimension is very large such approximation 

of the more complex and highly multi-dimensional world might be the only feasible 

way to proceed. 
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5. Monte Carlo evidence and comparison 

In this section, we first compare the above methods in the small data setting as was 

in Lee and Cai (2018). Then, we compare the LASSO+DEA and LASSO-SCNLS (EN-SCNLS) 

under the ‘big data’ context. 

The performance and comparison of methods is analyzed with the help of 

approximate (or estimated) mean squared error (MSE), i.e., 

 

𝑀𝑆𝐸𝑚 =
1

𝑛
∑ (𝑦𝑖

𝑇 − (𝜃𝑖
∗ × 𝑦𝑖))

2
𝑛
𝑖=1  ∀𝑚 = 1, . . . , 𝑀             (9a) 

 

where 𝑦𝑖
𝑇  is the true efficient output and 𝜃𝑖

∗ × 𝑦𝑖  is the estimate. Here 𝜃𝑖
∗  is 

calculated by output-oriented BCC model (Lee and Cai, 2018), and 𝜃𝑖
∗ = 1 −

𝜀𝑖 𝑦𝑖⁄ , ∀𝑖 = 1, . . . , 𝑛  as shown in Kuosmanen and Johnson (2010). When efficiency 

scores are compared (e.g., Wilson, 2018; Zelenyuk, 2019), equation (9a) is changed to: 

 

𝑀𝑆𝐸𝑚 =
1

𝑛
∑ (𝜃𝑖

𝑇 − 𝜃𝑖
∗)2𝑛

𝑖=1  ∀𝑚 = 1, . . . , 𝑀             (9b) 

 

where 𝜃𝑖
𝑇 is the true efficiency for a DMU. 

Then, 𝑀𝑆𝐸𝑚 is averaged over the number of Monte Carlo replications (𝑀), i.e.,  

 

𝐴𝑀𝑆𝐸𝑀 =
1

𝑀
∑ 𝑀𝑆𝐸𝑚

𝑀
𝑚=1                    (10) 

 

To get a sense of significance in the differences of average MSE (AMSE) across 

different methods, we also present the Monte Carlo standard errors for the averages 

of MSE, computed as  

 

𝑠𝑒(𝐴𝑀𝑆𝐸𝑀) =
1

𝑀
√∑ (𝑀𝑆𝐸𝑚 − 𝐴𝑀𝑆𝐸𝑀)2𝑀

𝑚=1                (11) 
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As pointed out by Lee and Cai (2018), their PCA-DEA uses PCs as inputs and 

therefore cannot generate a `meaningful’ DEA-estimated frontier and that it is also 

difficult to interpret the relationship of new PCs with respect to the original input 

variables. Hence, in this paper, we exclude PCA-DEA from the performance 

comparison of dimension reduction methods. In particular, we compare the following 

six methods: 1) Random; 2) LASSO; 3) LASSO-SCNLS; 4) Group LASSO-SCNLS; 5) EN; 6) 

EN-SCNLS. Note that only part of the six methods are compared in different 

simulations and scenarios. 

 

5.1. Comparisons for small data environments 

In this section, we first try to replicate the simulations of Lee and Cai (2018) using their 

DGP with 10 dimensions (9 inputs and 1 output).15 Table 1 shows the results. 

 

Table 1. AMSE and standard errors of four variable selection methods 

 AMSE (s. e.) 

Dimensions Random LASSO LASSO-SCNLS Group LASSO-SCNLS 

10 20.832 (0.901) 20.832 (0.901) 20.832 (0.901) 20.832 (0.901) 

9 19.539 (0.912) 19.588 (0.905) 19.960 (0.910) 20.208 (0.891) 

8 18.059 (0.911) 18.237 (0.929) 18.528 (0.917) 18.886 (0.900) 

7 16.055 (0.927) 16.330 (0.846) 16.725 (0.884) 16.957 (0.876) 

6 13.294 (0.868) 14.141 (0.836) 14.610 (0.899) 14.550 (0.946) 

5 10.560 (0.833) 11.452 (0.790) 12.186 (0.836) 11.682 (0.917) 

4 7.687 (0.691) 8.721 (0.683) 9.588 (0.710) 8.840 (0.767) 

3 4.719 (0.497) 5.913 (0.600) 6.572 (0.568) 5.829 (0.614) 

2 2.164 (0.299) 3.101 (0.420) 3.582 (0.409) 2.982 (0.402) 

Note: The standard error of AMSE is shown in parenthesis. And equation (9a) is used 

for calculation. 

 

As shown in Table 1, the AMSE decreases as the dimension goes down, which is 

the same as the results in Table 2 of Lee and Cai (2018). For each row or dimension, 

 
15 See Appendix A for more details on their DGP setting. 
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the AMSE in Table 1 of this paper is close to that in Table 2 of Lee and Cai (2018). And 

the AMSE under LASSO-SCNLS is larger than that under Group LASSO-SCNLS for a 

dimension no larger than 6. So LASSO-SCNLS does not always show better 

performance for higher dimensions than Group LASSO-SCNLS, which is a different 

conclusion from that in Lee and Cai (2018). Most importantly, when we take into 

account the standard errors of AMSE, our results suggest there is no clear dominance 

of any of the methods because the AMSE for the four methods is well within two 

standard errors from each other for most dimensions. 

 

 

Figure 1. Box plot of MSEs 

 

Figure 1 further shows the box plots for the MSEs and one can see that the 

difference in performance for the above four methods (Random, LASSO, LASSO-SCNLS 

and Group LASSO-SCNLS) is indeed fairly small. Taking into account the variation (e.g., 

via estimated iqr, standard errors, etc.), we can also conclude that there is no clear 

dominance for certain methods. We also explore more scenarios such as more general 

settings of the above DGP in Lee and Cai (2018) and the DGP setting considered in 

Wilson (2018) and other works and reach the same conclusion. Namely, none of these 
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four approaches dominate the other, especially when considering measures of 

accuracy and variation. See appendix B for the details. 

