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Real-Time Macroeconomic Forecasting with a Heteroskedastic
Inversion Copula

Abstract

There is a growing interest in allowing for asymmetry in the density forecasts of macroeconomic

variables. In multivariate time series, this can be achieved with a copula model, where both serial

and cross-sectional dependence is captured by a copula function, and the margins are nonparametric.

Yet most existing copulas cannot capture heteroskedasticity well, which is a feature of many economic

and financial time series. To do so, we propose a new copula created by the inversion of a multivariate

unobserved component stochastic volatility model, and show how to estimate it using Bayesian

methods. We fit the copula model to real-time data on five quarterly U.S. economic and financial

variables. The copula model captures heteroskedasticity, dependence in the level, time-variation

in higher moments, bounds on variables and other features. Over the window 1975Q1 – 2016Q2,

the real-time density forecasts of all the macroeconomic variables exhibit time-varying asymmetry.

In particular, forecasts of GDP growth have increased negative skew during recessions. The point

and density forecasts from the copula model are competitive with those from benchmark models –

particularly for inflation, a short term interest rate and current quarter GDP growth.

Key Words: Asymmetric Density Forecasting; Time Series Copula; Downside Risk; Macroeconomic

Uncertainty.



1 Introduction

There is growing evidence that accounting for time-varying asymmetries and heavy tails in the real-

time predictive distributions of macroeconomic variables improves their accuracy. Density forecasts

constructed from expert surveys — such as the Survey of Professional Forecasters (SPF) in the U.S.

— can exhibit strong asymmetries and heavy tails (Krüger and Nolte, 2015) and perform strongly for

short horizons (Krüger et al., 2017). Quantile regression estimates of the distribution of U.S. GDP

growth, conditional on economic and financial conditions, exhibit time-varying skew that turns nega-

tive during recessions (Adrian et al., 2017). Giglio et al. (2016) find similar results for several measures

of U.S. and European real activity. Time series models that incorporate stochastic volatility produce

time-varying heavy-tailed forecast densities that are among the most accurate from time series mod-

els (D’Agostino et al., 2013, Clark and Ravazzolo, 2015), and there is recent evidence (Chiu et al.,

2016) that their extension to also allow for asymmetries can increase accuracy further. Moreover,

in the post-recessionary period U.S. interest rates effectively reached their zero lower bound, during

which time their predictive densities were necessarily positively skewed (Johannsen and Mertens,

2016). Despite this, only a few existing multivariate time series models produce predictive distribu-

tions that can feature strong asymmetries and heavy tails. To do so here we propose a new copula

model, and employ it to model and forecast key U.S. macroeconomic variables in real time.

Copulas allow the margins and dependence structure of a multivariate distribution to be modeled

separately, a feature that has made them popular in many areas (McNeil et al., 2005, Nelsen, 2006).

In time series analysis, they are mostly used to model conditional cross-sectional dependence between

multiple series; see Patton (2012) for a review. The correlation structure can be dynamic, but time-

changing variance (i.e. heteroskedasticity) is modeled through the margins, which also account for any

asymmetries in the distributions of the variables; see De Lira Salvatierra and Patton (2015) and Creal

and Tsay (2015) for examples. However, a second way a copula can be employed in multivariate time

series is to use it to capture both cross-sectional and serial dependence jointly. A major advantage

of this approach is that the marginal distribution of each variable can be modeled directly, including

as nonparametric. Smith and Vahey (2016) show that this is attractive for macroeconomic variables
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because their marginal distributions are often complex, and we follow this second approach here.

The main challenge in constructing such a model is the selection of an appropriate copula. Smith

and Vahey (2016) employ a Gaussian copula, but this does not capture heteroskedasticity well, which

is a key feature of GDP growth, inflation and other variables (Clark, 2011, Clark and Ravazzolo,

2015). Another choice is a vine copula (Brechmann and Czado, 2015, Smith, 2015, Beare and Seo,

2015), which can be used to capture heteroskedasticity when specific pair-copula components are

employed (Loaiza-Maya et al., 2018). In this paper we suggest a new copula that can also do so as an

alternative. This is an ‘inversion copula’ that is formed by a process of inverting (Nelsen, 2006, p.52)

the data distribution from an existing multivariate time series model, which we call a ‘pseudo time

series’ model. The inversion copula exactly replicates the dependence structure of the pseudo time

series. However, when it is combined with new margins, the copula model forms a new and more

flexible time series model. If the margins are the same as those of the pseudo time series model, then

the copula model simply reproduces it. But by adopting nonparametric margins, the copula model

can deviate substantially from the pseudo model, and has the potential to be much more accurate.

We construct our inversion copula from a multivariate unobserved component stochastic volatil-

ity (UCSV) model, where the trend component follows a stationary vector autoregresssion (VAR).

Stochastic volatility is widely used to capture heteroskedasticity in macroeconomic series (Clark,

2011, D’Agostino et al., 2013, Carriero et al., 2016), while UCSV models are popular for modeling

inflation (Stock and Watson, 2007, Mertens, 2016) joint with unemployment and an interest rate

(Cogley and Sargent, 2005). By extracting the copula of this UCSV model we adopt a dependence

structure that is established by previous studies as well-suited to these series. However, the margins

of the UCSV model are symmetric and (as we show here) inconsistent with those observed empirically

for most macroeconomic variables, so that adopting the copula model increases its accuracy.

Because the UCSV model does not have a closed form likelihood, its inversion copula cannot be

written in closed form either. However, following Smith and Maneesoonthorn (2018), we show how

methods for estimating state space models can also be used to estimate this copula. In particular,

we develop a Markov chain Monte Carlo (MCMC) scheme to do so, although importance sampling
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methods (Jungbacker and Koopman, 2007, Scharth and Kohn, 2016) can also be used. The parame-

ters of the underlying UCSV model become the copula parameters, for which constraints are derived

that identify the likelihood. An advantage of inversion copulas is that they are fast and simple to

simulate from. We show how measures of dependence, filtered and predictive distributions, and other

inference can all be computed via simulation. Existing high-dimensional inversion copulas include

elliptical and skew-elliptical copulas (Demarta and McNeil, 2005, Smith et al., 2012) and those con-

structed from univariate state space Smith and Maneesoonthorn (2018) or static factor models (Oh

and Patton, 2017). However, as far as we are aware, ours is the first copula constructed by inversion

of a multivariate nonlinear time series model.

The copula model is applied to quarterly U.S. real-time data on GDP growth, inflation, unem-

ployment, a short term interest rate and stock market volatility. Adaptive kernel density estimates

are used for the margins, and capture substantial skew and heavy tails for each variable and at

most vintages, multi-modality for unemployment and the interest rate, and zero lower bounds for

the interest rate and stock market volatility. When fitted to the 2016Q2 vintage data, strong serial

dependence within and across series is captured by the copula. This includes negative correlation

between stock market volatility and GDP growth next quarter, and strong heteroskedasticity in the

time series – including volatility ‘spillover’. The filtered distributions of the variables exhibit vari-

ance similar to that from a VAR with stochastic volatility (VARSV), but very different from that

obtained by fitting an UCSV model directly to the data. Thus, incorporating more accurate margins

changes the estimated serial dependence structure of the UCSV model substantially. The filtered

distributions from the copula model also feature strong time-varying skew and kurtosis, unlike the

necessarily symmetric distributions from the VARSV and UCSV models. For example, they are most

heavily negatively skewed for GDP Growth prior to 1982 and during the subsequent recessions.

We examine the real-time out-of-sample density forecasts from the copula model for 1975Q1 to

2016Q2. These show that the features of the nonparametric margins are not simply transferred to

the predictive distributions. Instead, they have moments (including higher order moments) that vary

over time, and are — as one would expect — much sharper than the margins. In particular, the
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forecasts of GDP growth have lower quantiles that decrease during recessionary periods, whereas

the upper quantiles remain stable over time, which is consistent with the findings of Adrian et al.

(2017). The opposite is found for inflation, where the upper quantiles vary more over time than the

lower quantiles, representing asymmetry in inflation uncertainty. Such features cannot be captured

by VARSV and UCSV models with symmetric disturbances. The real-time forecasts for the four

economic variables from our copula model are compared to those from a VAR, VARSV, UCSV and

a Gaussian copula model as in Smith and Vahey (2016). The point and density forecasts from our

copula model are more accurate for inflation and the interest rate (the two most skewed variables)

than those from the benchmark models. Notably, the current quarter forecasts of GDP growth are the

most accurate, including when compared to those from the VARSV model, which is a high-performing

forecasting model for this variable (Clark and Ravazzolo, 2015). We also construct bivariate real-

time forecast densities for the change in the unemployment rate and GDP growth, which exhibit

asymmetries and non-linearities. In line with Okun’s rule, Spearman correlations between the two

variables are negative, but show a severe weakening of the relationship during the Great Recession.

Our model is not the only time series model that can produce asymmetric density forecasts. For

example, a zero lower bound on the interest rate can be captured by adopting a shadow rate (Bauer

and Rudebusch, 2016, Johannsen and Mertens, 2016), producing positively skewed density forecasts

for this variable. Another approach is to extend existing time series models using finite or infinite

mixture models (Kalli and Griffin, 2018, Jensen and Maheu, 2010, Chiu et al., 2016). However, an

advantage of the copula model is that the margins can be modeled directly in an arbitrary manner

at an initial stage, and the dependence separately in a second stage.

The rest of the paper is organized as follows. The heteroskedastic inversion copula is presented in

Section 2, while Section 3 outlines the approach for its estimation and the computation of filtered and

predictive distributions. Section 4 presents the empirical analysis. This includes the data, existing

evidence of asymmetry in these series, the results of fitting the copula model to the 2016Q2 vintage,

and the real-time forecast study. Section 5 discusses implications and extensions.
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2 Copula Model

2.1 Copula Time Series Model

Consider a continuous-valued multivariate time series {Yt}, with Yt = (Y1,t, . . . , Yr,t)
′ having r ele-

ments. Then Sklar’s theorem (Nelsen, 2006, p.46) states that the joint distribution function FY of

Y = (Y ′1 , . . . ,Y
′
T )′ can be written as

FY (y) = C(u) , (1)

where y = (y′1, . . . ,y
′
T )′, yt = (y1,t, . . . , yr,t)

′, u = (u′1, . . . ,u
′
T )′, ut = (u1,t, . . . , ur,t)

′, ui,t = FYi,t(yi,t),

and FYi,t is the marginal distribution function of Yi,t. The function C is called the copula function,

and is itself a joint distribution function on [0, 1]rT with strictly uniform margins (Nelsen, 2006, p.47).

It captures the entire dependence structure of Y , which here is both the cross-sectional and temporal

dependence structure of the time series. The major advantage of this decomposition is that it allows

the margins FYi,t and dependence structure to be modeled separately.

Throughout this paper we assume (strong) stationarity, so that the margins of the series are

time-invariant, and FYi,t = Gi for i = 1, . . . , r. In this case, the density of the data is

fY (y) =
∂rT

∂y1,1 · · · ∂yr,T
FY (y) = c(u)

r∏
i=1

T∏
t=1

gi(yi,t) , (2)

where gi(y) = d
dy
Gi(y), and c(u) = ∂rT

∂u1,1···∂ur,T
C(u) is called the ‘copula density’. The main challenge

of this copula model is the selection of an appropriate copula function C (or, equivalently, density

c). For a univariate time series, Smith and Maneesoonthorn (2018) suggest constructing a copula by

inverting a state space model, while for a multivariate time series Smith and Vahey (2016) construct a

copula by inverting a VAR. We extend these ideas below, and propose using a new copula constructed

from the inversion of a multivariate UCSV model.

2.2 Heteroskedastic Inversion Copula

Consider a second time series {Zt}, with Zt = (Z1,t, . . . , Zr,t)
′ having r elements. This follows a

stationary unobserved component model with stochastic volatility disturbances (UCSV) given by:

Zt = µt + Λ0.5
t εt ,
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µt =

p∑
k=1

Bkµt−k + εt ,

hi,t = h̄i + ai(hi,t−1 − h̄i) + ηi,t , for i = 1, . . . , r , (3)

Λt = diag
(
eh1,t , . . . , ehr,t

)
, εt ∼ N(0, Ir), ηt = (η1,t, . . . , ηr,t)

′ ∼ N(0,Ση), and εt ∼ N(0,Σε). In this

model, Zt is decomposed into the sum of two zero mean stationary components: a level component

µt which follows a VAR(p) model, and a variance component which has r correlated elements that

each follow stochastic volatility models, with Zi,t|µi,t, hi,t ∼ N(µi,t, e
hi,t). Eq. (3) defines a nonlinear

state space model, with state vector (µ′t,h
′
t)
′, where ht = (h1,t, . . . , hr,t)

′ is the log-volatility vector.

