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Probabilistic choice

It is routine to observe experimental subjects making different
choices in successive presentations of the same binary choice problem
(Mosteller and Nogee, 1951)

Indifference? Deliberate randomisation? (Machina, 1985; Agranov and
Ortoleva, 2016; Cerreia-Vioglio et al., 2019)

Mathematical psychologists have long accepted that choice is a
fundamentally probabilistic process

An assertion about preference is not “the record of a particular
observation [...] but is a theoretical assertion inferred from data and
subject to errors of inference” (Suppes et al., 1989, p.300)
Probabilistic choice may be characterised as inconstancy of
“preference” (multiple utility models) or random imperfections in
“utility maximisation” (single utility models)
We focus on single utility models here
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Axiomatic foundations

Various classes of single utility models have been proposed to describe
probabilistic choice

The best known are those in the Fechnerian family in which (binary)
choice probabilities depend on utility differences

There is a utility function, u, such that probability of choosing option α
over option β is a non-decreasing function of u (α)− u (β)
The familiar (binary) logit model —also known as the Luce or strict
utility model — is in the Fechnerian class

Some single utility models have yielded simple and intuitive
axiomatisations; others have proved more resistant
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Axiomatic foundations

When axiomatising deterministic models of choice, it is well known
that mixture set domains may simplify the task: convex structure and
independence conditions are powerful tools

Similar benefits are known to accrue for multiple utility models of
probabilistic choice (Gul and Pesendorfer, 2006; Wu, 2018): intuitive
independence conditions replace complex Block-Marschak inequalities

Analogous benefits exist for some Fechnerian models (e.g., Blavatskyy,
2008; Dagsvik, 2008; Ryan, 2018a) but the picture is less tidy:

Very different axiomatisations of very similar models; and
Imperfect axiomatic separation of “linearity”of u (i.e., expected utility
preferences) and “linearity”of Fechnerian noise

We provide a unified axiomatisation that separates the two
types of linearity (with ancillary benefits for experimental testing of
the “EU maximisation with Fechnerian noise”hypothesis)
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Binary choice probabilities for general domains

Let A be a set of alternatives

A given decision maker (DM) is characterised by a set of choice
probabilities (stochastic choice function)

We focus on binary choices; choices from binary subsets of A

For any {a, b} ⊆ A with a 6= b, let P (a, b) denote the probability
that alternative a is chosen from the binary choice set {a, b}
There is no “outside option” so P must satisfy the completeness (or
balance) condition: for any a, b ∈ A,

P (a, b) + P (b, a) = 1 (C)

Note that (C) implies P (a, a) = 1
2 for any a ∈ A, but no behavioural

meaning attaches to these “diagonal” terms
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Binary choice probabilities for general domains

Definition
A binary choice probability (BCP) is a mapping P : A× A→ [0, 1] that
satisfies (C)

If P is a BCP, its associated “base relation”%P⊆ A× A is defined as
follows:

a %P b ⇔ P (a, b) ≥ 1
2

(C)⇔ P (a, b) ≥ P (b, a)

A function u : A→ R is a weak utility for P iff the following holds for
any a, b ∈ A:

P (a, b) ≥ 1
2
⇔ u (a) ≥ u (b)

Thus, u is a weak utility for P iff it represents the base relation, %P
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Single utility models

We next describe a range of single utility models for BCPs.

Each model will characterise choice as the noisy maximisation of
some weak utility function

In other words, choice is the noisy expression of “preferences”
described by the base relation

For each model, we describe what is known about its axiomatisation:
necessary and suffi cient conditions on P
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Model S1: Strict scalability

Definition (Ryan, 2018b)

Binary choice probability P is strictly scalable if there exists a pair (u,F )
such that

P (a, b) = F (u (a) , u (b))

for any a, b ∈ A, where u : A→ R is a weak utility for P and
F : R2 → [0, 1] is non-decreasing (respectively, non-increasing) in its first
(respectively, second) argument and satisfies

F (x , y) + F (y , x) = 1 (C ∗)

for all x , y ∈ R. We say that P is strictly scalable through (u,F ).