 

5.2. Comparisons for ‘big wide data’ environments 

In this section, we first compare the shrinkage ability of cross-validation LASSO and 

LASSO-SCNLS to illustrate the rationale of our proposed LASSO+DEA. Then we 

compare the performance between the LASSO+DEA and LASSO-SCNLS (EN-SCNLS). 

 

5.2.1. Shrinkage ability of cross-validation LASSO and LASSO-SCNLS 

Consider a simple scenario where the total number of observations is 𝑛 = 100, the 

total number of regressors is 𝑝 = 50 , while the total number of truly relevant 

regressors is 𝑞 = 5. To be more precise and without loss of generality, suppose the 

first five regressors are regarded as the true regressors, corresponding to assumed 

beta coefficients 𝛽𝑗 = 𝑗, 𝑗 = 1, . . . ,5. Meanwhile, the other regressors are irrelevant 

regressors in the sense that their coefficients are zero. As is typical in practice, suppose 

the researcher does not know which regressors are relevant and what their relations 

to the dependent variable are and he/she needs to rely on LASSO to identify them. 

To generate the synthetic data to illustrate the performance of different methods, 

we follow a DGP setting similar to Hastie et al. (2017), adapting it to the usual context 

considered in efficiency analysis. In particular, the dependent variable is generated as 

 

𝑦𝑖 = ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 + 𝑣𝑖 − 𝑢𝑖 ,     𝑖 = 1, … , 𝑛.                    (12) 

 

where  𝑢𝑖~𝑁+(0, 𝛿𝑢
2) and 𝑣𝑖~𝑁(0, 𝛿𝑣

2), i.i.d. for all 𝑖 = 1, … , 𝑛  while regressor 

𝑥𝑖  is generated from the multinormal. To be more precise, 𝑥𝑖  are row entries of 

matrix 𝑋 ∈ ℝ𝑛×𝑝 generated from 𝑁𝑝(0, Σ𝑋), where Σ𝑋 = ζ𝛿𝑣Σ  and ζ is the signal-

to-noise parameter that we vary to explore its influence and Σ ∈ ℝ𝑝×𝑝 has an entry 

(𝑤, 𝑡) equal to 𝜌|𝑤−𝑡| which allows for different degrees of correlation between the 

inputs.  
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For the results presented below, we have set 𝛿𝑢 = 0.5 and 𝛿𝑣 = 0.05, while the 

signal-to-noise ratio (SNR)16 is set to ζ = 10 and 𝜌 = 0.7. 

We will compare the performance of cross-validation LASSO and LASSO-SCNLS.17 

Besides the two methods, we also present ordinary least squares (OLS) as a 

benchmark. Note that because the true model is linear, the standard LASSO is indeed 

a suitable approach here, as is the OLS, except for modelling the inefficiency, which is 

effectively ignored by the LASSO and by the OLS. On the other hand, due to no 

correlation of the inefficiency with the regressors, ignoring the inefficiency term here 

should not affect the estimates of the slopes (which is the main focus here) and only 

affects the intercept, which is typically not important for LASSO and its variants (and 

can also be recovered if needed in the style done in SFA literature). 

In principle, the performance of LASSO-SCNLS should also be reasonably good 

here because it is nonparametric and should be able to estimate the truth whether it 

is linear or not (although it is less efficient than the parametric LASSO). The only 

problem is the noise, however, this is fairly small relative to the inefficiency.18 

Table 2 presents the results from a typical draw from the DGP described above in 

this section. The second column shows the true coefficients 𝛽𝑗 . The third column 

shows the estimated coefficients with the tuning parameter selected via 10-fold cross-

validation LASSO. The fourth column presents LASSO-SCNLS with the same tuning 

parameter as was used for the standard LASSO. Here we report the average of all the 

observations’ coefficient β𝑖𝑗  for the 𝑗 th regressor, i.e. 
1

𝑛
∑ 𝛽𝑖𝑗

𝑛
𝑖=1 . The fifth to 

seventh columns present the OLS-estimated coefficients, the corresponding t-

statistics and the standard errors respectively, to get a sense of the performance of 

the simplest approach among those we consider. 

 
16 This is a similar setting as in Hastie et al. (2017) and Bertsimas et al. (2016). 

17 Note that in Matlab, the LASSO procedure standardizes inputs 𝑋 prior to fitting the model sequence by default, 

so we also do so to 𝑋  prior to using in LASSO-SCNLS. Moreover, for LASSO-SCNLS we use the same tuning 

parameter as the one identified by cross-validation LASSO. 

18 An alternative is to use StoNED (Kuosmanen and Kortelainen, 2012) here to model the noise explicitly. 
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Note that despite the very large dimension of regressors or inputs, OLS is still 

doing reasonably well and is able to identify correctly all the relevant regressors, and 

just very few of irrelevant regressors are identified at different levels of significance. 

This was persistent across many replications and for various values of parameters. Of 

course, when the number of regressors is increasing, the degrees of freedom decrease 

and thus the reliability of OLS also decreases but when it gets larger than the sample 

size, OLS is unavailable. In this case the LASSO becomes particularly useful, and in 

general, although it tends to introduce some bias, the prediction accuracy usually 

improves relative to OLS (Tibshirani, 1996). Moreover, it is still possible to obtain 

standard errors and related statistics even if 𝑝 > 𝑛. From Table 2 one can see that 

LASSO indeed performed well, often better than OLS, which persisted across most 

replications and for different values of parameters. Most importantly, it was able to 

correctly identify the relevant regressors and set all others to zero in the draw below 

as well as in most (yet of course not all) of the replications in our study.19 

  

Table 2. Performance comparison between cross-validation LASSO and LASSO-SCNLS 

Inputs 𝛽𝑗  LASSO LASSO_SCNLS OLS t_stat se_b 

1 1 0.928  1.365  0.875  14.768  0.059  
2 2 1.904  1.495  2.064  32.146  0.064  
3 3 2.981  1.765  3.033  39.613  0.077  
4 4 3.882  2.243  3.999  54.756  0.073  
5 5 4.835  3.329  5.066  64.255  0.079  
6 0 0 0.181  -0.031  -0.429  0.072  
7 0 0 0.013  -0.054  -0.811  0.067  
8 0 0 0.059  -0.042  -0.594  0.071  
9 0 0 0.001  0.125  1.623  0.077  