The autoregressive coefficients a = (a1, . . . , ar)
′ are bounded so that −1 < ai < 1. We refer to {Zt}

as a ‘pseudo time series’, because it is not observed directly. We extract its dependence structure by

constructing the Tr-dimensional copula density of Z = (Z ′1, . . . ,Z
′
T )′, and use it for c in Eq. (2).

Let Ψ be the parameters of the UCSV model at Eq. (3), andZ have distribution function FZ(z|Ψ).

Because the pseudo time series is stationary, the marginal distribution function Fi(zi,t|Ψ) of Zi,t is

time invariant. Following Nelsen (2006, Sec.3.1), the copula function and density of this distribution

can be obtained by inversion of the usual expression of Sklar’s theorem, to give

C(u|Ψ) = FZ
(
F−1

1 (u1,1|Ψ), F−1
2 (u2,1|Ψ), . . . , F−1

r (ur,T |Ψ)|Ψ
)
, and

c(u|Ψ) =
fZ (z|Ψ)∏r

i=1

∏T
t=1 fi(zi,t|Ψ)

, (4)

where zi,t = F−1
i (ui,t|Ψ), zt = (z1,t, . . . , zr,t)

′, z = (z′1, . . . ,z
′
T )′, fZ(z|Ψ) = ∂rT

∂z1,1···∂zr,T
FZ(z|Ψ) and

fi(zi,t|Ψ) = d
dzi,t

Fi(zi,t|Ψ). We call this an ‘inversion copula’ (it is also called an ‘implicit copula’ by

McNeil et al. (2005, p.190)). However, for the data distribution of the UCSV model, fZ and fi cannot

be expressed in closed form, so that neither can c in Eq. (4). Nevertheless, the likelihood at Eq. (2)

can still be computed by expressing it conditional on µ = (µ′1, . . . ,µ
′
T )′ and h = (h′1, . . . ,h

′
T )′, and

integrating µ and h out using Bayesian methods, which is the approach we employ.

The conditional likelihood can be obtained by a change of variables from Z to Y , as

f (y|µ,h,Ψ) = f(z|µ,h,Ψ)JZ→Y =
T∏
t=1

(
φr (zt;µt,Λt)

r∏
i=1

gi(yi,t)

fi(zi,t|Ψ)

)
, (5)

where JZ→Y =
∏T

t=1

∏r
i=1

gi(yi,t)

fi(zi,t|Ψ)
is the the Jacobian of the transformation, and φr (zt;µt,Λt) is the
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density of a N(µt,Λt) distribution evaluated at zt. To compute Eq. (5), the most difficult task is

evaluating the marginal densities fi, and the corresponding quantile functions F−1
i . The latter is

needed to compute zi,t = F−1
i (ui,t|Ψ) from ui,t = Gi(yi,t). The density

fi(zi,t|Ψ) =

∫
φ1(zi,t;µi,t, hi,t)f(µi,t|Ψ)f(hi,t|Ψ)d(µi,t, hi,t) . (6)

The state µi,t|Ψ ∼ N(0, di), where d = (d1, . . . , dr) can be computed from {B1, . . . , Bp,Σε} (Lütkepohl,

2005, pp.28-29), although (as we discuss below) we parameterize the vector autoregression directly

in terms of d instead. The state hi,t|Ψ ∼ N(h̄i, s
2
i ), where s2

i = σ̄2
i,i/(1− a2

i ), with σ̄2
i,i the ith leading

diagonal element of Ση. Substituting these two state densities into Eq. (6), and integrating out µi,t

analytically as a Gaussian, gives the expressions

fi(zi,t|Ψ) =

∫
φ1

(
zi,t; 0, di + eh

)
φ1

(
h; h̄i, s

2
i

)
dh

Fi(zi,t|Ψ) =

∫
Φ1

(
zi,t; 0, di + eh

)
φ1

(
h; h̄i, s

2
i

)
dh , (7)

where Φr(z;m,Ω) is the distribution function of a N(m,Ω) evaluated at point z, and the integrals

over h are computed numerically. Finally, to evaluate F−1
i from Fi, we use the fast numerical method

proposed by Smith and Maneesoonthorn (2018, Appendix A).

Tab. A1 in the Online Appendix depicts the transformations underlying the inversion copula time

series model, and tabulates the various distribution and density functions.

2.3 Parameterization and Identification

Let µ̃ = (µ′p+1, . . . ,µ
′
1)′, then the stationary VAR(p) model for the level component {µt} can be

parameterized in terms of d and the unique partial correlations of the covariance matrix Var(µ̃). If

the partial correlation between series i and j, at lag k, is defined as

γ0
i,j = Corr (µi,t, µj,t|intervening elements of vector µ̃) , if k = 0 , and

γki,j = Corr (µi,t−k, µj,t|intervening elements of vector µ̃) , for 1 ≤ k ≤ p ,

then γ = {γki,j; (i, j, k) ∈ P}, for P = {1 ≤ j < i ≤ r ; k = 0} ∪ {1 ≤ i, j ≤ r; 1 ≤ k ≤ p}, is

the set of all unique partial correlations. There is a one-to-one relationship between {B1, . . . , Bp,Σε}

and {γ,d}. Lütkepohl (2005, pp.29-31) outlines how to compute {d,γ} from {B1, . . . , Bp,Σε}, while
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Appendix A shows how to undertake the reverse. In total there are r2p+r(r−1)/2 partial correlations,

so that there are 110 in our empirical analysis where r = 5 and p = 4. Adopting this parameterization

simplifies our MCMC scheme in two ways. First, each γki,j is unconstrained on [−1, 1] conditional on

the other partials, simplifying generation and improving mixing. Second, the conditional posterior

of γ is not a function of F1, . . . , Fr, so that generation of γ does not require re-computation of

z1, . . . ,zT , which is slow. Following Daniels and Pourahmadi (2009), we also parameterize the (r×r)

matrix Ση in terms of its variances and partial correlations.

When forming a copula via inversion, all information about the marginal location and scale of

Zi,t is lost. To identify the parameters, constraints on these moments are required; for example, in

the Gaussian copula Zi,t ∼ N(0, 1). We constrain the first two marginal moments of Zi,t. First,

E(Zi,t) = 0 by definition of the model at Eq. (3). Second, the marginal variance is

Var(Zi,t) = Var(µi,t) + Var(exp(hi,t/2)εi,t)

= di + E(exp(hi,t)) = di + exp(h̄i + s2
i /2) ,

where s2
i = σ̄2

i,i/(1 − a2
i ). Setting Var(Zi,t) = 1, and solving for h̄i, gives the equality constraints

h̄i = log(1−di)−s2
i /2, for i = 1, . . . , r. These are simple to enforce in the MCMC scheme by evaluating

(and not generating) h̄ = (h̄1, . . . , h̄r)
′ at each sweep. In addition, because E(exp(hi,t)) ≥ 0, the

parameters 0 ≤ di ≤ 1, for i = 1, . . . , r. These inequality constaints are easily enforced in a Bayesian

framework by adopting priors that constrain di ∈ (0, 1). With the parameterization and constraints

outlined above, the copula parameters are now Ψ = {γ,d,a,Ση}.

It is important to note that the ‘role’ of each parameter in the UCSV model for {Zt} does not

translate to the same role for {Yt}, so that Ψ is simply a set of copula parameters. However, di can

instead be interpreted as determining the relative importance of the two components for Zi,t: serial

dependence is captured by the homoskedastic component µi,t when di → 1, and the heteroskedastic

component when di → 0. If all elements d = 1, then E(exp(hi,t)) = 0 and Zt = µt. In this case, our

proposed copula reduces to the inversion copula of a Gaussian VAR(p), which is the Gaussian copula

discussed by Smith and Vahey (2016), but without the D-vine representation employed by these

authors. If d = 0, then µt = 0 and Zt = Λ
1/2
t εt, so that C is the inversion copula of a multivariate
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stochastic volatility model only.

3 Estimation and Inference

3.1 Priors

All elements of γ,d,a are assumed independent a priori, and constrained to their admissible domains.

Each cross-sectional partial correlation γ0
i,j has a N(0, 100) prior constrained to (−1, 1), which is close

to a flat prior. Each partial γki,j for 1 ≤ k ≤ p has a N(0, 0.04
k2

) prior constrained to (−1, 1), so that the

longer the lag of the partial correlation, the tighter is its prior density around zero. This is similar to

a Minnesota prior (Litterman, 1986), where higher levels of shrinkage are applied to autoregressive

coefficients of longer lags. The prior for di is uniform on [0, 1], while π(ai, σ̄
2
i,i) ∝ I(0 < s2

i < 3 ; |ai| <

0.99) which ensures that {ai, σ̄2
i,i} remain in a numerically stable region. Finally, uniform priors

on (−1, 1) are used for the r(r − 1)/2 partial correlations of the matrix Ση, which is a standard

uninformative prior on a correlation matrix (Daniels and Pourahmadi, 2009).

3.2 Posterior

Estimation of Ψ requires evaluation of the copula density at Eq. (4), which is the likelihood conditional

on the margins (G1, . . . , Gr). Even though the copula is high-dimensional, its parameters can still

be estimated, as we now discuss. By exploiting the state space formulation of {Zt} in Eq (3), the

numerator of the copula density fZ(z|Ψ) can be computed using a number of existing methods in

the state space literature. We adopt a Bayesian MCMC approach and explicitly generate the states

{µ,h} as part of the following sampling scheme.

Sampling Scheme

Step 1: Generate from µ|Ψ,h,y.

Step 2: Generate from h|Ψ,µ,y.

Step 3: Generate from γ|{Ψ\γ}µ,h,y.

Step 4: Generate from di|{Ψ\di},µ,h,y, for i = 1, . . . , r.

Step 5: Generate from ai|{Ψ\ai},h,µ,y, for i = 1, . . . , r.

Step 6: Generate from Ση|{Ψ\Ση},h,µ,y.
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In Step 1, we compute {B1, . . . , Bp,Σε} from {d,γ} as shown in the Appendix A, and then generate

µ as a multivariate normal as in Chan and Jeliazkov (2009). To generate h in Step 2 we approximate

the distribution of log(ε2
i,t) for i = 1, . . . , r, using a mixture of seven normals, and use the simulation

smoother. In Step 3, the partial correlations γ are sampled as pairs of elements chosen at random,

where each pair is generated conditional on the remaining elements of γ using adaptive random walk

Metropolis-Hastings (MH). In Steps 4, 5 and 6 the elements of d, a, and the diagonal elements of Ση

are all generated one at a time using MH with normal approximations to the conditional posteriors

as the proposals. Finally, in Step 6 the partial correlations of the matrix Ση are generated one

at a time using adaptive random walk MH. After convergence, we collect the Monte Carlo sample

{Ψ[1], . . . ,Ψ[J ]} from which posterior inference is computed in the standard Bayesian fashion; the

Online Appendix gives a detailed description of the sampling scheme.

3.3 Simulation and Forecasting

A major advantage of copulas constructed by inversion of a parametric model is that simulation of an

iterate U ∼ C(·|Ψ) is both fast and simple. To do so, first simulate a series of values Z1, . . . ,ZT from

the UCSV model1 at Eq. (3), and then compute Ui,t = Fi(Zi,t|Ψ) for i = 1, . . . , r and t = 1, . . . , T .

Monte Carlo estimates of a wide range of dependence measures — including slices of the copula

density — can then be computed, as in Section 4.3.2.

The h-step ahead posterior predictive density of YT+h, conditional on Y1:T = y, is

f(yT+h|y) =

∫
f(yT+h|y,µ1:T ,hT ,Ψ)f(µ1:T ,hT ,Ψ|y)d(µ1:T ,hT ,Ψ) .

The integration above cannot be computed analytically, but it is fast and simple to simulate from

the distribution as follows. At each sweep of the sampler, simulate from the conditional distri-

bution ZT+h|µ1:T ,hT ,Ψ by first simulating µT+h and hT+h using the transition equations, and

then generating ZT+h from the measurement equation, both given at Eq (3). Finally, compute

Yi,T+h = G−1
i (Fi(Zi,T+h|Ψ)) for i = 1, . . . , r.

1To do so, we are careful to sample a pre-period to remove the effect of initial values of the VAR(p) process {µt}.
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The analogous (in-sample) h-step-ahead predictive density of Yt+h, for t = 1, . . . , T − h, is

f(yt+h|y1:t) ≡
∫
f(yt+h|µ1:t,ht,Ψ)f(µ1:t,ht,Ψ|y)d(µ1:t,ht,Ψ) ,

which can be computed by simulating from Zt+h|µ1:t,ht,Ψ and then transforming, as above. For

both densities, by simulating the iterates at each sweep of the sampler, Ψ is integrated out with

respect to its posterior in the usual Bayesian fashion.