Strict scalability means that:
1 alternatives are evaluated on a unidimensional, context-independent
“scale”; and

2 choice may be characterised as noisy weak utility maximisation
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Strict scalability and stochastic transitivity

Strong Stochastic Transitivity (SST): For any a, b, c ∈ A,

min {P (a, b) ,P (b, c)} ≥ 1
2
⇒ P (a, c) ≥ max {P (a, b) ,P (b, c)}

Note that SST implies the transitivity of %P (WST); the base
relation is also complete by construction.

Theorem (Ryan, 2018b)
A binary choice probability is strictly scalable iff it satisfies SST and a
weak utility exists.

If A is countable, SST is necessary and suffi cient

There is also a multinomial version of this theorem, involving suitably
generalised notions of strict scalability and SST to choice sets of any
finite size (Ryan, 2018b)
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Model S2: Simple scalability

Definition (Tversky and Russo, 1969)

Binary choice probability P is simply scalable iff there exists a pair (u,F )
such that

P (a, b) = F (u (a) , u (b))

for any a, b ∈ A, where F : R2 → [0, 1] is strictly increasing (respectively,
strictly decreasing) in its first (respectively, second) argument and satisfies
(C ∗) for all x , y ∈ R. We say that P is simply scalable through (u,F ).

If P is simply scalable by (u,F ) then u is a weak utility for P:

P (a, b) ≥ P (b, a) ⇔ F (u (a) , u (b)) ≥ F (u (b) , u (a))
⇔ u (a) ≥ u (b)

Hence, if P is simply scalable then it is also strictly scalable

Simple scalability restricts the P = 0 and P = 1 contours

Ryan (Auckland University of Technology) Stochastic EU 26 July 2019 10 / 34



Simple scalability and stochastic transitivity

“Stronger”Stochastic Transitivity (SSST): For any a, b, c ∈ A,

min {P (a, b) ,P (b, c)} ≥ [>] 1
2
⇒ P (a, c) ≥ [>]max {P (a, b) ,P (b, c)}

Theorem (Tversky and Russo, 1969)
A binary choice probability is simply scalable iff it satisfies SSST.

SSST ensures the existence of a weak utility: fixing some e ∈ A,
SSST implies (albeit not obviously) that, for any a, b ∈ A,

a %P b ⇔ P (a, e) ≥ P (b, e)

Hence u (·) ≡ P (·, e) is a weak utility function for P
Once again, there is a multinomial version: Tversky (1972)
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From scalability to Fechnerian structure: Models F1 and F2

Definition
If P is strictly (respectively, simply) scalable by (u,F ) and F depends only
on utility differences (i.e., F (x , y) = F (x ′, y ′) whenever x − y = x ′ − y ′)
then we have a strict (respectively, strong) Fechner model for P. In this
case:

P (a, b) = G (u (a)− u (b))
for any a, b ∈ A, where u is a weak utility for P and G is non-decreasing
(respectively, strictly increasing) on its domain Γ = u (A)− u (A) and
satisfies G (x) + G (−x) = 1 for any x ∈ Γ.

Of course, a strong Fechner model (F2) is a strict Fechner model (F1)

We return to the axiomatisation of F1 and F2 after a brief detour...
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Adding richness and continuity

In “rich”domains (such as the domain of lotteries in the context of
risk), it is sometimes useful to focus on models with some additional
structure:

1 weak utilities that have interval range, and
2 transformations of weak utilities into choice probabilities that are
continuous (i.e., continuity of G or F )

Let us refer to these as models S1∗, S2∗, F1∗ and F2∗
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Axiomatic foundations for Fechner models

Strict Fechner models on general domains have yet to be characterised

Various characterisations of strong Fechner models (F2 or F2∗) exist,
but only for specific domain restrictions

The case of F2 with finite domain (i.e., finite A) is especially
problematic (Scott, 1964)
Debreu (1958) considered BCP’s that satisfy solvability: for any
a, b, c ∈ A and any ρ ∈ (0, 1)

