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Abstract

Given the increasing prevalence of adult obesity, furthering the understanding of
the determinants of measures such as Body Mass Index (BMI) remains high on the
policy agenda. We contribute to existing literature on modelling BMI by proposing
an extension to latent class modelling, which serves to unveil a more detailed picture
of the determinants of BMI. Interest here lies in latent class analysis with: a regres-
sion model and predictor variables explaining class membership; a regression model
and predictor variables explaining the outcome variable within BMI classes; and in-
stances where the BMI classes are naturally ordered and labelled by expected values
within class. A simple and generic way of parameterising both the class probabilities
and the statistical representation of behaviours within each class is proposed, that
simultaneously preserves the ranking according to class-specific expected values and
yields a parsimonious representation of the class probabilities. Based on a wide range
of metrics, the newly proposed approach is found to dominate the prevailing one; and
moreover, results are often quite different across the two.
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1 Introduction and background

TheWorld Obesity Federation (www.worldobesity.org) states that “the epidemic of obesity is

now recognized as one of the most important public health problems facing the world today”.

This is not surprising given that the World Health Organisation (WHO) in 2011 reported

that since 1980 adult obesity rates have doubled worldwide. Indeed, adult obesity is more

prevalent than under-nutrition. Around 670 million adults are obese, and 98 million severely

so (World Health Organisation 2014). Obesity is a condition of excessive body weight in the

form of fat, which is causally linked to a large number of debilitating and life-threatening

disorders. The adverse physical and monetary costs of obesity are well-documented. It

is generally argued by health experts that given the height of an individual, their weight

should lie within a certain range. Accordingly, the most commonly used measure to assess

whether an individual is obese is the Body Mass Index (BMI): the ratio of the individual’s

weight to the square of height. Although commonly used, a widely recognised shortcoming

of BMI is that it is not an ideal measure of weight-related health status: for example,

it fails to distinguish between fat and muscle mass, and is affected by the distribution of

fat. Nevertheless, its continued popularity is attributable to the fact that relative to more

accurate anthropometric measurements (skin-fold tests, waist measurements) it is relatively

cheap and easy to collect, and hence obtain from large-scale nationally representative samples

(Wooden, Watson, and Freidin 2008).

Given the serious health related issues associated with obesity, it is not surprising that

modelling BMI and obesity rates have attracted increasing interest from both academics

and policy-makers (Chou, Grossman, and Saffer 2002, Cutler, Glaeser, and Shapiro 2003,

Chou, Grossman, and Saffer 2004, Philipson and Posner 2008, Mills 2009, Madden 2012,

Brown and Roberts 2013, Greene, Harris, Hollingsworth, and Maitra 2014, Hong, Yue, and

Ghosh 2015). It is clearly important to select an appropriate modelling approach in the

context of such a highly policy relevant application. There is evidence that individuals

are essentially (primarily genetically) predisposed to be in particular weight-related health

statuses (that is, BMI bands) as an obesity predisposing genotype has been found to be

present in 10% of individuals (Herbert, Gerry, and McQueen 2006). That is, it is (medically)

very likely that individuals are genetically predisposed to being in different BMI classes.

Observed BMI outcomes will be then a combination of the underlying BMI-type range,

but tempered by predominantly lifestyle choices. Moreover, these different BMI-type classes
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will undoubtedly react differently (with regard to their observed BMI levels) to a similar set

of lifestyle characteristics. So, with regard to an appropriate empirical strategy, which will

simultaneously account for, and identify, these different BMI types, and allow for them to

react differently to a similar set of characteristics, several authors have suggested a latent class

(or finite mixture) framework (Deb, Gallo, Ayyagari, Fletcher, and Sindelar 2011, Greene,

Harris, Hollingsworth, and Maitra 2014).

Latent class, or finite mixture modelling has been popular in economics, and especially in

empirical models of health economics (Deb and Trivedi 2002, Bago D’Uva 2005b, Bago D’Uva

2005a, Reboussin, Ip, and Wolfson 2008, Bago d’Uva and Jones 2009, Deb and Holmes 2000,

Deb, Gallo, Ayyagari, Fletcher, and Sindelar 2011, Chung, Anthony, and Schafer 2011).

It involves probabilistically splitting the population into a finite number of homogeneous

classes, or types. Typically, within each of these the same statistical model applies, but

with differing parameters. In this way, the same explanatory variables can have differing

effects across the model/classes (Bago d’Uva and Jones 2009). Latent class modeling has

been used in explaining BMI before, and in this paper, we contribute to the this literature

by proposing an extension to latent class modelling, which leads to a more detailed depiction

of the determinants of BMI across a range of BMI types (or classes), and that we believe

is better suited to such an application.

The broad latent class modelling contribution starts from the observation that although

the classes are latent - by definition - researchers often label them ex post according to a

tangible attribute such as an expected value (EV ) - broadly defined - within each class. In-

deed, uncovering evidence of the distinguishing features of the latent classes is a fundamental

part of the modelling process. Moreover, a natural inconsistency arises as the (unrestricted)

probabilities driving these class allocations will typically not respond to this eventual ordered

labeling of them. We propose a simple way of parameterising both the class probabilities and

the statistical representation of behaviours within each class, that simultaneously preserves

their ranking according to class-specific EV s and which yields a parsimonious representation

of the class probabilities which is also consistent with the inherent ordering in such. We do

this by explicitly enforcing an ordering in the EV s across classes combined with an ordered

probabilistic specification for the class assignments. This specification is both consistent with

the ordering in the EV s across classes and offers a natural and informative representation

of the class assignment probabilities.
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In summary, interest here lies in latent class analysis, with: a regression model and

predictor variables explaining BMI class membership; a regression model and predictor

variables explaining the outcome variable within BMI classes; and instances where theBMI

classes are naturally ordered and labelled by expected values within class. Our aims are:

to uncover both the true number and the underlying characteristics of the (predominantly)

genetically determined BMI types (and moreover, how these relate to those determined by

theWHO); and to determine the differing drivers of observed BMI outcomes within each of

these classes. We are interested in ensuring: a parsimonious form for the class probabilities

that is consistent with the inherent ordering in the classes; and to ensure that EV s are

indeed ordered within each class.

Although our focus lies in modelling BMI (a continous, cardinally ordered variabe), the

approach is generally applicable to the analysis of any output variable that embodies an

intrinsic notion of ordering (either cardinal or ordinal). The results suggest a more detailed

picture of the determinants of BMI, with five classes being supported by our proposed

approach (and ratified by the traditional one). Furthermore, we find considerable variation

in the determinants of BMI across the five classes identified by our new approach. Although

both approaches supported a 5-class model, all of the metrics clearly supported the newly

proposed one. And moreover, quite dramatic differences in numerous ex post quantities of

interest were found across the two, clearly suggesting that th choice of appropriate approach

is very important. Fianlly, as noted, although our particular example is using continuous

data, it is generically applicable to any output variable of interest that embodies any kind

of cardinal, or ordinal, ordering.

2 Econometric framework

The model of interest is a latent class model (LCM), or finite mixture regression model,

with predictors in the class proportions and the response densities. Note that the literature

often uses the terms latent class and finite mixture interchangably. Here, we follow the more

precise definition that the former corresponds to having covariates in the class equations,

and is explicitly concerned with the drivers and the behaviouss within the various classes.

On the other hand, we take finite mixture models, to (generally) be typified by just having

constants in the class equation, and moreover to be more simply a technique concerned with

better fitting the overall density by use of the sub-classes, which by themselves have no
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inherent interest.

This part of the empirical strategy is concerned with identifying the BMI-types, as

discussed above. The suggested approach produces a solution in which the classes are or-

dered (with respect to EV s) for all possible predictor values. When the classes are or-

dered, it is logical to use an ordinal instead of a nominal regression model for the class

proportions/equations. This is undertaken in the following manner. The overall density for

individual i (i = 1, . . . , N), f(yi|xi,θ), is assumed to be an additive mixture density of Q

distinct sub-densities weighted by their appropriate mixing probabilities πq. The outcome

variable of interest is yi, affected by the (kx × 1) vector of covariates in the model, xi, which

have different effects in each q class, and θ denotes all of the parameters of the model. The

corresponding mixed density is

f(yi|xi) =

Q∑
q=1

πq × f(yi|xi, θq). (1)

Interest here is in the class of LCMs that are increasingly used when the researcher has some

prior reasoning as to the determinants of class membership; that is, those with predictors

(zi) in the class proportions. Here a very common approach is to employ a multinomial

logit (MNL) form to quantify the effects of zi on the probabilities of class membership;

and implicitly, probabilistically, to allocate individuals to the various classes (Greene 2012).

