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Abstract

In this paper, we study the estimation and inference problems for parameters when the data
set is obtained by combining data from different sources. In the case where we want to estimate
the means of random variables in our data set, we consider the set of estimators that are linear
combinations of certain sample averages, and find that one estimator, defined to be the Adjusted
estimator, that achieves the smallest possible asymptotic variance among all estimators in this set.
In particular, the Adjusted estimator has smaller asymptotic variance than two commonly used
estimators, the Short estimator and the Long estimator for the mean. Based on this result, we
study inference problems in moment inequality models. We implement GMS procedure with three
constructions of the sample moments: the Short, the Long and the Adjusted sample moments. We
show that the resulting three GMS tests control asymptotic sizes. Based on local power analysis
and simulations, we recommend using GMS with the Adjusted sample moments for better power.
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1 Introduction

In applied research, it is very common for researchers to construct the data set they use by combining

data obtained from different sources, each source containing a random sample of observations

on some variables. For example, in the recent paper Banerjee et al. (2013), the authors study

how participation in a micro-finance program diffuses through social networks, and their data are

obtained from two sources. The first one is a detailed individual survey that was administered

to a randomly selected subsample of villagers and their spouses, and it contains information on

individual’s age, sub-caste, education, language, native home, occupation and social network data.

And the second one is a full census that collected data on all households in the villages using a

village questionnaire, and it contains demographic information, GPS coordinates and data on a

variety of amenities for every household in each village. In general, for a unit i (can be individuals,

firms, countries, households, etc) in our study, we may have survey data that provides information

on a random variable X, and have another source of data (can be full census, administrative data,

aggregate data on a neighborhood, etc) that provides information on a random variable Y . And

we refer to this type of data set as having combined data sources in this paper. More examples on

combining data sources include Acemoglu et al. (2015), Wollmann (2014) and Dupas et al. (2015)

among others.

With combined data sources, it is very likely that data coming from different sources contain

different numbers of observations. And as a result, the complied data set is likely to have different

numbers of observations for different variables. In this paper, we focus on the situations where

the second source contains not only the units present in the first source, but also additional units.

In consequence, the available data to the researcher is a sequence of independent and identically

distributed (i.i.d.) random variables X1, ..., Xn1 and Y1, ..., Yn1 , Yn1+1, ..., Yn1+n2 . So for the first n1

units there is information on both X and Y , while for the last n2 units there is only information on

Y .1 In the example of Banerjee et al. (2013) above, the first source contains data on its variables

for about 46% of all households per village, while the second source has data on a different set of

variables for all households in each village.

In this situation, the common practice for researchers is to work with the sample {(Xi, Yi) :

1 ≤ i ≤ n1} and discard the last n2 observations on Y , with or without explicitly mentioning it.

In this paper, we study whether this is the best thing to do or if there exist better alternatives. In

order to answer this question, we consider moment condition models that are defined by moment

equalities or moment inequalities, where some of the moments only depend on the random variable

Y and do not depend on X.

To fix ideas, suppose we have the following moment inequality model:{
E[m1(Xi, Yi, θ)] ≥ 0

E[m2(Yi, θ)] ≥ 0

1Since the labeling of the units does not matter, we can let the n1 units that have both observations on X and
Y be the first n1 units in our data set.
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where the second moment inequality depends on Y but not on X. To estimate a moment equality

model or to do inference in a moment inequality model, a necessary step is to construct sample

analogues as consistent estimators of the moment functions. If a researcher chooses to work with

the sample {(Xi, Yi) : 1 ≤ i ≤ n1} instead, she will use (m̄1,1:n1 , m̄2,1:n1) as the sample moments,

where m̄j,a:b denotes the average of mj over observations i = a, ..., b, respectively. In other words,

she will use n1 values of m1 and m2 to form the sample moments, and we call the resulting sample

analogues the Short sample moments. In this situation, one may also realize that there are n1 +n2

observations for m2, and consider using (m̄1,1:n1 , m̄2,1:(n1+n2)) as the sample moments. We call the

resulting sample analogues the Long sample moments.

In this paper, we propose using the Adjusted sample moments:

m̄adj
1 = m̄1,1:n1 + f(Σ̂n)[m̄2,1:n1 − m̄2,(n1+1):(n1+n2)] (1)

m̄adj
2 = m̄2,1:(n1+n2)

where f(Σ) is a known function of the variance covariance matrix Σ of (m1,m2), and Σ̂n is a

consistent estimator of Σ. And we present results that support the Adjusted sample moments in

several steps. First, we look at estimating the means of two random variables (X,Y ) with normally

distributed data, and show that the maximum likelihood estimator (MLE) takes the form in (1).

Motivated by the finding in the normal case, we focus on the set of estimators that can be written

as linear combinations of X and Y over i = 1, ..., n1 and i = n1 +1, ..., n and show that the Adjusted

estimator in (1) achieves the lowest asymptotic variance within this set. In particular, the Short,

the Long and the Adjusted estimators all belong to this set, so the Adjusted estimator has smaller

asymptotic variance compared to the Short and the Long estimators. Next, we apply the three

estimators to construct sample moments in a moment inequality model. From our previous results,

the Adjusted sample moments have the smallest asymptotic variance in estimating the moment

condition among these three estimators. We then show that using the Adjusted estimator leads to

inference on θ that, not only controls asymptotic size, but also delivers higher asymptotic power

under certain specific alternative hypothesis than inference based on the Short or the Long sample

moments. As a special case, the asymptotic power results extend immediately to doing inference

on θ in moment equality models.

Following the literature, inference for parameters in moment inequality model considered in this

paper is carried out by inverting suitable tests to obtain confidence sets for the parameters. And the

tests are implemented with generalized moment selection (GMS) critical values. GMS is introduced

by Andrews and Soares (2010), and is shown to deliver confidence sets that have correct coverage

probability asymptotically. Moreover, compared to other existing methods (plug-in asymptotic and

subsampling) in the literature that also have the correct asymptotic coverage probabilities, GMS

tests are shown to have better power properties. In this paper, we construct GMS tests using the

Short, the Long, and the Adjusted sample moments, and compare these three inference procedures.

We view this paper as an attempt to answer how the asymptotic variance of the sample moments
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affect the quality of inference with GMS methods.

There are not many papers in the literature that deal with estimation and inference problems

with combined data sources. As far as we know, there is one paper, Lynch and Wachter (2008)

that studies similar problems to ours, but our paper has some important differences from their

paper. Lynch and Wachter (2008) studies the estimation problem in generalized method of mo-

ments (GMM) models with samples of unequal length, and also proposes the Adjusted estimator

for asymptotic efficiency gain over the Short and the Long estimator. However, we show the op-

timality of the Adjusted estimator within a certain set of estimators, and thus provide stronger

motivations for using the Adjusted estimator. We also explain in more details why the properties

of the asymptotic variance of the Adjusted estimator matter, other than improving the efficiency

of estimation. Moreover, we study the inference problem in moment inequality models, which is

very different from the estimation of GMM models and is not mentioned in their paper.

The remainder of the paper is organized as follows. Section 2 sets up the data generating

process we consider in this paper, and discuss the problem of estimating means of variables with

combined data sources. MLE in the normal case is derived in Section 2.2, and general results on the

asymptotic variances of a set of estimators are presented in Section 2.3. Section 3 studies inference

in moment inequality model in general form. The three test statistics we consider are defined in

Section 3.2, GMS method is described in Section 3.3, size and power properties are discussed in the

rest of Section 3. Section 4 gives an example on moment inequality model, and show how the tests

are implemented. Results of numerical experiment on power for the example model are shown in

Section 4.3.

2 Estimating Means of Variables with Combined Data Sources

Consider the situation where we have different numbers of observations for different variables in

our data set. This can happen, for example, when researchers obtain their data sets by combining

data from different sources with a unique identifier. In this section, we study how to estimate the

means of the variables in a data set in this situation. In particular, we look at estimators that are

consistent and asymptotically normally distributed.

To do this, we first describe the data generating process we consider. Then we look at the maxi-

mum likelihood estimator (MLE) for the means when the variables are jointly normally distributed

to gain some intuition. Based on the intuition from the normal case, we consider a particular set

of estimators in the general case without imposing any distributional assumptions.
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2.1 Data Generating Process

Let X and Y be two random variables in our data set. Suppose we are interested in estimating

µ = (E[X],E[Y ])′, and we observe:

Xi : i = 1, 2, ..., n1,

Yi : i = 1, 2, ..., n1, n1 + 1, n1 + 2, ..., n1 + n2,

where subscript i indicates that the observed value is obtained from individual i. For example, X

can be individual’s income from a survey, and Y can be individual’s age from census data. Let

n = n1 + n2, and we make the following assumption on the data generating process:

Assumption 2.1. Xi and Yi are i.i.d. with a common i, and

(a) E[X] and E[Y ] are finite,

(b) Var[X] and Var[Y ] are positive and finite.

In the i.i.d. case we consider here, an intuitive way of constructing estimators for µ would

be using the sample means. Since we have different numbers of observations on X and on Y , we

need to specify which part of the observations we are using when we calculate sample means. In

particular, we use the following notations for sample averages:

X̄1:n1 =
1

n1

n1∑
i=1

Xi,

Ȳ1:n =
1

n

n∑
i=1

Yi,

Ȳ1:n1 =
1

n1

n1∑
i=1

Yi,

Ȳ(n1+1):n =
1

n2

n1+n2∑
i=n1+1

Yi,

where the subscript a : b indicates that we are using i = a, ..., b to construct the sample average,

respectively.

