
Centre for Efficiency and Productivity Analysis 

Working Paper Series 
No. WP06/2019

Aggregation of Efficiency and Productivity:

From Firm to Sector and Higher Levels

Valentin Zelenyuk 

Date: May 2019 

School of Economics 
University of Queensland 

St. Lucia, Qld. 4072 
Australia 

ISSN No. 1932 - 4398 



Aggregation of E�ciency and Productivity:

From Firm to Sector and Higher Levels

Valentin Zelenyuk∗

May 3, 2019

Abstract

Here we consider various cases where researchers are interested in measuring aggre-

gate e�ciency or productivity levels or their changes for a group of decision making

units. These could be entire industry composed of individual �rms, banks, hospitals, or

a region composed of sub-regions or countries, or particular sub-groups of these units

within a group, e.g., sub-groups of public vs. private or regulated vs. non-regulated

�rms, banks or hospitals within the same industry, etc. Such analysis requires so-

lutions to the aggregation problem�some theoretically justi�ed approaches that can

connect individual measures to aggregate measures. Various solutions are o�ered in

the literature and our goal is to try to coherently summarize at least some of them in

this chapter. This material should be interesting not only for theorists but also (and

perhaps more so) for applied researchers, as it provides exact formulas and intuitive

explanations for various measures of group e�ciency, group scale elasticity and group

productivity indexes and refers to original papers for more details.
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1 Introduction

An aggregate perspective is very important for theory and perhaps even more so in prac-

tice. Even if a researcher estimates the e�ciency of individual units, she/he might still

(and usually do) want to have just one or a few aggregate numbers that summarize the

individual estimates. Such aggregate numbers would be especially useful if the number of

individual units is too large to report all of them, and especially to comprehend them all for

understanding the overall picture. Indeed, hardly anyone would want to read hundreds of

individual e�ciency scores and would rather demand a summary�some aggregate e�ciency

or productivity measures that will give a big picture about the e�ciency or productivity

situation in the industry or sub-groups of interest within it.

The key question here is therefore: How to meaningfully aggregate the individual e�-

ciency and productivity scores or indexes? A natural answer would be: `Take an average!'

But, which one? Is it arithmetic, geometric, harmonic, or any other? And, much more

importantly: Should it be a weighted or a non-weighted average? Or, more generally: What

are the most meaningful (from economics point of view) ways to aggregate the individual ef-

�ciency and productivity scores or indexes, of potentially many individuals, into one number

representing aggregate e�ciency of productivity of a group?

The goal of this chapter is to provide some answers to these fundamentally important

questions, by summarizing the recent developments in the literature. In a nutshell, the

results summarized here provide applied researchers with the formulas for group e�ciency,

group scale elasticity and group productivity indexes. Importantly, in all these formulas, the

weights of aggregation have a fairly intuitive economic meaning, yet they are not ad hoc but

derived mathematically via economic theoretical reasoning.1

2 The Aggregation Problem: A Brief Background

The problem of �nding a measure (a score, an index) representing a group of individual

measures is called an aggregation problem�a problem that has been studied in many �elds,

including economics.

In the �eld of productivity and e�ciency analysis, this problem have been raised starting,

at least, with the classical works of Farrell (1957), Førsund and Hjalmarsson (1979), and

1A di�erent area of the aggregation questions that focuses on the aggregation of inputs or aggregation
of outputs for a �rm (e.g., to reduce the dimension of the model) is not considered here and can be found in
Tauer (2001); Färe and Zelenyuk (2002); Färe et al. (2004a); Wilson (2018) and the references therein. We
also do not consider the question of aggregation of indexes with respect to di�erent references (e.g., time
periods) for the same �rm, which can be found in Färe and Zelenyuk (2019) and the references therein.
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later followed up by Li and Ng (1995), and most thoroughly theoretically scrutinized by

Blackorby and Russell (1999) and critically evaluated by Ylvinger (2000).

More recently this important analytical problem was addressed and to some extent re-

solved by Färe and Zelenyuk (2003); Färe et al. (2004b), Färe and Zelenyuk (2005, 2007),

Simar and Zelenyuk (2007), Färe et al. (2004b), Zelenyuk (2006), Simar and Zelenyuk (2007),

Nesterenko and Zelenyuk (2007) and most recently by Mayer and Zelenyuk (2014a, 2017),

to mention a few. Here, we will brie�y summarize the essence of the key results from these

and other works.2

2.1 The Essence of the Aggregation Problem

As in the general context, the most important issue here is the choice of weights in the

aggregation. To vividly illustrate the point, consider an example of an industry with many

�rms, most of which are small, while a very few large �rms take most of the industry

share.3 Now suppose that those small �rms are very e�cient and suppose for simplicity of

computation they are 100% (or nearly that) e�cient. Meanwhile, suppose those big �rms

are much less e�cient, say 50% e�cient.4 If for such an example, a researcher were to use

the simple (equally-weighted) arithmetic average then such aggregate e�ciency score would

indicate the industry is about close to 100% e�cient! On the other hand, if another researcher

wanted to use a weighted arithmetic average, then a dramatically di�erent conclusion might

be reached�depending on the weighting scheme. Indeed, if one takes the market shares

as the relative weights and uses them in the weighted arithmetic average, then such an

aggregate e�ciency score will indicate that the industry is closer to 50% e�cient. Thus, one

would reach a dramatically di�erent conclusion with opposite policy implications than from

the equally-weighted average!

The essence of the problem here is in the nature of e�ciency scores�by construction, they

are `standardized' so that they are between 0 and 1 and, while this gives some advantages,

the side-e�ect of such standardization is that they lose the information about the relative

weights of the �rms that obtained these scores. Clearly, one may try to justify some other

2This chapter is a substantially revised, extended and elaborated material that I presented earlier, in
Chapter 5 of Sickles and Zelenyuk (2019).

3While this is a generic example, a reader might have realized that many industries in the real world have
a similar composition, often resembling the so-called `Pareto principle', more casually known as `the 80/20
rule' postulating that about 80% share (e.g., of wealth, sales, etc.) is taken up by about 20% of members of
a group.

4Lower e�ciency of large �rms is not unusual and often was reported in the literature. It can arise, for
example, due to the greater complexity of being a larger organization involving greater levels of hierarchy
and thus implying potentially greater principal-agent problems or requiring more inputs or higher costs than
needed for producing the same level and the same quality of output.
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weights that may imply very di�erent conclusions and thus di�erent policy implications and

this, in turn, emphasizes the importance of having justi�cations for the choice of weights.

2.2 The Evolution of the Aggregation Literature

The early key ideas that attempted to take into account the economic weights of �rms

when aggregating their e�ciency can be found in the seminal work of Farrell (1957), where

he proposed the concept of `Structural E�ciency of an Industry '. To be precise, Farrell

(1957) considered a single-output case and proposed taking the weighted arithmetic average

of e�ciency scores of individual �rms in that industry, where the weights were the observed

output shares of the �rms within the industry. Importantly, note that Farrell had not

given any formal theoretic justi�cations for such an aggregation scheme at that time and,

in particular, had not justi�ed why output shares were to be used for aggregating the input

oriented technical e�ciency scores that he considered.5 Farrell also did not explain how to

apply his idea for a multiple-output case. These limitations were perhaps among the main

reasons for why Farrell's concept of Structural E�ciency of an Industry had not attained

wider use in practice, where many tended to just use the equally weighted averages to report

on the aggregate e�ciency of industries or sub-groups within them.

About two decades later, Farrell's ideas were revisited by Førsund and Hjalmarsson

(1979) who proposed to estimate e�ciency scores of an `average �rm', constructed as the

average of input-output allocations. It is easy to construct an example that will show that

such a measure can indicate high ine�ciency even though all �rms are technically e�cient

and this was considered (incorrectly) as a drawback and, apparently was one of the reasons

why this measure is also rarely used in practice.

The fundamental ideas of Farrell (1957) and Førsund and Hjalmarsson (1979) were then

revisited by a very important (yet for a long time overlooked) work of Li and Ng (1995),

who attempted to synthesize the two approaches with additional assumptions, focusing on

the data envelopment analysis (DEA) context, and on the use of the so-called shadow prices

in DEA.

At the turn of the last century, Blackorby and Russell (1999) were the �rst to scrutinize

the problem on pure theoretical grounds and derived several important, yet `negative' re-

sults�they proved the impossibility of a solution of the aggregation problem in a general

setup. What this implied was that some additional assumptions or structure were needed to

arrive at a `positive result'.6 Such additional assumptions and structure were discovered by

5Indeed, later in this chapter we will see that output shares are more coherent with output orientation,
while for the input orientation it would be more natural to use the cost shares.

6This is not entirely surprising, e.g., recall that very strong assumptions are needed to establish positive
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Färe and Zelenyuk (2003): In addition to the usual assumptions of production theory, they

followed Koopmans (1957) work on aggregation in economics, adapting it to the context

of e�ciency analysis. Di�erently from Koopmans (1957), however, they assumed an addi-

tive structure for the aggregate technology being the set-wise summation of the individual

output (rather than technology) sets, for given input allocations. Adding this structure to

the standard regularity conditions of production theory and with the so-called `law of one

price' assumption (as in Koopmans), Färe and Zelenyuk (2003) then involved the principles

of economic optimization to derive a theoretically justi�ed weighting scheme for aggregation

of individual e�ciencies into a group e�ciency. In turn, this theoretical framework provided

the grounds of economic theory for the weighting scheme of Farrell (1957) and Li and Ng

(1995) and circumvented the impossibility theorems of Blackorby and Russell (1999).

The approach of Färe and Zelenyuk (2003) was then used to derive many other interesting

and useful aggregation results: e.g., for aggregation of directional distance functions in Färe

et al. (2008), aggregation of scale elasticities in Färe and Zelenyuk (2012) and scale e�ciencies

in Zelenyuk (2015), for aggregation of Malmquist and Hicks-Moorsteen productivity indexes

Zelenyuk (2006); Mayer and Zelenyuk (2014a, 2017), etc. The goal of this chapter is to

summarize these aggregation results and give some insights on future developments.

3 Aggregation of E�ciency Scores

While most of the discussion here will be theoretical, it would be helpful for a reader to

keep in mind that a typical empirical context of this methodology is a study of e�ciency

or productivity (or their changes) of an economic system consisting of di�erent decision

making units (hereafter DMUs), e.g., industry consisting of �rms or a particular bank or

other institutions consisting of many branches, or a comparison of distinct groups within

such a system (e.g., regulated vs. non-regulated, foreign vs. local, private vs. public �rms,

etc.). To get to the group level, we �rst need to brie�y refresh the key concepts and notions

for the individual level, which we do in the next sub-section.

3.1 Individual Primal and Dual E�ciency Scores

Without loss of generality, suppose the system is a group (e.g., industry, sector, etc.) consist-

ing of nDMUs, where for each DMU k ∈ {1, 2, . . . , n} we will use vector xk = (xk1, ..., x
k
N)′ ∈ <N+

to denote N inputs that the DMU k utilizes to produce a vector of M outputs, yk =

(yk1 , ..., y
k
M)′ ∈ <M+ . For generality of the aggregation results, we will allow for each DMU k

aggregation results in consumer theory.
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to employ technology that is potentially di�erent from those used by other DMUs, and we

assume it can be characterized by the technology set Ψk, de�ned in general terms as7

Ψk ≡ {(xk, yk) : xk can produce yk}. (3.1)

An equivalent characterization of technology can also be given via the output sets

P k(xk) ≡ {yk : xk can produce yk}, xk ∈ RN
+ . (3.2)

An important advantage of the aggregation results that we summarize here is their gener-

ality with respect to characterization of technology. Indeed, we do not assume any particular

production or transformation function (e.g., Cobb-Douglass, Leontie�, CES), rather we al-

low for a very wide class of technologies that satisfy usual regularity axioms of production

theory, and in particular:

A1: The technology set Ψk is closed.