10 0 0 0.005  -0.002  -0.031  0.079  
11 0 0 0.010  -0.038  -0.525  0.072  
12 0 0 0.013  0.113  1.460  0.077  
13 0 0 0.003  -0.167  -2.041  0.082  
14 0 0 0.043  -0.063  -0.707  0.089  
15 0 0 0.065  0.054  0.725  0.075  
16 0 0 0.008  0.020  0.264  0.077  
17 0 0 0.025  0.072  1.135  0.063  
18 0 0 0.110  -0.082  -0.983  0.083  
19 0 0 0.192  0.015  0.198  0.076  
20 0 0 0.158  0.090  1.243  0.072  
21 0 0 0.001  0.005  0.077  0.069  

 
19 For example, according to our results from 1000 replications, in all 1000 replications our approach selected all 

five true regressors and discarded all irrelevant regressors. See more discussions in the Appendix C. Also see Hastie 

et al. (2017) for more examples of the performance of LASSO and other methods in other contexts. 
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22 0 0 0.004  -0.081  -1.028  0.078  
23 0 0 0.000  0.017  0.236  0.073  
24 0 0 0.038  0.021  0.261  0.081  
25 0 0 0.013  -0.021  -0.255  0.080  
26 0 0 0.000  0.050  0.778  0.064  
27 0 0 0.004  -0.115  -1.491  0.077  
28 0 0 0.002  0.109  1.218  0.090  
29 0 0 0.037  -0.111  -1.523  0.073  
30 0 0 0.249  0.101  1.445  0.070  
31 0 0 0.000  0.006  0.104  0.061  
32 0 0 0.002  0.116  1.296  0.089  
33 0 0 0.049  -0.112  -1.517  0.074  
34 0 0 0.000  -0.048  -0.603  0.080  
35 0 0 0.001  0.056  0.642  0.088  
36 0 0 0.043  -0.100  -1.031  0.097  
37 0 0 0.176  0.076  0.883  0.086  
38 0 0 0.207  0.011  0.158  0.072  
39 0 0 0.026  -0.079  -1.085  0.073  
40 0 0 0.003  0.021  0.305  0.070  
41 0 0 0.168  0.031  0.407  0.075  
42 0 0 0.010  -0.054  -0.790  0.068  
43 0 0 0.008  0.246  2.716  0.091  
44 0 0 0.017  -0.141  -1.909  0.074  
45 0 0 0.055  -0.003  -0.050  0.067  
46 0 0 0.039  -0.079  -1.049  0.075  
47 0 0 0.165  0.018  0.218  0.082  
48 0 0 0.001  -0.062  -0.617  0.100  
49 0 0 0.055  0.108  1.387  0.078  
50 0 0 0.017  -0.041  -0.552  0.074  

 

On the other hand, note that the estimated slope coefficients via LASSO-SCNLS 

are fairly far from the given (true) beta coefficients. Moreover, in virtually all the 

replications we analyzed, it seems that LASSO-SCNLS fails to discard the irrelevant 

regressors, i.e., it does not shrink the corresponding beta coefficients to zero even 

though we used the same tuning parameter that was optimal for the LASSO for the 

linear model (which is true here) and so, in a sense, is the best one can get here so far. 

In principle, it might be possible to develop a better method for an optimal selection 

of the tuning parameter 𝜆 specifically for LASSO-SCNLS that would help the latter 

perform well relative to the simplified approach, yet we were not able to do so (as 

apparently also the case for Lee and Cai (2018)) and hope that future research will 

help in this direction. Meanwhile, the simplified approach can already utilize many 

existing resources (available for Matlab, R, Python, etc.) and so appears to be a more 

reliable approach to use in practice so far.  
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Indeed, since LASSO-SCNLS showed very poor performance in a very simple (linear) 

world, it would be hard to believe that somehow it gets better for a more complicated 

world and so we do not expect it. To explore this conjecture, we also considered other 

scenarios when the true output has non-linear relationship to inputs, yet satisfies 

convexity and monotonicity (as required by SCNLS). Here it is worth noting that the 

latter two requirements (convexity and monotonicity) limit the degree of non-linearity 

substantially, making the linear approximation a fairly close approximation and so the 

simplified approach is still expected to work reasonably well, especially in a 

combination with the use of log-log (yet linear in parameters) or other popular in 

practice specifications.  

In various simulations that look at different degrees of non-linearity and different 

noise, we indeed noted that as the magnitude of the error term goes up compared 

with the input values, or if the degree of nonlinearity of the true output increases, the 

accuracy of the cross-validation LASSO identifying the true regressors decreases, 

leading to more instances of irrelevant regressors identified as relevant. (See the next 

sub-section and Appendix C for more discussions and details.) 

 

5.2.2. Comparisons of the simplified two-step approach and LASSO-SCNLS (EN-SCNLS) 

Here, we will compare the performance between the LASSO+DEA (LASSO+DEA1 and 

LASSO+DEA2)20 and LASSO-SCNLS (EN-SCNLS) for the contexts of large dimensions. 

We use the same DGP as in Zelenyuk’s (2019, Section 4.1), but only consider the single 

output case and keep only a few out of many inputs as relevant (and set other 

coefficients to zero). In particular, note that the relationship between the output and 

the inputs is non-linear here (Cobb-Douglass) and so the standard LASSO that uses a 

linear model in original units would be misspecified here, yet may still provide a fair 

approximation. Taking logarithmic transformation would obviously make this 

 
20 We consider the simplified two-step approach for both cross-validation LASSO and cross-validation EN because 

we consider both LASSO-SCNLS and EN-SCNLS in the following part. And we call it LASSO+DEA1 and LASSO+DEA2, 

respectively. 
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relationship linear, and we indeed do so here. Also, note that there is no noise in this 

DGP.    