There are two estimators for µ in this setting that are widely used by applied researchers, and

both estimators are constructed using sample averages. The first one is (X̄1:n1 , Ȳ1:n)′, where we

take the sample averages over all the observations available for each variable. We call this estimator

the Long estimator for the sample mean, and denote it as µ̂`. One may also discard the part of

data set that has no observations for Xi, and only use the observations with i = 1, 2, ..., n1 to

calculate the sample averages, and this leads us to the second estimator (X̄1:n1 , Ȳ1:n1)′. We call this

second estimator the Short estimator for the sample mean, and denote it as µ̂s. Although these

two estimators are very popular, their properties have not been fully discussed. In this section, we

will explore more on how to estimate µ, and study the asymptotic variances of different estimators.
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To start with, we look at a special case where we impose parametric assumptions on F , and

study the MLE for µ.

2.2 Intuition from the Normal Case

Starting with Fisher in 1920s, there are many theorems that show that a normal distribution with

mean zero and covariance matrix equals to the inverse of the Fisher information matrix is a ”best

possible” asymptotic distribution that an estimator can have. Important results in this literature

include the famous Cramér−Rao bound. This asymptotic distribution is achieved by MLE, and is,

indeed, the best possible using certain qualifications. See the two convolution theorems by Hájek

for more details. To gain some intuitions on how to find a good estimator, in this subsection only,

we assume further that (X,Y ) are jointly normally distributed with known variance covariance

matrix Σ and unknown mean vector µ, and look at the MLE for µ .

Denote the correlation between X and Y as ρ, and denote the standard deviation of X and Y

as σX and σY , respectively. When |ρ| < 1, Σ is invertible, and the likelihood function evaluated at

µ = (µX , µY )′ can be written as:

L(µX , µY ) =

n1∏
i=1

1

2π
|Σ|−

1
2 e−

1
2

[(Xi,Yi)−(µX ,µY )]Σ−1[(Xi,Yi)−(µX ,µY )]′
n1+n2∏
i=n1+1

1√
2πσY

e−(Yi−µY )2/2σ2
Y .

Maximizing the likelihood function with respect to µX and µY is the same problem as maximizing

the log likelihood function:

l(µX , µY ) = C − 1

2

n1∑
i=1

[(Xi, Yi)− (µX , µY )]Σ−1[(Xi, Yi)− (µX , µY )]′ − 1

2

n1+n2∑
i=n1+1

(Yi − µY )2/σ2
Y ,

where C is a constant. Taking first order conditions with respect to µX and µY ,

0 =
∂l(µX , µY )

∂µX
=

n1σY
(1− ρ2)σ2

XσY

[
(X̄1:n1 − µX)σY − (Ȳ1:n1 − µY )ρσX

]
0 =

∂l(µX , µY )

∂µY
=

n1σX
(1− ρ2)σ2

Xσ
2
Y

[
(Ȳ1:n1 − µY )σX − (X̄1:n1 − µX)ρσY +

n2

n1
(1− ρ2)σX(Ȳ(n1+1):n − µY )

]
,

which delivers the following estimators for E[X] and E[Y ]:{
µ̂MLE
X = X̄1:n1 −

ρσX
σY

(Ȳ1:n1 − Ȳ1:n) = X̄1:n1 − n2
n ×

ρσX
σY

(Ȳ1:n1 − Ȳ(n1+1):n)

µ̂MLE
Y =

n1Ȳ1:n1+n2Ȳ(n1+1):n

n = Ȳ1:n

.

When |ρ| = 1, we get the same results for MLE with slightly different derivations.

Notice that the MLE for E[X] is different from the sample average X̄1:n1 in general. More

specifically, whenever ρ is not 0, the MLE uses the difference between Ȳ1:n1 and Ȳ1:n to adjust the

estimator X̄1:n1 .

To better understand the MLE for E[X], consider the case where ρ > 0 and (Ȳ1:n1 − Ȳ1:n) is
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positive. Since Ȳ1:n has smaller variance than Ȳ1:n1 , Ȳ1:n is considered a more accurate estimate

for E[Y ], and Ȳ1:n1 is considered likely to be above its mean when Ȳ1:n1 > Ȳ1:n. Since X and Y

are positively correlated, X̄1:n1 is also likely to be above its mean in this case. Thus MLE adjusts

downwards relative to X̄1:n1 and

µ̂MLE
X − X̄1:n1 = −ρσX

σY
(Ȳ1:n1 − Ȳ1:n) < 0.

So the difference between µ̂MLE
X and X̄1:n1 is larger when the correlation ρ or the difference (Ȳ1:n1−

Ȳ1:n) is bigger. Similarly, when ρ < 0 and (Ȳ1:n1 − Ȳ1:n) is positive, Ȳ1:n1 is again considered likely

to be above its mean, and X̄1:n1 is likely to be below its mean as X and Y are negatively correlated.

In this case, the MLE for E[X] adjusts upwards and is larger than X̄1:n1 .

Intuitively, whenever X and Y are correlated, having more observations on Y can be informative

on estimating the mean of X. However, when X and Y are uncorrelated, having data on Y will not

help us estimate the mean of X. Indeed, when ρ = 0, the MLE for E[X] equals to X̄1:n1 , regardless

of the value of (Ȳ1:n1 − Ȳ1:n).

Now we compare the variance of µ̂s, µ̂` and µ̂MLE . Recall that µ̂s = (X̄1:n1 , Ȳ1:n1)′ and µ̂` =

(X̄1:n1 , Ȳ1:n)′. By direct calculations

Var[µ̂s] =

(
1
n1
σ2
X

1
n1
ρσXσY

1
n1
ρσXσY

1
n1
σ2
Y

)

Var[µ̂`] =

(
1
n1
σ2
X

1
nρσXσY

1
nρσXσY

1
nσ

2
Y

)

Var[µ̂MLE ] =

(
1
n1
σ2
X −

n2
nn1

ρ2σ2
X

1
nρσXσY

1
nρσXσY

1
nσ

2
Y

)
.

And the differences in the variances are:

Var[µ̂s]−Var[µ̂MLE ] =

(
n2
nn1

ρ2σ2
X

n2
nn1

ρσXσY
n2
nn1

ρσXσY
n2
nn1

σ2
Y

)
,

Var[µ̂`]−Var[µ̂MLE ] =

(
n2
nn1

ρ2σ2
X 0

0 0

)
.

Based on the differences in the variances, if we are interested in estimating E[X], then µ̂MLE
X is a

better estimator than X̄1:n1 , since the variance of µ̂MLE
X is no larger than the variance of X̄1:n1 in

general and is strictly smaller when ρ 6= 0. If we are interested in estimating E[Y ], then µ̂MLE
Y = Ȳ1:n

is a better estimator than Ȳ1:n1 since µ̂MLE
Y has smaller variance. If we are interested in estimating

µ and, possibly, any linear combinations of E[X] and E[Y ], then µ̂MLE
X is a better estimator than µ̂s

and than µ̂`, since the two matrices of the differences in variances above are positive semi-definite.

We’ll discuss more on this problem later in this section.
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2.3 The General Case

Now we remove the distributional assumption and study the general case. In the example above,

notice that the MLE is a linear combination of X̄1:n1 , Ȳ1:n1 and Ȳn1:n2 . So we consider all two

dimensional vectors that are linear combinations of these sample averages and look for consistent

estimators for µ that can be written as a linear combination of them.

Take any linear combination of X̄1:n1 , Ȳ1:n1 and Ȳn1:n2(
a1X̄1:n1 + a2Ȳ1:n1 + a3Ȳn1:n2

b1X̄1:n1 + b2Ȳ1:n1 + b3Ȳn1:n2

)
.

By LLN, we have X̄1:n1

p→ E[X], Ȳ1:n1

p→ E[Y ], Ȳ(n1+1):n
p→ E[Y ] as n1, n2 → +∞, so the linear

combination above is consistent for µ if and only if{
a2 + a3 = b1 = 0

a1 = b2 + b3 = 1.

Based on this observation, we define the following set

M = {µ̂(a, b)|
(
X̄1:n1 + a(Ȳ1:n1 − Ȳ(n1+1):n), bȲ1:n1 + (1− b)Ȳ(n1+1):n

)′
, a, b ∈ R},

i.e. M is the set of all linear combinations of X̄1:n1 , Ȳ1:n1 and Ȳn1:n2 that deliver consistent

estimators for µ. Notice that µ̂s is in M for a = 0 and b = 1, and that µ̂` is also in M for a = 0

and b = n1/n.

Next, we study the variances of the estimators in M for a fixed n. By direct calculation we

have

Var[X̄1:n1 + a(Ȳ1:n1 − Ȳ(n1+1):n)] =
n

n1n2
σ2
Y a

2 +
2ρσXσY
n1

a+
1

n1
σ2
X .

This variance, when viewed as a function of a, is uniquely minimized at

a∗n = −n2ρσX/(nσY ),

and the corresponding estimator for E[X] is

X̄1:n1 −
n2ρσX
nσY

(Ȳ1:n1 − Ȳ(n1+1):n).

Similarly, we have

Var[bȲ1:n1 + (1− b)Ȳ(n1+1):n] = [
n

n1n2
b2 − 2b

n2
+

1

n2
]σ2
Y .

And this variance, when viewed as a function of b, is uniquely minimized at

b∗n = n1/n,
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and the corresponding estimator for E[Y ] is Ȳ1:n. The optimal weights a∗n and b∗n are infeasible

since σX , σY and ρ are unknown.

Notice that µ̂(a∗n, b
∗
n) takes the same form as the µ̂MLE in the normal case, and our previous

discussions on the comparisons of the variances of µ̂S , µ̂L and µ̂MLE apply, since the calculations

of the variances are valid without distributional assumptions.