4 Empirical Analysis

4.1 U.S. Data and Asymmetry

We consider quarterly data on U.S. output growth, inflation, the unemployment rate, a nominal

short-term interest rate and stock market volatility between 1954Q1 and 2016Q2. Output growth

(∆ ln(GDP)t) and inflation (Inflt) are the quarterly differences in the logarithms of real GDP and

the GDP price deflator, respectively. These are observed in real time, and are obtained from the

Real-Time Data Set for Macroeconomists (Croushore and Stark, 2001). The data are provided in

quarterly vintages, where vintage T + 1 contains observations up to quarter T , and reflects the lag

in the national accounts. Each vintage also provides revisions for the most recent quarters, and

sometimes also the entire series. The interest rate (IRt) is the quarterly average of the monthly

secondary market rate of the 3-Month T-Bill, and the unemployment rate (URt) is the quarterly

average of the monthly seasonally-adjusted civilian unemployment rate; both obtained from the

FRED database. Stock market volatility (VXOt) is the quarterly average VXO volatility index

sourced from the FRED database, and backfilled prior to 1986 using calibrated daily SP500 realized

volatility as in Bloom (2009). We set Yt = (∆ ln(GDP)t, Inflt,URt, IRt,VXOt)
′, and Fig. 1(f–j) plots

the five series for vintage 2016Q2.

The four macroeconomic variables were considered by Clark and Ravazzolo (2015), Smith and

Vahey (2016) and Krüger and Nolte (2015). Some vintages are missing early observations of output

and the price deflator, and for these vintages we follow Clark and Ravazzolo (2015) and work only

with the available information. For example, for the 1992Q1 vintage the 1959Q1 observations of

output and the price deflator are the earliest values used. Adrian et al. (2017) use the National
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Financial Conditions Index produced by the Federal Reserve Bank of Chicago as a measure of financial

conditions. However, this only extends back to 1971, so that we instead use the VXO index, which

Adrian et al. (2017) also found to be related to GDP growth.

There is strong evidence for asymmetry in the marginal distributions of these five variables.

Shapiro-Wilk and Jarque-Bera tests (unreported) reject normality for all variables and vintages,

except for some early vintages of the interest rate and unemployment. Using the nonparametric

test of symmetry of Bai and Ng (2005), symmetry is rejected at the 5% level for GDP growth

vintages between 1977Q4 and 1991Q4, inflation from vintage 1992Q2 onwards, and stock market

volatility until 1987Q4 and between 2006Q1 and 2008Q4. However, this test can have low power,

and even strong deviations from symmetry may be undetected. Fig. 1(a–e) plots histograms of the

variables from vintage 2016Q2, and strong positive skew in inflation and market volatility is visible.

Unemployment, market volatility and the interest rate are bounded on the left, with the latter having

a zero lower bound which it effectively reached between 2008Q4 and 2015Q4. Fig. 1 also shows the

adaptive kernel density estimates (KDEs) of Shimazaki and Shinomoto (2010), which are strongly

asymmetric and heavy-tailed. They approximately capture lower bounds on unemployment and the

interest rate, capture the smooth tails and asymmetry in the variables, and have multiple modes for

unemployment and the interest rate. Except where otherwise stated, KDEs from each vintage are

used for the margins G1, . . . , G5 in our copula time series models.

Predictive distributions of growth can also exhibit asymmetry. To illustrate, we show that the

predictive distributions for GNP/GDP reported in the Survey of Professional Forecasters (SPF) are

often asymmetric. These are an ensemble of the survey respondents’ predictive distributions for the

“average annual over average annual” growth rate for both the same and next year; see Smith and

Vahey (2016) for a discussion. These have the drawback that they mix over differing multi-horizon

quarterly forecasts, and to address this we only consider the first quarter (Q1) reports. In the Q1

reports, the forecast distribution for the same year involves forecasts of GDP during all four quarters

of the year of the report. In addition, the forecast distribution for the next year requires forecasts

of GDP during the four quarters of the following year as well. Therefore, the same year forecasts

12



involve a forecast horizon of four quarters, and the next year forecasts a horizon of eight quarters

— horizons that remain the same in all Q1 reports. The SPF forecast distributions are a discrete

piecewise specification, for which the Pearson skew coefficient can be uninformative. Therefore, we

measure asymmetry by Bowley’s skew coefficient Bow = (q3 + q1 − 2q2)/(q3 − q1), which uses the

quantiles q1, q2 and q3 and is more robust to the specification of the distribution. Fig. 2 plots this

measure for the same and next year predictive distributions of annual growth in the Q1 reports,

and sizable skew exists. Bootstrap standard errors show that this skew is statistically significant

in many reports. Skew for the same year growth exhibits a high degree of persistence over years.

Interestingly, the next year forecasts tend to be negatively skewed, which reflect beliefs about the

long-run distribution of growth on the part of the SPF respondents. Later, we show that the real-time

predictive distributions from our copula model also exhibit skew that varies over the vintages.

4.2 Benchmark Models

We label the heteroskedastic copula model as UCSV-C, and compare it to the following benchmarks:

(i) VAR: A fourth order Gaussian vector autoregression with a Minnesota prior.

(ii) VAR-C: The copula model of Smith and Vahey (2016), but with the prior π(γ,d) outlined in

Section 3.1 and KDE margins, which we find improves the forecast accuracy slightly compared

to the spike-and-slab prior these authors employ. This copula is equivalent to that in Section 2,

but where εt = 0, so that Zt = µt and the pseudo time series follows a VAR(4).

(iii) VARSV: The fourth order Gaussian vector autoregression with stochastic volatility, imple-

mented as outlined in Clark and Ravazzolo (2015).

(iv) UCSV: The unobserved component model with stochastic volatility outlined in Section 2.2, but

applied directly to the data and without the parameter constraints required for identification

of the copula (i.e. without the constraints on h̄ and d).

The copula parameters are estimated using the Bayesian method outlined in Section 3. The VAR,

VARSV and UCSV models are estimated using standard MCMC schemes; for example, see Koop

et al. (2010). A total of 30,000 iterates were discarded for convergence, while a further 40,000 were
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collected as a Monte Carlo sample. These prove to be conservative choices, with the empirical results

robust to variations in the starting states, and doubling or halving of the sampling and burnin periods.

The dependence structure of the heteroskedastic copula model fit to the 2016Q2 vintage data

is discussed below first, followed by the model’s real-time forecasting performance over the window

1975Q1–2016Q2.

4.3 Fitted Model for 2016Q2 Vintage

4.3.1 Parameter Estimates

Tab. 1 reports posterior means and 90% probability intervals of the copula parameters {d,a,Ση}.

Posterior estimates of γ, the states µ,h and the alternative VAR parameterization {B1, . . . , B4,Σε}

are given in the Online Appendix. We briefly discuss their implication for the pseudo time series {Zt}.

First, d̂3 = 0.978 and d̂4 = 0.975, so that the homoskedastic level components µ3,t and µ4,t explain

a very high proportion of variation in Z3,t and Z4,t, respectively. This suggests there is very little

serial correlation in the variance of these two series. Second, Z1,t, Z2,t and Z5,t have log-volatilities

that exhibit positive serial correlation (â1 = 0.763, â2 = 0.746 and â5 = 0.772). This is consistent

with time series plots of the posterior estimates of the states, which are the two conditional moments

µi,t = E(Zi,t|µt,ht) and hi,t = log(Var(Zi,t|µt,ht)). These are in the Online Appendix, along with

estimates of γ, Ση and Σε, which indicate significant cross-sectional dependence between the elements

of {Zt}; both contemporaneous and lagged.

4.3.2 Time Series Dependence Structure

To measure the estimated dependence structure of the actual time series {Yt}, we first compute the

matrices of pairwise Spearman correlations R(k) = {ρi,j(k)}i=1,...,5;j=1,...,5 at lag k, where

ρi,j(k) = Corr(Ui,t, Uj,t−k) = 12E(Ui,tUj,t−k)− 3 ,

and Ui,t = Gi(Yi,t). The expectation above is with respect to the posterior distribution of Ψ. It is

computed by averaging over draws from the copula c(u|Ψ) at the end of each sweep of the sampling

scheme, integrating out Ψ with respect to its posterior. Tab. 2 presents the posterior means of

R(0), R(1) and R(4). For example, correlation between the unemployment rate and GDP growth
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lagged four quarters is −0.26, so that unemployment is a lagging indicator. Interestingly, correlation

between GDP growth and stock market volatility lagged one quarter is −0.176, so that increases in

stock market volatility leads to a reduction in output growth the following quarter, which is consistent

with the quantile regression results of Adrian et al. (2017). Positive serial dependence exists in all

five series, and it is strong for the unemployment rate, inflation, the interest rate and stock market

volatility, but is weaker for GDP growth.

The Spearman correlations above measure dependence in the level of the time series. Yet the

main advantage of our proposed copula is that it can also capture conditional heteroskedasticity. To

illustrate, Fig. 3 plots four bivariate slices of the fitted copula density. These slices are in the variable

pairs (∆(ln(GDP)t,∆(ln(GDP)t−1), (Inflt, Inflt−1), (IRt, Inflt−1) and (∆(ln(GDP)t),VXOt−1), and are

constructed via simulation from the fitted copula. The first three slices have the majority of their mass

concentrated along the leading diagonal (due to the positive level dependence between the variables)

while the last slice has most mass on the off-diagonal (due to the negative level dependence between

the variables). However, there is also a slight up-turn in the corners at (0,1) and (1,0) in panel (a),

and to a less visible extent in panel (b). Loaiza-Maya et al. (2018) show that this characteristic is

symptomatic of positive dependence between the variances of two variables. To measure this more

precisely these authors propose computing the dependence in a variation process, which we also do

here as outlined below.

Let ei,t = Yi,t − E(Yi,t|yt−1, . . . ,yt−p) be the the innovation in the ith variable. Consider the

transformation V : IR → IR+, such that (i) V (a) = V (−a) ≥ 0, (ii) V (0) = 0, and (iii) d
da
V (a) >

0 if a > 0.2 Then Loaiza-Maya et al. (2018) show that the copula of any pair of transformed

innovations V (ei,t), V (ej,s) is invariant to the specific choice of V . They propose measuring the

volatility dependence between this pair using their Spearman correlation

ρVi,j(k) = Corr(Ũi,t, Ũj,t−k) = 12E(Ũi,t, Ũi,t−k)− 3 ,

where Ũi,t = FVi(V (ei,t)) and FVi is the distribution function of V (ei,t). Computation of this metric

can be undertaken via simulation for any time series model that has stationary innovations, including

2Examples of transformations that satisfy these conditions are simply V (a) = |a| and V (a) = a2.
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all five time series models fit here. Tab. 3 reports the matrix RV (k) =
{
ρVi,j(k)

}
i=1,...,5;j=1,...,5

for

k = 0, 1 and both the VARSV and UCSV-C models. Both models capture heteroskedasticity (ie.

ρVi,i(1) > 0), and mostly positive volatility co-movements (ie. ρVi,j(0) > 0 for i 6= j) and spillovers (ie.

ρVi,j(1) > 0 for i 6= j). The level of heteroskedasticity is similar for both models, while the volatility

spillovers and co-movements are generally stronger for the VARSV model.

4.3.3 Predictive Distributions and Time-Varying Moments

The differences between the fitted UCSV-C, UCSV and VARSV models, are illustrated by the differ-

ences in their (in-sample) predictive distributions. For example, Fig. 4 plots the (a) mean, (b) stan-

dard deviation, (c) Pearson skew coefficient, and (d) kurtosis of the one-quarter-ahead predictive

distributions of GDP growth from the three models, computed as in Section 3.3. Panel (b) shows

that the UCSV-C model exhibits a much higher degree of heteroskedasticity than the UCSV model.

Therefore, allowing for greater flexibility in the margins affects the estimated serial dependence struc-

ture substantially. The UCSV-C and VARSV models exhibit a similar degree of heteroskedasticity,

which responds to macroeconomic events — such as the Great Moderation — similarly.

However, in panels (c) and (d), there is a large difference between the three models. The pre-

dictive distributions of the UCSV-C model exhibit negative skewness and higher kurtosis than the

exactly symmetric distributions from the other two models. Moreover, even though only the first two

moments of {Zt} are time varying, when the inversion copula is combined with the five asymmetric

margins, it also produces time variation in the third and fourth moments of {Yt}. For example,

panel (c) shows that skew is sharply negative during each recession, reflecting increases in downside

risk. Prior to the Great Moderation there is also a heavy lower tail (high kurtosis and negative skew),

demonstrating a small, but persistent, probability of a contraction. Except during the three subse-

quent recessions, this heavy tail all but disappears after 1982. The ability to account for time-varying

tail risk is a major feature of our proposed multivariate time series model. Equivalent plots for the

other variables can be found in the Online Appendix, and show that the predictive distributions from

the UCSV-C model also differ from those of the two benchmark models substantially.