A2: The output correspondence P k(xk) is bounded ∀xk ∈ <N+ .
A3: There is no `free lunch', i.e. nothing cannot produce something, i.e.,

(0N , y
k) /∈ Ψk, ∀yk ≥ 0M (i.e. ykm ≥ 0 for m = 1, . . . ,M, yk 6= 0M).

A4: It is possible to produce nothing, i.e., 0M ∈ P k(xk), ∀xk ∈ <N+ .
A5: Outputs and inputs are freely (strongly) disposable, i.e.,

(x0, y0) ∈ Ψk =⇒ (x, y) ∈ Ψk, ∀y 5 y0, ∀x = x0.

To employ the results from the duality theory in economics we also need some convexity

assumptions. At the beginning we only assume that the output sets are convex, i.e.,

A6: yo, y1 ∈ P k(xk), xk ∈ <N+ ⇒ δyo + (1− δ)y1 ∈ P k(xk), ∀δ ∈ [0, 1].8

With these conditions, the output oriented Shephard (1970) distance function Dk
o : <N+ ×

<M+ → <1
+ ∪ {+∞}, de�ned as

Dk
o(x

k, yk) ≡ inf
θ
{θ > 0 : yk/θ ∈ P k(xk)}, (3.3)

gives a complete characterization of the technology of a DMU k, in the sense that

Dk
o(x

k, yk) ≤ 1 ⇔ yk ∈ P k(xk). (3.4)

A closely related concept is the Farrell output oriented measure of technical e�ciency,

7In the discussion of economic theoretical foundation here we mainly use framework developed by Shep-
hard (1953, 1970) and further re�ned in many works and concisely outlined in Färe and Primont (1995) and
Sickles and Zelenyuk (2019).

8For theoretical results we do not require convexity of Ψk, although when implementing in practice one
may impose it when choosing a particular estimator or particular functional form for technology.
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de�ned as

OTEk(xk, yk) ≡ sup
θ
{θ > 0 : θ yk ∈ P k(xk)} = 1/Dk

o(x
k, yk). (3.5)

Furthermore, let p = (p1, . . . , pM) ∈ RM
++ be the vector of corresponding output prices9 then

the dual characterization of P k(xk) is obtained from the revenue function, Rk : <N+×<M++ →
<1

+ ∪ {+∞}
Rk(xk, p) ≡ sup

y
{py : y ∈ P k(xk)}, (3.6)

and the related e�ciency measure for a DMU k in the dual framework would then be the

revenue e�ciency (also referred to as or the overall output e�ciency), de�ned formally as,

REk(xk, yk, p) ≡ Rk(xk, p)/pyk. (3.7)

From the duality theory for the revenue function (Shephard (1970); Färe and Primont

(1995)), we then have

Rk(xk, p) ≥ pyk/Dk
o(x

k, yk), (3.8)

which leads to another notion�a measure of the output oriented allocative (in)e�ciency,

de�ned as a multiplicative residual that turns (3.8) into equality, i.e.,

OAEk(xk, yk, p) ≡ REk(xk, yk, p)/OTEk(xk, yk), (3.9)

and so, we have a useful decomposition:

REk(xk, yk, p) = OTEk(xk, yk)×OAEk(xk, yk, p), (3.10)

This decomposition (3.10) is a stepping-stone for deriving the aggregation results, as will be

apparent below.

3.2 Group Primal and Dual E�ciency Scores

Let us consider a sub-group l (l = 1, . . . , L), consisting of nl DMUs within the original group

of n DMUs. Such sub-grouping can be based on various exogenous criteria such as geographic

regions, ownership structures, regulation regimes, etc. For each group l (l = 1, . . . , L), let

the input allocation among DMUs within the sub-group l be X l = (xl,1, ..., xl,nl) and let the

total of output vectors over all �rms in the lth group be Y
l
=
∑nl

k=1 y
k.

A cornerstone in the derivation of the aggregation results is the structure of the aggregate

9Note that for the aggregation results, a necessary assumption is the so-called `Law of One Price', i.e.,
here it implies that all �rms face the same output prices.
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technology. In the context of output orientation, it is natural to assume a linear structure

of aggregation of the output sets, as was done in Färe and Zelenyuk (2003): For each group

l (l = 1, . . . , L), the aggregate output set P̄ l(X l) is the Minkowski sum of the individual

output sets across all DMUs k (k = 1, ..., nl) within the group l, i.e.,10

P̄ l(X l) ≡
nl∑
⊕k=1

P l,k(xl,k). (3.11)

As a result of such a structure, P̄ l(X l) would inherit the regularity conditions imposed on

the individual output sets. In particular, note that the Minkowski sum of convex sets is

also a convex set. 11 Thus, convexity of the individual output sets imposed by A6 ensures

convexity of P̄ l(X l).

It is also worth noting that the aggregation structure de�ned by P̄ l(X l) presumes no

reallocation of inputs across the individuals k ∈ {1, ..., nl} and so depends not on the total

sum of all the inputs but on the particular allocation X l = (xl,1, ..., xl,nl). This structure

also assumes there are no externalities across �rms.

Now, using the lth sub-group technology (3.11), one can de�ne the sub-group revenue

function as

R̄l(X l, p) ≡ sup
y
{py : y ∈ P̄ l(X l)}, (3.12)

which, analogously to (3.7), gives rise to the lth sub-group revenue e�ciency measure

RE
l
(X l, Ȳ l, p) ≡ R̄l(X l, p)/pȲ l. (3.13)

3.3 The Fundamental Aggregation Results

Having speci�c formulas for the e�ciency measures de�ned with respect to individual tech-

nologies and with respect to aggregate technologies raises questions regarding the relationship

between them. Ideally, one may want to establish their equality, so that the latter can be

obtained from the former via some feasible computations, at least under some clear and

reasonable conditions. Formally, the goal is to �nd fRE(·) such that

RE
l
(X l, Ȳ l, p) = fRE(RE1(·), ..., REnl(·)). (3.14)

10We use ⊕ to distinguish the summation of sets (also called `Minkowski summation') from the standard
summation, e.g., see Oks and Sharir (2006).

11E.g., see Krein and Smulian (1940), Schneider (1993), and a more recent work of Oks and Sharir
(2006), as well as references therein. For other examples involving Minkowski summation in economics, see
Shapley�Folkman-Starr theorem and related results (Starr (2008)).
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In words, the goal is to �nd some aggregation function, which we call fRE(·), that can relate

the aggregate measure (3.13) to the individual measures (3.7), for all �rms k ∈ {1, ..., nl} in
a group of interest, and do so in some meaningful way in the sense that the group measure

should represent the group. Finding a function fRE(·) is not a di�cult problem�there is an

abundance of well-studied functions o�ered by mathematicians. It is the `meaningful way'

aspect that is the most challenging and, as with many (if not all) notions in economics,

depends on the views and assumptions of a researcher. The goal therefore is to make the

choice grounded on and derived from some clear assumptions and if one does not like some

assumptions then one may try to replace them with others and, possibly, derive new aggre-

gation results. This is the approach we discuss here. In particular, we also consider it as

desirable that the decomposition of revenue e�ciency into technical e�ciency and allocative

e�ciency that we have at the individual level is also maintained at the aggregate level, so

that we have

RE
l
(·) = OTE

l
(·)×OAEl

(·), (3.15)

where

OTE
l
(·) = fTE(TE1(·), ..., TEnl(·)), (3.16)

and

OAE
l
(·) = fAE(OAE1(·), ..., OAEnl(·)), (3.17)

where fTE(·), fAE(·) are also some aggregation functions to be found (potentially di�erent

from each other and from fRE(·)) so that they ensure the aggregate measures are related

to the individual analogues. Such functions can be found using the following fundamental

theorem.

Theorem 1. For each group l (l = 1, . . . , L), the maximal revenue of the sub-group of DMUs

feasible from (X l, p) is equal to the sum of the maximal revenues of all its member DMUs

feasible from their (xl,k, p), k = 1, ...n, i.e.,

R̄l(X l, p) =
∑nl

k=1
Rl,k(xl,k, p). (3.18)

This theorem is from Färe and Zelenyuk (2003) and it can be viewed as the revenue

analog to the Koopmans (1957) theorem of aggregation of the pro�t functions, while the

cost or input-oriented analog can be found in Färe et al. (2004b)).

More importantly, this theorem provides a key to our aggregation problem and so it is

important to understand the economic intuition behind it: The theorem says that the sum

of the revenues of individual revenue-maximizing DMUs in a sub-group is the same as the
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revenue optimized over the aggregate technology (3.11) for this sub-group, provided these

DMUs face the same (e.g., equilibrium) output prices (and other regularity conditions hold).

That is, whether optimized individually or as a group, the same revenue is attained under

the `Law of One Price' (e.g., equilibrium price level) for all the outputs.

The theorem above assumes full revenue e�ciency (and full information) and so, a natural

question is: Why do we consider full revenue e�ciency when we want to measure output

oriented ine�ciency? And the answer is: Because we need it to set a benchmark against

which the ine�ciency will be measured. This is in the same fashion as how we choose the

maximal output as the benchmark (although not assuming it to be reached by each �rm)

so that the actual output can be measured relative to it, in the output oriented context of

e�ciency measurement.12

From this fundamental theorem (as well as its cost and pro�t analogues) one can then get

many useful results for the aggregation of the e�ciency scores, some of which we summarize

below, starting with the following corollary that �rst appeared in Färe and Zelenyuk (2003)

and is an immediate consequence of (3.18).

Corollary 1. For each group l (l = 1, . . . , L), we have

RE
l
(X l, Y

l
, p) =

nl∑
k=1

REl,k(xl,k, yl,k, p)× Sl,k, (3.19)

where

Sl,k = pyl,k/pY
l
, k = 1, ..., nl. (3.20)

In words, this corollary states that the weighted sum of the revenue e�ciencies of indi-

vidual revenue-maximizing �rms in a sub-group is the same as the revenue e�ciency with

respect to the aggregate technology (3.11) for this same sub-group, provided these �rms face

the same output prices and the standard regularity conditions of production theory hold.

In turn, this corollary implies another useful result, which gives the weighting schemes for

the technical and allocative e�ciencies into their group analogues, preserving the decompo-

sition like (3.10) also at the aggregate level. We summarize this important result in the next

corollary (also �rst appeared in Färe and Zelenyuk (2003)).

For each group l (l = 1, . . . , L), the aggregate revenue e�ciency can be decomposed

multiplicatively into the weighted sum of the technical e�ciencies (where the weights are

12In the input oriented context, such a benchmark will be the cost function, while in the framework where
both input and output vectors can be changed when measuring e�ciency (e.g., for e�ciency based on the
directional distance function or hyperbolic measures), the natural benchmark will be the pro�t function. We
will brie�y discuss these cases later in the chapter.
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the actual revenue shares) and the weighted sum of the allocative e�ciencies (where the

weights are the revenue shares corrected for technical ine�ciency) of all its member DMUs.