In the general case without any distributional assumptions, we find that µ̂(a∗n, b
∗
n) is the element

in M of which each entry achieves the smallest possible variance for given n1 and n. Next, we

study the asymptotic variance covariance matrices of the estimators in M. In order to do this, we

need to specify how n1 and n2 change as n→∞, and we make the following assumption.

Assumption 2.2. Assume the sample sizes satisfy n1/n → λ ∈ (0, 1) as n → ∞, where λ is a

constant.

And we have the following theorem on the asymptotic variances.

Theorem 2.1. Suppose Assumption 2.1, Assumption 2.2 and Assumption 2.3 hold. Let V (M) be

the set of asymptotic variance covariance matrices of the estimators in set M:

V (M) =
{
V |∃µ̂(a, b) ∈M,

√
n[µ̂(a, b)− (E[X],E[Y ])′]

d→ N(0, V )
}
,

and let

V ∗ =

[
1
λ Var[X]− (1−λ)

λ
Cov2(X,Y )

Var[Y ] Cov(X,Y )

Cov(X,Y ) Var[Y ]

]
.

Then for all V ∈ V (M), it follows that V − V ∗ is positive semi-definite. Moreover, let µ̂(a∗, b∗) be

the element in M with

a∗ = −(1− λ)
Cov(X,Y )

Var[Y ]
and b∗ = λ,

then µ̂(a∗, b∗) has asymptotic variance covariance matrix equal to V ∗.

Proof: By CLT, we have

√
n


 X̄1:n1

Ȳ1:n1

Ȳ(n1+1):n

−
 E[X]

E[Y ]

E[Y ]


 d→ N


 0

0

0

 ,
1

λ
×

 Var[X] Cov(X,Y ) 0

Cov(X,Y ) Var[Y ] 0

0 0 λ
1−λ Var[Y ]


 .

Take µ̂(a, b) ∈M, i.e.

µ̂(a, b) =
(
X̄1:n1 + a(Ȳ1:n1 − Ȳ(n1+1):n), bȲ1:n1 + (1− b)Ȳ(n1+1):n

)′
,

then the asymptotic distribution of µ̂(a, b) is

√
n

(
µ̂(a, b)−

(
E[X]

E[Y ]

))
d→ N

((
0

0

)
, V (a, b)

)
,
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where

V (a, b) =
1

λ
×

(
a2 1

1−λ Var[Y ] + Var[X] + 2aCov(X,Y ) a
[
b− (1− b) λ

1−λ
]

Var[Y ] + bCov(X,Y )

a
[
b− (1− b) λ

1−λ
]

Var[Y ] + bCov(X,Y )
[
b2 + (1− b)2 λ

1−λ
]

Var[Y ]

)
.

The difference between V (a, b) and V ∗ is

V (a, b)− V ∗ =
1

λ
×

(
1

1−λ
[
a+ (1− λ)Cov(X,Y )

Var[Y ]

]2
Var[Y ] (b− λ)

[
1

1−λaVar[Y ] + Cov(X,Y )
]

(b− λ)
[

1
1−λaVar[Y ] + Cov(X,Y )

]
1

1−λ
[
b− λ

]2
Var[Y ]

)
.

Notice that

det(V (a, b)− V ∗) = 0

and that the diagonal elements of V (a, b)− V ∗ are always non-negative. In particular,

•
(
V (a, b)− V ∗

)
11
≥ 0, with equality if and only if a = −(1− λ)Cov(X,Y )

Var[Y ] = a∗.

•
(
V (a, b)− V ∗

)
22
≥ 0, with equality if and only if b = λ = b∗.

So V (a, b) − V ∗ is positive semi-definite when (a, b) 6= (a∗, b∗). And when (a, b) = (a∗, b∗), we get

exactly µ̂(a∗, b∗) with asymptotic variance V ∗.

�

We use the following notion to compare matrices. Let A and B be two symmetric matrices of

the same size. We say A ≤ B if B − A is positive semi-definite, and A < B if B − A is positive

definite, respectively.

Remark 2.1. If we look at the elements in M with fixed weights a and b, then µ̂∗ is the only

one that has asymptotic variance equals to V ∗. If we look at sequences of elements µ̂(an, bn) inM
instead, then the asymptotic variance of µ̂(an, bn) is always greater than or equal to V ∗. Moreover,

the asymptotic variance of µ̂(an, bn) equals to V ∗ if and only if

an → a∗ and bn → b∗ as n→∞.

In particular, the optimal weightings (a∗n, b
∗
n) that we found for a given sample size n satisfy this

condition, i.e.

a∗n → a∗ and b∗n → b∗ as n→∞.

The optimal weights a∗, b∗ are infeasible, but they depend on unknown quantities that can be

consistently estimated from the data. In particular, if we can find estimators ân and b̂n such that{
ân = a∗ + op

(
1)

b̂n = b∗ + op
(
1)

,

then replacing (a∗, b∗) with (ân, b̂n) will lead to an estimator that also has asymptotic variance

V ∗. There are many choices for (ân, b̂n) that satisfies the above condition. Based on our previous
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discussions, an intuitive choice for (ân, b̂n) would be using a feasible, plug-in counterpart of (a∗n, b
∗
n):

â∗n = −n2

n

ˆCov(X,Y )

V̂ar[Y ]

b̂∗n =
n1

n
,

where

ˆCov(X,Y ) =
1

n1

n1∑
i=1

(Xi − X̄1:n1)(Yi − Ȳ1:n)

V̂ar[Y ] =
1

n

n∑
i=1

(Yi − Ȳ1:n)2.

One can also get â∗n by regressing Xi on Yi with a constant

Xi = β0 + β1Yi + εi i = 1, 2, ..., n1,

and use â∗n = −n2
n β̂1. With the regression method, we are using only observations i = 1, ..., n1 to

estimate V̂ar[Y ]. While directly estimating V̂ar[Y ] using observations i = 1, ..., n should be more

accurate than the regression method, it can be more convenient to implement â∗n the regression

method when X and Y are multi-dimensional.

The resulting feasible estimator is given by

µ̂adj =
(
X̄1:n1 + â∗n(Ȳ1:n1 − Ȳ(n1+1):n), b̂∗nȲ1:n1 + (1− b̂∗n)Ȳ(n1+1):n

)′
,

and we call it the Adjusted estimator for the means. The intuition behind this estimator is similar

to the intuition behind the µ̂MLE in the previous discussion: whenever X and Y are correlated, we

can use the information contained in the extra observations on Yi to better estimate the mean of

X. The asymptotic variance of µ̂adj is V adj = V ∗.

Remark 2.2. The asymptotic variance of the Short estimator µ̂s = (X̄1:n1 , Ȳ1:n1)′ is

V s =

(
1
λ Var[X] 1

λ Cov(X,Y )
1
λ Cov(X,Y ) 1

λ Var[Y ]

)
.

And the asymptotic variance of the Long estimator µ̂` = (X̄1:n1 , Ȳ1:n)′ is

V ` =

(
1
λ Var[X] Cov(X,Y )

Cov(X,Y ) Var[Y ]

)
.

From the theorem, we know that V s − V adj and V ` − V adj are positive semi-definite. However,

V s − V ` =

(
0 ( 1

λ − 1) Cov(X,Y )

( 1
λ − 1) Cov(X,Y ) ( 1

λ − 1) Var[Y ]

)

11



is not positive semi-definite in general. More specifically, when ρ = 0,

V s − V ` =

(
0 0

0 ( 1
λ − 1) Var[Y ]

)

is positive semi-definite. But when ρ 6= 0,

det(V s − V `) = −(
1

λ
− 1)2[Cov(X,Y )]2 < 0,

and V s − V ` is not positive semi-definite. This tells us that µ̂` does not necessarily have smaller

asymptotic variance than µ̂s, although it uses more data.

To see why the positive semi-definiteness of the differences in the asymptotic variances matters,

consider the case where we are interested in estimating a linear combination of E[X] and E[Y ].

Suppose we use corresponding linear combinations of µ̂s, µ̂` and µ̂adj as our estimators, then the

resulting estimator based on µ̂adj will always have a asymptotic variance that is smaller or equal

to the asymptotic variances of the resulting estimators based on µ̂s and µ̂`, regardless of what

linear combination we take. However, similar result does not hold between µ̂s and µ̂`. Depending

on the linear combination we use, the asymptotic variance of the resulting estimator based on µ̂`

may or may not be smaller than the asymptotic variance of the resulting estimator based on µ̂s.

For example, suppose we are interested in estimating (E[X] − E[Y ]), then we can construct the

following three estimators:

(1,−1)µ̂s = X̄1:n1 − Ȳ1:n1

(1,−1)µ̂` = X̄1:n1 − Ȳ1:n

(1,−1)µ̂adj = X̄1:n1 + â∗n(Ȳ1:n1 − Ȳ(n1+1):n)− [b̂∗nȲ1:n1 + (1− b̂∗n)Ȳ(n1+1):n].

And the asymptotic variances of these three estimators are:

AsyV ar((1,−1)µ̂s) = (1,−1)V s(1,−1)′ =
1

λ
Var[X]− 2

λ
Cov(X,Y ) +

1

λ
Var[Y ]

AsyV ar((1,−1)µ̂`) = (1,−1)V `(1,−1)′ =
1

λ
Var[X]− 2 Cov(X,Y ) + Var[Y ]

AsyV ar((1,−1)µ̂adj) = (1,−1)V adj(1,−1)′ =
1

λ
Var[X]− 1− λ

λ

Cov2(X,Y )

Var[Y ]
− 2 Cov(X,Y ) + Var[Y ].