P (a, b) ≥ ρ ≥ P (a, c) ⇒ P (a, d) = ρ for some d ∈ A

Solvability implies a “rich” domain (excluding trivial cases)
Debreu showed, using results from topology, that solvability and the
quadruple condition (QC) suffi ce for the existence of a model within
the F2∗ class...
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Axiomatic foundations for Fechner models

Quadruple Condition (QC): For any a, b, a′, b′ ∈ A,

P (a, b) ≥ P
(
a′, b′

)
⇔ P

(
a, a′

)
≥ P

(
b, b′

)
QC implies SSST but not conversely

Some refinement of Debreu’s result was obtained by Doignon and
Falmagne (1974), who showed that QC can be replaced by conditions
intermediate in strength between QC and SSST

Further refinements were shown by Köbberling (2006), who proved, in
particular, that the Solvability (richness) restriction can be somewhat
relaxed without sacrificing F2 structure
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Solvability and scalability

Axiomatic foundations for models S1∗ and S2∗ have not, to my
knowledge, been studied previously

However, it is not hard to show that:

Theorem
A binary choice probability has a model of type S2 ∗ iff it satisfies SSST
plus solvability
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The state of play (general domains)...

1 2 1∗ 2∗

S
SST
+

weak utility
SSST ?

SSST
+

solvability

F ?
Scott (’64)

Köbberling (’06)
etc.

?
Debreu (’58)

Doignon/Falmagne (’74)
etc.
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Mixture set domains

Let A be a mixture set

If a, b ∈ A and λ ∈ [0, 1] then aλb ∈ A is the λ-mixture of a and b
In particular, for any a, b ∈ A and any λ, µ ∈ [0, 1]:

a1b = a
aλb = b (1− λ) a
aλ (aµb) = a (µλ) b

Examples include spaces of lotteries, Anscombe-Aumann acts, etc.

A function u : A→ R is mixture-linear if, for any a, b ∈ A and any
λ ∈ [0, 1],

u (aλb) = λu (a) + (1− λ) u (b)

It is easy to show that u (A) is an interval when u is mixture-linear
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Mixture set domains

When A is a mixture set it is useful to characterise models with
mixture-linear weak utilities (EU form)

Hence, we define models MS1, MS1∗, MF1, MF1∗ and so forth

For the “∗”models, only continuity of G or F is salient since u (A) is
necessarily an interval

There has been a limited amount of work on the axiomatic
foundations of these models

Blavatskyy (2008) characterises MF1
Dagsvik (2008) characterises MF2∗

Each author takes A to be the set of lotteries over a fixed, finite set of
prizes (i.e., the unit simplex in Rn)
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Blavatskyy (2008)

Continuity (CT): For any a, b, c ∈ A the following two sets are closed:{
λ ∈ [0, 1]

∣∣∣∣ P (aλb, c) ≥ 1
2

}
{

λ ∈ [0, 1]
∣∣∣∣ P (aλb, c) ≤ 1

2

}
Common Consequence Independence (CCI): For any a, b, c, d ∈ A and

any λ ∈ [0, 1],

P (aλc, bλc) = P (aλd , bλd)

Theorem (Blavatskyy, 2008 [as modified by Ryan, 2015])
A binary choice probability has a model of type MF1 iff it satisfies SST,
CT and CCI.
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Dagsvik (2008)

Archimedean property: For any a, b, c ∈ A:

P (a, b) >
1
2
> P (c, b) ⇒ P (aλc , b) >

1
2
> P (aµc , b)

for some λ, µ ∈ (0, 1)
Strong Independence (SI): For any a, b, a′, b′, c ∈ A and any λ ∈ [0, 1]:

P (a, b) ≥ P
(
a′, b′

)
⇒ P (aλc , bλc) ≥ P

(
a′λc , b′λc

)
Theorem (Dagsvik, 2008)

A binary choice probability has a model of type MF2 ∗ iff it satisfies QC,
solvability, the Archimedean property and SI.
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The state of play (mixture set domains)...

1 2 1∗ 2∗

MS ? ? ? ?

MF

SST
+
CT
+
CCI

? ?