We summarize this formally in the next corollary.

Corollary 2. For each group l (l = 1, . . . , L), we have

RE
l
(X l, Y

l
, p) = OTE

l × AEl
, (3.21)

where

OTE
l ≡

nl∑
k=1

OTEl,k(xl,k, yl,k)× Sl,k, (3.22)

and

OAE
l ≡

nl∑
k=1

OAEl,k(xl,k, yl,k, p)× Sl,kae , (3.23)

where

Sl,k ≡ pyl,k

pY
l
, Sl,kae ≡

p(yl,kOTEl,k(xl,k, yl,k))

p
∑nl

k=1(y
l,kOTEl,k(xl,k, yl,k))

, k = 1, ..., nl. (3.24)

In the next sub-section we provide some intuition behind these important results from

which many other results can be derived.

3.4 Understanding the Fundamental Aggregation Results

Before going further, it is worth making a few intuitive remarks that should help in clarifying

the fundamental results on aggregation summarized in the previous sub-section.

First of all, it should be clear that if L = 1 then the aggregate measures above are the

e�ciency measures for the entire group.

Second, note that the measure (3.22) can be viewed as a multi-output generalization of

Farrell's measure of �Structural E�ciency of an Industry,� (Farrell (1957), p. 261-262).

Third, recall that in the context of aggregation over industries, Domar (1961) derived a

similar weighting scheme, using di�erent arguments than outlined here and after imposing

more restrictive assumptions. Meanwhile, Li and Ng (1995) proposed the same weights

and decomposition of the aggregate revenue (although de�ned di�erently than above) into

aggregate technical e�ciency and aggregate allocative e�ciency measures.13

Fourth, note that while the technical e�ciency is constructed to be a price independent

measure of e�ciency, the aggregation weights for obtaining the (sub)group technical e�-

13To be precise, Li and Ng (1995) used a similar framework, yet without explicit relationship to the
maximal revenue de�ned on the sum of the output sets and without noticing the theoretical link via the
analogue of Koopmans (1957) theorem, and focusing on the DEA framework.
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ciency derived above depend on prices. This might be viewed as undesirable. On the other

hand, note that these weights were not chosen arbitrarily or in an ad hoc way, but came

out as a result of imposing an economic criterion of optimizing behavior, which researchers

also often consider as a benchmark when making their choice of orientation in measuring

e�ciency. Intuitively, if one wants to account for an economic importance of a DMU that

obtained the particular `standardized' e�ciency score then, since prices contain important

economic information, it shall not be surprising that the weights derived using the economic

optimization principle are price-dependent. Another consideration is more practical: price

information may be unavailable (or unreliable) in a given study. To circumvent this problem,

one may use the shadow prices (Li and Ng (1995)). Alternatively, one may impose an extra

assumption to make the derived weights price-independent, as we outline in sub-section 3.6.

Fifth, a condition often referred to as the `Law of One Price' was assumed to enable

feasibility of the derivations of these aggregation results. Importantly, note that this is a

necessary assumption for obtaining a positive result in the stated aggregation problem. To

be more precise, it is a necessary condition to establish an equivalence between the aggregate

notions of e�ciency (de�ned with respect to the aggregate technology and optimized as a

group) and the dis-aggregate notions of e�ciency (de�ned with respect to the individual

technologies and optimized independently by each individual in the group). In other words,

this `Law of One Price' condition can be viewed as the condition of an equilibrium that

ensures the system reaches the same outcome whether optimized individually and then ag-

gregated or optimized over the aggregate technology by a group (e.g., a `central planner' for

the group). In this sense, the weights derived from this framework can be viewed as `optimal

weights', in the sense that they are derived from a framework where the system has reached

equivalent optimal outcomes from both the aggregate and the dis-aggregate sides.

On the other hand, without this assumption, the general impossibility theorems of Black-

orby and Russell (1999) are in action, which lead to much more disappointing conclusions

for practitioners (since they ensure the impossibility of the equivalence) than this quite com-

mon condition in economic theory. Indeed, this condition is coherent with many economic

models (perfect competition, Cournot-type oligopoly, etc.), where the notion of economic

equilibrium indeed implies a common price. As many other theoretical assumptions it is, of

course, simplifying the reality (e.g., see Kuosmanen et al. (2006) and Färe and Karagiannis

(2017) for a discussion). In practice, it is of course possible to use the same formulas for the

weights but with di�erent prices and then compute an aggregate by averaging the individual

e�ciencies using such `non-optimal' (or ad hoc) weights, and they can be viewed as approx-

imations of the `optimal weights' derived above. The problem is that such an aggregate is

not guaranteed to be equivalent to the aggregate obtained with respect to the aggregate
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technology, yet it may have another useful meaning that might be appealing from another

perspective (e.g., it can be regarded as an aggregate e�ciency that accounts for the price

variation across the observations and thus showing the gap relative to the aggregate based

on the `optimal weights').

Finally, it should not be surprising that establishing positive aggregation results in eco-

nomics requires extra and perhaps relatively strict assumptions. A good example would be

the fairly strong conditions imposed to obtain the well-known in economic theory solutions

to aggregation of demands, whether over goods or over consumers. Similarly, and as men-

tioned above, in the context of e�ciency analysis, Blackorby and Russell (1999) analyzed a

more general aggregation problem (without considering optimization behavior) and arrived

at several impossibility results, concluding that very strong assumptions on the technology

are needed for establishing positive aggregation results. The approach summarized above

circumvents such assumptions by resorting to the optimization behavior (as a benchmark

against which ine�ciency of actual performance is measured) along with the other assump-

tions described above.

3.5 Aggregation of Aggregates

We now look at the case when a researcher wants to aggregate further, over already ag-

gregate e�ciency scores, i.e., across some sub-groups within a larger group. For example,

suppose there is some partitioning of interest of the entire group into L non-intersecting

and exhaustive sub-groups l = 1, . . . , L. Let Y ≡
∑n

k=1 y
k =

L∑
l=1

nl∑
k=1

yl,k be the total output

across all DMUs in all the sub-groups. Also let the input allocation among �rms within all

the groups be denoted with X = (X1, ..., XL). If (3.11) is true for all l = 1, . . . , L, then we

must have

P̄ (X) =
n∑
⊕k=1

P k(xk) =
L∑
⊕l=1

P l(X l) =
L∑
⊕l=1

nl∑
⊕k=1

P l,k(xl,k), (3.25)

i.e., the aggregate output set of all groups together is the Minkowski sum of the group output

sets, over l = 1, ..., L. Thus, P̄ (X) would inherit its properties from the properties of sub-

group technologies, which in turn are inherited from the regularity conditions imposed on

the output sets of individual DMUs.

Using the group technology (3.25), one can de�ne the group revenue function as

R̄(X, p) ≡ sup
y
{py : y ∈ P̄ (X)}, (3.26)
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which, similarly to (3.7), gives rise to the group revenue e�ciency measure

RE(X, Ȳ , p) ≡ R̄(X, p)/pY . (3.27)

An immediate consequence of the previous theorem and of (3.25) is summarized in the

next corollary.

Corollary 3. The maximal revenue of the entire group of DMUs feasible from (X, p) is equal

to the sum of maximal revenues of all its (non-intersecting) sub-groups of DMUs feasible from

(X l, p), l = 1, ..., L, i.e.,

R̄(X, p) =
∑L

l=1
R̄l(X l, p) =

∑L

l=1

∑nl

k=1
Rl,k(xl,k, p). (3.28)

The intuition of this result is the same as that of its analogue of (3.18)�it is its extension to

the aggregation between the sub-groups into a larger group. The corresponding result about

aggregation of revenue e�ciency measures is summarized in the next corollary.

Corollary 4. We have

RE(X, Y , p) =
L∑
l=1

RE
l
(X l, Y

l
, p)× S l, (3.29)

where

S l = pY
l
/

(
p

L∑
l=1

Y
l

)
, l = 1, ..., L. (3.30)

Intuitively, this corollary says that the weighted sum of the revenue e�ciencies of revenue-

maximizing sub-groups of �rms is the same as the revenue e�ciency with respect to the

aggregate technology (3.25) for the group that unites these sub-groups (assuming all �rms

face the same output prices and the standard regularity conditions hold). That is, it is an

analogue of (3.19)-(3.20). In turn, this corollary implies the following important result.

Corollary 5. We have

RE(X, Y , p) = OTE ×OAE, (3.31)

where

OTE =
L∑
l=1

OTE
l × S l, (3.32)

and

OAE =
L∑
l=1

OAE
l × S lae, (3.33)
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where

S l = pY
l
/

(
p

L∑
l=1

Y
l

)
, l = 1, ..., L, (3.34)

and

S lae =
(
pY

l ×OTEl
)
/

(
p

L∑
l=1

Y
l ×OTEl

)
, l = 1, ..., L. (3.35)

Intuitively, this last corollary provides a theoretically justi�ed weighting scheme for an

aggregation over sub-groups of the aggregate technical and aggregate allocative e�ciencies

into more aggregate analogues, and such that they decompose the aggregated revenue e�-

ciency. Thus, this approach provides `internally consistent' aggregation within and between

the sub-groups.

3.6 Price Independent Weights

In this section we summarize the method for converting the derived above price-dependent

weights into the price-independent weight such that the same aggregation scheme based on

and derived from the economic principles is preserved. This method was proposed by Färe

and Zelenyuk (2003, 2007) and Simar and Zelenyuk (2007). We �rst focus on the case of

aggregating e�ciency scores of the entire group. The key additional assumption here is the

following:

pmY m/

(
M∑
m=1

pmY m

)
= αm, m = 1, ...,M, (3.36)

where Ȳm ≡
∑n

k=1 y
k
m and αm ∈ (0, 1) is a constant (known or estimated) for all m ∈

{1, ...,M} with normalization
∑M

m=1 αm = 1. Intuitively, (3.36) states that the weight of the

industry revenue from the output m in the industry total revenue equals αm. Furthermore,

let us denote $k
m = ykm/Ȳm to be the weight of the kth �rm in the group in terms of the

mth-output, and let us impose the condition (3.36) upon the weights for the aggregation of

the revenue and technical e�ciency scores derived above, to obtain

Sk =
M∑
m=1

αm$
k
m, k = 1, ..., n. (3.37)

Intuitively, (3.37) says that the weight of a �rm is the weighted average over all the output-

shares of this �rm in its group, where the weights are the revenue shares of the industry for

each output m in the total revenue of the industry. Next, use (3.36) and (3.34) to derive the
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weights for aggregating `between the sub-groups'

S l =
M∑
m=1

αmW
l
m, l = 1, ..., L, (3.38)

where W l
m = Ȳ l

m/Ȳm is the share of the lth sub-group in the entire group in terms of the mth-

output. Furthermore, with a bit more algebra we can derive the price-independent weight

for an individual e�ciency of �rm k `within a sub-group l' to be

Sl,k = Sk/S l, k = 1, ..., nl; l = 1, ..., L, (3.39)

i.e., we get an analogue of (3.37) which accounts for the weight of each particular sub-group

in the entire group.

On the other hand, the price-independent weights for aggregating allocative e�cien-

cies are derived similarly as above but where the observed outputs are replaced with their

technically-e�cient analogues, i.e.,

Skae =
Sk ×OTEk(xk, yk)∑n
k=1 S

k ×OTEk(xk, yk)
, k = 1, ..., n, (3.40)

where Sk is given in (3.37).