Now we take the differences

AsyV ar((1,−1)µ̂s)−AsyV ar((1,−1)µ̂adj) =
1− λ
λ

1

Var[Y ]
(Cov(X,Y )−Var[Y ])2 ≥ 0

AsyV ar((1,−1)µ̂`)−AsyV ar((1,−1)µ̂adj) =
1− λ
λ

Cov2(X,Y )

Var[Y ]
≥ 0

So (1,−1)µ̂adj is a better estimator for (E[X]− E[Y ]) than (1,−1)µ̂s and (1,−1)µ̂` in the sense of
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having a smaller asymptotic variance. However

AsyV ar((1,−1)µ̂s)−AsyV ar((1,−1)µ̂`) =
1− λ
λ

[Var[Y ]− 2 Cov(X,Y )],

which can be positive or negative or 0, depending on the values of Var[Y ] and Cov(X,Y ). So

(1,−1)µ̂` is not necessarily a better estimator for (E[X] − E[Y ]) than (1,−1)µ̂s. In particular,

when the variance of X is large, the variance of Y is small, and X are highly positively correlated

with Y , we can have σY < 2ρσX and the asymptotic variance of (1,−1)µ̂s is smaller than the

asymptotic variance of (1,−1)µ̂`.

2.4 Implications on Inference for the Mean

Intuitively, for a hypothesis testing problem, the quality of the test will be closely related to the

properties of the estimators used in the test. In this subsection, we discuss how the asymptotic

variance results above are related to the inference problem for the mean.

Suppose we are interested in the following hypothesis testing problem:

H0 : (E[X],E[Y ])′ = µ0

H1 : (E[X],E[Y ])′ 6= µ0,

where we are interested in testing a joint hypothesis on E[X] and E[Y ], and our goal is to find a

test that controls asymptotic size and has good asymptotic power. For this purpose, we make the

following assumption on the set of distributions we consider.

Assumption 2.3. Let F0 be the family of distributions that satisfies

F0 = {F : EF |VarF [X]−1/2(X − EF [X])|2+δ ≤ C and EF |VarF [Y ]−1/2(Y − EF [Y ])|2+δ ≤ C},

where C <∞ and δ > 0 are constants.

To see how asymptotic variance is related to the power of the test, we consider the following

two test statistics:

T `(µ0) = n[µ̂` − µ0]′(V̂ `)−1[µ̂` − µ0],

T adj(µ0) = n[µ̂adj − µ0]′(V̂ adj)−1[µ̂adj − µ0],

where V̂ ` = V `+op(1) and V̂ adj = V adj +op(1) are consistent estimators for the variance covariance

matrices.

Under the null hypothesis, T `(µ0) and T adj(µ0) both converge in distribution to χ2
2 as n→∞.

So to test the hypothesis at the significance level α, we would reject when the test statistic is greater

than 1− α quantile of χ2
2 for both tests. Under the assumptions we made, the resulting two tests

both have asymptotic sizes equal to α, and both have powers tending to 1 as n → ∞ against any

fixed alternatives.
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To further compare these two tests, we now study their behavior under the same local alternative

sequence. Consider a sequence of distributions Fn ∈ F0 with

√
n[(EFn [X],EFn [Y ])′ − µ0]→ η,

where η 6= (0, 0). So this sequence {Fn : n ≥ 1} is in the alternative space. Under this sequence,

we have

√
n[µ̂` − µ0]) →d N(η, V `),

and

√
n[µ̂adj − (θ1, θ

′
2)]) →d N(η, V adj).

Then the limiting distribution of the test statistic is given by

T `(µ0) →d χ2
2

(
η′(V `)−1η

)
T adj(µ0) →d χ2

2

(
η′(V adj)−1η

)
where χ2

2(a) is the non-central chi-square distribution with 2 degrees of freedom, and noncentrality

parameter equals to a.

Notice that (V adj)−1 − (V `)−1 is positive semi-definite, we have

η′(V adj)−1η − η′(V `)−1η = η′[(V adj)−1 − (V `)−1]η ≥ 0

for any η ∈ R2, with strict inequality for at least some η ∈ R2. So under the local alternative,

the limiting distribution of T adj(µ0) first-order stochastically dominates the limiting distribution

of T `(µ0). Since the critical values for both tests are the same, the test using T adj has higher

probability in rejecting the null under the local alternative. So the test based on µ̂adj has better

local power than the test based on µ̂`. Similarly, the test based on µ̂adj has better local power than

the test based on µ̂s.

Remark 2.3. All the results in this section can be extended to the case where X and Y are random

vectors.

3 Inference in Moment Inequality Models with Combined Data

Sources

Now we apply the above results to moment inequality models. In particular, we consider the

situation where we have different numbers of observations for different random vectors in our data

set, and where some of our moment conditions only depend on the random vectors with more
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observations. In this situation, we have different numbers of observations for different moment

conditions, and we can use the Short, the Long and the Adjusted estimators to construct sample

averages for the moments. Based on these three different sample averages for moments, we consider

three test statistics and use GMS to form critical values for all three tests. We then study the

properties of these three inference procedures.

We now introduce the moment inequality model we consider. Assume the true value θ0 lies in

Θ ⊂ Rd and satisfies the moment conditions:
EF0mj(Xi, Yi, θ0) ≥ 0 j = 1, ..., p1

EF0mj(Xi, Yi, θ0) = 0 j = p1 + 1, ..., p1 + v1

EF0mj(Yi, θ0) ≥ 0 j = p1 + v1 + 1, ..., p1 + v1 + p2

EF0mj(Yi, θ0) = 0 j = p1 + v1 + p2 + 1, ..., p1 + v1 + p2 + v2

where mj(·, θ) : j = 1, ..., p1 +v1 +p2 +v2 are known real-valued moment functions, and {(Xi, Yi)} :

i ≥ 1 are i.i.d. random vectors with joint distribution F0. Denote k1 = p1 + v1, k2 = p2 + v2 and

k = k1 + k2. So we consider the case where k2 of our k moment inequalities depend on random

vector Yi but do not depend on random vector Xi. Denote

m?
1(Xi, Yi, θ0) = (m1(Xi, Yi, θ0), ...,mk1(Xi, Yi, θ0))′,

m?
2(Yi, θ0) = (mk1+1(Yi, θ0), ...,mk1+k2(Yi, θ0))′,

so m?
1(Xi, Yi, θ0) is a k1 × 1 vector that contains the values of the first k1 moments, and m?

2(Yi, θ0)

is a k2 × 1 vector that contains the values of the last k2 moments.

As before, the observed sample is

Xi : i = 1, 2, ..., n1

Yi : i = 1, 2, ..., n1, n1 + 1, n1 + 2, ..., n1 + n2,

where X and Y are random vectors, and we maintain the same assumptions on the data generating

process and on n1 and n2 as in previous section.

Generic values of the parameters are denoted (θ, F ), and the parameter space F for (θ, F ) is
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the set of all (θ, F ) that satisfy

(i) θ ∈ Θ,

(ii) EFmj(Xi, Yi, θ) ≥ 0 for j = 1, ..., p1,

EFmj(Yi, θ) ≥ 0 for j = k1 + 1, ..., k1 + p2,

(iii) EFmj(Xi, Yi, θ) = 0 for j = p1 + 1, ..., p1 + v1,

EFmj(Yi, θ) ≥ 0 for j = k1 + p2 + 1, ..., k,

(iv) {(Xi, Yi) : i ≥ 1} are i.i.d. under F,

(v) σ2
F,j(θ) = VarF (mj(Xi, Yi, θ)) ∈ (0,∞) for j = 1, ..., k1,

σ2
F,j(θ) = VarF (mj(Yi, θ)) ∈ (0,∞) for j = k1 + 1, ..., k,

(vi) CorrF ((m?
1(Xi, Yi, θ),m

?
2(Yi, θ))

′) ∈ Ψ,

(vii) EF |mj(Xi, Yi, θ)/σF,j(θ)|2+δ ≤ C for j = 1, ..., k1

EF |mj(Yi, θ)/σF,j(θ)|2+δ ≤ C for j = k1 + 1, ..., k

where M <∞ and δ > 0 are constants, and Ψ is a set of k × k correlation matrices.

We consider a confidence set (CS) for the parameter θ obtained by inverting a test. The test is

based on a test statistic Tn(θ0) for testing H0 : θ = θ0, and we will discuss some commonly used

test statistics later.

The nominal 1− α CS for θ is

CSn = {θ ∈ Θ : Tn(θ) ≤ c1−α(θ)}

where c1−α(θ) is a critical value. Widely used method for obtaining the critical values include the

PA, the subsampling and the GMS method. Andrews and Guggenberger (2009) shows that the

least favorable asymptotic null distribution of the statistic Tn(θ) are those for which the moment

inequalities hold as equalities, and the PA critical value takes the 1− α quantile of the asymptotic

null distribution of Tn(θ) when the moment inequalities hold as equalities. The subsampling method

uses the empirical distribution of Tn,b,j(θ) to approximate the distribution of Tn(θ), where Tn,b,j(θ)

is a subsample statistic defined exactly as Tn(θ) but calculated based on the jth subsample of size b

rather than the full sample. The GMS method uses some selection criterion to detect which moment

inequalities are binding, and incorporate this information when approximating the distribution of

Tn(θ). All these three methods yield uniformly asymptotically valid tests, but Andrews and Soares

(2010) show that the GMS tests have better local power. In this paper, we use GMS critical values.