An element of the specification search is determining the appropriate number of classes,

Q∗. A common approach is to use information criteria (IC) metrics; such as BIC/SC

(Schwarz 1978), AIC (Akaike 1987), corrected AIC, CAIC (Bozdogan 1987), and Hannon-

Quinn, HQIC, (Hannan and Quinn 1979). Indeed, the use of IC here appears entirely

appropriate. Although AIC appears to be somewhat favoured in practice, the BIC can be

shown to be consistent in the sense that Pr
(
Q̂ = Q∗

)
→ 1 as N → ∞ (Cavanaugh and

Neath 1999).

2.1 Monotonically increasing expected values

In most empirical applications of LCMs there is an ex post labelling of the classes based

upon estimated EV s within each of the q = 1, . . . , Q classes. The ranking of the classes

is paramount in much of the relevant previous literature (Deb and Holmes 2000, Deb and

Trivedi 2002, Bago D’Uva 2005b, Bago D’Uva 2005a, Bago d’Uva and Jones 2009, Deb,

Gallo, Ayyagari, Fletcher, and Sindelar 2011). Although it is a key output of the modelling
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process, this ordering of the classes is not ensured during the estimation process. Here we

suggest a simple way to do so, and thereby be explicitly consistent with the research question

at hand. Thus, with regard to the modelling of observed BMI outcomes within this setting,

we simply wish to ensure that as classes “increase”with respect to EV s, the EV s do actually

rise.

The properties of the output variable to be modelled will dictate the specific functional

form for the specification of the density fq(yi|xi, θq); given the continuous nature of BMI,

for us this is a simple linear regression model. However, it is useful here to consider the

determination of observed yi within each class. Consider a latent index function of the form

y∗i,q = x′iβq + εi,q, (2)

where βq are the response parameters and εi,q a disturbance term. The y
∗
i,q of equation (2)

will be related to observations within group yi,q via a mapping dictated by f(yi|xi, θq). In
a linear regression model as in the case of BMI, yi,q = y∗i,q. Regardless of the model, EV s

on the assumption of underlying ordinality or cardinality of observed yi,q, are monotonically

related to the index x′iβq. That is, this generic approach would be similarly applicable to any

outcome variable of interest (that is, not just a linear regression model as considered here),

assuming it embodies some underying form of ordering, generally defined. Thus ensuring

that x′iβq=1 ≤ x′iβq=2 ≤ · · · ≤ x′iβQ will ensure that EVi,q=1 ≤ EVi,q=2 ≤ · · · ≤ EVi,Q. As

noted, such an ex post labelling of classes is very common in the LCM literature. Below we

suggest an easy way in which this can be ensured in estimation.

We define EV ∗i,q as a function of the index x
′
iβq (such that EV

∗
i,q will be positively, and

monotonically related to the true EV , EVi,q). Consider modelling the EV ∗i,q in the first, or

smallest EV, class (q = 1) as simply

EV ∗i,q=1 = EVi,q=1. (3)

In a linear regression setting, this would amount to setting EVi,q=1 = x′iβq=1. Without the

necessity of being model-specific we now want to express the “mean”function in q = 2 which,

by construction we wish to be greater than that for q = 1,

EV ∗i,q=2 = EV ∗i,q=1 + exp
(
x′iβq=2

)
. (4)

Therefore, in a simple regression setting, we would haveE (yq=1 |x) = x′iβq=1 andE (yq=2 |x) =

E (yq=1 |x) + exp
(
x′iβq=2

)
. As long as the relationship between EV and EV ∗ is monotonic,
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enforcing EV ∗i,q=1 ≤ EV ∗i,q=2 ≤ · · · ≤ EV ∗i,Q will enforce EVi,q=1 ≤ EVi,q=2 ≤ · · · ≤ EVi,Q.

Continuing this progression we have

EV ∗i,q=1 = EVi,q=1, (5)

EV ∗i,q = EV ∗i,q−1 + exp
(
x′iβq

)
, q = 2, . . .

This approach ensures that the EV ’s (generally defined) are ordered across classes, whilst

the specification of EVi,q=1 is likely to be model-specific. For example, in a linear regression

EVi,q=1 = x′iβq; whilst EVi,q=1 = exp
(
x′iβq=1

)
in a Poisson count model; and so on.

Assuming that the within class models are linear regressions, then within class 1 partial

effects, are given by the respective coeffi cients in that class (or the appropriate partial effect

in nonlinear models). Coeffi cients βq,k, q > 2, can be directly interpreted as differential

effects with respect to EV ∗i,q−1. Take for example, the partial effect of xk: in the linear

regression case:

EV ∗1 = x′β1; ∂EV
∗
1 /∂xk = β1,k,

EV ∗q = EV ∗q−1 + exp
(
x′βq

)
; ∂EV ∗q /∂xk = exp

(
x′βq

)
βq,k + ∂EV ∗q−1 /∂xk , q = 2, . . .

(6)

Thus the partial effect for xk in q = 2 includes a differential effect to that of q = 1. If β2,k
(i.e., the coeffi cient of xk in the second class) is negative, so will be the differential effect,

and the magnitude given by the value of this coeffi cient and the weighting term exp (x′β2) .

The signs of these partial effects are not constrained by the exp (·) transformation to be
positive, but will be differentiated by the signs and magnitudes of their various components.

In this case, the signs of the differential effects from q = q∗ to q = q∗ + 1 will be uniquely

determined by the sign of the coeffi cient in that class, βq∗,k. The coeffi cients are not, as in

most nonlinear models, direct estimates of partial effects; with the exception here of q = 1.

A negative coeffi cient in a particular class does not necessarily imply a negative partial effect

within that class. Indeed, it could be argued that as the classes in the MNL set-up have no

inherent meaning (until after some ex post analysis), class-specific partial effects may not be

particularly useful. However, in the suggested Ordered Probit (OP ) approach, the classes

have known characteristics and therefore class-specific partials here are, arguably, much more

informative.

Overall partial effects can be obtained by constructing a weighted average of EV ’s across

classes, and differentiating this with respect to the covariate of interest. In our analysis of

BMI, we use prior probabilities for weights along with numerical derivatives, and apply
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the delta method to obtain standard errors. Note that it may be that in any particular

application, neighbouring class EV ’s might converge and/or similarly boundary parameters.

This could well be evidence that too many classses have been estimated, which should be

evidened by the model metrics discussed in this paper. Moreover, even if EV ’s are very

similar across classes, this doesn’t necessarily imply that partial effects will also be, as EV ’s

are a function of the composite index x′βq as opposed to any single components of this. This

is similarly true of the traditional approach however.

Although a simple, easy to implement and generic approach, we note here that a similar

ranking could also be obtained by enforcing other restrictions. For example, response para-

meters within the class regressions could be forced to be equal across classes, and ordering

imposed by simple ordering of the constant terms. However, in general we would recommend

against such an approach, as it appears rather arbitrary and overly restrictive and would

appear to have adverse consequences on overall model fit.

2.2 Class probabilities

The specification of the mixing weights, πq, in equation (1) may be a substantive part of

the model construction. In the simplest case of a finite mixture model, the weights can be

viewed simply as a component of the functional form,

f(yi|xi,θ) =

Q∑
q=1

πq×fq(yi|xi,θ) =

Q∑
q=1

πq×f(yi|xi,θ, class = q) =

Q∑
q=1

πq×f(yi|xi, θq), (7)

in which θq is a subvector of θ. The functional form is common to the classes. They are

differentiated by the indexed parameter vector. The standard ‘mixture of normals’model

(Pearson 1894) in which fq(yi|θ) = N (µ, σ2) or fq(yi|xi,θ) = N
(
αq + x′iβq, σ

2
q

)
is a familiar

example (Dayton and Macready 1988, Leroux 1992, Chen 2017). In this instance, πq are

nonnegative weights that sum to one. For purposes of estimation, the weights are treated

as parameters that are calibrated subject to these two restrictions. A convenient, commonly

used approach to impose the two restrictions is to map the weights to multinomial logit style

probabilities, via πq = exp
(
γq
)/∑Q

q=1 exp
(
γq
)
, with γQ = 0 (for the usual normalisation).

An alternative view of πq treats them as probabilities attached to class assignment of a

set of Q latent classes or segments of the population; πq = prob(individual i is a member

of class q) = Probi(class = q). In this case, the subgroups, q = 1, . . . , Q, represent

meaningful, latent segments of the population under study. In a recent study for example
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(Greene, Harris, Hollingsworth, and Maitra 2014). the latent class model of again BMI was

suggested to be based on a latent trait, the presence of the (unobservable) FTO gene, for

which observable characteristics (country of origin, for example), zi, might contain relevant

information. In this case, an approach that ties the class assignments to the observable data

might be appealing. A common exercise in this setting that emerges in the presence of latent

segments is to deduce (as well as possible), the class assignment, at least probabilistically,

through the posterior probabilities (see Karvelis, Spilka, Georgoulas, Chudacek, Stylios, and

Lhotska (2015), for example)

PostProbi(class = q |yi, xi ) = πq|i =
πqLiq∑Q
q=1 πsLis

, (8)

where

Lis = Likelihood (θs |yi, xi ) .