Finally, as a measure of goodness-of-fit for each model, we compute the accuracy of the one-
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step-ahead predictive densities using the (mean) continuously ranked probability score (CRPS) of

Gneiting and Raftery (2007). This metric is evaluated by integration of the quantile score as in Smith

and Vahey (2016, Appendix A.2). Tab. 5 reports the values, and the UCSV-C model is more accurate

than the benchmark models for every variable. As a guide, Harvey et al. (1997) small-sample adjusted

Diebold-Mariano tests indicate that this dominance is statistically significant.

4.4 Real-Time Forecasts

We study the real-time density and point forecasts from our copula model, and their accuracy relative

to those from the benchmark models. The models are fitted sequentially to each data vintage between

1975Q1 and 2016Q2, and the out-of-sample predictive densities f(yT+h|y) computed for h = 1, . . . , 8

and all vintages. The case where h = 1 corresponds to forecasting current quarter macroeconomic

conditions, also called ‘nowcasts’ (Garratt et al., 2014).

4.4.1 Level of Asymmetry in Margins and Predictive Densities

Fig. 5(a-d) displays estimates of the marginals G1, . . . , G5 obtained from fits to vintages 1985Q2,

1996Q4, 2006Q2 and 2016Q2, and we make three observations. First, the direction of skew does not

vary over vintage, with GDP growth exhibiting negative skew, and the other variables positive skew.

Second, the distribution of inflation in the post-Great Moderation 2006Q2 and 2016Q2 vintages is

sharper with a lower mean and variance than the earlier two vintages. Last, the marginal distributions

of unemployment and the interest rate are multi-modal, which is consistent with a small number of

distinct regimes. It is possible to smooth away the modes by fitting a unimodal distribution, such as

a skew t, but we retain them here and show that they do not inhibit forecast accuracy.

Fig. 5(e-h) plots the current quarter predictive densities for the same four vintages. These differ

dramatically from the estimated margins, showing that the UCSV-C model does not simply transfer

the features of the marginals to the predictive densities. For example, the predictive densities of

unemployment and the interest rate are all unimodal, in contrast to their margins. The predictive

densities are also much sharper than the marginals; for example, that for the interest rate at vintage

2016Q2 is concentrated between 0% and 1%, reflecting the monetary environment during that quarter.
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In contrast, both the margins and predictive distributions of the VAR, VARSV and UCSV models

are symmetric and unimodal. To illustrate the impact of this constraint on real-time forecasts, we

examine the current quarter GDP growth predictive distributions. Fig. 6 plots the (a) standard

deviation and (b) skew of these from both the UCSV-C and VARSV models. (We later show that

those from the former model are more accurate). The predictive distributions from the VARSV are

exactly symmetric, so have zero skew. In comparison, not only are the predictive distributions of

the UCSV-C model skewed at times, but the skew varies depending on macroeconomic conditions.

For example, forecasts are negatively skewed during the recessionary periods of the early 1980’s,

2001 and the Great Recession, whereas post-2009Q2 they are largely positively skewed. Allowing for

asymmetry in the predictive distributions also affects their standard deviation. For example, in the

years prior to the Great Recession, the predictive standard deviation from the UCSV-C model was

greater than that from the VARSV, but with upside risk due to positive skew. The converse is true

during the second half of the Great Recession (ie. 2008Q4 – 2009Q2).

Adrian et al. (2017) characterize this asymmetry in real-time density forecasts using plots of the

expected shortfall, and its upper tail equivalent, and we follow suit. Fig. 7 plots these at the 5% level

for current quarter forecasts of GDP growth and inflation from the UCSV-C and VARSV models.

From the UCSV-C model, the lower quantiles of GDP growth forecasts vary more over time than the

upper quantiles. This is consistent with the empirical findings of Adrian et al. (2017), who use (skew

t smoothed) quantile regression. For inflation, we find the opposite empirical result – the upper

quantiles vary more over time than lower quantiles. In comparison, such features cannot appear

in the VARSV forecasts. Similar conclusions can be drawn from forecasts at longer horizons, and

equivalent plots when h = 4 are given in the Online Appendix.

To assess the impact of monetary policy after the Great Recession on real-time density forecasts

of the interest rate, Fig. 8 plots the four moments of current quarter forecasts of this variable from

2000Q1 to 2016Q2. While all models show a post-recession mean close to zero in panel (a), both the

VARSV and UCSV models overstate the standard deviation during this period in panel (b). In con-

trast, the UCSV-C model adapts to this unusual monetary policy well, with predictive distributions
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that have low variation, but high positive skew and kurtosis in panels (c) and (d) — a necessary

feature of any distribution that is left-truncated with a mean close to the lower bound.

The Online Appendix provides plots of the standard deviation and skew (both Bowley and Pear-

son) of the real-time forecasts for all five variables and horizons h = 1, 4 from the UCSV-C model.

Throughout, the forecasts exhibit time-varying asymmetry. The inflation forecasts are positively

skewed at both horizons. Also given in the Online Appendix are rolling fan charts comparing the

forecast densities from the VAR, VAR-C, VARSV and UCSV-C models.

4.4.2 Forecast Accuracy

To measure real-time forecast accuracy, we follow Romer and Romer (2000) and others and use GDP

growth and inflation computed from the second revision of the national accounts as their true values,

or ‘outturns’. (Although the results are similar, and conclusions unchanged, when using the first

revision — ie. second release — as in Smith and Vahey (2016).) For all models, the predictive means

are the point forecasts, and their accuracy is measured using the root mean square error (RMSE). The

accuracy of the density forecasts are measured by the mean CRPS metric. (The same conclusions are

drawn from the logarithmic scores, which are reported in the Online Appendix.) For the UCSV-C

model, we consider two marginal estimators in addition to the KDE. These are a skew t distribution

estimated using maximum likelihood, and a Bayesian nonparametric constrained density estimator

described in Appendix B and the Online Appendix. The latter enforces zero lower bounds on IRt

and VXOt. To distinguish the results, we suffix UCSV-C with ‘KDE’, ‘Skt’ and ‘BNP’.3

Tab. 4 reports the forecast accuracy for the four macroeconomic variables over the evaluation

period 1975Q1 – 2016Q2, with the metrics for the copula models listed last. As an initial guide,

results of a Harvey et al. (1997) small sample adjusted Diebold-Mariano two-sided test for the equality

of the mean scores of the UCSV-C-KDE with each of the other models are reported. Rejection of

the null hypothesis of equal means at the 10% or 5% level is denoted by ‘*’ or ‘**’ if favorable to

the UCSV-C-KDE model, or by ‘+’ or ‘++’ if unfavorable. While no single multivariate time series

3For example, UCSV-C-Skt is the label for the copula model with skew t margins and the inversion copula con-
structed from the UCSV pseudo time series model.
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model is uniformly more accurate for all four variables at all horizons, there are a number of clear

differences, and we make five observations on these.

First, forecasts from the nonlinear models are more accurate than those from the linear VAR,

except for unemployment. With this variable, forecasts from the nonlinear models are no more

accurate than those from the VAR, except the density forecasts from the VARSV model at short

horizons. Second, the results from the UCSV-C models are robust to the choice of margin (KDE,

BNP or Skt), although with some exceptions. These include increased density forecast accuracy of

GDP growth at long horizons (h = 4, 8) and inflation at short horizons (h = 1, 2) using the BNP

margins. Moreover, the skew t margin does not account for the zero lower bound on the interest

rate, and forecasts of this variable from the UCSV-C-Skt model are less accurate. Third, forecasts

from the UCSV-C-KDE model are generally more accurate than those from the VAR-C-KDE model,

and substantially so for inflation and GDP growth. This is consistent with the higher degree of

heteroskedasticity in these series, which is better captured by the UCSV-C introduced here, than the

VAR-C discussed by Smith and Vahey (2016). Fourth, the forecasts from the UCSV-C-KDE model

are significantly more accurate than those from the UCSV model for GDP growth at h = 1, 2, and

the interest rate at h = 1, 2. However, the reverse is never the case for any variable or horizon. Thus,

combining nonparametric margins with the UCSV-C produces a more flexible time series model than

the UCSV model, and improves forecast accuracy. Fifth, when compared to the VARSV model,

forecasts of current quarter GDP growth and long-run (h = 8) inflation made from the UCSV-C-

KDE model are significantly more accurate. Thus, the time-varying asymmetries in the current

quarter GDP growth density forecasts documented above, translate into increased accuracy. This is

a strong result, as the VARSV is known to be an accurate forecasting model for these series in real

time (Clark, 2011, Clark and Ravazzolo, 2015). However, the VARSV dominates the UCSV-C-KDE

for medium-run (h = 4) GDP growth and short-run (h = 1) unemployment forecasts.

Finally, we note that VAR-C model has greater relative forecast accuracy than that reported

by Smith and Vahey (2016) for the same copula. This is because of differences between the studies in

(i) the way that early missing observations were dealt with for some vintages, (ii) the priors employed,
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and (iii) the marginals employed.

4.4.3 Forecasting Economic Relationships in Real Time

Multivariate density forecasts from our copula model can also be constructed using iterates simulated

from the predictive distribution, as in Section 3.3. To illustrate, we construct bivariate current

quarter forecasts of ∆URT+1 = URT+1−URT and ∆ ln(GDP)T+1. Okun’s rule suggests there should

be a negative relationship between these two variables. The bivariate densities (see the Online

Appendix) exhibit strong asymmetries, with a negative relationship between the two variables that

can be nonlinear. In contrast, forecasts from the VARSV and UCSV models are necessarily elliptical

densities with linear relationships. To illustrate how the relationship has changed over time, Fig. 9

plots the Spearman correlations of the current quarter real-time forecasts of these two variables

between 1975Q1 and 2016Q2. The correlation is negative throughout, although it varies over time.

It is strongest during the Great Moderation, and weakest during the Great Recession, which is

consistent with existing evidence for this relationship (Ball et al., 2015).

5 Discussion

This paper makes two main contributions. The first is methodological, where we propose a new

copula constructed by inversion of the data distribution from an UCSV model. When combined with

nonparametric margins, it results in a multivariate time series model that has the same dependence

structure as an UCSV model — including that due to heteroskedasticity — but is more flexible.

Inversion copulas are attractive for the modeling of dependence in high dimensions, such as dimension

Tr here. While a Gaussian copula is a popular choice of inversion copula its dependence structure

is limited. For time series, drawable vine copulas are a viable alternative (Smith, 2015, Loaiza-Maya

et al., 2018), but are less general and arguably more complex than the copula suggested here. Even

though the density of our proposed copula cannot be written in closed form, the likelihood of the

UCSV can be computed using Bayesian methods. A practical insight is that parameterizing the VAR

for {µt} in terms of its unique partial autocorrelations γ and variances d, improves the efficiency

of the MCMC scheme greatly. The prior for γ is similar to that induced by a Minnesota prior, and
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they can even be matched exactly by simulation.

The second contribution is to demonstrate that the copula time series model can improve real-

time macroeconomic forecasts. The margins of many stationary time series models used in practice

are inconsistent with those observed empirically. For the quarterly data examined here, the nonpara-

metric margins in the copula model not only correct this inaccuracy, but also generate predictive

distributions that have time-varying quantiles and higher order moments. Adrian et al. (2017) ob-

serve an increase in downside risk in GDP growth during recessions, conditional on financial and

economic conditions. We observe the same feature in the real-time forecasts of GDP growth from

our model, but these are joint with the other economic and financial variables. The current quar-

ter GDP growth density forecasts are significantly more accurate than those from the benchmark

models. Our empirical analysis also suggests asymmetries exist in the real-time forecast densities

of other variables too. For example, there is upside risk in inflation, and post-recession forecasts of

the interest rate have heavy positive upper tails – a necessary feature of a zero lower bound. While

no one multivariate time series model dominates in forecasting accuracy for all variables and at all

horizons, our model is the most accurate overall for inflation, the interest rate and current quarter

GDP. The UCSV-C model also dominates the UCSV and VAR-C models, both of which it nests.

Last, we mention some directions for future research. While the MCMC estimator evaluates

the exact posterior, the sampling scheme is slow for larger datasets. For these cases, alternatives

such as simulated method of moments (Oh and Patton, 2013) and variational (Ormerod and Wand,

2010) estimators can be investigated. To extend our proposed copula to higher dimensions, factor

structures for the pseudo time series can be considered, similar to the static factor model suggested

by Oh and Patton (2017). Last, we note that the UCSV is Markov. The construction of inversion

copulas from non-Markov stationary time series models has yet to be considered.