The exact confidence size of CSn is

ExCSn = inf
(θ,F )∈F

PF (Tn(θ) ≤ c1−α(θ)),

and the asymptotic confidence size is

AsyCS = lim inf
n→∞

ExCSn.
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In the definition of the asymptotic confidence size, we take inf(θ,F )∈F before limn→∞, and this builds

uniformity over (θ, F ) into the definition of the asymptotic confidence size. Uniformity is required

for the asymptotic size to give a good approximation to the finite sample size of the confidence sets.

3.1 Forms of the Sample Averages

Now we consider three constructions of the sample moment functions. Similar to the previous

sections, m̄j,a:b(θ) denotes the sample averages of the jth moment mj over j = a, ..., b. We first

present the sample analogues and the asymptotic variance of (m?
1(Xi, Yi, θ0)′,m?

2(Xi, Yi, θ0)′)′, and

those notations will be useful in displaying the three sample moment functions.

Depending on which part of the sample we are using, we have the following sample analogues

for (m?
1(Xi, Yi, θ0)′ and m?

2(Xi, Yi, θ0)′)′:

m̄?
1,1:n1

(θ) = (m̄1,1:n1(θ), ..., m̄k1,1:n1(θ))′,

m̄?
2,1:n(θ) = (m̄k1+1,1:n(θ), ..., m̄k,1:n(θ))′,

m̄?
2,1:n1

(θ) = (m̄k1+1,1:n1(θ), ..., m̄k,1:n1(θ))′,

m̄?
2,(n1+1):n(θ) = (m̄k1+1,(n1+1):n(θ), ..., m̄k,(n1+1):n(θ))′.

Let Σ(θ) be the variance covariance matrix of (m?
1(Xi, Yi, θ)

′,m?
2(Yi, θ0)′)′, and

Σ(θ) =

(
Var(m?

1(Xi, Yi, θ)) Cov(m?
1(Xi, Yi, θ),m

?
2(Yi, θ))

Cov(m?
1(Xi, Yi, θ),m

?
2(Yi, θ))

′ Var(m?
2(Yi, θ))

)

≡

(
Σ11(θ) Σ12(θ)

Σ21(θ) Σ22(θ)

)

A consistent estimator Σ̂n(θ) for Σ(θ) is given by(
Σ̂n,11(θ) Σ̂n,12(θ)

Σ̂n,21(θ) Σ̂n,22(θ)

)

where

Σ̂n(θ) =

n1∑
i=1

(
m?

1(Xi, Yi, θ)− m̄?
1,1:n1

(θ)

m?
2(Yi, θ)− m̄?

2,1:n(θ)

)(
m?

1(Xi, Yi, θ)− m̄?
1,1:n1

(θ)

m?
2(Yi, θ)− m̄?

2,1:n(θ)

)′
Since more data points are available on m?

2(Yi, θ), one can also use

1

n

n∑
i=1

[m?
2(Yi, θ)− m̄?

2,1:n(θ)][m?
2(Yi, θ)− m̄?

2,1:n(θ)]′

as an estimator for Σ̂n,22(θ) instead. Denote

D(θ) = Diag(Σ(θ))−1/2, and D̂n(θ) = Diag(Σ̂n(θ))−1/2.
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So D(θ) is a diagonal matrix of size k that consists of the inverses of the standard deviations of the

moments, and D̂n(θ) is a consistent estimator for D(θ).

The Short, the Long sample moments are defined to be

m̄s
n(θ) = (m̄1,1:n1(θ), ..., m̄k,1:n1(θ))′ = (m̄?

1,1:n1
(θ)′, m̄?

2,1:n1
(θ)′)′,

m̄`
n(θ) = (m̄1,1:n1(θ), ..., m̄k1,1:n1(θ), m̄k1+1,1:n(θ)..., m̄k,1:n(θ))′ = (m̄?

1,1:n1
(θ)′, m̄?

2,1:n(θ)′)′,

respectively, and the Adjusted sample moments are defined to be

m̄adj
n (θ) =

(
m̄adj?

1,1:n(θ)′, m̄?
2,1:n1

(θ)′
)′
,

where

m̄adj?
1,1:n(θ) = m̄?

1,1:n1
(θ)− n2

n
Σ̂n,12(θ)Σ̂−1

n,22(θ)[m̄?
2,1:n1

(θ)− m̄?
2,(n1+1):n(θ)].

The Asymptotic variance of
√
nm̄s

n(θ),
√
nm̄`

n(θ) and
√
nm̄adj

n (θ) is denoted as Σs(θ), Σ`(θ) and

Σadj(θ), respectively. And we show that

Σs(θ) =

(
1
λΣ11(θ) 1

λΣ12(θ)
1
λΣ21(θ) 1

λΣ22(θ)

)
,

Σ`(θ) =

(
1
λΣ11(θ) Σ12(θ)

Σ21(θ) Σ22(θ)

)
,

Σadj(θ) =

(
1
λΣ11(θ)− 1−λ

λ Σ12(θ)Σ−1
22 (θ)Σ21(θ) Σ12(θ)

Σ21(θ) Σ22(θ)

)
.

Let Σ̂s
n(θ), Σ̂`

n(θ) and Σ̂adj
n (θ) be a consistent estimator for Σs(θ), Σ`(θ) and Σadj(θ), respectively.

And we take

Σ̂s
n(θ) =

n

n1
Σ̂n(θ),

Σ̂`
n(θ) =

(
n
n1

Σ̂n,11(θ) Σ̂n,12(θ)

Σ̂n,21(θ) Σ̂n,22(θ)

)
,

Σ̂adj
n (θ) =

(
n
n1

Σ̂n,11(θ)− n2
n1

Σ̂n,12(θ)Σ̂−1
n,22(θ)Σ̂n,21(θ) Σ̂n,12(θ)

Σ̂n,21(θ) Σ̂n,22(θ)

)
.

3.2 Test Statistics

In general, the test statistics Tn(θ) is obtained using a test function S(m,Σ). The test function

S(m,Σ) is a real function that has two parts of entries. The first part m of its entries takes value in

Rp1[+∞]×R
v1 ×Rp2[+∞]×R

v2 , and represents a vector of possible values of the moments. The second

part Σ takes value in the space of k×k variance matrix, and represents the corresponding covariance

matrix of the first part m. The value of the test statistics Tn(θ) is obtained by evaluating S at a
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consistent estimator for the sample moments and a consistent estimator of its variance covariance

matrix.

The test function S is required to satisfy Assumptions T1-T6, and here are two examples of

commonly used test functions that do so. The first example of test functions is the modified method

of moments (MMM) test function S1, defined by

S1(m,Σ) =

 p1∑
j=1

+

k1+p2∑
j=k1+1

 [mj/σj ]
2
− +

 k1∑
j=p1+1

+

k∑
j=k1+p2+1

 [mj/σj ]
2,

where

[x]− =

{
x, if x < 0,

0, if x ≥ 0,

mj is the jth entry of m, and σ2
j is the jth diagonal element of Σ.

The second example of widely used test function is the Gaussian quasi-likelihood ratio (QLR)

test function S2, defined by

S2(m,Σ) = inf
t=(t1,0v1 ,t2,0v2 ):t1∈R

p1
+,∞,t2∈R

p2
+,∞

(m− t)′Σ(m− t).

Now we construct test statistic based on the three estimators of sample moments. For q ∈
{s, `, adj}, the corresponding test statistic T q

n (θ) is defined to be

T q
n (θ) = S(

√
nm̄q

n(θ), Σ̂q
n(θ)).

3.3 Generalized Moment Selection

For q ∈ {s, `, adj}, we can write

T q
n (θ) = S(

√
nm̄q

n(θ), Σ̂q
n(θ))

= S(D̂q
n(θ)
√
nm̄q

n(θ), Ω̂q
n(θ)),

where

D̂q
n(θ) = Diag(Σ̂q

n(θ))−1/2 and Ω̂q
n(θ) = D̂q

n(θ)Σ̂q
n(θ)D̂q

n(θ).

So the test statistics T qn(θ) depends on the corresponding normalized sample moments and sample

correlation matrix.

We say a sequence of distributions {Fn : n ≥ 1} is a sequence of null distributions if (θ0, Fn) ∈ F .

Under an appropriate sequence of null distributions {Fn : n ≥ 1}, let h11 ∈ Rp1+,∞ be the limit of

(
√
nEFnm1(Wi, θ0)/σFn,1(θ0), ...,

√
nEFnmp1(Wi, θ0)/σFn,p1(θ0)),
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and let h12 ∈ Rp2+,∞ be the limit of

(
√
nEFnmk1+1(Wi, θ0)/σFn,k1+1(θ0), ...,

√
nEFnmk1+p2(Wi, θ0)/σFn,k1+p2(θ0)).

Then the asymptotic null distribution of T q
n (θ0) under this sequence {Fn : n ≥ 1} is that of

S((Ωq
0)1/2Z∗ +Dq(θ)D−1(θ)(h′11, 0

′
v1 , h

′
12, 0

′
v2)′,Ωq

0)

where

Z∗ ∼ N(0k, Ik), D
q(θ) = Diag(Σq(θ))−1/2,

and Ωq
0 is a k × k correlation matrix.

Notice that the asymptotic null distribution of the test statistic depends on the parameters h11

and h12. Since h11, h12 can not be consistently estimated, the GMS method considers replacing

h11, h12 with vectors whose values depend on a measure of the slackness of the moment inequalities.

In particular, the degree of slackness of the moment inequalities is measured by

ξq
n(θ) = κ−1

n

√
nD̂q

n(θ)m̄q
n(θ)

evaluated at θ = θ0, where {κn : n ≥ 1} is a sequence of constants that diverges to infinity at

suitable rate as n→∞. Andrews and Soares (2010) recommend

κn = (lnn)1/2.