One might also examine the correlation (or regression) of these posterior class probabilities

(PostProbi), with the exogenous information, zi. Since zi does not appear directly in πq,

the natural assumption would be that any explanatory power of a regression of πq|i on zi is

induced by correlation between zi and (yi, xi). This two-step approach might be subject to

a bias in that the omission of zi from Probi(class = q) might systematically skew the class

probabilities and transmit that bias to secondary computations such as πq|i.

It is diffi cult to predict how this mis-specification will impact the results computed based

on the observed included factors, including parameter estimates and predictions. It does

seem appropriate that if the class assignments are driven (in part) by the observables, zi,

then these should naturally be included in the specification of the model to begin with.

To continue our application, one would want to parameterize the BMI class assignments

with as many genetic proxies as possible. Although the unconditional form of the class

probabilities is common in received applications, there are many that explicitly incorporate

observed factors (zi) directly in the prior probabilities, Probi(class = q); see, Bago d’Uva

and Jones (2009), Greene, Harris, Hollingsworth, and Maitra (2014) and Fabrizi, Montanari,

and Ranalli (2016), for example.

The conditional (on zi) usual multinomial logit (MNL) form,

πiq =
exp

(
z′iγq

)∑Q
q=1 exp

(
z′iγq

) , (9)

where one of the γq vectors is normalised to zero (usually either the first or last, although the
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choice is inconsequential), is a convenient choice that has been used in many studies. Indeed,

The latent class model with heterogeneous class probabilities is now standard in the received

applications, and has been built into popular software such as Latent Gold (Statistical In-

novations, 2018, https://www.statisticalinnovations.com), NLOGIT (Econometric Software,

Inc., 2016, http://www.nlogit.com) and some packages in R (Grun and Leisch 2007). Such

an approach has the advantage of being relatively unrestrictive. It is also a particularly con-

venient form for the EM algorithm (see, Alfo, N. Salvati, and Ranalli (2017) and Friedl and

Kauermann (2000), for example) For our purposes, the MNL form has two disadvantages.

First, it is very heavily, perhaps excessively, parameterized. Second, it does not connect to

an inherent ordering of the classes.

The MNL parameterization proliferates parameters —each additional class adds kz + 1

parameters (including a constant term). The specification search for LC models is typically

driven by information criteria such as BIC (as noted above), rather than directly by the

log-likelihood. All IC criteria penalize large models such as the MNL. It follows that the

MNL form is at a disadvantage to a more parsimonious one. We find that in the bulk of

empirical exercises, the preferred number of classes is less than or equal to three. It may well

be that that more classes could be identified if the analysis were based on a more compact

form for the class probabilities. On this basis, class-specific results might be contaminated

by a merging of heterogeneous classes.

When there are no covariates in the class probabilities, any parameterization with Q −
1 parameters that allows unrestricted probabilities will suffi ce (we noted the MNL form

earlier). Some authors eschew the transformation approach and simply estimate Q weights

subject to the constraints 0 < πq < 1 and
∑

q πq = 1. However, we suggest that ordered

probabilities of the form πiq = F
(
µq − z′iγ

)
− F

(
µq−1 − z′iγ

)
with q = 1, . . . , Q and where

µ0 = −∞, µQ =∞, µ1 is freely estimated (but there is no constant in z), γ is a free parameter
vector and F (.) is a cumulative distribution function (CDF ), such as the normal or logistic,

will suffi ce as well. In all cases where there are no covariates in the class equation(s), there

are Q−1 free structural parameters for the Q−1 free probabilities. However, with observed

covariates in the class probabilities, the different forms of the class probabilities will have

substantive implications, as we see below.

Although a variety of approaches appear in the received studies, theMNL form is by far

the most common. However, Fabrizi, Montanari, and Ranalli (2016) do mention an ordered
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logit alternative of the form

ln
Prob (q ≤ c |zi )
Prob (q > c |zi )

= µc + z′iγ (10)

that would be appropriate if an unobserved continuous variable is assumed to underlie the

class assignment. This is useful for our purposes, as we have assumed not only that the

class assignments are ordered in this fashion, but also that the ordering extends to the main

outcomes in the classes through the means, EV ∗q > EV ∗q−1. An ordered probit formulation

for the prior probabilities is convenient for the purpose;

πiq = Φ
(
µq − z′iγ

)
− Φ

(
µq−1 − z′iγ

)
, (11)

where Φ is the standard normal CDF. The suggested approach has the advantage of a

more parsimonious specification. The addition of another class to the formulation adds only

a single additional cut point, µ, again, consistent with a partitioning of the range of an

underlying continuous variable. The assumed form implies

Probi(class = q |zi ) = Prob
(
µq−1 < z′iγ + εi < µq

)
, εi ∼ N (0, 1) . (12)

We should note that our contribution here is not in entering covariates into the class equa-

tions, as this approach has been in the literature for a long time (see, for example, Bartolucci,

Farcomeni, and Pennoni (2012), and references therein), but how they enter into such.

The description thus far notes an implicit ordering that informs the class assignments.

A distinction can be made between “latent class models,”which are mixtures of possibly

different models such as zero inflation models (Lambert 1992), switching regression models

(Fair and Jaffee 1972), discrete choice models (Greene, Harris, Hollingsworth, and Maitra

2014, Greene, Harris, and Hollingsworth 2015) and a wide variety of others, some mentioned

in McLachlan and Peel (2000). The “finite mixture”model typically blends weighted sums of

like models, such as Chen (2017), Alfo, N. Salvati, and Ranalli (2017) and Fabrizi, Montanari,

and Ranalli (2016). There might also be an implicit consideration of ordering within the

class models themselves. Alfo, N. Salvati, and Ranalli (2017) consider a mixture of quantile

regression models. The specific quantile examined (for example, the median), however, is

fixed in advance, and is common across the classes. In the model considered in this paper,

the class specific outcomes, themselves, are ordered across the classes —for class q, we have

E (BMI |class = q, xi ) = E (BMI |class = q − 1, xi ) + exp
(
x′iβq

)
, (13)
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recalling equations (3) to (5). This implies an external ordering of the class specific models.

This is distinctly not a finite mixture model. The class specific models are constrained

across the classes. There are a small number of similar applications among the received

studies, though this feature appears to be uncommon. Heckman and Singer (1984) “random

effects”form of a duration model imposes a common slope vector in a latent class accelerated

failure time model while allowing only the constant term to differ across classes. In Collins,

Greene, and Hensher (2013), the class specific multinomial choice models in a latent class

model of attribute nonattendance differ only in the different positions of zeros in a restricted

coeffi cient vector —for example, three classes are defined by γ1 = (0, β2, β3) , γ2 = (β1, 0.β3)

and γ3 = (β1, β2, 0). In our ordered outcomes, the means across classes all share some

common parameters.

It might be suggested that the ordered choice form of the class probabilities is restrictive

relative to theMNL form. Our experience suggests that the opposite is also plausible —that

the MNL model with covariates over-fits the data. In the simulation experiments presented

in the online Appendix, even with the data generated by a MNL process, applying the OP

format does not adversely affect the results. Indeed, in all other cases, researchers typically

do not use the MNL format when the data are naturally ordered. The format may be

likewise out of place here. There would be other ways to restrict the MNL model, perhaps

along the lines of Heckman and Singer (1984) with some device to impose an ordering on the

constant terms. However, the OP approach has an intuitive appeal and is straightforward

to implement.

2.3 Extension to a random effects panel specification

The application here involves two waves of the British Household Panel Survey (2004, 2006,

see below). In general, the extension of the latent class specification to panel data involves

treating the several waves jointly, holding constant over time the elements of the model that

are specific to the individual. In the simplest cases, this becomes equivalent to treating the

model parameters θq as a random parameter vector with discrete support (over the classes).
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For the model considered in this paper, the ‘pooled’starting point is

f(yit|xit) =

Q∑
q=1

πiq × f(yit|xit, θq), (14)

with

πiq (µ, γ) = Φ
(
µq − z′iγ

)
− Φ

(
µq−1 − z′iγ

)
,

and the corresponding log-likelihood would be

lnL =

N∑
i=1

T∑
t=1

f(yit|xit) (15)

with i = 1, . . . , N, individuals observed over t = 1, . . . , T, time periods. Note that the

suggested approach of equation (14) vis-à-vis the traditional approach of equation (1), does

not affect the contribution of the outcome variable (BMI) to the likelihood, but simply

offers different functional forms for πiq and f(yi|xi, θq).
For panel data, assuming conditional (on θq) independence, the joint density for the Ti

joint observations for individual i is

f(yi1,...,yi,Ti |xi1,...,xi,Ti) =

Q∑
q=1

πiq ×
Ti∏
t=1

f(yit|xit, θq), (16)

and the corresponding log-likelihood would now be

lnL =
N∑
i=1

ln f(yi1,...,yi,Ti |xi1,...,xi,Ti). (17)

As noted above, the nature of the response variable of interest will, in most part, deter-

mine f (.) in equations (14) to (17). Below we consider a standard linear regression model

for f for our continuous variable of interest (BMI), although this approach is generally ap-

plicable for any f where there is any inherent ordering in the response variable y. Recall, as

well, that this generic set-up differs from the usual approach in that monotonically increasing

EV s are enforced as described in Section 2.1.