Meanwhile, we can also employ the standardization in (3.36), along with (3.34), to get

the weights for aggregating `between the sub-groups' to be given by

S lae =

∑M
m=1 αmW

l
mOTE

l∑L
l=1

∑M
m=1 αmW

l
mOTE

l
=

OTE
l × S l∑L

l=1OTE
l × S l

, l = 1, ..., L, (3.41)

where W l
m = Ȳ l

m/Ȳm is the weight of lth sub-group in the entire group in terms of the mth-

output. Note that (3.41) is analogous to what we obtained for the individual �rms, but

for the sub-group level. Moreover, (3.41) can be used to derive the weight of an individual

e�ciency of �rm k `within a sub-group l' to be

Sl,kae = Skae/S lae, k = 1, ..., nl; l = 1, .., L.

Finally, note that all the derivations here were done for the case of the output orientation

and analogous derivations can be made for the case of input orientation (and, potentially,

for the joint input-output or pro�t-orientation), which we leave as exercises for the readers

(see Färe et al. (2004b) and Mayer and Zelenyuk (2014a,b) for some related derivations).
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4 Aggregation of Productivity Indexes

Similarly as with the e�ciency scores, applied studies involving productivity indexes usually

need to present some aggregates of the estimated productivity indexes�to summarize the

overall tendencies in a sample, to perform statistical inference about the population, etc.

Typically, researchers use the simple or the equally-weighted geometric mean for this purpose.

The discussion above suggests that it would also be important to have some well-justi�ed

weights when aggregating productivity indexes. Such weights would help in accounting for the

relative importance of each �rm whose index is entering into the average. This question was

�rst addressed by Zelenyuk (2006), who derived an aggregation scheme for the Malmquist

productivity index (MPI), and we summarize this approach in this section.14 To simplify

the notation, from now on we will consider just one group, i.e., drop the sub-group subscript

l (but add the time subscript τ = s, t).

4.1 Individual Malmquist Productivity Indexes

Let us �rst recall the de�nitions of the MPI. We will focus on measuring changes in produc-

tivity from a period s to a period t (s < t). Recall that the output oriented MPI can be

de�ned as

Mk(yks , y
k
t , x

k
s , x

k
t ) ≡

[
Dk
s (x

k
t , y

k
t )

Dk
s (x

k
s , y

k
s )
× Dk

t (x
k
t , y

k
t )

Dk
t (x

k
s , y

k
s )

]1/2
. (4.1)

where Dk
s (x

k
t , y

k
t ) is the Shephard's output oriented distance function that we now cast in the

inter-temporal framework, characterizing technology of DMU k in period s and evaluated at

the point (xkt , y
k
t ). Note that we dropped the subscript �o� to simplify our already intense

notation.15

In the light of the duality between the distance function and the revenue function, one

can also de�ne the revenue (or dual) analogue of the MPI as

RMk(·) ≡ RMk(ps, pt, y
k
s , y

k
t , x

k
s , x

k
t )

≡

[(
REk

s (xkt , y
k
t , pt)

REk
s (xks , y

k
s , ps)

× REk
t (xkt , y

k
t , pt)

REk
t (xks , y

k
s , ps)

)−1]1/2
, (4.2)

which, naturally, can be decomposed as

RMk(·) ≡Mk(·)× AMk(·), (4.3)

14Also see Mayer and Zelenyuk (2014a, 2017) for extensions of this approach.
15Again, here we focus on the output orientation case and similar developments can be done for the input

orientation case. See Mayer and Zelenyuk (2014a, 2017) for some of these details.
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where Mk(·) is de�ned in (4.1), and AMk(·) is the allocative component of the dual MPI,

de�ned as

AMk(·) ≡ AMk(ps, pt, y
k
s , y

k
t , x

k
s , x

k
t )

≡

[(
OAEk

s (xkt , y
k
t , pt)

OAEk
s (xks , y

k
s , ps)

× OAEk
t (xkt , y

k
t , pt)

OAEk
t (xks , y

k
s , ps)

)−1]1/2
. (4.4)

4.2 Aggregation Problem: Inter-temporal Perspective

Here we adapt the aggregation concepts outlined above to the inter-temporal framework.

As for the case of e�ciency aggregation, a key stepping-stone for deriving the aggregation

results for productivity indexes is to de�ne a relevant group technology, and as before, here

we admit the additive structure of aggregation of the output sets, i.e.,

P̄τ (X) ≡
n∑
⊕k=1

P k
τ (xk), τ = s, t, (4.5)

and so the group revenue function at period τ is given by

R̄τ (X, p) ≡ max
y
{py : y ∈ P̄τ (X)}, τ = s, t, (4.6)

while the revenue e�ciency at τ is given by

REτ (X, Y , p) ≡ R̄τ (X, p)/pY , τ = s, t. (4.7)

Now, to measure changes in productivity between s and t, let the group (aggregate) analog

of (4.2) be

RM(ps, pt, Y s, Y t, Xs, Xt) ≡

[(
REs(Xt, Y t, pt)

REs(Xs, Y s, ps)
× REt(Xt, Y t, pt)

REt(Xs, Y s, ps)

)−1] 1
2

, (4.8)

where the time subscripts indicate the particular values of e�ciency measures for speci�c

periods τ = s, t.

Ideally, we want to �nd an aggregation function fRM(·) that can relate the aggregate

measure (4.8) to the individual measures (4.2) in some `meaningful' way. Being unable to

�nd such a `meaningful' way, Zelenyuk (2006) resorted to something that may seem `less

than ideal', yet feasible��nd an aggregation function fRE(·) that can relate the aggregate

measure (4.8) to all the components of all the individual measures (4.2), in a `meaningful'
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way, i.e., so that we have

RM(ps, pt, Y s, Y t, Xs, Xt) = fRE(RE1
τ (·), ..., REn

τ (·)), τ = s, t, (4.9)

such that, preferably, the decomposition (4.3) is maintained at the aggregate level, i.e.,

RM(ps, pt, Y s, Y t, Xs, Xt) = M(·)× AM(·), (4.10)

where, in turn, one need to �nd some aggregation functions fD(·), fAE(·) that ensure that
the aggregate primal MPI is related to all the components of all the individual analogues

(4.1), i.e.,

M(·) ≡M(Y s, Y t, Xs, Xt) ≡ fD(D1
τ (·), ..., Dn

τ (·)), τ = s, t, (4.11)

while the aggregate allocative-MPI is related to (4.4) or its individual components, i.e.,

AM(·) ≡ AM(Y s, Y t, Xs, Xt) ≡ fA(OAE1
τ (·), ..., OAEn

τ (·)), τ = s, t. (4.12)

Such functions are found in the next sub-section using, again, the Koopmans-type arguments

that we described above.

4.3 Aggregation of the MPIs

As for the aggregation of e�ciency scores, the foundation here is the inter-temporal extension

of the aggregation theory from Färe and Zelenyuk (2003), which in turn is an adaptation of

aggregation theory from Koopmans (1957), which we restate below casting it in the inter-

temporal framework, with the time subscript τ = s, t:

R̄τ (X, p) =
∑n

k=1
Rk
τ (x

k, p), xk ∈ <N+ , ∀k = 1, ..., n, p ∈ <M++, (4.13)

and therefore, for j, τ = s, t, we have

REτ (Xj, Y j, pj) =
∑n

k=1
REk

τ (xkj , y
k
j , pj)× Skj (4.14)

where

Skj ≡ pjy
k
j /pjY j, k = 1, ..., n. (4.15)

Thus, the decomposition is maintained at the aggregate level: for any j, τ = s, t, we have

REτ (Xj, Y j, pj) = OTEτ (j) × OAEτ (j), (4.16)
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where

OTEτ (j) ≡
∑n

k=1
[Dk

τ (x
k
j , y

k
j )]−1 × Skj , (4.17)

OAEτ (j) ≡
∑n

k=1
OAEk

τ (xkj , y
k
j , pj)× Skae,τ,j, (4.18)

and

Skae,τ,j ≡
pj
(
ykj /D

k
τ (x

k
j , y

k
j )
)

pj
∑n

k=1

(
ykj /D

k
τ (x

k
j , y

k
j )
) , k = 1, ..., n. (4.19)

Furthermore, applying (4.8), (4.14) and (4.15) we get a desired aggregation result�a solution

to (4.9), given by:

RM(ps, pt, Y s, Y t, Xs, Xt)

=

[(∑n
k=1RE

k
s (xkt , y

k
t , pt)× Skt∑n

k=1RE
k
s (xks , y

k
s , ps)× Sks

×
∑n

k=1RE
k
t (xkt , y

k
t , pt)× Skt∑n

k=1RE
k
t (xks , y

k
s , ps)× Sks

)−1]1/2
. (4.20)

Importantly, note that the decomposition at the aggregate level is preserved and given by

RM(ps, pt, Y s, Y t, Xs, Xt) = M(·)× AM(·), (4.21)

where the solutions to (4.11) and (4.12) are given, respectively, by

M(Y s, Y t, Xs, Xt) =

[(
OTEs(t)

OTEs(s)
× OTEt(t)

OTEt(s)

)−1]1/2
, (4.22)

and

AM(ps, pt, Y s, Y t, Xs, Xt) =

[(
OAEs(t)

OAEs(s)
× OAEt(t)

OAEt(s)

)−1]1/2
, (4.23)

where, in turn, the four components inside (4.22) are given in (4.17) while the four compo-

nents inside (4.23) are given in (4.18).

The theoretical and practical importance of these results is that they give explicit for-

mulas for aggregation of the MPIs. In particular, they give a way of obtaining a group

productivity change score from the individual analogues, where the aggregation function

and the aggregation weights are not ad hoc but derived from economic principles, besides

being intuitive.
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4.4 Geometric vs. Harmonic Averaging

In earlier studies, noting on the multiplicative nature of the MPI, researchers often used not

only the equal weights but also the geometric rather than the arithmetic or the harmonic

averaging of the individual estimates when they wished to summarize the point-estimates of

MPIs (e.g., see Färe et al. (1994)). That is, not only the weights were equal, but also the

aggregating function used in previous practice was quite di�erent from what the theoretical

derivations in the previous sub-section suggested. How can these di�erent approaches be

reconciled? From the discussions above, it must be clear that the weights can dramatically

in�uence the results, whether quantitatively or qualitatively. A natural question is whether

the functional form of the aggregation is critical and, in particular, can one use the geometric

mean rather than the arithmetic mean?

This question was also addressed by Zelenyuk (2006), who pointed out that (4.22) can

be restated in terms of harmonic aggregations of individual distance functions, i.e.,

M(·) =

[(∑n
k=1[D

k
s (x

k
t , y

k
t )]−1 × Skt

)−1
(
∑n

k=1[D
k
s (x

k
s , y

k
s )]−1 × Sks )

−1

×
(∑n

k=1[D
k
t (x

k
t , y

k
t )]−1 × Skt

)−1(∑n
k=1[D

k
t (x

k
s , y

k
s )]−1 × Sks

)−1] 1
2

. (4.24)

and its geometric analogue can be de�ned as

M
G

(·) ≡


n∏
k=1

Dk
s (x

k
t , y

k
t )ω

k
t

n∏
k=1

Dk
s (x

k
s , y

k
s )ωk

s

×

n∏
k=1

Dk
t (x

k
t , y

k
t )ω

k
t

n∏
k=1

Dk
t (x

k
s , y

k
s )ωk

s


1/2

, (4.25)

for some weights ωkt , ω
k
s .