The constructions of ξq
n(θ) with m̄s

n(θ), m̄l
n(θ) and m̄adj

n (θ) have similar properties, and we can use

m̄adj
n (θ) to implement GMS for all three tests. However, if a researcher uses the Short estimator to

obtain sample moments, and is not aware of the Adjusted sample moments, then she is likely to use

the Short estimator to measure the degree of slackness. Thus for each test, we use its corresponding

estimator for the sample moments to construct ξn.

We replace the vector (h′11, 0
′
v1 , h

′
12, 0

′
v2)′ in the limiting distributions above by corresponding

values of ϕ(ξq
n(θ0), Ω̂q

n(θ0))′ ∈ Rk[+∞], where ϕ is a function that has certain properties. In particular,

the value of ϕj is large when the corresponding element in (h′11, 0
′
v1 , h

′
12, 0

′
v2)′ is large, and this tells

us the corresponding moment inequality should be treated as slack. And the value of ϕj is 0 when

the corresponding element in (h′11, 0
′
v1 , h

′
12, 0

′
v2)′ is small, and this tells us that the corresponding

moment inequality is likely to be binding or close to binding, and thus is treated as binding. An

example for ϕ is

ϕj(ξ,Ω) =

{
0, if ξj ≤ 1

∞, if ξj > 1

for j = 1, ..., k. And the critical value ĉq
n(θ0, 1−α) for T q

n (θ) is the 1−α quantile of the distribution

of

S((Ω̂q
n)1/2Z∗ + D̂q

n(θ)D̂−1
n (θ)ϕ(ξq

n(θ0), Ω̂q
n(θ0))′, Ω̂q

n),
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and it can be obtained via simulations.

3.4 Asymptotic Confidence Sizes of the Confidence Sets

So far we defined three test statistics and GMS critical value for each test. Now we study the

confidence sizes of the resulting confidence sets.

Theorem 3.1. Suppose Assumptions T1-T3, GMS1, and GMS2 hold and 0 < α < 1/2. Then the

nominal level 1 − α GMS confidence sets based on T s
n(θ), T `n(θ) and T adj

n (θ) satisfy the following

statements:

(a) AsyCS ≥ 1− α.

(b) AsyCS = 1− α if Assumptions GMS3, GMS4 and T7 also hold.

Theorem 3.1 shows that the resulting confidence sets are asymptotically valid in a uniform

sense, and are not conservative. To compare powers of the three tests under local alternative, we

study an example in Section 4. The proof of Theorem 3.1 follows the general proof of the GMS

procedure.

4 Inference in Moment Inequality Models with Combined Data

Sources: An Example

Although we know the limiting behavior of the three test statistics and their GMS critical values

under the n−1/2-local alternatives, it is hard to compare analytically the local powers of the three

tests in general. In this section, we study a simple example where we have only two linear moment

inequalities. We use this example to show how to implement the three tests we discussed, and we

also study more on their local powers using numerical experiment and simulations.

Consider the following moment inequality model:{
EF0 [Xi − θ0,1] ≥ 0

EF0 [Yi − θ0,2] ≥ 0.

And again, we suppose that we have different numbers of observations for X and Y as in the

previous sections. To simplify notations, in this example we also assume that the variances of X

and Y are 1. We are interested in confidence sets for the true parameter value θ0, and our goal is

to construct confidence sets for identifiable parameters that are uniformly consistent in levels.

Generic values of the parameters are denoted by (θ, F ), where θ = (θ1, θ2) ∈ R2. The parameter
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space F in this example is the set of all the (θ, F ) that satisfy

(i) EF [Xi] ≥ θ1, EF [Yi] ≥ θ2

(ii) {(Xi, Yi) : i ≥ 1} are i.i.d. under F

(iii) VarF [Xi] = VarF [Yi] = 1

(v) EF |Xi − θ1|2+δ ≤ C,EF |Yi − θ2|2+δ ≤ C

We denote CorrF (Xi, Yi) as ρ, and the dependence of ρ on F is suppressed.

4.1 Construction of the Confidence Sets

In this example, we use the MMM test function, i.e. S1 to construct test statistics.

GMS based on the Short sample moments

The Short sample moments in this example are

m̄s
n(θ) = (X̄1:n1 − θ1, Ȳ1:n1 − θ2)′.

When F is the true distribution that generates the data, by CLT we have

√
n

(
X̄1:n1 − EF [X]

Ȳ1:n1 − EF [Y ]

)
→d Zs ∼ N (0,Σs) ,

where

Σs =

(
1
λ

ρ
λ

ρ
λ

1
λ

)
.

The MMM test statistic based on the Short sample moments is

T s
n(θ) = [(X̄1:n1 − θ1)/σ̂s

1]2− + [(Ȳ1:n1 − θ2)/σ̂s
2]2−,

where σ̂s
1 = (Σ̂s

11)1/2, σ̂s
2 = (Σ̂s

22)1/2, and Σ̂s is a consistent estimator for Σs. Under a sequence of

distributions {Fn : n ≥ 1} in the null such that

√
n(EFn [X]− θ1,EFn [Y ]− θ2)′ → h1 ∈ R2

+,∞,

we have

√
nm̄s

n(θ) =
√
n

(
X̄1:n1 − EFn [X]

Ȳ1:n1 − EFn [Y ]

)
+
√
n

(
EFn [X]− θ1

EFn [Y ]− θ2

)
→d Zs + h1

∼ N (h1,Σ
s) .
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So the asymptotic null distribution of T s
n(θ) under this sequence is that of

S1(Zs + h1,Σ
s) = λ[Zs

1 + h1,1]2− + λ[Zs
2 + h1,2]2−.

Since h1 can not be estimated consistently, the GMS method replaces h1 by ϕ, where

ϕj(ξ) =

{
0 if ξj ≤ 1

∞ if ξj > 1.

And we use m̄s
n to construct the degree of slackness of the moment inequalities:

ξs(θ) = κ−1
n

√
nm̄s

n(θ) =
(
κ−1
n

√
n(X̄1:n1 − θ1), κ−1

n

√
n(Ȳ1:n1 − θ2)

)′
,

where κn =
√

lnn. The critical value cs
n(θ, 1− α) is defined to be the 1− α quantile of

[(ZS∗1 + ϕ1(ξs))/σ̂s
1]2− + [(ZS∗2 + ϕ2(ξs))/σ̂s

2]2−,

where ZS∗ ∼ N(0, Σ̂s), and is independent of our data set.

GMS based on the Long sample moments

The Long sample moments in this example are

m̄`
n(θ) = (X̄1:n1 − θ1, Ȳ1:n − θ2)′.

When F is the true distribution that generates the data, by CLT we have

√
n

(
X̄1:n1 − EF [X]

Ȳ1:n − EF [Y ]

)
→d Z` ∼ N

(
0,Σ`

)
,

where

Σ` =

(
1
λ ρ

ρ 1

)
.

The MMM test statistic based on the Long sample moments is

T `n(θ) = [(X̄1:n1 − θ1)/σ̂`1]2− + [(Ȳ1:n − θ2)/σ̂`2]2−,

where σ̂`1 = (Σ̂`
11)1/2, σ̂`2 = (Σ̂`

22)1/2, and Σ̂` is a consistent estimator for Σ`. Under a sequence of

distributions {Fn : n ≥ 1} in the null such that

√
n(EFn [X]− θ1,EFn [Y ]− θ2)′ → h1 ∈ R2

+,∞,
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we have

√
nm̄`

n(θ) =
√
n

(
X̄1:n1 − EFn [X]

Ȳ1:n − EFn [Y ]

)
+
√
n

(
EFn [X]− θ1

EFn [Y ]− θ2

)
→d Z` + h1

∼ N
(
h1,Σ

`
)
.

So the asymptotic null distribution of T `n(θ) under this sequence is that of

S1(Z` + h1,Σ
`) = λ[Z`1 + h1,1]2− + [Z`2 + h1,2]2−.

With the Long sample moments, we use m̄`
n(θ) to construct the degree of slackness of the

moment inequalities, and

ξ`(θ) = κ−1
n

√
nm̄`

n(θ) =
(
κ−1
n

√
n(X̄1:n1 − θ1), κ−1

n

√
n(Ȳ1:n − θ2)

)′
.

The critical value c`n(θ1, θ2, 1− α) is defined to be the 1− α quantile of

[(ZL∗1 + ϕ1(ξ`))/σ̂`1]2− + [(ZL∗2 + ϕ2(ξ`))/σ̂`2]2−,

where ZL∗ ∼ N(0, Σ̂`), and is independent of our data set.

GMS based on the Adjusted sample moments

Now we implement the adjusted sample moments using the regression method. Consider the

following linear regression

Xi − θ1 = β0 + β1(Yi − θ2) + ui, i ∈ {1, 2, ..., n1}.

The OLS estimator is given by:

β̂1 =

∑n1
i=1(Yi − θ2)(Xi − θ1)− n1(Ȳ1:n1 − θ2)(X̄1:n1 − θ1)∑n1

i=1(Yi − θ2)2 − n1(Ȳ1:n1 − θ2)2
.

Based on this regression, let

m̄adj
n (θ) =

(
(X̄1:n1 − θ1)− n2

n β̂1[Ȳ1:n1 − Ȳ(n1+1):n]

Ȳ1:n − θ2

)
=

(
(X̄1:n1 − θ1) + β̂1[Ȳ1:n − Ȳ1:n1 ]

Ȳ1:n − θ2

)

be the Adjusted sample moments. Notice that β̂1 →p ρ by LLN, when F is the true distribution
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that generates the data, by CLT we have

√
n

(
X̄1:n1 + β̂1[Ȳ1:n − Ȳ1:n1 ]− EF [X]

Ȳ1:n − EF [Y ]

)

=
√
n

(
(X̄1:n1 − EF [X]) + β̂1(Ȳ1:n − EF [Y ])− β̂1(Ȳ1:n1 − EF [Y ])

Ȳ1:n − EF [Y ]

)
→d Zadj ∼ N

(
0,Σadj

)
,

where

Σadj =

(
1−(1−λ)ρ2

λ ρ

ρ 1

)
.