In the following part, we consider 100 inputs and 1 output, three sample sizes (20, 

50 and 100) with 200 replications in our Monte Carlo simulations. Note that only 5 out 

of 100 inputs are relevant (i.e. true regressors) under the so-called sparsity 

assumption. As shown above, the goal is first to see if cross validation LASSO is able to 

select a good value for 𝜆 that helps identify the true relevant regressors and discard 

the irrelevant regressors, and then to compare the performance by comparing the 

true efficiency scores to their estimates between the LASSO+DEA and LASSO-SCNLS 

(EN-SCNLS). We use a similar procedure in section 5.2.1 for assigning the optimal 

tuning parameter 𝜆 of LASSO (EN) to LASSO-SCNLS (EN-SCNLS). We also consider two 

cases of γ, i.e. 1 and 0.5, which show different degrees of returns to scale in Zelenyuk 

(2019). Table 3 reports the results. Similar to Zelenyuk (2019), equation (9b) is used 

for calculation and result comparison. 
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Table 3. Monte Carlo results 

 Sample size: 20 Sample size: 50 Sample size: 100 

Indicators 
LASSO+

DEA1 

LASSO-

SCNLS 

LASSO+

DEA2 
EN-SCNLS 

LASSO+

DEA1 

LASSO-

SCNLS 

LASSO+

DEA2 
EN-SCNLS 

LASSO+

DEA1 

LASSO-

SCNLS 

LASSO+

DEA2 
EN-SCNLS 

𝛾 = 1 

Ave. MSE 0.057 0.124 0.062 0.124 0.055 0.127 0.062 0.127 0.069 0.125 0.078 0.125 
s. e. 0.003 0.002 0.003 0.002 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 

Ave. MAE 0.181 0.300 0.192 0.300 0.176 0.304 0.190 0.304 0.204 0.301 0.220 0.301 
s. e. 0.005 0.003 0.005 0.003 0.005 0.002 0.005 0.002 0.005 0.001 0.005 0.001 

Ave. BIAS -0.098 -0.300 -0.111 -0.300 -0.112 -0.304 -0.132 -0.304 -0.180 -0.301 -0.199 -0.301 
s. e. 0.009 0.003 0.010 0.003 0.009 0.002 0.009 0.002 0.007 0.001 0.007 0.001 
Ave. 

Pearson 0.524 0.277 0.501 0.316 0.554 0.296 0.495 0.321 0.504 -0.081 0.435 -0.092 

s. e. 0.019 0.016 0.019 0.015 0.018 0.009 0.020 0.008 0.018 0.011 0.018 0.011 
Ave. 

Spearman 0.464 0.416 0.426 0.371 0.509 0.440 0.448 0.459 0.407 -0.084 0.321 -0.093 

s. e. 0.021 0.015 0.021 0.016 0.019 0.008 0.021 0.008 0.020 0.011 0.021 0.011 
Ave. 

Kendall 0.350 0.299 0.320 0.260 0.380 0.307 0.334 0.322 0.304 -0.052 0.238 -0.059 

s. e. 0.016 0.011 0.016 0.012 0.015 0.006 0.016 0.006 0.015 0.008 0.016 0.007 
Ave. input 2.415 42.230 3.065 53.985 4.680 81.805 6.045 87.515 6.580 97.810 8.255 98.800 

s. e. 3.026 5.332 3.536 5.372 6.133 4.501 7.238 3.949 5.108 1.505 6.380 1.089 
Ave. 

selected 
relevant 

regressors 

1.020 2.730 0.995 3.184 1.765 4.380 1.790 4.570 2.980 4.950 2.950 4.975 

s. e. 0.556 0.978 0.515 0.975 0.980 0.697 0.988 0.604 1.044 0.218 1.067 0.156 
Ave. 

selected 
irrelevant 
regressors 

1.396 39.498 2.072 50.796 2.916 77.423 4.255 82.945 3.599 92.860 5.305 93.825 

s. e. 2.711 5.178 3.258 5.246 5.450 4.373 6.529 3.896 4.512 1.453 5.770 1.074 
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𝛾 = 0.5 

Ave. MSE 0.055 0.126 0.066 0.126 0.035 0.126 0.046 0.126 0.024 0.125 0.032 0.125 
s. e. 0.003 0.002 0.003 0.002 0.003 0.001 0.003 0.001 0.002 0.001 0.002 0.001 

Ave. MAE 0.179 0.302 0.199 0.302 0.134 0.303 0.155 0.303 0.106 0.301 0.124 0.301 
s. e. 0.005 0.003 0.005 0.003 0.005 0.002 0.005 0.002 0.004 0.001 0.005 0.001 

Ave. BIAS -0.158 -0.302 -0.176 -0.302 -0.106 -0.303 -0.132 -0.303 -0.065 -0.301 -0.090 -0.301 
s. e. 0.007 0.003 0.008 0.003 0.006 0.002 0.007 0.002 0.006 0.001 0.007 0.001 
Ave. 

Pearson 0.606 0.254 0.518 0.283 0.708 0.277 0.638 0.323 0.797 -0.082 0.747 -0.081 

s. e. 0.019 0.015 0.023 0.015 0.018 0.009 0.020 0.009 0.012 0.011 0.015 0.010 
Ave. 

Spearman 0.556 0.373 0.490 0.384 0.674 0.417 0.599 0.453 0.763 -0.079 0.698 -0.082 

s. e. 0.021 0.014 0.021 0.014 0.020 0.009 0.021 0.009 0.014 0.010 0.018 0.010 
Ave. 