The aggregation usually used in practice is a particular case of (4.25) that assumes equal

weights across all k, i.e., ωkt = ωks = 1/n. It must be clear that, in general, (4.24) is not

equal to (4.25) and, in fact, no exact general relationship exists between the two. However,

taking the �rst-order approximation of
n∏
k=1

Dk
s (x

k
t , y

k
t )S

k
t and of

(∑n
k=1[D

k
s (x

k
t , y

k
t )]−1 × Skt

)−1
around unity (which is a natural point around which productivity and e�ciency indexes can

be approximated) in both cases we get
∑n

k=1D
k
s (x

k
t , y

k
t )×Skt , meaning that one can conclude

M(Y s, Y t, Xs, Xt) ∼= M
G

(Y s, Y t, Xs, Xt), for (ωkt , ω
k
s ) = (Skt , S

k
s ). (4.26)

In words, (4.26) states that the �rst-order-approximation relationship exists between the
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aggregate MPI constructed with harmonic components derived above and the geometric ag-

gregate of individual MPI's, if both use the same set of weights. This implies that, for anyone

who prefers the geometric aggregation, this relationship gives a justi�cation for choosing the

aggregation weights (which are more in�uential)�the weights derived from economic prin-

ciples, which account for the economic weight of each �rm.

A natural question is �How substantial is the di�erence between the geometric and har-

monic aggregations?�16 Zelenyuk (2006) presented some simulation results con�rming that

the di�erence is fairly small. For instance, if the scores of a productivity index come from

uniform distribution around unity with the range of 50 percentage points (thus allowing a

substantial change), then the square-root of the mean squared di�erence between the har-

monic and geometric means across various simulations was only about 1 percentage point.

Thus, a practical implication that one can deduce from here is that the geometric-type and

the harmonic-type aggregations of the productivity indexes (under the same weights) give

similar aggregate scores for moderate variations of the scores being aggregated. In other

words, the aggregation function per se (whether geometric, harmonic or arithmetic) is not as

crucial�what is more important are the weights of aggregation, which needs to be justi�ed

on some theoretical grounds.17

4.5 Decomposition and Aggregation

The aggregation results we summarized above can also be extended to the aggregation of

components of various decompositions of MPIs. While there are many decompositions of MPI

o�ered in the literature, here we focus on what seems to be the most popular decomposition

in practice�the one proposed in the seminal work of Färe et al. (1994), as the following

Mk(·) ≡ EFCHk(·)× TECHk(·), (4.27)

16From theory, it is known that under the same weighting scheme, the geometric mean is larger than
the harmonic mean but smaller than the arithmetic mean. Note however that the aggregate MPI in (4.24)
involves products of ratios of the harmonic means and so it can be smaller or greater than the aggregate
MPI obtained via a geometric mean as in (4.25), depending on the relative magnitudes that appear in the
numerators and denominators of (4.24). Both means are approximately equal (to the arithmetic mean) in
the sense of �rst order approximation around unity.

17One should however be careful aggregating when there are scores equal or very close to zero: both
geometric and harmonic averages completely fail if at least one element is zero and may yield an unreasonably
low aggregate score if at least one element is very close to zero (even if many others have large e�ciency or
productivity scores), unless they are `neutralized' by a very low weight in the aggregation, as can be done
with weighted aggregates. In such cases, using arithmetic aggregation, which is less sensitive to the outliers,
could also be a better solution.
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where the �rst component is referred to as the e�ciency change, de�ned as

EFCHk(·) ≡ EFCHk(yks , y
k
t , x

k
s , x

k
t ) ≡

Dk
t (x

k
t , y

k
t )

Dk
s (x

k
s , y

k
s )
, (4.28)

and the second component is referred to as the technological change, de�ned as

TECHk(·) ≡ TECHk(yks , y
k
t , x

k
s , x

k
t ) ≡

[
Dk
s (x

k
t , y

k
t )

Dk
t (x

k
t , y

k
t )
× Dk

s (x
k
s , y

k
s )

Dk
t (x

k
s , y

k
s )

]1/2
. (4.29)

The aggregation question then is to �nd appropriate group analogues to (4.28) and (4.29),

i.e., some functions fEC(·) and fTC(·) that relate the aggregate measures to individual ones.

As above, a natural choice is to utilize the Koopmans' type arguments, as was done in

Zelenyuk (2006), to arrive at

EFCH(·) =

(
OTEt(t)

OTEs(s)

)−1
=

(∑n
k=1[D

k
t (x

k
t , y

k
t )]−1 × Skt

)−1
(
∑n

k=1[D
k
s (x

k
s , y

k
s )]−1 × Sks )

−1 , (4.30)

and

TECH(·) =

[(
OTEs(t)

OTEt(t)
× OTEs(s)

OTEt(s)

)−1]1/2

=

[(∑n
k=1[D

k
s (x

k
t , y

k
t )]−1 × Skt

)−1(∑n
k=1[D

k
t (x

k
t , y

k
t )]−1 × Skt

)−1
(∑n

k=1[D
k
s (x

k
s , y

k
s )]−1 × Sks

)−1(∑n
k=1[D

k
t (x

k
s , y

k
s )]−1 × Sks

)−1
]1/2

. (4.31)

As before, the �rst order approximation relationship can also be established between the

harmonic-type aggregations in (4.30) and (4.31) and their geometric analogues. Moreover,

these aggregation results can also be extended to aggregation across or over larger groups, in

a similar manner as for aggregating e�ciency scores that we discussed above, i.e., extending

Simar and Zelenyuk (2007).

5 Aggregation for Scale Measures

Measurement of economies of scale for an individual �rm or for an industry has been one

of the most frequently addressed research questions in economics and applied econometrics.

This is usually done via estimating such measures as scale elasticity and/or scale e�ciency.

Here we will focus on the elasticity approach, following Färe and Zelenyuk (2012), while the
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aggregation for scale e�ciency can be found in Zelenyuk (2015).

For analyzing economies of scale for a group (e.g., industry or sub-industry), researchers

usually estimate the elasticity at some points of interest, e.g., the non-weighted mean or

the median of the data or, alternatively, the non-weighted mean of the individual estimates

of scale elasticities. Importantly, note that these di�erent approaches do not give the same

information, in general, and each have certain theoretical or practical appeals and caveats.

Here we discuss another theoretical approach of measuring scale elasticity of a group, which

is based on a similar aggregation result as that derived above.

So far we considered the output oriented framework and in this section, because re-

searchers often focus on elasticity of the cost function, we will consider the case of input

orientation. To do so, �rst note that the technology set of �rm k can be equivalently char-

acterized by the input requirement sets, de�ned as

L k(yk) ≡ {x : x can produce yk}, y ∈ RM
+ , (5.1)

so that xk ∈ L k(yk), y ∈ RM
+ ⇐⇒ (xk, yk) ∈ T k. In turn, technology can also be

equivalently characterized by the input oriented Shephard (1953) distance function Dk
i :

<M+ ×<N+ → <+ ∪ {∞}, de�ned as

Dk
i (y

k, xk) ≡ sup
δ
{δ > 0 : xk/δ ∈ L k(yk)}. (5.2)

A closely related concept is the input oriented Farrell measure of technical e�ciency,

ITEk(yk, xk) ≡ inf
θ
{θ > 0 : θ xk ∈ L k(yk)} = 1/Dk

i (y
k, xk). (5.3)

In addition to assuming the main regularity axioms of production theory (A1-A5), we

also assume convexity of the input requirement sets, i.e.,

A7: Input requirement sets L k(yk) are convex, ∀yk ∈ <M+ .

As a result, due to duality theory in economics (see Shephard (1953); Färe and Primont

(1995) and Sickles and Zelenyuk (2019)), the technology can be equivalently characterized

by the cost function, Ck : <M+ ×<N++ → <+ ∪ {∞}, de�ned as

Ck(yk, w) ≡ inf
x
{wx : x ∈ L k(yk)}, (5.4)

where w ≡ (w1, ..., wN) ∈ <N++ is the vector of input prices. The related e�ciency measure
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for a DMU k in the dual input-oriented framework would then be the cost e�ciency (also

referred to as or the overall input e�ciency), de�ned formally as,

CEk(yk, xk, w) ≡ Ck(yk, w)/wxk. (5.5)

From the duality theory for the cost function, we also have the so-called Mahler's inequality,

Ck(yk, w) ≥ wxk/Dk
i (y

k, xk), (5.6)

leading to the notion of the input oriented allocative (in)e�ciency, de�ned as a multiplicative

residual that turns (5.6) into equality, i.e.,

IAEk(yk, xk, w) ≡ CEk(yk, xk, w)/ITEk(yk, xk), (5.7)

and so we have another useful decomposition:

CEk(yk, xk, w) = ITEk(yk, xk)× IAEk(yk, xk, w), (5.8)

We will use these e�ciency measures and their aggregate analogues later in the chapter,

while for the framework of scale elasticity we will focus on the distance function and the cost

function characterizations.

It is important to note that one can use both the primal and the dual characteriza-

tions to measure economies of scale via the scale elasticity. Speci�cally, with appropriate

di�erentiability assumptions, for the dual framework the scale elasticity is de�ned as18

ec(y
k, w) ≡ ∂ lnCk(ykθ, w)

∂ ln θ

∣∣∣∣
θ=1

=
∇′

yk
Ck(yk, w)yk

Ck(yk, w)
, (5.9)

and for the primal framework, the scale elasticity is de�ned as19

ei(y
k, xk) ≡ ∂ lnλ

∂ ln θ

∣∣∣∣Dk
i (y

kθ,xkλ)=1,
θ=1,λ=1

= −∇′

ykD
k
i (y

k, xk)yk. (5.10)

Now, suppose x∗k is a solution to (5.4), then one can obtain equality between the dual and

the primal measures, i.e.,20

ec(y
k, w) = ei(y

k, x∗k), (5.11)

18E.g., see Panzar and Willig (1977).
19See Färe et al. (1986); Färe and Primont (1995).
20See Färe et al. (1986); Zelenyuk (2013b) for more details on this.
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where x∗k is a solution to (5.4), i.e.,

x∗k ≡ arg inf
x
{wx : x ∈ L k(yk)}. (5.12)

Intuitively, (5.11) states that the same information about the scale elasticity of an individual

�rm k can be obtained from the primal and dual approaches.

Now, analogous to what we did in previous sections, let the group input requirement set

be given by the Minkowski sum of the individual input requirement sets across all DMUs k

(k = 1, ..., n), i.e.,

L (y1, ..., yn) =
n∑
⊕k=1

L k(yk). (5.13)

Note that L (y1, ..., yn) inherits the regularity conditions imposed on the individual input

requirement sets and, in particular, convexity of the individual input requirement sets im-

plies that L (y1, ..., yn) is also convex. Also note that the aggregation structure de�ned by

L (y1, ..., yn) presumes no reallocation of outputs and no externalities across the individuals.

In turn, the group cost function would be the aggregate analogue of (5.4), de�ned as

C(y1, ..., yn, w) ≡ inf
x
{wx : x ∈ L (y1, ..., yn)}, (5.14)

while the group input oriented distance function would be de�ned as

Di(y
1, ..., yn,

∑n

k=1
xk) ≡ sup

δ
{δ > 0 : (

∑n

k=1
xk/δ) ∈ L (y1, ..., yn)}, (5.15)

as the aggregate analogue of (5.2).