Appendix A

This appendix outlines how to compute {B1, . . . , Bp,Σε} from {γ,d} for the stationary Gaussian

VAR(p) model for {µt}. Let µ− = (µ′t−1, . . . ,µ
′
t−p)

′, then {γ,d} are the unique partial correlations
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and marginal variances of the (p+ 1)r × (p+ 1)r covariance matrix V = Var((µ′t,µ
′
−)′), from which

V can be computed using the recursions of Yule; for example, see Daniels and Pourahmadi (2009).

Then, if V1 = Var(µt), V1,2 = cov(µt,µ−) and V2 = Var(µ−), the conditional distribution µt|µ− ∼

N
(
V1,2V

−1
2 µ−, V1 − V1,2V

−1
2 V ′1,2

)
. Matching these conditional moments with those from the usual

specification of a VAR(p), gives Σε = V1 − V1,2V
−1

2 V ′1,2 and [B1| · · · |Bp] = V1,2V
−1

2 .

Appendix B

This appendix outlines the Bayesian nonparametric constrained density estimator (labelled BNP).

This represents an unknown density as an infinite mixture f(x) =
∑∞

j=1 wjfker(x|θj). Here, wj is

the weight assigned to component j, and fker(x|θj) is called the kernel density. We follow closely the

approach of Kalli et al. (2011), but use a Gaussian density constrained to A = {x : xL ≤ x ≤ xU}

for the kernel density. For all five variables, the upper bound xU = max(x) + σx, where σx is the

sample standard deviation of x. The lower bounds of the interest rate and stock market volatility

are set to zero, while for the remaining variables xL = min(x)− σx. Estimation involves augmenting

the mixture model with a ‘slicing variable’ ω, so that

f(x, ω) =
∞∑
j=1

I(ω < wj)I(x ∈ A)φ(x;µj, σ
2
j )/[Φ(xU ;µj, σ

2
j )− Φ(xL;µj, σ

2
j )] ,

and writing the weights as wj = νj
∏j−1

k=1(1− νk), which is known as a ‘stick breaking’ representation.

An efficient MCMC sampling scheme that we use to estimate the BNP constrained density estimator

is outlined in Part B of the Online Appendix. As with the other two marginal models, we fit this

estimator to each variable and vintage separately.
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Ση

ai h̄i di ∆ ln(GDP) Infl UR IR VXO

∆ ln(GDP) 0.763 -1.299 0.524 0.418 0.037 0.165 0.208 0.046
(0.29,0.96) (-1.93,-0.83) (0.38,0.66) ( 0.05,1.12) (-0.22, 0.33) ( 0.01,0.40) ( 0.05,0.45) (-0.13,0.25)

Infl 0.746 -2.408 0.821 0.037 0.526 0.067 0.006 0.237
(0.43,0.94) (-3.03,-1.87) (0.70,0.90) (-0.22,0.33) ( 0.11, 1.20) (-0.19,0.31) (-0.19,0.18) ( 0.02,0.64)

UR 0.829 -5.044 0.978 0.165 0.067 0.236 0.156 0.051
(0.31,0.99) (-5.74,-3.51) (0.91,0.99) ( 0.01,0.40) (-0.19, 0.31) ( 0.03,0.74) ( 0.04,0.34) (-0.07,0.21)

IR 0.928 -4.979 0.975 0.208 0.006 0.156 0.241 -0.009
(0.83,0.98) (-5.78,-3.93) (0.93,0.99) ( 0.05,0.45) (-0.19, 0.18) ( 0.04,0.34) ( 0.07,0.51) (-0.19,0.13)

VXO 0.772 -2.299 0.797 0.046 0.237 0.051 -0.009 0.489
(0.33,0.97) (-3.15,-1.67) (0.67,0.90) (-0.13,0.25) ( 0.02, 0.64) (-0.07,0.21) (-0.19,0.13) ( 0.04,1.44)

Table 1: Estimates of the copula parameters from the 2016Q2 vintage data. The posterior
means and 90% probability intervals are reported for the copula parameters {d,a,Ση}, along with
h̄, from the UCSV-C inversion copula model. Estimates of the partial correlations γ, and alternative
parameterization {B1, . . . , B4,Σε}, can be found in the Online Appendix.
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∆ ln(GDP)t Inflt URt IRt VXOt

R(0) ∆ ln(GDP)t 1.000 -0.099 -0.039 0.052 -0.180
Inflt -0.099 1.000 0.041 0.568 -0.021
URt -0.039 0.041 1.000 -0.039 0.094
IRt 0.052 0.568 -0.039 1.000 0.040

VXOt -0.180 -0.021 0.094 0.040 1.000

R(1) ∆ ln(GDP)t−1 0.327 -0.029 -0.148 0.100 -0.148
Inflt−1 -0.129 0.795 0.080 0.579 -0.033
URt−1 0.065 0.015 0.958 -0.053 0.042
IRt−1 -0.001 0.547 -0.008 0.965 0.072

VXOt−1 -0.176 -0.023 0.151 0.006 0.709

R(4) ∆ ln(GDP)t−4 0.039 0.044 -0.260 0.159 -0.059
Inflt−4 -0.099 0.682 0.205 0.581 -0.059
URt−4 0.167 0.008 0.769 -0.043 -0.065
IRt−4 -0.014 0.458 0.115 0.882 0.139

VXOt−4 -0.070 -0.025 0.253 -0.067 0.467

Table 2: Estimates of level dependence from the 2016Q2 vintage data. The posterior means
of the matrices of Spearman pairwise correlations R(0), R(1) and R(4) are reported for the fitted
UCSV-C inversion copula. These measure dependence in the level of the time series {Yt}, and are
computed by simulation. Estimates of R(2), R(3) can be found in the Online Appendix.

VARSV UCSV-C
∆ ln(GDP)t Inflt URt IRt VXOt ∆ ln(GDP)t Inflt URt IRt VXOt

RV (0) RV (0)

∆ ln(GDP)t 1.000 0.074 0.247 0.174 0.115 1.000 0.010 0.092 0.053 0.015
Inflt 0.074 1.000 0.181 0.206 -0.030 0.010 1.000 0.014 0.067 0.040
URt 0.247 0.181 1.000 0.226 0.024 0.092 0.014 1.000 0.057 0.027
IRt 0.174 0.206 0.226 1.000 0.013 0.053 0.067 0.057 1.000 -0.006
VXOt 0.115 -0.030 0.024 0.013 1.000 0.015 0.040 0.027 -0.006 1.000

RV (1) RV (1)

∆ ln(GDP)t−1 0.120 0.060 0.088 0.109 0.096 0.069 0.004 0.022 0.035 0.006
Inflt−1 0.056 0.177 0.143 0.158 -0.036 0.008 0.267 0.013 0.064 0.022
URt−1 0.084 0.143 0.152 0.149 0.015 0.026 0.010 0.171 0.043 0.025
IRt−1 0.108 0.169 0.157 0.273 0.005 0.034 0.071 0.036 0.252 -0.003
VXOt−1 0.083 -0.032 0.013 0.005 0.227 0.006 0.028 -0.003 0.006 0.192

Table 3: Estimates of volatility dependence from the 2016Q2 vintage data. Estimates of the
matrices of pairwise Spearman correlations in the volatilities (RV (k)) of the innovations. Results are
reported separately for the VARSV on the left hand side, and the UCSV-C model on the right hand
side. The top rows gives cross-sectional dependence (k = 0), and the bottom rows give first order
serial dependence (k = 1). For example, for the UCSV-C model, the correlation between V (IRt−1)
and V (Inflt) is ρVInfl,IR(1) = 0.071, which is positive volatility ‘spillover’.
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Mean CRPS values for forecasts over 1975Q1 – 2016Q2

h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8

GDP Growth Inflation
Time Series Model
VAR 0.4511** 0.4420** 0.4306 0.4240 0.1750 0.1954 0.2304* 0.3259*
VARSV 0.4014* 0.4003 0.3938++ 0.4022 0.1688 0.1867 0.2222 0.3245*
UCSV 0.4388** 0.4316** 0.4242 0.4159 0.1687 0.1859 0.2099 0.2910
VAR-C-KDE 0.3964* 0.4022 0.4126 0.4132 0.1767** 0.1931** 0.2078 0.2772
UCSV-C-BNP 0.3851 0.3999 0.4111++ 0.4033++ 0.1652++ 0.1797+ 0.1982 0.2651
UCSV-C-Skt 0.3841 0.3997 0.4188 0.4128 0.1660+ 0.1815 0.1964 0.2604
UCSV-C-KDE 0.3845 0.4002 0.4158 0.4103 0.1685 0.1835 0.2010 0.2663

Unemployment Interest Rate
Time Series Model
VAR 0.1485 0.2631 0.4632 0.6916 0.4020** 0.6450** 0.9643 1.5540
VARSV 0.1372+ 0.2466 0.4447 0.6924 0.3382 0.5835* 0.9358 1.5551
UCSV 0.1531 0.2654 0.4688 0.7110 0.4030** 0.6074** 0.9233 1.5178
VAR-C-KDE 0.1498 0.2675* 0.4805 0.7355 0.3128 0.5449 0.8597 1.4186
UCSV-C-BNP 0.1483 0.2633 0.4862* 0.7568 0.3354 0.5408 0.8603 1.4335
UCSV-C-Skt 0.1409++ 0.2490 0.4627 0.7258 0.3462** 0.5647** 0.9035** 1.4806**
UCSV-C-KDE 0.1479 0.2606 0.4763 0.7279 0.3298 0.5384 0.8622 1.4348

RMSE of forecasts over 1975Q1 – 2016Q2

h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8

GDP Growth Inflation
Time Series Model
VAR 0.8139** 0.7752** 0.7366 0.7203 0.3154 0.3666 0.4283 0.6202
VARSV 0.7496** 0.7360 0.7137++ 0.7307 0.3080 0.3532 0.4272 0.6233
UCSV 0.7871** 0.7568** 0.7305 0.7097 0.3032 0.3418 0.3780 0.5264
VAR-C-KDE 0.7272 0.7299 0.7393 0.7327 0.3121* 0.3513** 0.3824 0.5180
UCSV-C-BNP 0.7155 0.7287 0.7422 0.7242 0.2955+ 0.3281 0.3665 0.4939
UCSV-C-Skt 0.7108 0.7339 0.7601 0.7415 0.3016 0.3353 0.3690 0.4925
UCSV-C-KDE 0.7065 0.7242 0.7426 0.7265 0.3029 0.3352 0.3746 0.4995

Unemployment Interest Rate
Time Series Model
VAR 0.2759 0.5009 0.9069 1.3638 0.7936 1.2183 1.7640 2.7282
VARSV 0.2723 0.4956 0.8971 1.3663 0.7506 1.1538 1.6770 2.6030
UCSV 0.2836 0.5062 0.9188 1.3916 0.9787 1.2417 1.6664 3.1076
VAR-C-KDE 0.2715 0.4905 0.9078 1.3935 0.7287 1.1555 1.6572 2.5164
UCSV-C-BNP 0.2769 0.4977 0.9288** 1.4321 0.8141 1.1694 1.6757 2.5243
UCSV-C-Skt 0.2708 0.4847 0.9021 1.3823 0.8185 1.1959* 1.7129** 2.5629
UCSV-C-KDE 0.2780 0.4901 0.9076 1.3860 0.7944 1.1585 1.6634 2.5112

Table 4: Real-time (out-of-sample) forecast accuracy of the multivariate time series mod-
els over 1975Q1 – 2016Q2. The mean CRPS values of the density forecasts (top) and RMSE of
the point forecasts (bottom) are given for the four macroeconomic variables and different models.
Lower values indicate increased accuracy. Results for forecasts made h = 1, 2, 4 and 8 quarters ahead
are given in columns. As a guide, results of a Harvey et al. (1997) small-sample adjustment of the
Diebold-Mariano test are reported. This is a two-sided test of the equality of the mean score of the
UCSV-C-KDE with each of the other models. Rejection of the null hypothesis of equal means at the
10% or 5% level is denoted by ‘*’ or ‘**’ if favorable to the UCSV-C-KDE model, or by ‘+’ or ‘++’
if unfavorable.
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Figure 1: Marginal densities and time series plots of the 2016Q2 vintage data. Panels (a–e)
give the histograms of the five variables, along with the adaptive kernel density estimates (black).
The (necessarily symmetric) marginal densities from the fitted VARSV (green), VAR (red) and UCSV
(yellow) are also plotted. Panels (f–j) give the time series plots of the data, where quarters that are
classified as recessions by the NBER are shaded.
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(a) Same Year Annual Growth
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(b) Next Year Annual Growth

Figure 2: Skew coefficients of the probabilistic GDP growth forecasts in the Q1 SPF
reports. The circles are Bowley’s skew coefficients computed from the predictive distributions of
“annual average over annual average” GNP/GDP growth, given in the first quarter SPF reports from
1982 to 2017. Panel (a) is for the distribution of growth in the same year as the report, and panel (b)
in the next year. The vertical bands depict bootstrap 95% confidence intervals, computed by re-
sampling the individual panelist probability distributions, which can be found on the Philadelphia
Federal Reserve website.
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Figure 3: Bivariate slices of the UCSV-C inversion copula fitted to the 2016Q2 vin-
tage data. The four panels correspond to the variable pairs (a) (∆(ln(GDP )t,∆(ln(GDP )t−1),
(b) (Inflt, Inflt−1), (c) (IRt, Inflt−1) and (d) (∆(ln(GDP )t),VXOt−1). The slices are constructed via
simulation from the fitted copula, and presented as bivariate histograms.