Kendall 0.428 0.267 0.375 0.272 0.530 0.293 0.465 0.320 0.604 -0.049 0.549 -0.051 

s. e. 0.016 0.011 0.017 0.011 0.016 0.006 0.017 0.006 0.012 0.007 0.015 0.007 
Ave. input 2.425 41.480 3.760 54.120 2.890 81.650 4.005 87.170 2.260 97.895 3.110 98.715 

s. e. 2.683 4.775 4.066 4.929 4.805 4.973 5.824 4.472 3.179 1.508 3.910 1.221 
Ave. 

selected 
relevant 

regressors 

1.080 2.706 1.080 3.146 1.265 4.405 1.320 4.540 1.435 4.935 1.575 4.960 

s. e. 0.379 1.043 0.404 1.002 0.587 0.715 0.623 0.647 0.791 0.247 0.839 0.196 
Ave. 

selected 
irrelevant 
regressors 

1.344 38.777 2.679 50.975 1.624 77.245 2.687 82.631 0.826 92.960 1.537 93.755 

s. e. 2.527 4.532 3.900 4.739 4.378 4.826 5.361 4.340 2.597 1.473 3.317 1.181 
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As can be seen in Table 3, the results based on LASSO+DEA1 and LASSO+DEA2 

show better performance than those based on LASSO-SCNLS and EN-SCNLS. For 

example, for 20 observations and γ = 1 , the average MSE is around 0.06 for 

LASSO+DEA1 and LASSO+DEA2 while it is 0.12 for LASSO-SCNLS and EN-SCNLS. The 

average MAE and BIAS for LASSO+DEA1 and LASSO+DEA2 are smaller than those for 

LASSO-SCNLS and EN-SCNLS, respectively. And all three correlation indicators 

(Pearson, Spearman and Kendall) for LASSO+DEA1 and LASSO+DEA2 are also 

significantly higher than those for LASSO-SCNLS and EN-SCNLS.  

For the simplified two-step approach, according to our results in Table 3, for γ =

0.5, as the sample size gets larger, the average MSE, MAE and BIAS reduce and 

continue to be much smaller while the average Pearson, Spearman and Kendall 

increase and continue to be much larger for LASSO+DEA1 and LASSO+DEA2 relative to 

LASSO-SCNLS or EN-SCNLS. For the LASSO-SCNLS or EN-SCNLS, for γ = 0.5, as the 

sample size gets larger, there is only a slight decrease for the average MSE, MAE and 

BIAS while the average Pearson, Spearman and Kendall even reduce for the 100-

observation case. It should be noted that for γ = 1, as the sample size gets larger, the 

shrinkage performance for both the simplified two-step approach and LASSO-

SCNLS/EN-SCNLS does not work well (a slight increase in MSE, MAE and BIAS and a 

slight decrease in Pearson, Spearman and Kendall). For both cases of returns to scale, 

the performance for LASSO+DEA1 is slightly better than that for LASSO+DEA2. And the 

results for LASSO-SCNLS and EN-SCNLS are almost the same with small differences of 

correlation coefficients. 

Most importantly, for different sizes of observations, the average number of 

selected inputs is small for the simplified two-step approach, which shows a stable 

shrinkage of coefficients of irrelevant variables to zero while it is fairly large and varies 

too much for LASSO-SCNLS and EN-SCNLS. Moreover, the simplified two-step 

approach shows significantly better performance for excluding irrelevant regressors 

although LASSO-SCNLS and EN-SCNLS select slightly more relevant regressors. In fact, 
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the reasons for LASSO-SCNLS and EN-SCNLS’s better performance in selecting more 

relevant regressors may not be due to its inherent advantage but its lower ability for 

input shrinkage (e.g. for 100 observations, LASSO-SCNLS and EN-SCNLS could only 

shrink less than 2.2 out of 100 regressors in total). 

Overall, the simplified two-step approach appears to show better performance 

than LASSO-SCNLS and EN-SCNLS for the cases of very large dimensions, as is often 

pertinent for big data. 

 

6. Conclusions 

This study revisits the LASSO variable selection or dimension reduction in DEA by Lee 

and Cai (2018). Using the same idea, we also adapted the EN approach (known to 

perform better for correlated data) to the SCNLS. Unlike previous results, our Monte 

Carlo simulations suggest that none of the considered approaches generally dominate 

the others in the scenarios considered by Lee and Cai (2018). The degree of 

complication of these methods appears not to be justified by their capabilities even 

for the simple scenarios that we considered. This encouraged us to consider a 

simplified two-step approach for addressing the curse of dimensionality in DEA. 

Namely, we suggest using standard LASSO or its extensions (like EN or other variants) 

at the first stage to identify the relevant inputs and then, at the second stage, use the 

desired DEA approach on the relevant inputs. Our Monte Carlo simulations suggest 

this approach can indeed be not just much simpler but also much more useful for 

addressing the wide big data context where dimensions are very large. 

Recently, DEA has also been applied to streaming data for identifying outliers 

(Dulá and López, 2013) and a future direction of research can be to synthesize such 

approaches with our simplified approach. It is also worth noting that for high-

dimensional data streams in big data context, outlier detection may fail as data tends 

to become equally distant from each other and such approaches as Zhang et al. (2009) 

can also be explored for adaptation to the DEA context. 
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Finally, in the era of big data, it becomes challenging to deal not only with a large 

number of observations but a large number of inputs or environmental (contextual) 

variables as well. Efficient ways to deal with these problems remain open in the 

agenda and are likely to use novel techniques, for example, Bayesian compression 

(Guhaniyogi and Dunson, 2015) that accommodates uncertainty in the subspace 

reduction and exhibits a near parametric rate of convergence of the predictive 

distribution in the ‘large 𝑝, small 𝑛’ case. Moreover, an adaptation of the so-called 

two-stage-DEA (typically done via truncated regression and bootstrap as proposed by 

Simar and Wilson (2007) can also be adapted to the context of big wide data featuring 

very large dimensions of environmental variables, where a few key regressors need to 

be selected via LASSO. All in all, we hope our paper will encourage more research on 

these interesting questions that are important for both theorists and practitioners. 
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Appendixes 

 

Appendix A. The DGP setting in Lee and Cai (2018) 

Lee and Cai (2018) considered three cases of Monte Carlo simulations for numerical 

comparison: 

(1) Case 1: 25 observations with 10 dimensions (9 inputs and 1 output);  

(2) Case 2: 100 observations with 10 dimensions (9 inputs and 1 output); 

(3) Case 3: 25 observations with 11 dimensions (9 inputs and 2 outputs). 