Therefore, one can measure the economies of scale for the group from the measures of

scale elasticity de�ned for the aggregate technology�analogously to how it is done for the

individual technologies, i.e., we have

ec(y
1, ..., yn, w) ≡ ∂ lnC(y1θ, ..., ynθ, w)

∂ ln θ

∣∣∣∣
θ=1

=
∇′
YC(y1, ..., yn, w)Y

C(y1, ..., yn, w)
, (5.16)

where ∇′
YC(y1, ..., yn, w) ≡ (∂C(y1, ..., yn, w)/∂y1, ... , ∂C(y1, ..., yn, w)/∂yn) and Y ≡

26



(y1, ..., yn)′. Meanwhile, for the primal framework, we get

ei(y
1, ..., yn,

n∑
k=1

xk) ≡ ∂ lnλ

∂ ln θ

∣∣∣∣Di(y
1θ,...,ynθ,

n∑
k=1

xkλ)=1,

θ=1,λ=1

= −∇′

YDi(y
1, ..., yn,

n∑
k=1

xk)Y. (5.17)

Furthermore, let x∗ be a solution to (5.14), then the dual and the primal measures of group

scale elasticity would be equal, i.e., putting this formally, we have a desired result:

ec(y
1, ..., yn, w) = ei(y

1, ..., yn, x∗), (5.18)

where

x∗ ≡ arg inf
x
{wx : x ∈ L (y1, ..., yn)}.

The reader shall notice that (5.18) is an aggregate analog of (5.11). The main goal therefore

now is to �nd a relationship between the aggregate and the individual scale elasticity mea-

sures that will enable getting the aggregate measures from the individual ones. As above,

the fundamental step for reaching this aim is the following result.

Theorem 2. The minimal cost of the group of DMUs with production plan Y = (y1, ..., yn)

is equal to the sum of the minimal costs of all its member DMUs with the same production

plan y1, ..., yn, assuming all the member DMUs face the same input prices w, i.e.,

C(y1, ..., yn, w) =
n∑
k=1

Ck(yk, w). (5.19)

In words, this theorem states that whether the group of DMUs minimize the costs for

their given output plans together via a `social planner' (and without reallocation of outputs

across DMUs) or they minimize individually and then these costs are summed over, the

result should be the same if they face the same input prices w. This theorem is the cost

analog of the theorem of Koopmans (1957) for aggregation of pro�t functions (see Färe et al.

(2004b) for a proof).

Now, for measuring the change in costs due to in�nitesimal and equiproportional change

of all outputs, we di�erentiate both sides of (5.19) along the ray from the origin through the
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point Y ≡ (y1, ..., yn)′. Doing so for the l.h.s. of (5.19) we get

∂C(y1θ, ..., ynθ, w)

∂θ

∣∣∣∣
θ=1

= ∇′

YC(y1, ..., yn, w)Y. (5.20)

while doing so for the r.h.s. of (5.19) we get

∂

(
n∑
k=1

Ck(ykθ, w)

)
/∂θ

∣∣∣∣∣
θ=1

=
n∑
k=1

∇′

ykC
k(yk, w)yk. (5.21)

and combining the two, we get the following important equivalence results (originally derived

by Färe and Zelenyuk (2012))), summarized in the next two corollaries.

Corollary 6. We have

ec(y
1, ..., yn, w) =

n∑
k=1

ec(y
k, w)× Sk, (5.22)

where

Sk ≡ Ck(yk, w)/
n∑
k=1

Ck(yk, w). (5.23)

This mathematical result is quite intuitive: In the dual framework, the scale elasticity of

a group equals the weighted sum of the individual scale elasticity scores of all �rms in this

group, where the weights are the cost shares. As above, a strength of this result is that the

weights are not ad hoc but derived from economic principles.

Similar aggregation result can also be derived for the primal scale elasticity measurement.

In particular, from (5.11) and (5.18), we get the following equivalence result.

Corollary 7. We have

ei(y
1, ..., yn, x∗) =

n∑
k=1

ei(y
k, x∗k)× Sk. (5.24)

This important result tells us how to obtain the group scale elasticity measure from

the individual scale elasticity measures in the primal framework. Speci�cally, note that

(5.24) says that one can get the primal aggregate scale elasticity measure from the weighted

arithmetic average of the individual scale elasticity scores of all �rms in this group, where

the weights are the individual cost shares, derived from economic theoretic reasoning.

In case the researcher has no price information to calculate the weights, she/he may use

shadow prices, estimated from the primal information or, alternatively, impose additional
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assumption and help to derive the price independent weights, similarly as discussed above

and following Färe and Zelenyuk (2003, 2007). Speci�cally, the additional assumption here

would be

wr
∑n

k=1
x∗kr /

(∑N

r=1
wr
∑n

k=1
x∗kr

)
= br, r = 1, ..., N, (5.25)

where br ∈ (0, 1) is a known or estimated constant. In words, (5.25) states that the share

of the group expenditures on the rth input in the group total cost is given by br. Further, if

we let $k
r = xkr/

∑n
k=1 x

k
r be the share of the k

th �rm in the group in terms of the rth-input,

then from (5.25) we get the price-independent weights given by

Sk =
∑N

r=1
$k
r br, k = 1, ..., n. (5.26)

In words, (5.26) states that a �rm's weight is the weighted average over all input-shares of

this �rm in the group, where the weights are the shares of the industry expenditures on the

rth input in the industry total cost.

It is also worth noting that analogous developments can also be done for other `derivatives'

of the cost function as well as of the revenue and pro�t functions. Moreover, such aggregation

results can be generalized further to the case of aggregation within sub-groups (e.g., private

vs. public, etc.) and then aggregation between these sub-groups into a larger group.

Finally, similar analysis can also be done for the case of aggregation of scale e�ciency

scores, as was done in Zelenyuk (2002, 2015).

6 Aggregation with Possibility of Reallocation

In the discussion above we restricted attention to cases where reallocation of inputs between

DMUs are not allowed for the output orientation and reallocation of outputs between DMUs

are not allowed for the input orientation. What if one of these or both restrictions are

relaxed? This context was �rst considered in Nesterenko and Zelenyuk (2007) in the context

of aggregating Farrell-type e�ciency scores, while Mayer and Zelenyuk (2014a) extended it

to the context of aggregating MPIs. Both papers focused on the output oriented context,

while the input oriented context was outlined in Mayer and Zelenyuk (2014b) and re�ned

further in Mayer and Zelenyuk (2017), which also extended it to the context of aggregating

Hicks-Moorsteen Productivity Indexes (HMPIs). In this section we brie�y summarize some

key results from from these papers.
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6.1 Aggregate Technology and Measures with Reallocation

To measure the gains from allowing for the reallocation of resources among DMUs in a group,

we need to allow for a more general structure of aggregate technology, which we will refer to

as the group potential technology, and de�ne it as the Minkowski sum of technology sets of

all individual DMUs for a given period τ :21

Ψ∗τ ≡
n∑
⊕k=1

Ψk
τ . (6.1)

While aggregating technology sets rather than the output or the input requirement sets (as

was done above), this type of aggregate technology allows for full reallocation of inputs and

outputs among all the DMUs in the group.22 Other, and equivalent, characterizations of this

technology can be given via the group potential input requirement set, de�ned as

L ∗
τ (Y ) = {x : (x, Y ) ∈ Ψ∗τ}, (6.2)

and via the group potential output set, de�ned as

P ∗τ (X) = {y : (X, y) ∈ Ψ∗τ}. (6.3)

Based on this aggregate technology, and following Nesterenko and Zelenyuk (2007), let the

group potential output-oriented technical e�ciency be de�ned as23

OTE∗τ ≡ OTE∗τ (Xτ , Y j) ≡ sup
θ
{θ : θY j ∈ P ∗τ (Xτ )}, (6.4)

while the dual characterization of P ∗τ (X), the group potential revenue function is de�ned as

R∗τ (Xτ , pj) ≡ sup
y
{pjy : y ∈ P ∗τ (X)}. (6.5)

21This technology aggregation structure was earlier used in Li and Ng (1995), Blackorby and Russell
(1999) and goes back to Koopmans (1957).

22More recently, another de�nition of aggregate technology, which involved the union of technology sets,
was considered by Peyrache (2013, 2015), which later was shownto be equivalent to the Koopmans-type
aggregate technology Ψ∗

τ , under standard regularity conditions of production theory (see Zelenyuk (2018)).
23Here, note that we allow for di�erent time subscripts for inputs and outputs for the framework to be

compatible with the HMPI context.
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The associated group potential revenue e�ciency is then de�ned as

RE∗τ ≡ RE∗τ (Xτ , Y j, pj) ≡
R∗τ (Xτ , pj)

pjY j

, pjY j 6= 0. (6.6)

Due to duality between the revenue function and the output distance function, we have

RE∗τ ≥ OTE∗τ , and so the group potential output-oriented allocative e�ciency can be de�ned

to turn it into equality, yielding the following decomposition

RE∗τ (Xτ , Y j, pj) = OTE∗τ (Xτ , Y j)×OAE∗τ (Xτ , Y j, pj), ∀τ, j. (6.7)

In words, (6.4) and (6.6) measure the group e�ciency relative to the group potential output

set (6.3) and the associated aggregate cost function, similar to the individual level.

By the same token, and following Mayer and Zelenyuk (2014b, 2017), let the group

potential input-oriented technical e�ciency be de�ned as

ITE∗τ ≡ ITE∗τ (Y τ , Xj) ≡ inf
λ
{λ : λXj ∈ L ∗

τ (Y τ )}, (6.8)

while the dual characterization of L ∗
τ (Y τ ), the group potential cost function, can be given

by

C∗τ (Y τ , wj) ≡ inf
x
{wjx : x ∈ L ∗

τ (Y τ )}, (6.9)

and so, the related group potential cost e�ciency is then given by

CE∗τ ≡ CE∗τ (Y τ , Xj, wj) ≡
C∗τ (Y τ , wj)

wjXj

, wjXj 6= 0. (6.10)

As before, due to duality between the cost function and the input distance function, we have

CE∗τ ≤ ITE∗τ , and so the group potential input-oriented allocative e�ciency can be de�ned

to close this inequality, giving rise to the following decomposition

CE∗τ (Y τ , Xj, wj) = ITE∗τ (Y τ , Xj)× IAE∗τ (Y τ , Xj, wj), ∀τ, j. (6.11)

In words, (6.8) and (6.10) measure group e�ciency relative to the group potential input re-

quirement set (6.2) and associated aggregate cost function, in a way similar to measurements

done at the individual level.
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6.2 Reallocation vs. No Reallocation

A natural question at this stage is the following: What is the relationship between the group

technology when the full reallocation is allowed to those we considered earlier (which did

not allow for the full reallocation)? The following simple, yet important lemma clari�es this

question.

Lemma 1. We have

P τ (Xτ ) ⊆ P ∗τ (Xτ ), (6.12)

and

L τ (Yτ ) ⊆ L ∗
τ (Y τ ). (6.13)

A proof of (6.12) is relatively simple and can be found in Nesterenko and Zelenyuk (2007)

and the proof of (6.13) is analogous (Mayer and Zelenyuk (2017)). This lemma a�rms what

is expected on an intuitive level: The aggregate technology characterizations where full

reallocation across �rms is allowed must always embrace, as a special case, the aggregate

technology where the full reallocation (of outputs in the input oriented case and of inputs

in the output oriented case) is not permitted.