3 Data

We analyse data drawn from the British Household Panel Survey (BHPS). The BHPS is

a longitudinal survey of private households in Great Britain, and was designed as an annual
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survey of each adult member of a nationally representative sample of households. The BHPS

sample design was based on a clustered stratified sample of addresses across Great Britain

with individuals living at these addresses being identified as potential panel members. The

first wave in 1991 achieved a sample of some 5,500 households, covering approximately

10,300 adults from 250 areas of Great Britain (Taylor 2010). The BHPS is a rich source

of information on labour market outcomes, socio-demographic and health variables. In

only two waves 14 (2004) and 16 (2006), was information collected on weight and height,

which we use to calculate individuals’BMI. Accordingly our data set comprises of 22,430

observations covering individuals aged 16 and over, who would at most be observed for two

waves. The average BMI in the sample is 27.06, with a standard deviation of 5.45 (Table

1), which lies in the lower end of the overweight BMI category suggested by the WHO.

The WHO classification assigns adults to either underweight, normal range, overweight or

obese categories (WHO 2000); underweight is BMI < 18.5; normal is 18.5 ≤ BMI < 24.99;

overweight 25 ≤ BMI < 29.99; and obese BMI ≥ 30.

We treat class membership as time-invariant and search for indicators for different genetic

types to explain membership of these BMI classes. Such an approach would therefore be

consistent with there being an obesity predisposing genotype present in individuals (Herbert,

Gerry, and McQueen 2006). Following the related literature we include all available time

invariant characteristics, such as birth cohort and gender.

We also control for socio-economic characteristics relating to the individuals family back-

ground. Specifically we control for the respondent’s father and mother’s occupation when

the respondent was aged 14 distinguishing between; professional and managerial; skilled

non-manual; skilled and partly skilled manual; unskilled (with no occupation as the omitted

category). Similarly, we include controls for parent’s education: university level; further edu-

cation; and school qualifications (with no qualifications as the omitted variable). Finally, we

include time invariant controls for personality, specifically we include the Big Five personal-

ity traits, namely, agreeableness, conscientiousness, extraversion, neuroticism and openness

to experience. In the psychology literature, it has been argued that the personality traits

included in the Big Five taxonomy are stable over the life cycle; see, for example, Caspi,

Roberts, and Shiner (2005) and Borghans, Duckworth, Heckman, and ter Weel (2008). There

is however still some debate in the literature. Hence, we follow the standard practice in the

existing literature to mitigate against the potential problem of life cycle effects influencing
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personality traits, and condition each personality trait (i.e., one of the Big F ive = 1, ..., 5)

on a polynomial in age. The resulting residuals are standardised (zero mean and unit stan-

dard deviation) and used as indicators of personality traits net of life cycle influences (Nyhus

and Pons 2005).

In the outcome equation, we again follow the received literature (Cutler, Glaeser, and

Shapiro 2003, Chou, Grossman, and Saffer 2004, Brown and Roberts 2013, Greene, Harris,

Hollingsworth, and Maitra 2014) and control for a quadratic in age, number of children,

marital status, household income, employment status, highest level of educational attain-

ment and region. Finally, we also include a set of eleven controls capturing a wide range of

health problems, namely problems with: arms, legs, hands, etc.; sight; hearing; skin condi-

tions/allergy; chest/breathing; heart/blood pressure; stomach or digestion; diabetes; anxiety,

depression, etc.; migraine; and cancer. However, due to high collinearity across these, as well

as some some very sparse outcomes, we follow a lot of the relevant literature and consider

a composite variable (Comorbidities); see for example Blustein, Hanson, and Shea (1998),

Banks, Blundell, and Emmerson (2015), Marquesa, Cruzb, Regob, and da Silvab (2016),

Lugo-Palacios and Gannon (2017) and Ha, Harris, Preen, Robinson, and Moorin (2018). To

be specific, we set x in equation (2) to this set of control variables.

Descriptive statistics for the variables included in the empirical analysis (in the estimation

sample) are presented in Table 1. The sample is evenly split by gender; just over half of the

sample are married; and nearly 60% are in full-time employment. The average age of the

sample is 48 and that for the number of children is just over a half. Having a vocational

qualification is the most common highest educational attainment category, and the average

number of comorbidities is just over one-and-a-quarter.

4 Results

4.1 Model comparison

We firstly compare a range of different models (all panel data verisons) using standard IC

metrics in order to ascertain the preferred approach. Note that all estimations were obtained

using author-written Gauss script utilising the cmlMT (constrained) maximum likelihood

add-in module (identical results for the MNL variants are obtained from current standard

software, such as Nlogit 5; Stata v15 ); a template Gauss code for estimation, as well as the

proceedure file used for estimation, are freely available at: https://drive.google.com/drive/folders/1rtoYfs5qfwcI4NcFpq0-
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Table 1: Descriptive statistics, N = 19, 628

Standard
Variable Mean Deviation

BMI 27.218 (5.43)
Female 0.503 (0.50)
Birth cohort 1940 0.165 (0.37)
Birth cohort 1950 0.179 (0.38)
Birth cohort 1960 0.212 (0.41)
Birth cohort 1970 0.165 (0.37)
Birth cohort 1980− 1990 0.094 (0.29)
Agreeableness -0.002 (1.00)
Conscientiousness -0.003 (1.00)
Extraversion -0.002 (1.00)
Neuroticism 0.004 (1.00)
Openness to experience -0.001 (1.00)
Father some education 0.152 (0.36)
Father further education 0.289 (0.45)
Mother some education 0.222 (0.42)
Mother further education 0.177 (0.38)
Father professional/managerial 0.224 (0.42)
Father skilled non−manual 0.069 (0.25)
Father manual/unskilled 0.490 (0.50)
Mother professional/managerial 0.092 (0.29)
Mother skilled non−manual 0.117 (0.32)
Mother manual/unskilled 0.203 (0.40)
Age10 4.804 (1.72)
Number of children 0.587 (0.96)
Married 0.587 (0.49)
(Log of) household income 10.213 (0.73)
Employed 0.608 (0.49)
Not in the labour force (NILF ) 0.144 (0.35)
Degree 0.150 (0.36)
V ocationaldegree 0.303 (0.46)
A− level 0.117 (0.32)
GCSE 0.159 (0.37)
Cormobidities 1.267 (1.44)
Midlands 0.100 (0.30)
North 0.151 (0.36)
Wales 0.166 (0.37)
Scotland 0.175 (0.38)
Northern Ireland 0.167 (0.37)
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Table 2: Model selection metrics

BIC AIC CAIC HQIC Parameters

Linear Regressiona 121, 086 120, 936 121, 105 120, 985 19
2-class (unrestricted)b 115, 537 115, 064 115, 597 115, 219 60
3-class (restricted)c 113, 182 112, 552 113, 262 112, 758 80
3-class (unrestricted)d 113, 308 112, 512 113, 409 112, 773 97
4-class (restricted)e 111, 717 110, 929 111, 817 111, 187 100
4-class (unrestricted)f 112, 022 110, 903 112, 164 111, 269 142
5-class (restricted)g 111,143 110, 197 111,263 110,507 120
5-class (unrestricted)h 111, 484 110,041 111, 667 110, 513 183
V oung (BIC) ; g vs h 278.9 p = 0
V oung (AIC) ; g vs h 278.9 p = 0
V uong (BIC,AIC) ; g vs h 278.9 p = 0

Note: preferred model for each metric in bold.

pdhLJOZZEa56?usp=sharing. Also, some further estimation issues, including starting values

and a discussion of maximum likelihood techniques versus the EM algorithm (which turns

out to be invalid here), are discussed in the online appendix. After discussing the summary

metrics, we then present detailed estimation results based on our preferred specification.

We start with a one class linear regression model and then successively increase the

number of latent classes within both a standard framework (unrestricted) and our new

proposed framework (restricted). We stopped searching for more potential classes at Q =

5, as these were already heavily parameterised models. Therefore in total, we consider 8

potential models.