Cases 1 and 2 are for a single-output scenario while case 3 is for a two-output scenario. 

In each case, Lee and Cai (2018) replicated the DGP 30 times (i.e. 30 Monte Carlo 

replications) for calculating AMSE. Below we briefly describe the DGP for Monte Carlo 

simulations with a single output in Lee and Cai (2018). 

Assume that the values of inputs are independently and identically distributed 

(i.i.d.) and generated from a uniform distribution of the interval (10, 20), i.e. 

𝑥𝑖𝑗~𝑈(10,  20). The inefficiency term is 𝜇𝑖~𝑁+(0, 𝜎2), where 𝜎 = 0.7. Consider a 

Cobb-Douglas (CD) production function with multiple inputs and a single output 𝑦𝑖
𝑇 

as a true “smooth” frontier. In particular, the true output 𝑦𝑖
𝑇  and the observed 

output 𝑦𝑖 are calculated by the following equations, respectively: 

 

𝑦𝑖
𝑇 = ∏ 𝑥𝑖𝑗

(
1

𝑝+1)

𝑗

,  ∀𝑖 = 1, . . . 𝑛, 𝑗 = 1, . . . , 𝑝 

 

𝑦𝑖 = ∏ 𝑥
𝑖𝑗

(
1

𝑝+1
)

𝑗 × 𝑒−𝜇𝑖,  ∀𝑖 = 1, . . . 𝑛, 𝑗 = 1, . . . , 𝑝                          (A.1) 

 

The methods described in Section 2 are used for dimension reduction. Then the 

output-oriented BCC model is used to calculate an observation or DMU’s efficiency 

𝜃𝑖
∗ . Run the DGP 𝑀  times, and calculate the AMSE from 𝑀  replications using 

equations (9a) and (10). 
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Appendix B. Performance comparison with more scenarios 

B.1. Results based on more general DGP 

Here we further analyze the performance of four different methods using more 

general DGPs. We consider two generalizations of DGP with a single output used in 

Lee and Cai (2018): 

(1) DGP 1: more general production function. Following Zelenyuk (2019), we assume 

the power 𝜅  (
1

𝑝+1
  in the Appendix A) of inputs is a random variable, i.e. 

𝜅~𝑈(0,  1); 

(2) DGP 2: more general production function and distribution of inefficiency. Except 

for the assumption in DGP 1, following Simar and Zelenyuk (2011), we assume that 

the standard deviation of the inefficiency term depends on the inputs, i.e. 

𝜇𝑖~𝑁+(0, 𝜎𝜇
2) , where we set 𝜎𝜇 = (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑝)/180 . Namely, the 

standard deviation varies in an interval [0.5, 1]. 

Due to space limitations, here we only report the results for DGP 2 with 150 

replications, which are shown in Figure B1. 

As shown in Figure B1, there is still no clear dominance for the four methods. The 

random method shows a worse performance for small dimensions while it shows a 

better performance for the results in Figure 1. Meanwhile, LASSO here appeared to 

be better than LASSO-SCNLS for small dimensions. 
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Figure B1. Results with 150 replications for DGP 2 

 

B.2. MSE results of efficiency scores 

Considering the average MSE are small and almost the same21 in Table 6 of Lee and 

Cai (2018), the scale transformation used in Lee and Cai (2018) may play an important 

role. As a result, instead of using the average MSE of outputs in Lee and Cai (2018), it 

may be better to compare the average MSE of efficiency scores (equation (9b) in 

Section 5), as is often done in other studies (e.g., Wilson, 2018; Zelenyuk, 2019). In 

this section, we further compare the results of different methods based on the MSE 

of efficiency scores. We consider 150 replications and the results are shown in Figure 

B2. We also find that there is no clear dominance of a certain method and no 

statistically significant difference among the methods. 

 

 
21 We also re-run the simulations by using the same DGP in their paper as well as more general DGPs (our DGP 1 

and DGP 2), and get similar results. 
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Figure B2. Results with 150 replications for MSE of efficiency scores 

 

B.3. Results based on the DGP in Wilson (2018) 

In order to show the performance of dimension reduction by EN-SCNLS and further 

compare the performance based on the introduced methods above, some Monte 

Carlo simulations are provided here. We consider four simulations based on the 

experiments used in Wilson (2018). 

Particularly, 𝑝  inputs and 𝑞  outputs are generated as follows: Using the 

method in Muller (1959) and Marsaglia (1972) to generate ( 𝑝 + 𝑞 )-tuples 𝑢 =

[𝑢𝑝, 𝑢𝑞] uniformly distributed on the surface of a closed (𝑝 + 𝑞)-ball with radius one 

centered at the origin. Here 𝑢𝑝 and 𝑢𝑞  are column vectors of lengths 𝑝 and 𝑞, 

respectively. Set 𝑥𝑖𝑗 = 𝜃𝑖
−1(1 − |𝑢𝑝|) and 𝑦𝑖 = |𝑢𝑞| where 𝜃𝑖 = (1 + 𝜖𝑖)−1, 𝜖𝑖 is 

drawn from 𝑁+(0, 𝜎𝜖
2), and 𝜎𝜖 = 0.25√π/2 so that 𝐸(𝜃𝑖

−1) = 1.25 and 𝐸(𝜃𝑖) ≈

0.8169. Similarly, we can consider the case with 𝜎𝜖 = 0.75√π/2 as shown in Wilson 

(2018). Note that the inefficiency term 𝜃𝑖 is used to obtain observed inputs (the true 

input is divided by the inefficiency term). Similarly, we can use the inefficiency term 
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to get observed outputs, and set 𝑥𝑖𝑗 = |𝑢𝑝| and 𝑦𝑖 = 𝜃𝑖(1 − |𝑢𝑞|). Then, we have 

four cases of simulations as follows: 

⚫ Case A: Output-oriented with 𝜎𝜖 = 0.25√π/2 

⚫ Case B: Output-oriented with 𝜎𝜖 = 0.75√π/2 

⚫ Case C: Input-oriented with 𝜎𝜖 = 0.25√π/2 

⚫ Case D: Input-oriented with 𝜎𝜖 = 0.75√π/2 

We consider nine inputs and two outputs with 200 replications in our Monte Carlo 

simulations. And the outputs are aggregated into one output using a weighted 

Euclidian function used in (Zelenyuk, 2019) before dimension reduction. Similar to 

Section B.2, we focus on the comparison of efficiency scores. Besides the average MSE 

comparison, we also examine the comparison for average mean absolute error 

(MAE)22, average BIAS, average Pearson coefficient, average Spearman coefficient and 

average Kendall coefficient. Due to space limitations, we only show the graphical 

results for the average MSE comparison, which are shown in Figures B3-B6. As can be 

seen in the figures below, the results based on different methods are similar. There is 

only a small average MSE difference for them. 