As a result of this lemma, note that for any (Yτ , Y τ , wj) we must have

C∗τ (Y τ , wj) ≤ Cτ (Yτ , wj), (6.14)

and so for any (Yτ , Y τ , wj), we must also have

CE∗τ ≤ CEτ . (6.15)

Similarly, for any (Xτ , Xτ , pj) we have

R∗τ (Xτ , pj) ≥ Rτ (Xτ , pj), (6.16)

and so for any (Xτ , Xτ , pj) we must also have

RE∗τ ≥ REτ . (6.17)

To measure the di�erence in e�ciency between these di�erent levels of aggregation, Nesterenko

and Zelenyuk (2007) introduced the concept of reallocative e�ciency. Speci�cally, in the

output oriented context, we now also have the group revenue reallocative e�ciency, as the
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multiplicative residual that closes the inequality (6.17), i.e.,

RRE∗τ ≡ RRE∗τ (Xτ , Xτ , pj) ≡ R∗τ (Xτ , pj)/Rτ (Xτ , pj), (6.18)

and we obtain a useful decomposition of the group revenue e�ciency

RE∗τ = REτ ×RRE∗τ . (6.19)

Meanwhile, in the input oriented context (following Mayer and Zelenyuk (2017)), we have the

group cost reallocative e�ciency, as the multiplicative residual which closes the inequality

(6.15), i.e.,

CRE∗τ ≡ CRE∗τ (Yτ , Y τ , wj) ≡ C∗τ (Y τ , wj)/Cτ (Yτ , wj), (6.20)

and so we obtain a useful decomposition of the group cost e�ciency:

CE∗τ = CEτ × CRE∗τ . (6.21)

What is even more interesting is that both RRE∗τ and CRE
∗
τ can be further decomposed,

as outlined in the following lemmas.

Lemma 2. We have

RRE∗τ = OTRE∗τ ×OARE∗τ , ∀τ, (6.22)

where group output-oriented technical reallocative e�ciency is:

OTRE∗τ ≡ OTE∗τ/OTEτ , (6.23)

and group output-oriented allocative reallocative e�ciency is:

OARE∗τ ≡ OAE∗τ/OAEτ . (6.24)

This result is from Nesterenko and Zelenyuk (2007) and its input oriented analogue (from

Mayer and Zelenyuk (2014b, 2017)) is outlined next.

Lemma 3. We have

CRE∗τ = ITRE∗τ × IARE∗τ , ∀τ, (6.25)

where group input-oriented technical reallocative e�ciency is

ITRE∗τ ≡ ITE∗τ/ITEτ , (6.26)
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and group input-oriented allocative reallocative e�ciency is

IARE∗τ ≡ IAE∗τ/IAEτ . (6.27)

In words, these two lemmas say that the reallocative e�ciency measures characterize

the di�erence for the group between individual e�ciency in each DMU and the collective

e�ciency, where outputs are allowed to be reallocated among DMUs in the input orientation

or inputs are allowed to be reallocated among DMUs in the output orientation.

6.3 Aggregate vs. Individual Reallocative Measures of E�ciency

What about the individual counterparts of the reallocative e�ciency measures that appeared

in the previous sub-section? Using the path `from aggregate to individual', Nesterenko and

Zelenyuk (2007) introduced the reallocative measures for individual output-oriented DMUs,

which for k = 1, ..., n are given by

RREk
τ ≡ RE∗τ/RE

k
τ , (6.28)

OTREk
τ ≡ OTE∗τ/OTE

k
τ , (6.29)

OAREk
τ ≡ OAE∗τ/OAE

k
τ , (6.30)

and then established the relationship between individual and group reallocative measures,

which we summarize in the next lemma.

Lemma 4. We have

RRE∗τ =

(
n∑
k=1

(RREk
τ (xkτ , y

k
j , pj))

−1 × Skj

)−1
, (6.31)

OTRE∗τ =

(
n∑
k=1

(OTREk
τ (xkτ , y

k
j ))−1 × Skj

)−1
, (6.32)

OARE∗τ =

(
n∑
k=1

(OAREk
τ (xkτ , y

k
j , pj))

−1 × Skae,τ,j

)−1
, (6.33)

where

Skj ≡
pjy

k
j

pj
∑n

k=1 y
k
j

, Skae,τ,j ≡
p(ykj ×OTEk

τ (xkj , y
k
j ))

p
∑n

k=1(y
k
j ×OTEk

τ (xk, yk))
, k = 1, ..., n. (6.34)

Moreover, note that combining these results with the decompositions we derived above,
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we also get the following useful decompositions of group potential revenue e�ciency

RE∗τ = OTEτ ×OAEτ ×OTRE∗τ ×OARE∗τ . (6.35)

Furthermore, Mayer and Zelenyuk (2014b, 2017), using the same logic as Nesterenko and Ze-

lenyuk (2007), de�ned the corresponding reallocative measures for individual input-oriented

DMUs (for k = 1, ..., n)

CREk
τ ≡ CEg

τ /CE
k
τ , (6.36)

ITREk
τ ≡ ITEg

τ /ITE
k
τ , (6.37)

IAREk
τ ≡ IAEg

τ /IAE
k
τ . (6.38)

and then established the relationship between the individual and the group reallocative

measures, which we summarize in the following lemma.

Lemma 5. We have

CRE∗τ =

(
K∑
k=1

(CREk
τ (ykτ , x

k
j , wj))

−1 ×W k
j

)−1
, (6.39)

ITRE∗τ =

(
K∑
k=1

(ITREk
τ (ykτ , x

k
j ))
−1 ×W k

j

)−1
, (6.40)

IARE∗τ =

(
K∑
k=1

(IAREk
τ (ykτ , x

k
j , wj))

−1 ×W k
ae,τ,j

)−1
, (6.41)

where

W k
j ≡

pjy
k
j

pj
∑n

k=1 y
k
j

, W k
ae,τ,j ≡

pj(y
k
jOTE

k
τ (xkj , y

k
j ))

pj
∑n

k=1(y
k
jOTE

k
τ (xkj , y

k
j ))

, k = 1, ..., n. (6.42)

If we combine these results with the decompositions derived above, then we get the

following decomposition of group potential cost e�ciency:

CE∗τ = ITEτ × IAEτ × ITRE∗τ × IARE∗τ . (6.43)

These key results can be further used for extending various aggregation results discussed

above to allow full reallocation: For MPI it was done in Mayer and Zelenyuk (2014a), while

for HMPI it was done in Mayer and Zelenyuk (2017). Related extensions for the aggregation

of scale e�ciency and scale elasticity as well as for the directional distance functions are yet
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to be developed, which presents a fruitful �eld of research for the near future.

7 Remarks on Estimation of Aggregate Scores

It is worth emphasizing here that our discussion so far was mainly theoretical, and we had

not restricted our attention to any particular estimator. Indeed, the aggregation theories we

summarized here are fairly general and can serve as a background for any suitable estimator,

whether it is based on Data Envelopment Analysis (DEA), Stochastic Frontier Analysis

(SFA), Free Disposal Hull (FDH) approach or another appropriate paradigm. These well

established approaches can be used to estimate the individual e�ciency scores which then

can be aggregated to obtain the corresponding estimates of most of the aggregate scores we

presented above.

Note however that the group potential measures are not calculated from the individual

e�ciency scores, but require calculation directly from the group potential technology. Yet,

after imposing two extra assumptions we can recover these measures from the individual

scores as well. These two assumptions are actually very common for many methods in

productivity and e�ciency analysis, especially in DEA. In particular, we can assume that

(i) the technology set Ψk
τ is the same for all DMUs within each period and that (ii) it is also

convex, then, following Li and Ng (1995) and Nesterenko and Zelenyuk (2007) we get:

Ψ∗τ = nΨτ , ∀k = 1, ..., n, ∀τ, (7.1)

which in turn, for any period τ , gives:

P ∗τ (Xτ ) = nPτ (x̃τ ), (7.2)

where x̃j ≡ n−1
∑n

k=1 x
k
j , and

L ∗
τ (Y τ ) = nLτ (ỹτ ), (7.3)

where ỹτ ≡ n−1
∑n

k=1 y
k
τ . Intuitively, Pτ (x̃τ ) and Lτ (ỹτ ) are, respectively, the output set and

the input requirement set of the `average DMU' for the sample (i.e., a hypothetical DMU

whose input-output allocation is the average of input-output allocations in the sample, in

period τ).

Therefore, the output-oriented group potential e�ciencies can be obtained as the e�-

ciency measures of the average DMU in the group, i.e., we have:

OTE∗τ (Y τ , Xj) = OTEτ (x̃τ , ỹj), (7.4)
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RE∗τ (Xτ , Y j, pj) = REτ (x̃τ , ỹj, pj), (7.5)

OAE∗τ (Xτ , Y j, pj) = OAEτ (x̃τ , ỹj, pj) = REτ (x̃τ , ỹj, pj)/OTEτ (x̃τ , ỹj), (7.6)

where OTE, RE and OAE are as de�ned in (3.5), (3.7) and (3.9) respectively, with super-

script k dropped, and presented in the inter-temporal context.

Similarly, the input-oriented group potential e�ciencies are the same as the e�ciency

measures of the average DMU in the group, i.e., we have:

ITE∗τ (Y τ , Xj) = ITEτ (ỹτ , x̃j), (7.7)

CE∗τ (Y τ , Xj, wj) = CEτ (ỹτ , x̃j, wj), (7.8)

IAE∗τ (Y τ , Xj, wj) = IAEτ (ỹτ , x̃j, wj) = CEτ (ỹτ , x̃j, wj)/ITEτ (ỹτ , x̃j), (7.9)

where ITE, CE and IAE are as de�ned in (5.3), (5.5) and (5.7) respectively, which we cast

in the inter-temporal context, with superscript k dropped.

It is also worth reminding that (7.4) and (7.7) are the versions of aggregate e�ciency mea-

sures suggested (without the theoretical developments as summarized here) and advocated

by Førsund and Hjalmarsson (1979).

8 Concluding Remarks

In this chapter we brie�y summarized some of the key results on aggregation in productivity

and e�ciency analysis. We mostly focused on the output orientation and pointed out that

most of the results can be extended or generalized to derive analogous results for the input

orientation as well as to various other contexts.

Here we conclude by brie�y mentioning a few interesting extensions and applications of

these and other related aggregation results. First, the aggregation results for the directional

distance functions were developed by Färe et al. (2008).24 A similar theoretical framework for

aggregating growth rates in the Solow's growth accounting approach was derived by Zelenyuk

(2013a). Meanwhile, the theory for aggregation of the scale e�ciency was developed by

Zelenyuk (2015).

Related aggregation analysis can be also found in Pachkova (2009) and Raa (2011) and

some interesting extensions can be found in Mussard and Peypoch (2006), Cooper et al.

(2007), Li and Cheng (2007), Kuosmanen et al. (2010), Färe and Karagiannis (2014), Kara-

giannis (2015), Karagiannis and Lovell (2015).

24Also see Zelenyuk (2002) for this and other related results.
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Various applications analyzing real data for various economic questions can be found

in Henderson and Zelenyuk (2007), Pilyavsky and Staat (2008), Weill (2008), Ferrier et al.