In Table 2 we present in bold for each IC metric, the favoured model (the Parameters

column details the total number of parameters estimated in each specification). As is usual

in such exercises, we simply let the IC metrics dictate the optimal number of classes, and do

not restrict ourselves to any a priori fixed number. Although AIC appears to be somewhat

favoured in practice, it is well-known to favour larger models. Indeed, in the Monte Carlo

experiments (see Online Appendix: Finite sample performance), the results suggested that

the AIC, in this particular setting anyway, should really be avoided. On the other hand, as

noted above, the BIC has appealing aymptotic properties. Although not as common, in this

particular setting anyway (as evidenced by the Monte Carlo results), the HQIC metric also

appears extremely useful tool. In light of all of this, it is extremely reassuring to see that

all of the BIC, CAIC and HQIC metrics unanimously favour the 5-class restricted (OP )
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model, whilst only the (unreliable) AIC one favours the (much more heavily parameterised;

by some 60 additional parameters) 5-class unrestricted (MNL) one.

To confirm the superiority of the restricted approach, we also consider three variants of the

V uong (Vuong 1989) test for non-nested models. Based on the two metrics most commonly

used in the related literature (AIC,BIC) : V oung (BIC) considers a choice between the

two top-performing models according to BIC; V oung (AIC) the top two according to AIC;

and V uong (BIC,AIC) , the top one from each. Although in the Online Appendix: Finite

sample performance, Monte Carlo evidence showed a clear superiority of V oung (BIC) , in

the current instance this was immaterial as each one selected a choice between the the 5-class

restricted model (labelled g in Table 2) and the 5-class unrestricted one (h) . The V uong

clearly rejects the latter. This finding along with those of the IC metrics (in conjunction

with the Monte Carlo results), makes a very compelling case for the 5-class restricted model.

In Table 3, we present some interesting summary statistics for each model: EV s by BMI

class; average posterior class probabilities; and finally class-specific dispersion parameters.

Note that class-specific EV s were evaluated at the sample means of all covariates and at

the regression coeffi cients for that class (averaged individual EV s gave very similar results).

“Overall”EV s were calculated as the (prior probability) weighted average of the class-specific

ones. Table 3 presents the increasing pattern in the EV s from classes 1 to 5 for the restricted

5-class model and those from classes 1 to 5 (reported in increasing order) for the unrestricted

5-class one.

For classes 1 to 3, all of the EV s, posterior probabilities and dispersion parameters,

are remarkably quite similar across the preferred restricted and unrestricted models. For

example, the EV in class 1 (EV1) is 20.6 compared to 20.7; with a probability of 14% (15) ;

and with a dispersion parameter of 1.542 (1.538) . However, very interesting, and marked,

differences occur in the top two classes of both.

In particular, we see that the EV s for class 4 restricted and unrestricted both lie in

the very end of the WHO defined overweight range (20− 29.99) ; and at 28.8 and 29.5,

respectively, are very close. Startlingly different though, is the proportion of individuals

estimated to be in this class, reflected by the posterior probabilities, and the spread of

individuals’BMIs within-class: 33% c.f. 12% and 3.4 c.f. 1.4, respectively). The same is

somewhat true of the biggestEV BMI class. EV s varying marginally here (33.9 compared to

31.5, for restricted and unrestricted, respectively), as do dispersion parameters (6 compared
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to 6.2). But more-so, we witness large differences in proportions: 15% compared to 31%.

Thus even before conducting any further analysis is undertaken, it is clear that the choice

of approach is far from inconsequential.

Focussing on the preferred 5-class restricted results, we can see for class 1, the EV of

around 20.5 sits at the low end of the WHO defined range of normal weight (18.5− 24.99).

Based on the posterior probability, the smallest amount of individuals fall in this class (at

14%); and based on the estimated dispersion parameter, this class sits in the middle with

respect to the spread of the distribution within it (we revisit the spread of these distributions

below). Given the position of the mean within this class, this suggests that if anything,

individuals within this category are more likely to slip into the underweight one, as opposed

to the overweight one. Turning to the next class, with a mean of 23.5, this also sits within

the normal weight range, but at the higher end of the scale. Judging by the spread of this

distribution however (the lowest of any class at 1.133), individuals within this class have a

relative low of moving far from the mean. Based on the posterior probability, about 20%

of individuals would be in this group. Class 3, with a mean of 26, falls into the very lowest

part of the overweight range, meaning that although the dispersion is small here (at 1.14),

many of these individuals would still be in the healthy weight range. Around 17% of the

population are estimated to be in this class.

Probably of more concern, and interest, however, are classes 4 and 5. With means of

these distributions being at 29 and 34 respectively, these would fall into the (very high

ends of) overweight and moderately obese (30− 34.99). Moreover, for class 4 the average

posterior probability is “large” (at 0.33), suggesting that a worryingly large proportion of

the population lie in this class. The dispersion of this distribution is relatively large (at 3.4),

especially compared with classes 1-3. This does tend to imply that individuals genetically

predisposed to be in this overweight class, can use lifestyle options to place themselves in

healthier weight-related ranges. Although, by symmetry, this also implies that some in this

range do also have the chance of becoming moderately obese. However, given the placement

of the mean with respect to this range, it is unfortunately more likely that, if anything,

individuals within this class will fall into the moderately obese range than the healthy weight

one. Finally, there is a worryingly large proportion in the moderately obese class (15%) ; the

spread within this distribution is very large, again suggesting that for these individuals that

lifestyle factors could well be used to move themselves into much healthier weight ranges;
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Table 3: Expected values, averaged posterior probabilities and dispersion parameters

Q = 5;OP Q = 5;MNL
Expected Post. Expected Post.
V alue prob. Dispersion (σq) V alue prob. Dispersion (σq)

Class1 20.58 (0.05)
∗∗

0.14 1.542 (0.03)
∗∗

20.73 (0.05)
∗∗

0.15 1.538 (0.03)
∗∗

Class 2 23.50 (0.03)∗∗ 0.21 1.133 (0.03)
∗∗

23.69 (0.03)
∗∗

0.21 1.138 (0.03)
∗∗

Class 3 26.07 (0.04)
∗∗

0.17 1.140 (0.03)
∗∗

26.32 (0.04)
∗∗

0.21 1.248 (0.03)
∗∗

Class 4 28.79 (0.08)
∗∗

0.33 3.399 (0.05)
∗∗

29.46 (0.05)
∗∗

0.12 1.397 (0.04)
∗∗

Class 5 33.86 (0.29)
∗∗

0.15 6.204 (0.12)
∗∗

31.52 (0.10)
∗∗

0.31 5.985 (0.06)
∗∗

Overall 26.85 (0.05)
∗∗ − − 27.76 (0.04)

∗∗ − −
Notes: ∗∗ and ∗ denote significant at 5, and 10% size. Post. prob. is posterior probability.

although obversely the converse is also true.

4.2 Parameter estimates

It is apparent that the class membership equation is reasonably well-specified (see Table 4),

with the birth cohort controls, personality traits and, to a lesser extent, childhood conditions

generally driving the statistical significance. Unlike the MNL approach, where such para-

meters are diffi cult to interpret, given our set-up, this is much more straightforward here. As

positive (negative) OP coeffi cients imply higher probabilities of being the highest (lowest)

classes (with the intervening ones being less clear: Greene and Hensher (2010)). Thus we

can see that birth cohorts 1970 and 1980/90, are much more likely to be in the top (mod-

erately obese) than any others (and more so for the latter). Individuals with higher levels

of Conscientiousness, Neuroticism and Openness to experience (a slightly weaker effect),

are more likely to be in the normal weight class; whereas higher levels of Extraversion are

associated with higher probabilities of being in the moderately obese class. The indicators for

both Mother some education and Mother further education (a stronger effect) are both

associated with higher probabilities of being in the normal weight class; whereas that for

Father manual/unskilled are more likely to be in the moderately obese one. [SARAH, I

WONDER IF THIS SECTION NEEDS A BIT MORE STORY-TELLING BE-

ING ADDED? ALOS IF THE TRAITS WERE ENTERED AS REISDUALS (?)

ACN WE INTERPRET THESE AT ALL?!]

In Table 5, we present the partial effects associated with our preferred 5-class model.