GDP Growth Inflation Unemployment Interest Rate Stock Market Volatility

VAR 0.4356 0.1290 0.1401 0.3261 2.2344
VARSV 0.4151 0.1234 0.1321 0.2718 2.0020
UCSV 0.4226 0.1093 0.1239 0.2391 1.8798
VAR-C 0.4117 0.1293 0.1314 0.2696 2.0331
UCSV-C 0.3778 0.0980 0.0854 0.1945 1.7005

Table 5: A ‘goodness-of-fit’ measure for the UCSV-C and benchmark models fit to the
2016Q2 vintage data. The mean of the cumulative rank probability score (CRPS) values computed
from the one-step-ahead predictive distributions is reported for each variable and multivariate time
series model. Lower values indicate increased goodness of fit. If the multivariate time series models
provided perfect forecast densities, this measure would be zero. As a guide, Harvey et al. (1997)
small-sample adjusted Diebold-Mariano tests indicate that the predictive densities from the UCSV-
C model are significantly more accurate than those from all other models at the 5% level for all
variables. (This is a two-sided test of the equality of the mean score of the UCSV-C model with each
of the other models.)
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Figure 4: Moments of the predictive distributions of GDP Growth from the 2016Q2
vintage data. Panels (a–d) plot the mean, standard deviation, Pearson’s skew coefficient and
kurtosis from the one quarter ahead (ie. h = 1) in-sample predictive distributions of GDP growth.
In each panel, moments from the fitted VARSV (blue line), UCSV (red line) and UCSV-C (black
line) models are plotted. Quarters classified as recessions by the NBER are shaded.
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Figure 5: Estimated marginal and current quarter real-time predictive densities for four vintages. Panels (a–e)
present the adaptive kernel density estimates for the five variables, and the four vintages 1985Q2 (thin blue dashed line),
1996Q4 (thin blue solid line), 2006Q2 (thick black dashed line) and 2016Q2 (thick black solid line). Panels (f–j) present the
real-time (out-of-sample) current quarter predictive densities (ie. where h = 1) from the same four vintages from the UCSV-C
multivariate time series model.
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Figure 6: Uncertainty and asymmetry in real-time predictions of GDP growth. Panel (a)
gives the standard deviation, and panel (b) Bowley’s skew coefficient, for the current quarter (ie.
h = 1) real-time (out-of-sample) predictive distributions of GDP growth from the UCSV-C (thick
black line) and VARSV (thin blue line) models. The plots are for vintages 1975Q1 – 2016Q2.

Figure 7: Asymmetry in real-time inflation and GDP growth predictions. Real-time (out-of-
sample) current quarter (h = 1) expected shortfall (blue line) and upper tail equivalent (red line), for
(a) GDP growth & VARSV, (b) inflation & VARSV, (c) GDP growth & UCSV-C, and (d) inflation
& UCSV-C.
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Figure 8: Impact of the Great Recession on real-time interest rate predictions. Panels (a–
d) give the first four moments of the real-time (out-of-sample) current quarter (ie. h = 1) predictive
distributions of the interest rate between 2000Q1 and 2016Q2. In each panel, moments from the
fitted VARSV (blue line), UCSV (red line) and UCSV-C (black line) models are plotted. Quarters
classified as recessions by the NBER are shaded.

Figure 9: Real-time current quarter forecasts of Okun’s (Spearman) correlations. Plot of
the Spearman correlations between real-time (out-of-sample) current quarter forecasts of ∆URT+1 =
URT+1 − URT and ∆ ln(GDP)T+1, for vintages 1975Q1 to 2016Q2. Each correlation is the sample
Spearman correlation coefficient of a large number of Monte Carlo iterates generated from the current
quarter predictive distributions. Quarters classified as recessions by the NBER are shaded. Plots of
the bivariate densities for 8 vintages can be found in the Online Appendix.
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Online Appendix for ‘Real-Time Macroeconomic Forecasting
with a Heteroskedastic Inversion Copula Model’

This Online Appendix has four parts:

Part A: A technical appendix that outlines the MCMC sampling scheme used to estimate the

copula parameters Ψ of the UCSV-C model in greater detail.

Part B: A technical appendix that outlines the MCMC sampling scheme used to estimate the

Bayesian nonparametric constrained density (BNP) in Appendix B of the paper.

Part C: Provides additional empirical results for UCSV-C model fit to the 2016Q2 vintage

data.

Table A2: Estimates of the all the partial correlations γ.

Table A3: Estimates of Σε.

Table A4: Estimates of B1, . . . , B4.

Table A5: Estimates of level dependence R(0), . . . , R(4).

Figure A1: Time series plots of the estimates of µ,h.

Figures A2 – A5: First four moments of the one-quarter-ahead (in-sample) predictive

distributions from the UCSV-C, VARSV and UCSV.

Part D: Provides additional empirical results for the real-time out-of-sample forecasting study.

Table A6: Log-scores results for the real-time forecasting comparison.

Figure A6: Asymmetry in inflation and GDP growth prediction for h = 4.

Figure A7: Bowley’s skew coefficient for the current quarter (h = 1) forecast densities.

Figure A8: Pearson’s skew coefficient for the current quarter (h = 1) forecast densities.

Figure A9: Bowley’s skew coefficient for the forecast densities with h = 4.

Figure A10: Pearson’s skew coefficient for the forecast densities with h = 4.

Figures A11 – A12: Standard deviation of the h = 1 and h = 4 forecast densities.

Figures A13 – A17: Rolling fan charts for real-time predictions from the VAR, VAR-C,

VARSV and UCSV-C models for all five variables.

Figure A18: Contour plots of the bivariate current quarter density forecasts for the change

in unemployment and GDP growth. Results are given for 8 vintages.
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To outline the sampling scheme to evaluate the augmented posterior with density f(Ψ,µ,h|y), first

notice from Section 2, that the conditional likelihood is

f(y|µ,h,Ψ) =
T∏
t=1

φr (zt;µt,ht)
r∏
i=1

gi(yt,i)

fi(zi,t|Ψ)
.

The density

f(µ|Ψ) = f(µ|d,γ) =
T∏
t=2

f(µt|µ1, . . . ,µt−1,d,γ)f(µ1|d,γ) ,

is the likelihood of a VAR(p) model, which can be computed by first evaluating {B1, . . . , Bp,Σε} from

{d,γ} as in Appendix A. The density

f(h|Ψ) = f(h|a,d,Ση) =
T∏
t=2

f(ht|ht−1,a,d,Ση)f(h1|a,d,Ση) ,

is that of a (sparse) VAR(1) model, and readily computed from {a, h̄,Ση}, where h̄ is a function of

d as outlined in the manuscript. The steps of the sampling scheme are outlined below.

Step 1: The conditional posterior

f(µ|Ψ,y,h) ∝ f(y|µ,h,Ψ)f(µ|d,γ)

∝
T∏
t=1

φr (zt;µt,ht) f(µ|d,γ) .

To generate from the density above, first map the parameters {d,γ} to {B1, . . . , Bp,Σε}, then effi-

ciently draw µ using the precision sampler in Chan and Jeliazkov (2009).

Step 2: The conditional posterior

f(h|Ψ,y,µ) ∝ f(y|µ,h,Ψ)f(h|a,d,Ση)

∝
T∏
t=1

φr (zt;µt,ht) f(h|a,d,Ση) .

To sample h from the density above we employ the following approximating state space form:

z∗t = ht + et ,

ht = h̄+ A(ht−1 − h̄) + ηt ,

with z∗t =
(
z∗1,t, . . . , z

∗
r,t

)′
, z∗i,t = log((zi,t − µi,t)2 + c̄), c̄ is set to 0.001, et =

(
log(ε2

1,t), . . . , log(ε2
r,t)
)′

,
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h̄ =
(
h̄1, . . . , h̄r

)′
, and A = diag(a1, . . . , ar). We proceed exactly as in Primiceri (2005), using the

mixture of seven normals to approximate the distributions of the elements of et, and then the method

in Carter and Kohn (1994) to generate the volatility states.

Step 3: If we denote the parameter prior densities by ‘π’, then the conditional posterior is

f(γ|µ,h, {Ψ\γ},y) ∝ f(y|µ,h,Ψ)f(µ|Ψ)π(Ψ) ∝ f(µ|d,γ)π(γ) .

The partial correlations γ are sampled as pairs of elements selected at random, conditional on the

remaining elements of γ using a Metropolis-Hastings (MH) step. The proposal density is a bivariate

independent normal, constrained to the admissible region (−1, 1)2. The variances of the proposal

densities are selected adaptively to target an acceptance rate between 7% and 57%.

Notice that sampling of γ does not require re-computation of f1, . . . , fr and F1, . . . , Fr, because

these functions depend only on a,d and the diagonal elements of Ση, and not γ; see Section 2.2.

Step 4: We generate each element of d one-at-a-time from its conditional density

f(di|{Ψ\di},µ,h,y) ∝ f(y|µ,h,Ψ)f(µ|Ψ)f(h|Ψ)π(di)

∝ f(µ|d,γ)f(h|a,d,Ση)

(
T∏
t=1

1

fi,t(zi,t|Ψ)

)
π(di) .

Each di is generated using MH with a truncated normal proposal density, centered around the mode of

the conditional posterior. The mode is computed using 5 Newton-Raphson steps, where the functions

Fi, its inverse and fi are not updated to speed up optimization.

Step 5: We generate each element of a one-at-a-time from its conditional density

f(ai|{Ψ\ai},µ,h,y) ∝ f(y|µ,h,Ψ)f(h|Ψ)π(ai|Ση)

∝ π(ai|Ση)f(h|a,d,Ση)
T∏
t=1

1

fi,t(zi,t|Ψ)
,

in the same fashion as the elements of d.

Step 6: The conditional posterior

f(Ση|{Ψ\Ση},µ,h,y) ∝ π(Ση)f(h|a,d,Ση)
T∏
t=1

k∏
i=1

1

fi,t(zi,t|Ψ)

We decompose Ση = diag(σ̄2
1,1, . . . , σ̄

2
r,r)

1/2Ωηdiag(σ̄2
1,1, . . . , σ̄

2
r,r)

1/2. The parameters σ̄2
1,1, . . . , σ̄

2
r,r are
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sampled one at a time in a similar manner as the elements of a and d. Using the recursive relations

due to Yule (see the discussion in Daniels and Pourhamadi (2009)) the unique partial correlations of

the correlation matrix Ωη are generated using adaptive random walk MH.

Additional References

Carter, C. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81(3):

541–553.

Primiceri, G. (2005). Time Varying Structural Vector Autoregressions and Monetary Policy.

Review of Economic Studies. 72(3): 821–852.
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This appendix outlines the Bayesian nonparametric constrained density estimator (labelled BNP).

The unknown density of a scalar random variable X is represented as the infinite mixture

f(x) =
∞∑
j=1

wjfker(x|θj) .

Here, wj is the weight assigned to component j, and fker(x|θj) is called the kernel density. We follow

closely the slice sampling approach of Kalli, Griffin and Walker (2011), but use a Gaussian density

constrained to A = {x : xL ≤ x ≤ xU} for the kernel.

The method consists of augmenting the mixture model with a slicing variable ω, so that

f(x, ω) =
∞∑
j=1

I(ω < wj)I(x ∈ A)φ(x;µj, τj)/[Φ(xU ;µj, τj)− Φ(xL;µj, τj)]

The weights are transformed to their stick-breaking representation as wj = νj
∏j−1

k=1(1 − νk) for

j ≥ 1, and φ(x;µj,
1
τj

) is a Gaussian probability density function with mean µj and precision τj. We

approximate the infinite mixture with a finite sum over its first 100 values by setting v100 = 1, so

that
∑100

j=1wj = 1, although we typically find that in excess of 99% of the density mass is explained

by the first twenty terms.