The MMM test statistic based on the Adjusted sample moments is

T adj
n (θ) = [(m̄adj

n,1(θ1, θ2)− θ1)/σ̂adj
1 ]2− + [(Ȳ1:n − θ2)/σ̂adj

2 ]2−,

where σ̂adj
1 = (Σ̂adj

11 )1/2, σ̂adj
2 = (Σ̂adj

22 )1/2, and Σ̂adj is a consistent estimator for Σadj. Under a

sequence of distributions {Fn : n ≥ 1} in the null such that

√
n(EFn [X]− θ1,EFn [Y ]− θ2)′ → h1 ∈ R2

+,∞,

we have

√
nm̄adj

n (θ) =
√
n

(
X̄1:n1 + β̂1[Ȳ1:n − Ȳ1:n1 ]− EFn [X]

Ȳ1:n − EFn [Y ]

)
+
√
n

(
EFn [X]− θ1

EFn [Y ]− θ2

)
→ Zadj + h1

∼ N
(
h1,Σ

adj
)
.

So the asymptotic null distribution of T adj
n (θ1, θ2) under this sequence is that of

S1(Zadj + h1,Σ
adj) =

λ

1− (1− λ)ρ2
[Zadj

1 + h1,1]2− + [Zadj
2 + h1,2]2−.

Here, we use m̄adj
n (θ) to construct the degree of slackness of the moment inequalities, and

ξadj(θ) = κ−1
n

√
nm̄adj

n (θ).

The critical value cadj
n (θ1, θ2, 1− α) is defined to be the 1− α quantile of

[(ZA∗1 + ϕ1(ξadj))/σ̂adj
1 ]2− + [(ZA∗2 + ϕ2(ξadj))/σ̂adj

2 ]2−,

where ZA∗ ∼ N(0, Σ̂adj), and is independent of our data set.

Notice that these three sample moments are all consistent and asymptotically normal estimators
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for the moment conditions. Moreover, the asymptotic distributions of the three sample moments

are centered at the same h1, but with different variance covariance matrices Σs, Σ` and Σadj,

respectively. Moreover, Σs −Σadj and Σ` −Σadj are positive semi-definite, so the Adjusted sample

moments have the smallest asymptotic variance covariance matrix among all three constructions of

sample moments.

4.2 Comparison of Power under the Local Alternatives

From the theorems in the previous section, we know that each of the three tests leads to a confidence

set that has asymptotic size 1−α and is not conservative. In this subsection, we study the powers

of the three tests against n−1/2-local alternatives. First, we define the n−1/2-local alternatives we

consider here.

For given θn,∗, we consider the tests of

H0 : EFn [(X,Y )′]− θn,∗ ≥ 0

H1 : H0 does not hold

where Fn denotes the true distribution that generates the data we observe.

Assumption 4.1 (Local Alternative). Suppose the data is generated with true parameters

{(θn, Fn) ∈ F : n ≥ 1} that satisfy

(a)
√
n(EFn [X]− θn,1,EFn [Y ]− θn,2)′ → h1 ∈ R2

+,∞.

(b) θn = θn,∗ − ηn−1/2(1 + o(1)) for some η ∈ R2. More over, θn,∗ → θ0 and Fn → F0 for some

(θ0, F0) ∈ F .

(c) supn≥1 EFn |(Xi − θn,∗,1)/σFn,X(θn,∗)|2+δ <∞, supn≥1 EFn |(Yi − θn,∗,2)/σFn,Y (θn,∗)|2+δ <∞

(d) h1,1 − η1 < 0 or h1,2 − η2 < 0.

This assumption specifies that the true sequence {θn} are local to the null sequence {θn,∗}, and

the true distribution is in the alternative when n is large. To study the behavior of the GMS tests,

we also need the following assumption.

Assumption 4.2. Assume κ−1
n n1/2 EFn [Xi− θn,1]→ π1,1 and κ−1

n n1/2 EFn [Yi− θn,2]→ π1,2, where

π1,1, π1,2 ∈ R+,∞.

Under the assumptions on n−1/2-local alternatives above, the parameters satisfy

h1,1 − η1 < 0 or h1,2 − η2 < 0,

and the limiting distributions of T s
n(θ1, θ2), T `n(θ1, θ2) and T adj

n (θ1, θ2) are those of

S1(Zs + h1 − η,Σs), S1(Z` + h1 − η,Σ`), and S1(Zadj + h1 − η,Σadj),
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respectively. And the GMS critical values cs
n(θ1, θ2, 1 − α), c`n(θ1, θ2, 1 − α), cadj

n (θ1, θ2, 1 − α)

converges in probability to the 1− α quantile of

S1(Zs + ϕ(π1),Σs), S1(Z` + ϕ(π1),Σ`), and S1(Zadj + ϕ(π1),Σadj),

respectively.2

Consider a particular type of sequence in the local alternative space that satisfies

• h1,1 − η1 < 0 and ϕ1 = 0,

• and h1,2 − η2 = +∞ and ϕ2 = +∞.

This describes the case where

• the first moment inequality is locally violated, and GMS treats it as binding

• the second moment inequality is slack, and GMS correctly detects that it is slack.

Under this sequence, the second moment inequality doesn’t contribute to the test statistic or

the critical value. In particular, the GMS critical value of the test based on the Short sample

converges in probability to the 1− α quantile of

S1(Zs + ϕ(π1),Σs) = λ[Zs
1 + ϕ1(π1)]2− + λ[Zs

2 + ϕ2(π1)]2−

= [
√
λZs

1]2−

= [Z]2−,

where Z has the standard normal distribution N(0, 1). Notice that this distribution doesn’t depend

on the matrix Σs, as long as Σs
11 is positive. We can apply the same steps as above and show that

the GMS critical values of the tests based on the Long sample mean and based on the Adjusted

sample mean also converge to the 1− α quantile of [Z]2−.

Now we study the asymptotic distributions of our test statistics under this sequence. The

asymptotic distribution of T s
n(θ1, θ2) is that of

S1(Zs + h1 − η,Σs) = λ[Zs
1 + h1,1 − η1]2− + λ[Zs

2 + h1,2 − η2]2−

= λ[Zs
1 + h1,1 − η1]2−

= [
√
λZs

1 +
√
λ(h1,1 − η1)]2−

= [Z +
√
λ(h1,1 − η1)]2−

Notice that this distribution depends on Σs only through Σs
11. Similarly, the asymptotic distribution

of T `n(θ1, θ2) is that of

[Z +
√
λ(h1,1 − η1)]2−

2This is true everywhere except when some of the elements of π are 1, which happens with probability 0. We are
making a simplification here to give the main idea behind the local power comparisons.
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and the asymptotic distribution of T adj
n (θ1, θ2) is that of

[Z +

√
λ√

1− (1− λ)ρ2
(h1,1 − η1)]2−

Since √
λ√

1− (1− λ)ρ2
≥
√
λ > 0,

we have √
λ√

1− (1− λ)ρ2
(h1,1 − η1) ≤

√
λ(h1,1 − η1) ≤ 0

So for a fixed value z,

z +

√
λ√

1− (1− λ)ρ2
(h1,1 − η1) ≤ z +

√
λ(h1,1 − η1)

and

[z +

√
λ√

1− (1− λ)ρ2
(h1,1 − η1)]2− ≥ [z +

√
λ(h1,1 − η1)]2−.

Thus, the asymptotic distribution of T adj
n (θ1, θ2) first order stochastically dominates the asymptotic

distributions of T s
n(θ1, θ2) and T `n(θ1, θ2). And the GMS test based on the adjusted sample mean

has better power against this particular type of local sequence.

Intuitively, the Adjusted sample moments estimate the first moment condition with a smaller

asymptotic variance, so when the test statistics and the critical values do not depend on the second

moment condition, the GMS test based on the Adjusted sample moments have better power against

the same local alternative.

Similarly, along a particular type of sequence in the alternative that satisfies

• h1,1 − η1 = +∞ and ϕ1 = +∞,

• h1,2 − η2 < 0 and ϕ2 = 0,

the GMS test based on the Adjusted sample moments have the same power as the GMS test based

on the Long sample moments, and both these two tests have better power than the GMS test based

on the Short sample moments.

In general, it is hard to compare the local powers of these three tests analytically, and we then

consider comparing their local powers using simulation studies.

4.3 Numerical Experiment of the Local Powers

In this numerical study, we simulate the powers of these tests from their limiting distributions.

We simulate rejection probabilities of these three tests at nominal level α = 0.05 for different

combinations of values for ρ and λ with 100, 000 draws from the limiting distributions. For each
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combination of ρ and λ, we simulate rejection probabilities of these three tests under the following

local parameter values:

• h1,2 − η2 = −4,−1, 1, 4, 10000, 10000, h1,1 − η1 takes value on a grid on [−4, 0].

The critical values are generated with π = (0, 0)′ except the second time h1,2 − η2 = 10000.

The first time h1,2 − η2 = 10000 corresponds to the case where the second moment condition

is slack but GMS faills to detect it, and the second time h1,2− η2 = 10000 corresponds to the

case where the second moment condition is slack and GMS detects it and sets π2 =∞.