Note that we label these classes according to the above analyses based on the EV s within
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Table 4: Class membership equation; preferred specification

Variable Estimated coeffi cient Standard error
Female −0.323 (0.02)

∗∗

Birth cohort 1940 −0.016 (0.04)
Birth cohort 1950 −0.067 (0.04)
Birth cohort 1960 0.031 (0.04)
Birth cohort 1970 0.167 (0.05)

∗∗

Birth cohort 1980− 1990 0.184 (0.06)
∗∗

Agreeableness −0.006 (0.01)
Conscientiousness −0.078 (0.01)

∗∗

Extraversion 0.073 (0.01)
∗∗

Neuroticism −0.047 (0.01)
∗∗

Openness to experience −0.024 (0.12)
∗

Father some education −0.047 (0.04)
Father further education −0.029 (0.03)
Mother some education −0.057 (0.03)

∗

Mother further education −0.099 (0.04)
∗∗

Father professional/managerial 0.010 (0.05)
Father skilled non−manual −0.002 (0.05)
Father manual/unskilled 0.085 (0.03)

∗∗

Mother professional/managerial 0.059 (0.04)
Mother skilled non−manual 0.008 (0.04)
Mother manual/unskilled 0.125 (0.03)

∗∗

µ1 −1.215 (0.05)
∗∗

µ2 −0.509 (0.04)
∗∗

µ3 −0.055 (0.04)
µ4 0.959 (0.05)

∗∗

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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each one. As would be expected, the partial effects differ dramatically across the five classes

in terms of both size and statistical significance. In the case of age, the partial effects of

the linear term are positive and statistically significant in all five classes and increasing in

magnitude from class 1 to class 5. Those of the squared term again differ dramatically across

classes, and generally increase in magnitude with class. There appears to be a distinct “hill-

shaped”effect of age within all of the classes: that is, within each class individuals weight

initially rises with age, peaks, and then starts to decline. The single effect of age (Age) ,

shows that for every year one ages in class 5 (moderately obese), one’s BMI only increases

by some 0.004 per year. On the other hand, this number is much larger for class 4 at 0.136,

implying that, all other things equal, over the life-cycle from say 20 to 60, and individuals

BMI is likely to rise by some (40× 0.136) 5.44 units for individuals in this category. This is

potentially quite concerning such that from a policy perspective this group should potentially

be focussed on for potentially changing lifestyle factors/choices.

Whilst the effect of the number of dependent children appears to have no statistical effect,

the effect of being married appears to quite significantly (both in economic and statistical

terms) raise BMI in all but class 5. These positive partial effects appear to decline somewhat

as the within-class EV increases, dropping from 0.462 (class 1) to 0.379 (class 4). Somewhat

surprisingly, income only has a strongly significant effect in class 1, with a 10% rise in income

leading to a 0.0153 increase in BMI. Being employed has a large and significant positive

effect in class 1 and a smaller one in class 2, with no effects in the remaining ones. On the

other hand, not being in the labour force, has quite large and negative effects (−0.307 and

−0.277), but only in the higher normal and lower over classes.

There appears to be a lot of heterogeneity across educational attainment and classes.

For example, having a degree as the highest level of educational attainment has a large, and

statistically significant negative effect, but only for the higher over and moderately obese

classes, with the effect being much stronger in the latter class. Having a vocation degree,

only has an effect (positive, but much smaller compared to the Degree effects) in the normal

classes. A − level has a positive (negative) effect for the lower normal (higher over) class;
whereas GCSE only has an effect (positive) in the lower over class. Indeed, such a “causal

protective effect”of education on BMI has previously been found in the literature (Webbink,

Martin, and Visscher 2010, Brunello, Fabbri, and Fort 2013).

As noted, above, we control for health conditions by entering the compositeCormobidities
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variable. Indeed, this variable is a very strong driver of BMI levels across all classes. As

the number of comorbidities rises, it has a small (but highly significant) negative effect in

the lower normal class, which is presumably a result of worse health in general, being as-

sociated with lower weight levels for individuals already in a healthy weight range. This

effect is mirrored in the higher normal class (to small and positive), and then successively

increasing as the classes do, peaking at a large value of 0.761 for the moderately obese class.

At these more unhealthy weight-range classes, the effect is presumably positive, and more

pronounced as the within class EV s increase as rising ill-health means that these individ-

uals find it harder to maintain a healthy weight range, via reduced exercise levels and the

like. With this health proxy, we note the clear potential for reverse causation and that our

findings are more readily interpreted as correlations rather than causations. However, we do

return to this point below in our robustness checks.

Overall, it is clearly evident that there is indeed much heterogeneity across the population

with respect to the effects of covariates, thoroughly justifying a LCM approach in general,

and specifically our suggested new approach to such.

Thus while although the above results clearly illustrate how such an approach can high-

light interesting differential partial effects across classes, the LCM approach could also sim-

ply be used as a tool to allow for more unobserved heterogeneity in the modelling exercise.

If so, one would assume that the researcher would primarily simply be interested only in

overall partial effects (and not those split by class). Moreover, if the overall partials from

both the 5-class restricted and unrestricted models were very similar, it could be argued that

our suggested approach has very little benefit and/or effect in practice. So, to explore this

issue, Tables 6 compares the overall (prior probability weighted) partial effects across the

two models.

Note now, as compared to the within class partial effects, now variables in the class

equation(s) do also have effects on overall BMI values. Although the general pattern of

results is broadly consistent across the two models, there are some substantive differences

in terms of size and statistical significance for a number of explanatory variables (possibly

suggesting that the unrestricted model may be yielding unreliable results). For example, take

the variables in the class equation(s) first: females, for example, have a significantly negative

overall negative effect in both, but of quite distinctly different magnitudes (−1.3,−0.3)

.None of the birth cohort variables have an effect in the MNL approach, whereas two of
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Table 5: Class-specific partial effects

Class 1 Class 2 Class 3 Class 4 Class 5
(lower (higher (lower (higher (moderately

Variable normal) normal) over) over) obese)
Age/10 1.590 2.323 2.828 3.348 5.371

(0.13)∗∗ (0.11)∗∗ (0.12)∗∗ (0.25)∗∗ (0.56)∗∗

Age2/1000 −1.312 −1.929 −2.421 −2.067 −5.553
(0.13)∗∗ (0.10)∗∗ (0.12)∗∗ (0.25)∗∗ (0.60)∗∗

Age 0.033 0.047 0.050 0.136 0.004
Number of children −0.020 −0.011 0.014 0.014 0.108

(0.04) (0.03) (0.03) (0.06) (0.13)
Married 0.462 0.458 0.385 0.379 0.131

(0.08)∗∗ (0.06)∗∗ (0.07)∗∗ (0.13)∗∗ (0.31)
(Log of) household income 0.153 −0.006 0.088 0.187 −0.048

(0.05)∗∗ (0.04) (0.05)∗ (0.10)∗ (0.23)
Employed 0.655 0.187 −0.117 0.162 −0.677

(0.11)∗∗ (0.08)∗∗ (0.10) (0.20) (0.46)
Not in the labour force 0.186 −0.307 −0.277 −0.243 −0.144

(0.13) (0.09)∗∗ (0.11)∗∗ (0.22) (0.47)
Degree −0.043 −0.094 −0.160 −0.781 −1.359

(0.11) (0.09) (0.10) (0.22)∗∗ (0.50)∗∗

V ocational degree 0.183 0.164 0.001 −0.026 −0.307
(0.09)∗ (0.07)∗∗ (0.08) (0.15) (0.37)

A− level 0.282 0.125 0.028 −0.593 −0.071
(0.12)∗∗ (0.10) (0.11) (0.23)∗∗ (0.42)

GCSE 0.058 0.122 0.236 0.053 −0.638
(0.12) (0.08) (0.09)∗∗ (0.18) (0.43)

Cormobidities −0.054 0.072 0.143 0.313 0.761
(0.02)∗∗ (0.02)∗∗ (0.02)∗∗ (0.04)∗∗ (0.09)∗∗

Midlands −0.070 −0.050 0.071 0.186 0.806
(0.13) (0.10) (0.11) (0.22) (0.47)∗

North −0.007 −0.208 −0.324 0.118 0.014
(0.12)∗∗ (0.09)∗∗ (0.10)∗∗ (0.18) (0.44)

Wales 0.224 0.308 0.539 0.520 0.976
(0.10)∗∗ (0.07)∗∗ (0.09)∗∗ (0.19)∗∗ (0.40)∗∗

Scotland 0.144 0.157 0.067 0.271 0.248
(0.10) (0.08)∗∗ (0.09) (0.18) (0.45)

Northern Ireland 0.295 0.605 0.833 0.678 0.775
(0.11)∗∗ (0.08)∗∗ (0.09)∗∗ (0.20)∗∗ (0.44)∗

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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Table 6: Overall partial effects: OP vs MNL