 

 
22 It is also known as mean absolute deviation (MAD).  
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Figure B3. AMSE with 200 replications for Case A 

 

 

Figure B4. AMSE with 200 replications for Case B 
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Figure B5. AMSE with 200 replications for Case C 

 

 

Figure B6. AMSE with 200 replications for Case D 
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We have run results for 1000 replications using the same DGP setting in Section 5.2.1. 

Here we only show the results of the first five replications (Rep. 1 to Rep. 5) in Table 

C1. As shown in Table C1, the cross-validation LASSO identifies all the true regressors 

and discards all the irrelevant regressors. In the last column of Table C1, we report the 

average coefficient for all regressors over 1000 replications. And the average 

estimated coefficients for the relevant regressors are very close to the corresponding 

true coefficients. 

 

Table C1. Performance comparison for four cases 

Inputs 𝛽𝑗  
Cross-validation LASSO 

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Average 

1 1 0.807 0.808 0.863 0.795 0.808 0.831 
2 2 1.971 2.018 1.962 1.920 1.954 1.950 
3 3 2.963 2.931 2.911 3.006 2.995 2.950 
4 4 3.878 3.972 3.963 3.960 3.922 3.951 
5 5 4.871 4.793 4.848 4.811 4.844 4.830 
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 
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38 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 0 0 0 0 0 
42 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 
50 0 0 0 0 0 0 0 

 

C.2. More cases of noise 

In this section we consider six different cases of noise relative to inefficiency. All the 

other parameters are the same with the setting in Section 5.2.1, except for the 𝛿𝑣. 

And the results are shown in Table C2. In all six cases, the cross-validation LASSO 

identifies all the true regressors but also discards all irrelevant regressors. 

 

Table C2. Estimated coefficients for different noises 

Inputs 𝛽𝑗  
Cross-validation LASSO 

𝛿𝑣=0.005 𝛿𝑣=0.001 𝛿𝑣=0.01 𝛿𝑣=0.05 𝛿𝑣=0.1 𝛿𝑣=0.5 

1 1 0.813 0.841 0.809 0.825 0.823 0.821 
2 2 1.956 1.873 2.032 1.947 1.944 1.983 
3 3 2.941 2.940 2.884 2.984 2.917 3.040 
4 4 3.939 3.979 3.938 3.926 3.989 3.851 
5 5 4.856 4.814 4.853 4.866 4.834 4.846 
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 
20 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 
25 0 0 0 0 0 0 0 
26 0 0 0 0 0 0 0 
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27 0 0 0 0 0 0 0 
28 0 0 0 0 0 0 0 
29 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 
34 0 0 0 0 0 0 0 
35 0 0 0 0 0 0 0 
36 0 0 0 0 0 0 0 
37 0 0 0 0 0 0 0 
38 0 0 0 0 0 0 0 
39 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
41 0 0 0 0 0 0 0 
42 0 0 0 0 0 0 0 
43 0 0 0 0 0 0 0 
44 0 0 0 0 0 0 0 
45 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 
47 0 0 0 0 0 0 0 
48 0 0 0 0 0 0 0 
49 0 0 0 0 0 0 0 
50 0 0 0 0 0 0 0 

 

C.3. More cases of SNR 

Moreover, we also consider different cases of SNR. Similarly, all the other parameters 

are the same with the setting in Section 5.2.1, except for the SNR. And the results are 

shown in Table C3. As shown in Table C3, the estimated coefficients of irrelevant 

regressors are close to their corresponding true coefficients. Note that irrelevant 

regressors may be selected although the number of the selected irrelevant regressors 

is very small. 

 

Table C3. Estimated coefficients for different SNRs 

Inputs 𝛽𝑗  
Cross-validation LASSO 

SNR=0.05 SNR=0.14 SNR=0.42 SNR= 1.22 SNR=3.52 SNR=6.00 

1 1 0.951 0.670 0.904 0.803 0.870 0.859 

2 2 2.100 2.133 1.933 1.943 1.886 1.964 

3 3 2.806 3.053 2.998 2.964 2.966 2.962 

4 4 3.838 3.965 3.935 3.977 3.977 3.916 

5 5 4.828 4.834 4.928 4.835 4.845 4.851 

6 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 
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10 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 

24 0 0.077 0 0 0 0 0 

25 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 

41 0 0 0 0 0 0 0 

42 0 0 0 0 0 0 0 

43 0 0 0 0 0 0 0 

44 0 0 0 0 0 0 0 

45 0 0 0 0 0 0 0 

46 0 0 0 0 0 0 0 

47 0 0 0 0 0 0 0 

48 0 0 0 0 0 0 0 

49 0 0 0 0 0 0 0 

50 0 -0.019 0 0 0 0 0 

 

C.4. Linearity and non-linearity 

Except for the DGP setting in Section 5.2.1, we also consider the following cases:  

I) 𝑥𝑖𝑗~𝑈(1,  20): 𝛿𝑢 = 2; 𝛿𝑣 = 0.5; 

II) 𝑥𝑖𝑗~𝑈(1,  20): 𝛿𝑢 = 2; 𝛿𝑣 = 1; 
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III) 𝑥𝑖𝑗~𝑈(1,  20): 𝛿𝑢 = 2; 𝛿𝑣 = 2; 

IV) 𝑦𝑖 = ∑ 𝑥𝑖𝑗
5
𝑗=1 + 0.2 × 𝑥𝑖1

2 ; 

V) 𝑦𝑖 = ∑ 𝑥𝑖𝑗
5
𝑗=1 + 𝑥𝑖1

2 ; 

VI) 𝑦𝑖 = ∑ 𝑥𝑖𝑗
5
𝑗=1 + 2 × 𝑥𝑖1

2
. 