QC
+

solvability
+

Archimedean
+
SI
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The state of play (mixture set domains)...

Blavatskyy’s proof relies only on the linear algebra familiar from
standard EU representation theorems

Dagsvik, by contrast, appeals to the topological results used by
Debreu, plus results on functional equations —a familiar part of the
toolkit in mathematical psychology

Another notable feature of Blavatskyy’s result is the fact that CCI
ensures both mixture-linearity of u and the Fechnerian structure of
“noise”

Continuity and SST together guarantee neither the existence of an
MS1 model nor the existence of a model of type F1 (Example 3.1)

By separating these two aspects of CCI we can obtain intuitive
axiomatisations of all eight models
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“Decomposing”CCI

CCI: For any a, b, c , d ∈ A and any λ ∈ [0, 1],

P (aλc, bλc) = P (aλd , bλd) .

CCI.1: For any a, b, c ∈ A,

P
(
a
1
2
c, b

1
2
c
)
>
1
2
⇒ min

{
P
(
a, a

1
2
b
)
, P

(
a
1
2
b, b

)}
>
1
2

CCI.1 says that replacing the common consequence c with common
consequence a or common consequence b does not affect the
base-relation ranking; equivalently:

a
1
2
c �P b1

2
c ⇒

[
a
1
2
a �P b1

2
a and a

1
2
b �P b1

2
b
]

This has the flavour of a “betweenness” restriction (Chew, 1983;
Dekel, 1986) on the base relation
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“Decomposing”CCI

CCI: For any a, b, c , d ∈ A and any λ ∈ [0, 1],

P (aλc, bλc) = P (aλd , bλd) .

CCI.2: For any a, b ∈ A and any λ ∈ [0, 1],

P (a, aλb) = P (bλa, b)

CCI.2 is equivalent to CCI with the additional requirement that
{c , d} ⊆ {a, b}

CCI.2 is a mixture-symmetry of “preference intensity” condition in the
spirit of the “symmetry”axiom in SSB utility theory (Fishburn, 1984)

CCI.1 and CCI.2 are jointly strictly weaker than CCI (Example 3.2)
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New results (mixture set domains)...

1 2 1∗ 2∗

MS
SST
+

CT & CCI.1

SSST
+

CT & CCI.1

SST
+

CT & CCI.1
+

solvability

SSST
+

CT & CCI.1
+

solvability

MF

SST
+

CT & CCI.1
+

CCI.2

SSST
+

CT & CCI.1
+

CCI.2

SST
+

CT & CCI.1
+

CCI.2
+

solvability

SSST
+

CT & CCI.1
+

CCI.2
+

solvability
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Revisiting Blavatskyy (2008) and Dagsvik (2008)

1 2 1∗ 2∗

MS
SST
+

CT & CCI.1

SSST
+

CT & CCI.1

SST
+
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+

solvability
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+
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+
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+

CCI.2

SSST
+

CT & CCI.1
+

CCI.2

SST
+

CT & CCI.1
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Testing “EU maximisation with Fechnerian noise”

The “modular” structure of these axiomatisations may also be useful
for empirical testing

For example, CCI is known to be empirically vulnerable...
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Testing “EU maximisation with Fechnerian noise”

CCI and the Common Consequence Effect
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Testing “EU maximisation with Fechnerian noise”

Since tests of CCI are tests of a joint hypothesis, it is hard to
interpret this failure: should we blame von Neumann and
Morgenstern, or Fechner?

If CCI fails then model MF1 is invalid — is the problem with “M”or
with “F”?

If the data were to pass the CCI.2 test, this would point the finger of
blame firmly at von Neumann and Morgenstern (under a maintained
hypothesis that BCPs are strictly scalable: S1)

If CCI fails but CCI.2 holds then CCI.1 cannot hold, which excludes
model MS1

Of course, we could test CCI.1 directly but such tests are empirically
challenging

CCI and CCI.2 can be tested on data aggregated over heterogeneous
individuals — if they hold for all individual choice probabilities then they
must hold for average choice proportions —but this is not true of CCI.1
(Ballinger and Wilcox, 1997)
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