Q = 5;OP Q = 5;MNL

Female −1.266 (0.10)∗∗ −0.339 (0.08)∗∗

Birth cohort 1940 −0.062 (0.15) −0.165 (0.13)
Birth cohort 1950 −0.255 (0.16) −0.109 (0.13)
Birth cohort 1960 0.119 (0.16) 0.097 (0.13)
Birth cohort 1970 0.636 (0.18)∗∗ −0.090 (0.15)
Birth cohort 1980− 1990 0.702 (0.22)∗∗ −0.179 (0.18)
Agreeableness −0.022 (0.22) −0.256 (0.53)
Conscientiousness −0.295 (0.17)∗ 0.001 (0.33)
Extraversion 0.279 (0.25) 0.075 (0.75)
Neuroticism −0.180 (0.17) −0.170 (0.64)
Openness to experience −0.090 (0.20) 0.110 (0.54)
Father some education −0.180 (0.14) 0.112 (0.12)
Father further education −0.109 (0.11) 0.262 (0.09)∗∗

Mother some education −0.215 (0.12)∗ 0.088 (0.11)
Mother further education −0.379 (0.14)∗∗ −0.042 (0.12)
Father professional/managerial 0.038 (0.14) 0.134 (0.12)
Father skilled non−manual −0.007 (0.19) −0.235 (0.18)
Father manual/unskilled 0.323 (0.12)∗∗ −0.028 (0.10)
Mother professional/managerial 0.335 (0.16) 0.015 (0.14)
Mother skilled non−manual 0.031 (0.15) 0.322 (0.13)∗∗

Mother manual/unskilled 0.477 (0.11)∗∗ −0.385 (0.10)∗∗

Age/10 3.101 (0.14)∗∗ 3.547 (0.12)∗∗

Age2/1, 000 −2.808 (0.14) ∗ ∗ −3.285 (0.03)∗∗

Age 0.041 0.039
Number of children 0.018 (0.03) 0.072 (0.03)∗∗

Married 0.372 (0.07)∗∗ 0.278 (0.07)∗∗

(Log of) house holdincome 0.091 (0.05)∗ 0.039 (0.05)
Employed 0.062 (0.10) −0.078 (0.11)
Not in the labour force −0.191 (0.11)∗ −0.145 (0.12)
Degree −0.513 (0.11)∗∗ −0.559 (0.11)∗∗

V ocational degree 0.006 (0.08) −0.030 (0.08)
A− level −0.142 (0.12) −0.067 (0.11)
GCSE 0.000 (0.10) −0.193 (0.10)
Cormobodities 0.249 (0.02)∗∗ 0.336 (0.02)∗∗

Midlands 0.172 (0.12) 0.124 (0.12)
North -0.060 (0.10) −0.293 (0.10)
Wales 0.506 (0.10)∗∗ 0.443 (0.10)∗∗

Scotland 0.191 (0.10)∗ 0.119 (0.10)
Northern Ireland 0.653 (0.10)∗∗ 0.735 (0.10)∗∗

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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them do in the OP one. Both approaches generally agree on the non-importance of the

personality traits with respect to observed BMI levels (as oposed to class memebership).

There is a wide divergence in the significance of the parental variables; indeed, for the

Mother manual/unskilled control, which is significant in both, its effect actually switches

in sign across approaches. Interestingly, of the 20+ variables in the class equation part of the

model, theMNL approach suggests that only four have a significant (at 10% or above) effect.

Contrasting this, the OP approach finds significance for nearly half of these. It is hard to

speculate on what is causing this in general (it may well be the case that this varies from case-

to-case). However, it may be that in estimating multiple parameters per covariate compared

to one in the OP approach, adversely affects significance as the MNL unnecessarily “over-

fits” these class probabilities and/or that effects across classes possibly cancel each other

out; either way, the OP approach will not suffer from such potential drawbacks.

Next considering the variables in the output equation, we can again see that the overall

partial effects are “better explained” by the OP equation with respect to the number of

significant variables: ten in the OP approach compared to just eight in the MNL one.

Again, it is hard to generalise here, but this could well be a function of the more parsimonious

approach of the former. Thus with respect to significance, there are several differences across

the approaches, but there are also differences in the estimated magnitudes of significant

variables (although direction of effect appears relatively consistent). For example, the implied

nonlinear age profile appears quite different in shape across both (although the overall effect

of age is quite similar). There is a 0.1 difference in the effect of being married, and around

the same in the effect of comorbidities. And there are divergences of similar magnitudes for

both of the Wales and Northern Ireland indicators.

Thus overall, these results taken in conjunction with the summary ones presented above,

clearly suggest that there are broad consistencies across approaches: both suggest a 5-class

model is optimal and there is general agreement of the direction (and approximate magni-

tude) of overall effects. However, summary statistics regarding the EV s within each class,

the relative size and dispersion of these classes, combined with the magnitudes and signifi-

cance of covariates on overall BMI levels, suggests that the choice across the two approaches

is clearly important.

To further explore BMI behaviours within the estimated classes, and also to ascertain

the overall appropriateness of our approach, we take a closer look at some estimated densities.
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Firstly, in Figure 1, we present a kernel density for the raw BMI data.

Figure 1: Observed Density of BMI Values

Then in Figure 2 we plot the implied estimated densities by class for the new 5-class OP

approach. The (enforced) ordering in these densities is evident, as their measures of central

tendency (and generally dispersion) clearly increase over classes. Based on posterior proba-

bilities, individuals have a relatively low chance of being in the lowest BMI, lower normal,

range class (14%). However, individuals in this group are clearly likely to have low expected

BMI levels (around 20), and with quite a tight distribution around this mean. Individuals

in the higher normal group, again have a very low probability of being particularly far from

the EV (of around 24) here, having the least amount of dispersion across all of distributions.

There is quite a high chance (1 in 5) of an individual being in this class. The lower over

class again exhibits a relatively tight distribution around its EV of 26. Given the tighness

of the distributions in these first 3 classes, it is very unlikely that individuals within these

will stray far from their EV s.

The same cannot be said though, of the higher over class. Although the mean is 29, it

is clear that individuals within this group could easily be anywhere between the low 20’s

to the low 30’s; where the former would be nudging Normal weight and the latter well into

the Moderately obese range. However, this effect is even more pronounced in class 5, the

moderately obese group. Firstly, it has a markedly higher EV , at nearly 34; but secondly, it
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is clearly characterised by a very high level of dispersion. Individuals in this inherent group

could easily find themselves anywhere between mid 20’s (Normal/Overweight), but also as

high as the low to mid 40’s. The upper end of this range could well place individuals in the

Very severely obese and Morbidly obese, WHO categoties.

An implication of these findings, is that although the two highest BMI range classes have

high, and unhealthy, EV s, it does appears that behavioural choices, for example, can help

these individuals into more healthy BMI ranges. On the contrary, individuals in the other,

more healthy range, classes appear to be very likely to be closely bound to their class-specific

EV s. Thus we can see that large chunks of the distribution of classes 4 and 5 overlap with

those of both classes 2 and 3. This effect is clearly more pronounced for the moderately obese

group, who do have quite significant chances of moving themselves down into more healthy

weight ranges. Interestingly, as Figure 2 makes clear, an individual with an observed BMI of

say 25, although much more likely to belong to the higher normal group, could conceivably

be in any of these groups. On the other hand, an observed BMI of say 35, is clearly only

really likely to belong to either class 4 or 5. This observartion clearly shows that from a

policy perspective, it is extremely important to be to identify which groups any particular

individual belongs to, and highlights the importance of the current research.

Finally, in Figure 3 we present the actual density for comparison, along with: our pre-

ferred 5-class OP approach (prior probability weighted of the above individual densities);

that from the preferred MNL specification (5-class); and that from a simple linear regres-

sion. Clearly, a simple linear regression approach is not a sensible contender here. However,

it is evident that the suggested approach does an excellent job in predicting the empirical

density. Indeed, it is diffi cult to distinguish the actual from the predicted densities here.

The same could also be said of the 5-class MNL approach though. However, such a similar

extremely high “level of fit” is achieved much more parsimoniously in the OP approach

compared to the MNL one (by over some 60 fewer parameters). Again, we would suggest

that this is a further validation of the suggested approach.

In summary, it is clear that the choice of approach matters: they imply quite different

overall partial effects; potentially a different number of classes; and different behaviours

within each class. The new approach appears to provide just as good a fit as the much

more heavily parameterised existing one. Differences in the overall partial effects highlights

the possibility that an inappropriate modelling strategy may lead to incorrect inference and
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Figure 2: Individual Class Densities

Figure 3: Comparison of Actual versus Predicted Densities
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Table 7: Model selection metrics; comparison with constants-only approach

BIC AIC CAIC HQIC

5-class (panel) 111, 143∗∗ 110, 197∗∗ 111, 263∗∗ 110, 507∗∗

2-class (pooled)a 117, 788 117, 314 117, 848 117, 469
3-class (pooled, restricted)b 117, 518 116, 887 117, 598 117, 094
3-class (pooled, unrestricted)c 117, 544 116, 748 117, 645 117, 009
4-class (pooled, restricted)d 117, 435∗ 116, 646 117, 535∗ 116, 904
4-class (pooled, unrestricted)e 117, 642 116, 522 117, 784 116, 889
5-class (pooled, restricted)f 117, 500 116, 554 117, 620 116, 864∗

5-class (pooled, unrestricted)g 117, 842 116, 399∗ 118, 025 116, 871

V oung (BIC) ; d vs c 1.7 indeterminate
V oung (AIC) ; f vs g 524.4 p = 0
V uong (BIC,AIC) ; d vs g 524.3 p = 0

Note: overall preferred model for each metric denoted by ∗∗; preferred model for the pooled model only by
∗.

policy prescriptions relating to measures to tackle high BMI levels and obesity. And finally

there was overwhelming support for the new approach over the traditional one.