Note that in each case all the other settings are the same with Section 5.2.1 if not 

explicitly declared. In case I, II and III, except for the distribution of 𝑥𝑖𝑗, the value of 

𝛿𝑢 and 𝛿𝑣, all the other parameter settings are the same with Section 5.2.1. In case 

IV, V and VI, the distribution of 𝑥𝑖𝑗 and other parameters are the same with Section 

5.2.1, except for the non-linear assumption. 

Comparing case I with case II and III, case III and II show more noise than case I. 

Case IV is slightly non-linear while case V and VI are more non-linear. And the results 

of cross-validation LASSO are shown in Tables C4, respectively. 

 

Table C4. Estimated coefficients for four cases 

Inputs 𝛽𝑗  
Cross-validation LASSO 

I II III IV V VI 

1 1 0.929 0.907 0.883 0.859 0.537 0 

2 2 1.900 1.927 1.889 2.022 2.163 1.624 

3 3 2.872 2.930 2.940 2.946 2.964 3.235 

4 4 3.870 3.889 3.917 3.959 3.632 2.951 

5 5 4.894 4.920 4.916 4.816 4.889 4.715 

6 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 

9 0 0 0 0 0 0.040 0 

10 0 0 0 0.071 0 0 0 

11 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 
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22 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 

30 0 0 -0.006 0 0 0 0 

31 0 0 0 -0.017 0 0 0 

32 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 

37 0 0 0 0.019 0 0 0 

38 0 0 0 0 0 0 0 

39 0 0 0 -0.002 0 0 0 

40 0 0 0 0 0 0 0 

41 0 0 0 0 0 0 0 

42 0 0 0 0 0 0 0 

43 0 0 0 0 0 0 0 

44 0 0 0 0 0 0 0 

45 0 0 0 0 0 0 0 

46 0 0 0 0 0 0 0 

47 0 0 0 0 0 0 0 

48 0 0 0 0 0 0 0 

49 0 0 0 0 0 0 0 

50 0 0 0 -0.001 0 0 0 

 

For case I, the cross-validation LASSO identifies the first five true inputs or 

regressors and discards all the other unnecessary regressors. The estimated beta 

coefficients are close to the given (true) beta coefficients. For case II, the cross-

validation LASSO also identifies five true regressors. However, one unnecessary 

regressor is also identified. For case III, the cross-validation LASSO also identifies five 

true regressors but five unnecessary regressors are identified. Hence, if the magnitude 

of the noise increases, the accuracy of the cross-validation LASSO discarding the 

unnecessary regressors decreases. 

For case IV, the cross-validation LASSO still identifies the first five true regressors, 

and discards all the other unnecessary regressors. The estimated beta coefficients are 
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also close to the given (true) beta coefficients. Hence, if the true output is non-linear 

but is not too far from linear, the cross-validation LASSO still works reasonably well. 

However, for case VI, the cross-validation LASSO only identifies four true regressors. 

And in case V one unnecessary regressor is identified. Moreover, the estimated 

coefficients of the true regressors deviate from the corresponding true coefficients in 

cases V and VI. Hence, the further from the linearity, the less accurate the cross-

validation LASSO should be expected to perform, yet there are apparently no better 

alternatives so far and a call for further research on this is in order. 

 

Table C5. Results for performance statistics 

 I II III IV V VI 

Ave. selected relevant regressors 5 5 5 5 4.998 4.817 

Ave. selected irrelevant regressors 0.005 0.288 2.801 0.001 0.17 0.161 

The number of correctness of 

regressor selection/discard 
996 803 185 999 881 718 

Ave. estimated  𝛽1 0.90 0.93 0.92 0.84 0.75 0.53 

Ave. estimated  𝛽2 1.90 1.92 1.92 1.95 1.93 1.81 

Ave. estimated  𝛽3 2.90 2.93 2.92 2.95 2.93 2.85 

Ave. estimated  𝛽4 3.90 3.92 3.92 3.96 3.93 3.84 

Ave. estimated  𝛽5 4.90 4.93 4.92 4.84 4.74 4.48 

 

In fact, we try each case in Table C4 for 1000 replications. And the results for the 

performance statistics are shown in Table C5. In case I to IV, as shown in the first row 

of Table C5, in all the 1000 replications the cross-validation LASSO selected all five true 

regressors. However, in case I to IV the cross-validation LASSO may select irrelevant 

regressors. In case I, as shown in the third row of Table C5, in 996 replications the 

cross-validation LASSO selected all five true regressors and discarded all irrelevant 

regressors while the number decreases to 803 in case II. And as shown in the second 

row of Table C5, on average (over the 1000 replications) about 0.005 and 0.288 of 45 

irrelevant regressors were selected in case I and II, respectively. In case III, only in 185 

replications did the cross-validation LASSO select all five true regressors and discard 

all irrelevant regressors. While the method is not perfect and in some peculiar 
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replications the number of selected irrelevant variables was relatively large, on 

average about 2.801 of 45 irrelevant regressors were selected. In case I to III, as shown 

in the last five rows of Table C5, the average estimated coefficients of the first five 

regressors were almost the same and close to their corresponding true coefficients. 

In case IV, the cross-validation LASSO performed quite well. It selected all five true 

regressors and discarded all irrelevant regressors in 999 out of 1000 replications. In 

case V and VI, if the true output goes further away from the linearity, the performance 

decreases. Over the 1000 replications, on average about 4.817 of 5 relevant regressors 

were selected, and about 0.161 of 45 irrelevant regressors were selected in case VI. 

Moreover, from case IV to VI, the average estimated coefficients of the first five 

regressors decrease and gradually deviate from their corresponding true coefficients. 
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