• h1,1 − η1 = −4,−1, 1, 4, 10000, 10000, h1,2 − η2 takes value on a grid on [−4, 0].

The critical values are generated with π = (0, 0)′ except the second time h1,1 − η1 = 10000.

Whenever a component of h1−η is smaller than 0, the corresponding moment condition is violated.

We take ρ = 0.8, 0.5, 0.2 and λ = 0.2, 0.8, and we simulate power for each combination of

values for ρ and λ. In general, when |ρ| is larger, Xi and Yi are more correlated, and having

extra observations of Yi will be more helpful in estimating the mean of Xi, and we expect the test

based on the Adjusted sample moments to have more significant power advantage over the other

two tests. Also, when λ is smaller, the number of observations of Xi is a smaller fraction of the

number of observations of Yi in the limit, and there will be relatively more information in the extra

observations of Yi, and we expect the test based on the Adjusted sample moments to have more

significant power advantage over the other two tests. This is true in our simulation.

In our simulations, we find that the powers of the test based on the Adjusted sample moments

and the test based on the Long sample moments are higher than the power of the test based on the

Short sample moments in almost all cases. We also find that the power of test based on Adjusted

sample moments is higher than the power of the test the test based on the Long sample moments

when |ρ| is large, λ is small and h1,1 − η1 < 0 , and are close in other cases.

The power curves corresponding to ρ = 0.8 and λ = 0.2 are plotted in Figure 1 and Figure

2, and the test based on the Adjusted sample moments has significantly higher power than the

other two tests in Figure 1. The power curves corresponding to ρ = 0.5 and λ = 0.8 are plotted

in Figure 3 and Figure 4, and the test based on the Adjusted sample moments has power that is

close to the test based on the Long sample moments, and is better than the other two tests for

some combinations of local parameter values. We find similar patterns in power comparisons for

the cases in between. For a combination of higher λ and lower ρ, the power advantage is very small.
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Figure 1: Power curves of the three tests with ρ = 0.8, λ = 0.2, h1,2−η2 = −4,−1, 1, 4,∞,∞. Power
curves of the test based on the Short sample moments are in blue, power curves of the test based
on the Long sample moments are in green, and power curves of the test based on the Adjusted
sample moments are in red.
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Figure 2: Power curves of the three tests with ρ = 0.8, λ = 0.2, h1,1−η1 = −4,−1, 1, 4,∞,∞. Power
curves of the test based on the Short sample moments are in blue, power curves of the test based
on the Long sample moments are in green, and power curves of the test based on the Adjusted
sample moments are in red.
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Figure 3: Power curves of the three tests with ρ = 0.5, λ = 0.8, h1,2−η2 = −4,−1, 1, 4,∞,∞. Power
curves of the test based on the Short sample moments are in blue, power curves of the test based
on the Long sample moments are in green, and power curves of the test based on the Adjusted
sample moments are in red.

32



Figure 4: Power curves of the three tests with ρ = 0.5, λ = 0.8, h1,1−η1 = −4,−1, 1, 4,∞,∞. Power
curves of the test based on the Short sample moments are in blue, power curves of the test based
on the Long sample moments are in green, and power curves of the test based on the Adjusted
sample moments are in red.
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Appendix 1 Assumptions

1.1 Test Statistics Assumptions

This subsection contains the assumptions we impose on the test function S, and they are

maintained from Andrews and Soares (2010).

Assumption T1:

(a) S((m11,m12,m21,m22),Σ) is nonincreasing in m11 and m21 for all m11 ∈ Rp1 , m12 ∈ Rv1 ,

m21 ∈ Rp2 , m22 ∈ Rv2 and variance matrix Σ ∈ Rk×k.

(b) S(m,Σ) = S(Dm,DΣD) for all m ∈ Rk, Σ ∈ Rk×k, and positive definite D ∈ Rk×k.

(c) S(m,Ω) ≥ 0 for all m ∈ Rk and Ω ∈ Ψ.

(d) S(m,Ω) is continuous at all m ∈ Rp[+∞] ×R
v and Ω ∈ Ψ.

Assumption T2: For all h11 ∈ Rp1[+,∞], all h12 ∈ Rp2[+,∞], all Ω ∈ Ψ and Z ∼ N(0k,Ω), the

degree of freedom of S(Z + (h11, 0v1 , h12, 0v2),Ω) at x ∈ R is

(a) continuous for x > 0,

(b) strictly increasing for x > 0 unless v1 = v2 = 0 and h11 =∞p1 , h12 =∞p2 ,

(c) less than or equal to 1/2 at x = 0 whenever v ≥ 1 or h11 = 0p1 , h12 = 0p2 .

Assumption T3: S(m,Ω) > 0 if and only if mj < 0 for some j = 1, ..., p1, k1 + 1, ..., k1 + p2 or

mj 6= 0 for some j = p1 + 1, ..., k1, k1 + p2 + 1, ..., k, where m = (m1, ...,mk)
′ and Ω ∈ Ψ.

Assumption T4:

(a) The degree of freedom of S(Z,Ω) is continuous at its (1 − α) quantile, c(Ω, 1 − α), for all

Ω ∈ Ψ, where Z ∼ N(0k,Ω) and α ∈ (0, 1/2).

(b) c(Ω, 1− α) is continuous in Ω uniformly for Ω ∈ Ψ.

Assumption T5:

(a) For all g ∈ Rp1[+∞] ×R
v1 ×Rp2[+∞] ×R

v2 , all Ω ∈ Ψ, and Z ∼ N(0k,Ω), the degree of freedom

of S(Z + g,Ω) at x is continuous for x > 0 and strictly increasing for x > 0 unless v = 0 and

g =∞p1+p2 .

(b) P (S(Z + (m1, 0v1 ,m2, 0v2),Ω) ≤ x) < P (S(Z + (m∗1, 0v1 ,m
∗
2, 0v2),Ω) ≤ x) for all x > 0 for all

m1,m
∗
1 ∈ R

p1
+,∞, m2,m

∗
2 ∈ R

p2
+,∞ with (m1,m2) < (m∗1,m

∗
2).
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Assumption T6: For some χ > 0, S(am,Ω) = aχS(m,Ω) for all scalars a > 0, m ∈ Rk, and

Ω ∈ Ψ.

For (θ, F ) ∈ F , define h1,j = ∞ if EF mj(Xi, Yi, θ) > 0 and h1,j = 0 if EF mj(Xi, Yi, θ) = 0

for j = 1, ..., p1, and define h1,j = ∞ if EF mj(Yi, θ) > 0 and h1,j = 0 if EF mj(Yi, θ) =

0 for j = k1 + 1, ..., k1 + p2. Let h11(θ, F ) = (h1,1(θ, F ), ..., h1,p1(θ, F ))′, h12(θ, F ) =

(h1,k1+1(θ, F ), ..., h1,k1+p2(θ, F ))′, and Ω(θ, F ) = CorrF ((m?
1(Xi, Yi, θ)

′,m?
2(Yi, θ0)′)′).

Assumption T7: For some (θ, F ) ∈ F , the degree of freedom of S(Z +

(h11(θ, F ), 0v1 , h12(θ, F ), 0v2),Ω(θ, F )) is continuous at its 1−α quantile, where Z ∼ N(0k,Ω(θ, F )).

1.2 GMS Assumptions

This subsection contains the assumptions on the function ϕ and the constants κn : n ≥ 1 that

define a GMS procedure, and they are maintained from Andrews and Soares (2010).

Assumption GMS1:

(a) ϕj(ξ,Ω) is continuous at all (ξ,Ω) ∈ (Rp1[+∞]×R
v1
[±∞]×R

p2
[+∞]×R

v2
[±∞])×Ψ with ξj = 0, where

ξ = (ξ1, ..., ξk)
′, for j = 1, ..., p1, k1 + 1, ..., k1 + p2.

(b) ϕj(ξ,Ω) = 0 for all (ξ,Ω) ∈ (Rp1[+∞] × Rv1[±∞] × Rp2[+∞] × Rv2[±∞]) × Ψ with ξj = 0, where

ξ = (ξ1, ..., ξk)
′, for j = 1, ..., p1, k1 + 1, ..., k1 + p2.

(c) ϕj(ξ,Ω) = 0 for all j = p1 + 1, ..., k1, k1 + p2 + 1, ..., k2 for all (ξ,Ω) ∈ (Rp1[+∞] × R
v1
[±∞] ×

Rp2[+∞] ×R
v2
[±∞])×Ψ.

Assumption GMS2: κn →∞.

Assumption GMS3:ϕj(ξ,Ω) → ∞ as (ξ,Ω) → (ξ∗,Ω∗) for all (ξ∗,Ω∗) ∈ (Rp1[+∞] × R
v1
[±∞] ×

Rp2[+∞] ×R
v2
[±∞])× cl(Ψ) with ξ∗,j =∞, where ξ∗ = (ξ∗,1, ..., ξ∗,k)

′, for j = 1, ..., k.

Assumption GMS4: κ−1
n

√
n→∞.

Assumption GMS6: ϕj(ξ,Ω) ≥ 0 for all (ξ,Ω) ∈ (Rp1[+∞] × R
v1
[±∞] × R

p2
[+∞] × R

v2
[±∞]) × Ψ for

j = p1 + 1, ..., k1, k1 + p2 + 1, ..., k2.

Assumption GMS7: ϕj(ξ,Ω) ≥ min{ξj , 0} for all (ξ,Ω) ∈ (Rp1[+∞]×R
v1
[±∞]×R

p2
[+∞]×R

v2
[±∞])×Ψ

for j = p1 + 1, ..., k1, k1 + p2 + 1, ..., k2.
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