The prior distributions for the component parameters are selected as τj|β ∼ Gamma(α, β), and

µj|c ∼ N(ε, R
2

c
). Following Richardson and Green (1997, p. 738), we employ a gamma hyperprior for

β. We also allow c to have a gamma hyperprior. Denote as x = (x1, . . . , xn)′ a vector of n observed

values of X, and as δ = (δ1, . . . , δn)′ a vector of corresponding mixture component allocation integers.

The MCMC sampling scheme to estimate the density is an extension of that in Kalli, Griffin and

Walker (2011), and generates repeatedly from the following densities:

1. f (µj|x, δ, τjβ, c) ∝ π (µj|c)
∏

δi=j
φ
(
xi;µj,

1
τj

)
/[Φ

(
xU ;µj,

1
τj

)
− Φ

(
xL;µj,

1
τj

)
]

2. f (τj|x, δ, µj, β, c) ∝ π (τj|β)
∏

δi=j
φ
(
xi;µj,

1
τj

)
/[Φ

(
xU ;µj,

1
τj

)
− Φ

(
xL;µj,

1
τj

)
]

3. f (c|µ) ∝ π(c)
∏J

j=1 π (µj|c)

4. f (β|τ ) ∝ π(β)
∏J

j=1 π (τj|β)

5. f(νj|δ) ∝ Be (νj; aj, bj), where aj = a0
j +

∑n
i=1 I (δi = j), and bj = b0

j +
∑n

i=1 I (δi > j), for

j = 1, . . . , 100.

6. f(ωi|w, δ) ∝ I (0 < ωi < wδi) for i = 1, . . . , n.

7. Pr(δi = j) ∝ I (wj > ωi)φ(xi;µj,
1
τj

)/[Φ(xU ;µj,
1
τj

)− Φ(xL;µj,
1
τj

)] for i = 1, . . . , n.

Here, the indicator function I(A) = 1 if A is true, and zero otherwise, while Be denotes the density

of a beta distribution. To generate from the densities at 1. and 2. above, we use MH with normal
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and gamma proposals, respectively. The posteriors at 3. and 4. are both recognizable as gamma

distributions. The density at 6. is a uniform, while that at 7. is a multinomial with mass function

computed by evaluating the terms up to proportionality, and then normalizing by their sum over j.

In our empirical applications we set R = Range(x), ε = man(x)+min(x)
2

and α = 2. The hyperpriors

are set as β ∼ Gamma(g, h), and c ∼ Gamma(αc, βc), with g = 0.2, h = 10
R2 , αc = 2.34 and βc = 0.065.

For ν, we use the prior νj ∼ Beta(a0
j , b

0
j), with a0

j = εκj, b
0
j = ε(1 − κj), κj =

(
1−

∑
k<j ξk

)−1

ξj,

ξj = E(wj) =
Γ(ã+b̃)Γ(ã+1)Γ(b̃+j−1)

Γ
(

˜̃
b
)

Γ(b̃)Γ(ã+b̃+j)
, ã = 2, b̃ = 8 and ε = 20; see Kalli, Griffin and Walker (2011) for

a discussion.

Additional References

Richardson, S., & Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown num-

ber of components. Journal of the Royal Statistical Society: series B (statistical methodology),

59(4), 731-792.
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Part C: Additional Empirical Results for the fit to Vintage
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∆ ln(GDP)t Inflt URt IRt VXOt

(j = 1) (j = 2) (j = 3) (j = 4) (j = 5)

γ0
i,j Inflt (i = 2) -0.158 1.000 - - -

(-0.337, 0.000) - - - -
URt (i = 3) -0.055 0.056 1.000 - -

(-0.177, 0.042) (-0.160,0.235) - - -
IRt (i = 4) 0.218 0.652 -0.029 1.000 -

( 0.050, 0.365) ( 0.435,0.789) (-0.219, 0.169) - -
VXOt (i = 5) -0.313 -0.077 0.111 0.050 1.000

(-0.487,-0.102) (-0.394,0.249) (-0.097, 0.317) (-0.267, 0.316) -

γ1
i,j ∆ ln(GDP)t−1 (i = 1) 0.529 -0.179 -0.195 0.143 -0.228

( 0.341, 0.687) (-0.350,0.007) (-0.306,-0.088) (-0.044, 0.281) (-0.405,-0.047)

Inflt−1 (i = 2) 0.050 0.942 0.121 0.706 -0.079
(-0.230, 0.333) ( 0.858,0.983) (-0.121, 0.369) ( 0.528, 0.815) (-0.311, 0.312)

URt−1 (i = 3) 0.644 -0.044 0.993 -0.122 0.048
( 0.425, 0.876) (-0.348,0.241) ( 0.989, 0.995) (-0.345, 0.071) (-0.184, 0.264)

IRt−1 (i = 4) -0.096 -0.124 0.313 0.984 0.211
(-0.326, 0.141) (-0.351,0.103) ( 0.087, 0.505) ( 0.974, 0.990) (-0.097, 0.463)

VXOt−1 (i = 5) 0.088 -0.037 -0.009 -0.069 0.867
(-0.185, 0.344) (-0.311,0.245) (-0.249, 0.218) (-0.257, 0.125) ( 0.788, 0.930)

γ2
i,j ∆ ln(GDP)t−2 (i = 1) -0.062 -0.001 -0.138 0.008 0.026

(-0.239, 0.102) (-0.185,0.171) (-0.309, 0.050) (-0.143, 0.157) (-0.142, 0.189)

Inflt−2 (i = 2) -0.029 0.008 0.014 -0.019 -0.003
(-0.206, 0.145) (-0.188,0.198) (-0.171, 0.189) (-0.193, 0.146) (-0.178, 0.172)

URt−2 (i = 3) -0.148 -0.042 -0.058 0.053 0.039
(-0.347, 0.069) (-0.229,0.141) (-0.262, 0.161) (-0.128, 0.220) (-0.131, 0.214)

IRt−2 (i = 4) 0.085 -0.034 -0.026 -0.281 -0.015
(-0.100, 0.262) (-0.210,0.142) (-0.200, 0.141) (-0.419,-0.142) (-0.164, 0.128)

VXOt−2 (i = 5) 0.059 0.009 -0.045 0.057 0.004
(-0.117, 0.236) (-0.176,0.187) (-0.212, 0.131) (-0.111, 0.217) (-0.179, 0.176)

γ3
i,j ∆ ln(GDP)t−3 (i = 1) -0.067 -0.005 0.011 0.028 -0.030

(-0.194, 0.059) (-0.137,0.126) (-0.111, 0.131) (-0.086, 0.143) (-0.153, 0.087)

Inflt−3 (i = 2) -0.002 0.014 -0.019 -0.031 -0.021
(-0.132, 0.122) (-0.117,0.146) (-0.145, 0.106) (-0.153, 0.092) (-0.150, 0.109)

URt−3 (i = 3) -0.042 -0.033 -0.032 -0.021 0.033
(-0.177, 0.095) (-0.159,0.094) (-0.162, 0.100) (-0.148, 0.106) (-0.090, 0.158)

IRt−3 (i = 4) 0.054 -0.032 -0.004 0.028 0.042
(-0.069, 0.176) (-0.159,0.098) (-0.125, 0.117) (-0.087, 0.145) (-0.078, 0.162)

VXOt−3 (i = 5) 0.017 -0.023 0.014 0.002 0.001
(-0.107, 0.140) (-0.151,0.106) (-0.105, 0.138) (-0.117, 0.121) (-0.126, 0.127)

γ4
i,j ∆ ln(GDP)t−4 (i = 1) -0.009 0.004 0.007 0.017 -0.019

(-0.107, 0.091) (-0.094,0.100) (-0.088, 0.101) (-0.074, 0.108) (-0.111, 0.073)

Inflt−4 (i = 2) 0.004 0.021 -0.023 -0.013 0.016
(-0.094, 0.103) (-0.081,0.123) (-0.120, 0.074) (-0.109, 0.081) (-0.081, 0.114)

URt−4 (i = 3) -0.020 -0.013 -0.023 0.010 0.022
(-0.119, 0.080) (-0.115,0.090) (-0.125, 0.078) (-0.088, 0.105) (-0.075, 0.120)

IRt−4 (i = 4) 0.040 -0.004 -0.017 -0.012 0.036
(-0.055, 0.133) (-0.100,0.094) (-0.112, 0.078) (-0.102, 0.078) (-0.055, 0.128)

VXOt−4 (i = 5) -0.001 -0.004 -0.004 -0.010 0.009
(-0.098, 0.098) (-0.103,0.095) (-0.101, 0.092) (-0.105, 0.081) (-0.088, 0.106)

Table A2: Estimates of all the partial correlations from the 2016Q2 vintage data. The
posterior means and 95% intervals are reported for the partial correlations γ0

i,j and γ1
i,j for the UCSV-C

inversion copula.
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Σε

∆ ln(GDP) Infl UR IR VXO

∆ ln(GDP) 0.2860 -0.0162 -0.0372 0.0171 -0.0340
( 0.1867, 0.4068) (-0.0421,0.0085) ( -0.0547,-0.0221) ( 0.0069, 0.0283) (-0.0764,0.0086)

Infl -0.0162 0.0428 0.0012 0.0015 0.0112
(-0.0421, 0.0085) ( 0.0159,0.0829) ( -0.0042, 0.0066) ( -0.0028, 0.0061) (-0.0067,0.0301)

UR -0.0372 0.0012 0.0116 -0.0032 0.0042
(-0.0547,-0.0221) (-0.0042,0.0066) ( 0.0081, 0.0162) ( -0.0058,-0.0007) (-0.0040,0.0128)

IR 0.0171 0.0015 -0.0032 0.0120 0.0003
( 0.0069, 0.0283) (-0.0028,0.0061) ( -0.0058,-0.0007) ( 0.0087, 0.0156) (-0.0071,0.0078)

VXO -0.0340 0.0112 0.0042 0.0003 0.1524
(-0.0764, 0.0086) (-0.0067,0.0301) ( -0.0040, 0.0128) ( -0.0071, 0.0078) ( 0.0862,0.2287)

Table A3: Estimates of Σε from the 2016Q2 vintage data. The posterior means and 90%
posterior intervals for Σε from the inversion copula model with nonparametric margins fitted to the
2016Q2 vintage data.
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B1 ∆ ln(GDP)t−1 Inflt−1 URt−1 IRt−1 VXOt−1

∆ ln(GDP)t 0.542 -0.030 0.471 0.172 -0.241
( 0.29, 0.80) (-0.50,0.46) (-0.52,1.52) (-0.49, 0.84) (-0.49,-0.01)

Inflt 0.171 0.999 0.087 0.067 0.041
( 0.06, 0.30) ( 0.80,1.19) (-0.33,0.55) (-0.21, 0.38) (-0.05, 0.14)

URt -0.186 -0.017 1.031 -0.020 0.038
(-0.27,-0.11) (-0.12,0.08) ( 0.78,1.26) (-0.17, 0.13) (-0.01, 0.09)

IRt 0.083 0.053 -0.015 1.264 -0.028
( 0.03, 0.14) (-0.04,0.15) (-0.22,0.19) ( 1.12, 1.41) (-0.07, 0.02)

VXOt -0.047 -0.069 -0.223 0.193 0.879
(-0.24, 0.13) (-0.42,0.27) (-1.01,0.54) (-0.30, 0.71) ( 0.71, 1.07)

B2 ∆ ln(GDP)t−2 Inflt−2 URt−2 IRt−2 VXOt−2

∆ ln(GDP)t 0.109 -0.123 -0.308 -0.298 0.112
(-0.16, 0.37) (-0.79,0.48) (-1.78,1.07) (-1.32, 0.68) (-0.15, 0.39)

Inflt 0.024 0.005 -0.010 -0.067 0.015
(-0.08, 0.14) (-0.23,0.22) (-0.58,0.55) (-0.48, 0.34) (-0.09, 0.12)

URt -0.011 0.022 -0.037 0.066 -0.021
(-0.07, 0.04) (-0.10,0.16) (-0.34,0.27) (-0.14, 0.27) (-0.08, 0.03)

IRt -0.013 0.016 0.031 -0.341 0.015
(-0.07, 0.04) (-0.11,0.14) (-0.25,0.31) (-0.55,-0.14) (-0.04, 0.07)

VXOt -0.021 0.034 -0.020 -0.210 0.000
(-0.22, 0.18) (-0.42,0.49) (-1.06,1.01) (-0.98, 0.52) (-0.21, 0.18)

B3 ∆ ln(GDP)t−3 Inflt−3 URt−3 IRt−3 VXOt−3

∆ ln(GDP)t -0.021 -0.011 -0.090 0.040 0.014
(-0.22, 0.17) (-0.44,0.44) (-1.10,0.94) (-0.72, 0.81) (-0.18, 0.21)

Inflt 0.012 -0.010 -0.070 -0.050 -0.010
(-0.06, 0.09) (-0.17,0.15) (-0.53,0.33) (-0.38, 0.25) (-0.09, 0.07)