(2009), Hall et al. (2012), Mugera and Ojede (2014), to mention just a few.

Finally, in terms of actual estimation, note that what we discussed is a point-measure and

one may (and typically should) be interested in the corresponding con�dence interval mea-

sures and related inference. The �rst theoretical foundation for this important aspect was

laid out in Simar and Zelenyuk (2007), who proposed a practical bootstrap-based approach

for constructing con�dence intervals and performing related inference on the aggregate ef-

�ciency measures. More recently, Simar and Zelenyuk (2018) extended this framework, by

deriving convergence rates and new central limit theorems (CLTs) for the aggregate e�-

ciency scores estimated via DEA and FDH. With the help of the Monte Carlo study, they

also con�rmed that for statistical inference on aggregate e�ciency, the standard CLTs work

poorly even for very simple 1-input-1-output cases and do not work correctly at all for larger

dimensions. Meanwhile, the new CLTs that they derived performed reasonably well, reaching

the nominal levels when samples get large. While deriving their asymptotic results, Simar

and Zelenyuk (2018) focused on aggregates of the Farrell-type e�ciency scores and similar

developments are yet to be made for the other aggregates, which shall constitute key research

questions in the area.

38



References

Blackorby, C., Russell, R. R., 1999. Aggregation of e�ciency indices. Journal of Productivity

Analysis 12 (1), 5�20.

Cooper, W., Huang, Z., Li, S., Parker, B., Pastor, J., 2007. E�ciency aggregation with en-

hanced Russell measures in data envelopment analysis. Socio-Economic Planning Sciences

41 (1), 1�21.

Domar, E. D., 1961. On the measurement of technological change. The Economic Journal

71 (284), 709�729.

Färe, R., Grosskopf, S., Lindgren, B., Roos, P., 1994. Productivity developments in Swedish

hospitals: A Malmquist output index approach. In: Charnes, A., Cooper, W., Lewin,

A. Y., Seiford, L. M. (Eds.), Data Envelopment Analysis: Theory, Methodology and

Applications. Boston, MA: Kluwer Academic Publishers, pp. 253�272.

Färe, R., Grosskopf, S., Lovell, C. A. K., 1986. Scale economies and duality. Zeitschrift für

Nationalökonomie / Journal of Economics 46 (2), 175�182.

Färe, R., Grosskopf, S., Zelenyuk, V., 2004a. Aggregation bias and its bounds in measuring

technical e�ciency. Applied Economics Letters 11 (10), 657�660.

URL https://doi.org/10.1080/1350485042000207243

Färe, R., Grosskopf, S., Zelenyuk, V., 2004b. Aggregation of cost e�ciency: Indicators and

indexes across �rms. Academia Economic Papers 32 (3), 395�411.

Färe, R., Grosskopf, S., Zelenyuk, V., 2008. Aggregation of Nerlovian pro�t indicator. Ap-

plied Economics Letters 15 (11), 845�847.

Färe, R., Karagiannis, G., 2014. A postscript on aggregate Farrell e�ciencies. European

Journal of Operational Research 233 (3), 784�786.

Färe, R., Karagiannis, G., 2017. The denominator rule for share-weighting aggregation.

European Journal of Operational Research 260 (3), 1175�1180.

URL https://ideas.repec.org/a/eee/ejores/v260y2017i3p1175-1180.html

Färe, R., Primont, D., 1995. Multi-Output Production and Duality: Theory and Applica-

tions. New York, NY: Kluwer Academic Publishers.

Färe, R., Zelenyuk, V., 2002. Input aggregation and technical e�ciency. Applied Economics

Letters 9 (10), 635�636.

39



Färe, R., Zelenyuk, V., 2003. On aggregate Farrell e�ciencies. European Journal of Opera-

tional Research 146 (3), 615�620.

Färe, R., Zelenyuk, V., 2005. On Farrell's decomposition and aggregation. International

Journal of Business and Economics 4 (2), 167�171.

Färe, R., Zelenyuk, V., 2007. Extending Färe and Zelenyuk (2003). European Journal of

Operational Research 179 (2), 594�595.

Färe, R., Zelenyuk, V., 2012. Aggregation of scale elasticities across �rms. Applied Economics

Letters 19 (16), 1593�1597.

Färe, R., Zelenyuk, V., 2019. On luenberger input, output and productivity indicators.

Economics Letters 179, 72 � 74.

Farrell, M. J., 1957. The measurement of productive e�ciency. Jornal of the Royal Statistical

Society. Series A (General) 120 (3), 253�290.

Ferrier, G., Leleu, H., Valdmanis, V., 2009. Hospital capacity in large urban areas: Is there

enough in times of need? Journal of Productivity Analysis 32 (2), 103�117.

Førsund, F. R., Hjalmarsson, L., 1979. Generalised Farrell measures of e�ciency: An ap-

plication to milk processing in Swedish dairy plants. The Economic Journal 89 (354),

294�315.

Hall, M. J., Kenjegalievaa, K. A., Simper, R., 2012. Environmental factors a�ecting Hong

Kong banking: A post-Asian �nancial crisis e�ciency analysis. Global Finance Journal

23 (3), 184�201.

Henderson, D. J., Zelenyuk, V., 2007. Testing for (e�ciency) catching-up. Southern Eco-

nomic Journal 73 (4), 1003�1019.

Karagiannis, G., 2015. On structural and average technical e�ciency. Journal of Productivity

Analysis 43 (3), 259�267.

Karagiannis, G., Lovell, C. A. K., 2015. Productivity measurement in radial DEA models

with a single constant input. European Journal of Operational Research 251 (1), 323�328.

Koopmans, T., 1957. Three Essays on The State of Economic Science. New York, NY:

McGraw-Hill.

40



Krein, M., Smulian, V., 1940. On regulary convex sets in the space conjugate to a Banach

space. Annals of Mathematics 41 (2), 556�583.

Kuosmanen, T., Cherchye, L., Sipiläinen, T., 2006. The law of one price in data envelop-

ment analysis: Restricting weight �exibility across �rms. European Journal of Operational

Research 170 (3), 735�757.

Kuosmanen, T., Kortelainen, M., Sipiläinen, T., Cherchye, L., 2010. Firm and industry level

pro�t e�ciency analysis using absolute and uniform shadow prices. European Journal of

Operational Research 202 (2), 584�594.

Li, S. K., Cheng, Y. S., 2007. Solving the puzzles of structural e�ciency. European Journal

of Operational Research 180 (2), 713�722.

Li, S.-K., Ng, Y. C., 1995. Measuring the productive e�ciency of a group of �rms. Interna-

tional Advances in Economic Research 1 (4), 377�390.

Mayer, A., Zelenyuk, V., 2014a. Aggregation of Malmquist productivity indexes allowing for

reallocation of resources. European Journal of Operational Research 238 (3), 774�785.

Mayer, A., Zelenyuk, V., 2014b. An aggregation paradigm for Hicks-Moorsteen productivity

indexes, cEPA Working Paper No. WP01/2014.

Mayer, A., Zelenyuk, V., 2017. Aggregation of individual e�ciency measures and productiv-

ity indices. In: Greene, W. H., ten Raa, T. (Eds.), Handbook of Economic Performance

Analysis. Palgrave Macmillan, London, forthcoming.

Mugera, A., Ojede, A., 2014. Technical e�ciency in African agriculture: Is it catching up or

lagging behind? Journal of International Development 26 (6), 779�795.

Mussard, S., Peypoch, N., 2006. On multi-decomposition of the aggregate Malmquist pro-

ductivity index. Economics Letters 91 (3), 436�443.

Nesterenko, V., Zelenyuk, V., 2007. Measuring potential gains from reallocation of resources.

Journal of Productivity Analysis 28 (1�2), 107�116.

Oks, E., Sharir, M., 2006. Minkowski sums of monotone and general simple polygons. Discrete

and Computational Geometry 35 (2), 223�240.

Pachkova, E. V., 2009. Restricted reallocation of resources. European Journal of Operational

Research 196 (3), 1049�1057.

41



Panzar, J. C., Willig, R. D., 1977. Free entry and the sustainability of natural monopoly.

The Bell Journal of Economics 8 (1), 1�22.

Peyrache, A., 2013. Industry structural ine�ciency and potential gains from mergers and

break-ups: A comprehensive approach. European Journal of Operational Research 230 (2),

422�430.

Peyrache, A., 2015. Cost constrained industry ine�ciency. European Journal of Operational

Research 247 (3), 996�1002.

Pilyavsky, A., Staat, M., 2008. E�ciency and productivity change in Ukrainian health care.

Journal of Productivity Analysis 29 (2), 143�154.

Raa, T. T., 2011. Benchmarking and industry performance. Journal of Productivity Analysis

36 (3), 285�292.

Schneider, R., 1993. Convex Bodies: The Brunn-Minkowski Theory. New York, NY: Cam-

bridge University Press.

Shephard, R. W., 1953. Cost and Production Functions. Princeton, NJ: Princeton University

Press.

Shephard, R. W., 1970. Theory of Cost and Production Functions. Princeton studies in

mathematical economics. Princeton, NJ: Princeton University Press.

Sickles, R. C., Zelenyuk, V., 2019. Measurement of Productivity and E�ciency: Theory and

Practice. Cambridge University Press.

Simar, L., Zelenyuk, V., 2007. Statistical inference for aggregates of Farrell-type e�ciencies.

Journal of Applied Econometrics 22 (7), 1367�1394.

Simar, L., Zelenyuk, V., 2018. Central limit theorems for aggregate e�ciency. Operations

Research 166 (1), 139�149.

Starr, R. M., 2008. Shapley-Folkman theorem. In: Durlauf, S. N., Blume, L. E. (Eds.),

The New Palgrave Dictionary of Economics. Basingstoke, UK: Palgrave Macmillan, pp.

317�318.

Tauer, L. W., 2001. Input aggregation and computed technical e�ciency. Applied Economics

Letters 8, 295�297.

42



Weill, L., 2008. On the ine�ciency of European socialist economies. Journal of Productivity

Analysis 29 (2), 79�89.

Wilson, P. W., 2018. Dimension reduction in nonparametric models of production. European

Journal of Operational Research 267 (1), 349 � 367.

URL http://www.sciencedirect.com/science/article/pii/S0377221717310317

Ylvinger, S., 2000. Industry performance and structural e�ciency measures: Solutions to

problems in �rm models. European Journal of Operational Research 121 (1), 164�174.

Zelenyuk, V., 2002. Essays in e�ciency and productivity analysis of economic systems. Ph.D.

thesis, Oregon State University, Corvallis, OR, USA.

Zelenyuk, V., 2006. Aggregation of Malmquist productivity indexes. European Journal of

Operational Research 174 (2), 1076�1086.

Zelenyuk, V., 2013a. A scale elasticity measure for directional distance function and its dual:

Theory and DEA estimation. European Journal of Operational Research 228 (3), 592�600.

Zelenyuk, V., June 2013b. A note on equivalences in measuring returns to scale. International

Journal of Business and Economics 12 (1), 85�89.

Zelenyuk, V., 2015. Aggregation of scale e�ciency. European Journal of Operational Re-

search 240 (1), 269�277.

Zelenyuk, V., 2018. Some mathematical and historical clari�cations on aggregation in ef-

�ciency and productivity analysis and connection to economic theory, CEPA Working

Paper No. WP03/2018.

43


	WP062019 Cover
	WP062019 no cover