URt 0.007 0.003 0.006 0.003 0.003
(-0.03, 0.05) (-0.09,0.09) (-0.20,0.22) (-0.16, 0.16) (-0.04, 0.04)

IRt 0.003 -0.015 -0.034 0.045 0.003
(-0.04, 0.04) (-0.11,0.08) (-0.24,0.17) (-0.11, 0.21) (-0.04, 0.04)

VXOt -0.062 -0.085 0.057 -0.002 -0.006
(-0.21, 0.08) (-0.42,0.24) (-0.69,0.82) (-0.57, 0.57) (-0.14, 0.13)

B4 ∆ ln(GDP)t−4 Inflt−4 URt−4 IRt−4 VXOt−4

∆ ln(GDP)t 0.003 0.016 0.030 0.156 -0.003
(-0.13, 0.13) ( -0.25,0.29) (-0.52,0.62) (-0.23, 0.56) (-0.12, 0.12)

Inflt 0.010 0.024 -0.028 -0.001 -0.002
(-0.04, 0.06) ( -0.07,0.12) (-0.27,0.21) (-0.16, 0.16) (-0.05, 0.05)

URt 0.002 -0.010 -0.033 -0.010 0.000
(-0.02, 0.03) ( -0.07,0.04) (-0.15,0.08) (-0.09, 0.07) (-0.02, 0.02)

IRt 0.000 -0.008 0.011 -0.011 -0.003
(-0.03, 0.03) ( -0.06,0.05) (-0.11,0.13) (-0.09, 0.07) (-0.03, 0.02)

VXOt -0.020 0.030 0.139 0.134 0.010
(-0.12, 0.08) ( -0.17,0.24) (-0.27,0.57) (-0.16, 0.44) (-0.08, 0.09)

Table A4: Posterior means and 90% posterior intervals for the autoregressive coefficient matrices
B1, B2, B3, B4 from the inversion copula model with nonparametric margins fitted to the 2016Q2
vintage data.
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∆ ln(GDP)t Inflt URt IRt VXOt

R(0)
∆ ln(GDP)t 1.000 -0.099 -0.039 0.052 -0.180
Inflt -0.099 1.000 0.041 0.568 -0.021
URt -0.039 0.041 1.000 -0.039 0.094
IRt 0.052 0.568 -0.039 1.000 0.040
VXOt -0.180 -0.021 0.094 0.040 1.000

R(1)
∆ ln(GDP)t−1 0.327 -0.029 -0.148 0.100 -0.148
Inflt−1 -0.129 0.795 0.080 0.579 -0.033
URt−1 0.065 0.015 0.958 -0.053 0.042
IRt−1 -0.001 0.547 -0.008 0.965 0.072
VXOt−1 -0.176 -0.023 0.151 0.006 0.709

R(2)
∆ ln(GDP)t−2 0.205 0.010 -0.216 0.128 -0.107
Inflt−2 -0.131 0.755 0.123 0.584 -0.041
URt−2 0.123 0.005 0.908 -0.057 0.000
IRt−2 -0.019 0.518 0.031 0.941 0.100
VXOt−2 -0.135 -0.029 0.196 -0.025 0.620

R(3)
∆ ln(GDP)t−3 0.099 0.035 -0.250 0.147 -0.082
Inflt−3 -0.116 0.719 0.166 0.583 -0.051
URt−3 0.160 0.004 0.842 -0.052 -0.036
IRt−3 -0.019 0.488 0.074 0.913 0.122
VXOt−3 -0.095 -0.027 0.231 -0.049 0.537

R(4)
∆ ln(GDP)t−4 0.039 0.044 -0.260 0.159 -0.059
Inflt−4 -0.099 0.682 0.205 0.581 -0.059
URt−4 0.167 0.008 0.769 -0.043 -0.065
IRt−4 -0.014 0.458 0.115 0.882 0.139
VXOt−4 -0.070 -0.025 0.253 -0.067 0.467

Table A5: Estimates of level dependence from the 2016Q2 vintage data. The posterior
means of the matrices of Spearman unconditional pairwise correlations R(k), for k = 0, 1, . . . , 4, are
reported for the fitted UCSV-C inversion copula. These measure dependence in the level of the time
series {Yt}, and are computed by simulation.
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Figure A1: The posterior mean and 95% posterior intervals for the unobserved component (µi,t) and
volatility of the latent variable (exp(hi,t/2)) from the inversion copula model are displayed in the first
and second column respectively.

15



Figure A2: Moments of the one-quarter-ahead predictive distributions of inflation from
the 2016Q2 vintage data. Panels (a–d) plot the mean, standard deviation, Pearson’s skew co-
efficient and kurtosis from the one quarter ahead (ie. h = 1) in-sample predictive distributions of
inflation. In each panel, moments from the fitted VARSV (blue line), UCSV (red line) and UCSV-C
(black line) models are plotted. Quarters classified as recessions by the NBER are shaded.
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Figure A3: Moments of the one-quarter-ahead predictive distributions of unemployment
from the 2016Q2 vintage data. Panels (a–d) plot the mean, standard deviation, Pearson’s skew
coefficient and kurtosis from the one quarter ahead (ie. h = 1) in-sample predictive distributions of
unemployment. In each panel, moments from the fitted VARSV (blue line), UCSV (red line) and
UCSV-C (black line) models are plotted. Quarters classified as recessions by the NBER are shaded.
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Figure A4: Moments of the one-quarter-ahead predictive distributions of the interest rate
from the 2016Q2 vintage data. Panels (a–d) plot the mean, standard deviation, Pearson’s skew
coefficient and kurtosis from the one quarter ahead (ie. h = 1) in-sample predictive distributions of
the interest rate. In each panel, moments from the fitted VARSV (blue line), UCSV (red line) and
UCSV-C (black line) models are plotted. Quarters classified as recessions by the NBER are shaded.
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Figure A5: Moments of the one-quarter-ahead predictive distributions of stock market
volatility from the 2016Q2 vintage data. Panels (a–d) plot the mean, standard deviation,
Pearson’s skew coefficient and kurtosis from the one quarter ahead (ie. h = 1) in-sample predictive
distributions of stock market volatility. In each panel, moments from the fitted VARSV (blue line),
UCSV (red line) and UCSV-C (black line) models are plotted. Quarters classified as recessions by
the NBER are shaded.
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Part D: Additional Empirical Results for the Real-Time Fore-
casting Exercise
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Log-scores

h = 1 h = 2 h = 4 h = 8 h = 1 h = 2 h = 4 h = 8

GDP Growth Inflation
Time Series Model
VAR -1.2357** -1.2424** -1.2487** -1.2522** -0.2516** -0.3739** -0.5330** -0.8315**
VARSV -1.0601 -1.0823 -1.0944++ -1.1306 -0.2115 -0.3021 -0.4627 -0.8039
UCSV -1.2230** -1.2235** -1.2321** -1.2310** -0.2250 -0.3274 -0.4514 -0.7463
VAR-C-KDE -1.0776** -1.1050 -1.1461 -1.1557** -0.3601** -0.3545* -0.4227 -0.7309
UCSV-C-BNP -1.0449 -1.0971 -1.1334++ -1.1245++ -0.2497 -0.2999 -0.3874 -0.7154
UCSV-C-Skt -1.0481 -1.1045 -1.1451 -1.1465 -0.2153++ -0.2899 -0.3623 -0.6021
UCSV-C-KDE -1.0423 -1.0971 -1.1508 -1.1479 -0.2485 -0.3080 -0.3944 -0.7072

Unemployment Interest Rate
Time Series Model
VAR -0.1534** -0.6914** -1.2196++ -1.6435++ -1.1435** -1.5844** -1.9852** -2.4864**
VARSV 0.0439++ -0.5179++ -1.1300+ -1.6271 -0.7317** -1.3717 -1.9866 -2.6226
UCSV -0.1901** -0.7061 -1.2371 -1.6657+ -0.9716** -1.4645** -2.0020 -2.8035
VAR-C-KDE -0.1354** -0.7269** -1.3338 -1.7693 -0.5764 -1.2218 -1.8183 -2.3821
UCSV-C-BNP -0.1230* -0.6833 -1.2909 -1.8155 -0.5173++ -1.0894++ -1.6498+ -2.2700
UCSV-C-Skt -0.0071++ -0.5871++ -1.2102 -1.7166 -0.7318** -1.3172 -1.9126 -2.6204**
UCSV-C-KDE -0.1044 -0.6809 -1.3208 -1.7621 -0.5885 -1.2050 -1.8401 -2.4322

Table A6: Log-scores for the real-time (out-of-sample) predictive densities from the five multivariate
time series models (higher values indicate increased accuracy). Separate results are reported for
forecasts made h = 1, 2, 4 and 8 quarters ahead in columns. Each log-score is computed as the mean
of the logarithms of the predictive densities evaluated at the observations, where each predictive
density is computed as outlined in Section 3.3. As a rough guide, results of a small sample adjusted
Diebold and Mariano (1995) test are reported. This is a two-sided test of the equality of the mean
score of the UCSV-C-KDE with each of the other models. Rejection of the null hypothesis of equal
means at the 10% or 5% level is denoted by ‘*’ or ‘**’ if favorable to the UCSV-C-KDE model, or
by ‘+’ or ‘++’ if unfavorable.
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Figure A6: Asymmetry in real-time inflation and GDP growth prediction for h = 4. The
real-time (out-of-sample) one-year-ahead expected shortfall (blue line) and upper tail equivalent (red
line), from the VARSV and UCSV-C models. The first and second column present estimates for
inflation and GDP Growth, respectively.
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Figure A7: Bowley’s skew coefficients of the current quarter real-time predictive densities from the
UCSV-C model. The shaded areas are quarters that correspond to recessions, as defined by the
NBER.
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Figure A8: Pearson’s skewness of the current quarter real-time predictive densities from the UCSV-C
model. The shaded areas are quarters that correspond to recessions, as defined by the NBER.
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Figure A9: Bowley’s skew coefficients of the h = 4 quarter ahead real-time predictive densities from
the UCSV-C model. The shaded areas are quarters that correspond to recessions, as defined by the
NBER.
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Figure A10: Pearson’s skewness of the h = 4 quarter ahead real-time predictive densities from the
UCSV-C model. The shaded areas are quarters that correspond to recessions, as defined by the
NBER.
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Figure A11: Standard deviation of the h = 1 quarter ahead real-time predictive densities from the
UCSV-C model. The shaded areas are quarters that correspond to recessions, as defined by the
NBER.
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Figure A12: Standard deviation of the h = 4 quarter ahead real-time predictive densities from the
UCSV-C model. The shaded areas are quarters that correspond to recessions, as defined by the
NBER.
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Figure A13: Rolling fan charts showing the real-time predictions from the VAR, VAR-C, VARSV
and UCSV-C models for GDP Growth. The thick line displays the predictive mean, the thin lines
the 10% and 90% predictive quantiles, and the circle shows the prediction origin.
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Figure A14: Rolling fan charts showing the real-time predictions from the VAR, VAR-C, VARSV
and UCSV-C models for inflation. The thick line displays the predictive mean, the thin lines the
10% and 90% predictive quantiles, and the circle shows the prediction origin.
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Figure A15: Rolling fan-charts showing the real-time predictions from the VAR, VAR-C, VARSV
and UCSV-C models for unemployment. The thick line displays the predictive mean, the thin lines
the 10% and 90% predictive quantiles, and the circle shows the prediction origin.
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Figure A16: Rolling fan charts showing the real-time predictions from the VAR, VAR-C, VARSV
and UCSV-C models for the interest rate. The thick line displays the predictive mean, the thin lines
the 10% and 90% predictive quantiles, and the circle shows the prediction origin.

32



2010 2012 2014 2016 2018
0

10

20

30

40

50

60

70

In
d
e
x

(a) VAR

2010 2012 2014 2016 2018
0

10

20

30

40

50

60

70

In
d
e
x

(b) VAR-C

2010 2012 2014 2016 2018
0

10

20

30

40

50

60

70

In
d
e
x

(c) VARSV

2010 2012 2014 2016 2018
0

10

20

30

40

50

60

70

In
d
e
x

(d) UCSV-C

Figure A17: Rolling fan-charts showing the real-time predictions from the VAR, VAR-C, VARSV
and UCSV-C models for VXO. The thick line displays the predictive mean, the thin lines the 10%
and 90% predictive quantiles, and the circle shows the prediction origin.
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Figure A18: Contour plots of the bivariate current quarter real-time predictions of the change in unemployment and GDP growth,
for eight equally-spaced quarters. Also plotted in red is an estimate of E(∆URt|∆ ln(GDP)t). The Spearman correlations of
these bivariate distributions are also reported in the panel titles in parenthesis.
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