4.3 Robustness checks

The panel data approach employed here, being based on multiple observations per individual,

should intuitively be better be able to identify the inherent classes. However, if the model

has been mis-specified in some manner, or individuals potentially move across classes over

time, then the panel approach adopted could also be potentially mis-specified. Therefore an

obvious robustness check is to compare our panel data model results against a pooled, or

cross-sectional, variant. For reasons of space, we do not report the full set of results from this

exercise (available on request). However, in Table 7 we present the model selection metrics

from this exercise, along with those for our preferred model.

Across all of the pooled variants, only the (unreliable) AIC favours a MNL variant (5-

class). Both the BIC and CAIC again select the 4-class OP variant, whereas the HQIC,

the 5-class OP one. The V uong tests provide inconclusive evidence comparing model d vs c;

prefer the 5-class rectricted over the 5-class unrestricted; and also the 4-class restricted over

the 5-class unrestricted one. Thus, in summary the choice over the pooled variants clearly

favours the OP variants, although the choice between the 4- and 5-class models is somewhat

unclear.

Importantly, comparing the pooled results with the preferred panel one though, given
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Table 8: Model selection metrics; comparison with constants-only approach

BIC AIC CAIC HQIC

5-class (restricted) 111, 143∗∗ 110, 197∗∗ 111, 263∗∗ 110, 507∗∗

2-class (constants) 115, 336 114, 813 115, 406 114, 989
3-class (constants) 113, 118 112, 332 113, 225 112, 596
4-class (constants) 111, 887∗ 110, 836 112, 030∗ 111, 189∗

5-class (constants) 112, 105 110, 790∗ 112, 284 111, 232
Note: preferred model for each metric denoted by ∗∗; preferred model for the constants-only versions by ∗.

the much improved IC metrics and likelihood values, one would clearly prefer the panel

variant(s) to the cross-sectional ones. Fully utilising the repeated nature of observations of

individuals within class therefore aids in better identification of/allocation to, the correct

respective classes, and consequently results in a better specified/performing model.

Another obvious robustness check against which to compare our model results, is to

consider a constants-only variant. So here, following much of the LCM literature, the class-

assignment prior probabilities are simply modelled as constants, and there are no restrictions

placed on the specifications of the mean function (that is, we estimate here what many

researchers would take to be a standard LCM, or more corectly, a finite mixture model,

estimable using Stata or NLogit, for example). To this end we re-estimate our model

removing all covariates from the class equations, and include these variables in the mean

equation (apart from the birth cohorts as we already include a quadratic in age). Again we

treat the model as a panel data one. For reasons of space, we do not report the full set of

results from this exercise (available on request). However, in Table 8 we present the model

selection metrics from this exercise, along with the ones for our preferred model.

Thus we can see that for all IC measures, our approach consistently out-performs all pos-

sible contenders for the constants-only version. There is disagreement across the IC metrics

as to the preferred number of classes for the panel constants-only approach, with BIC,

CAIC and HQIC all favouring 4-classes and AIC five. In light of these, we take the 4-class

constants-only version as the preferred specification here.

So the constants-only approach appears to favour a smaller number of BMI classes, and

in terms of the metrics considered, appears to perform worse than our preferred approach.

However, again, if the researcher is primarily interested in overall partial effects, then if

the two approaches yield very similar results in this respect, one would presumably favour

the less complicated approach. To address this, in Table 9 we compare (prior probability
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weighted) overall marginal effects from the 4-class constants-only approach with those previ-

ously presented from our preferred approach. In the final column we also present percentage

differences in these.

It is clear that the approach undertaken (constsnts only versus our suggested OP ap-

proach) is substantive for these summary partial effects. For example, we find both large

absolute and relative changes in partials across the approaches, and moreover even changes

in signs and significance. For example, the effects of all of the following variables actually

change sign: Agreeableness; Father skilled non−manual; Number of children; V ocational
degree; GCSE; and North. Some examples of very large relative changes are: V ocational

degree (300%) ; Agreeableness (188%) ; Number of children (186%) ; North (120%) ; and

Father skilled non−manual (103%). Moreover, we also witness very large absolute differ-

ences, such as the variables: Age/10 (0.76) ; Age2/1, 000 (0.632) ; Female (0.445) ; North

(0.366) ; Midlands (0.295) ; Mother manual/unskilled (0.246) ; and so on. Indeed, in ab-

solute value, nearly half of the variables exhibited differences in excess of 0.1. However, we

also note that large differences are not evident across-the-board: for example, the differ-

ence in the effect of Neuroticism is very small in both absolute and relative terms, as is

Conscientiousness and Married.

As noted before, we would surmise that the variables exhibiting the largest differences are

probably those most severely affected by ignoring the omitted covariates in the class equation:

that is, presumably the most highly correlated with the omitted drivers of the class equation;

and those where the change is negligible, would be less affected (and presumably less strongly

related to the omitted class covariates).

The next robustness check we consider, is that in our (BMI) output equation we include

the composite health indicator, Cormobodities, with the rationale that BMI is affected by

this general proxy for “health”. However, clearly the strong possibility of reverse causation

exists here, with the health not only causing the BMI level (in part), but also BMI levels

(in part) contributing to the various health levels. If we had appropriate identifying variables

for this composite health proxy, that could be considered othogonal to BMI, we might be

able to apply techniques for allowing for this endogeneity (Rivers and Vuong 1988, Terza,

Basu, and Rathouz 2008). As always, such variables are hard to find and justify here, so

instead we simply remove this variable and re-estimate the model. Reassuringly the broad

results are effectively unchanged: indeed now, all of the metrics (and V uong tests) favour
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Table 9: Overall partial effects; comparison with constants-only approach

5-class restricted 4-class constants only Difference (%)

Female −1.266 −0.821 54.2
Agreeableness −0.022 0.025 −188.0
Conscientiousness −0.295 −0.284 3.9
Extraversion 0.279 0.204 36.8
Neuroticism −0.180 −0.187 −3.7
Openness to experience −0.090 −0.123 −26.8
Father some education −0.180 −0.057 215.8
Father further education −0.109 −0.059 84.7
Mother some education −0.215 −0.153 40.5
Mother further education −0.379 −0.168 125.6
Father professional/managerial 0.038 0.188 −79.8
Father skilled non−manual −0.007 0.221 −103.2
Father manual/unskilled 0.323 0.260 24.2
Mother professional/managerial 0.225 0.471 −52.2
Mother skilled non−manual 0.031 0.247 −87.4
Mother manual/unskilled 0.477 0.723 −34.0
Age/10 3.101 2.341 32.5
Age2/1, 000 −2.808 −2.176 29.0
Age 0.041 0.025 64.0
Number of children 0.018 −0.021 −185.7
Married 0.372 0.350 6.3
(Log of) house holdincome 0.091 0.043 111.6
Employed 0.062 0.207 −70.0
Not in the labour force −0.191 −0.067 185.1
Degree −0.513 −0.586 −12.5
V ocational degree 0.006 −0.003 −300.0
A− level −0.142 −0.114 24.6
GCSE 0.000 −0.060 −
Cormobodities 0.249 0.352 −29.3
Midlands 0.172 0.467 −63.2
North −0.060 0.306 −119.6
Wales 0.506 0.449 12.7
Scotland 0.191 0.128 49.2
Northern Ireland 0.653 0.520 25.6

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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the OP 5-class model, as above. Moreover, estimated EV s and other quantities of interest,

are also all very similar. For example, EV s in this model were (compared to above): 21

(21) ; 24 (24) ; 26 (26) ; 29 (29) ; and 35 (34) .

Similar reverse causation arguments could however, also be levelled at the personality

traits. In general, these are generally assumed to be fixed for most of an individual’s life but

especially for younger individuals. it could be that BMI levels potentially affect person-

ality traits. So, as a further robustness check, we also remove these variables as well from

the model. Once more, results are remarkably robust: all ICs (with the exception of the

AIC) still favoured the 5-class OP approach (as did all of the V uong tests), and EV s were

remarkably similar (at 21, 24, 26, 29 and 35).

5 Analysis by gender

Clearly there is the potential for significant differences by gender, both in the number of

BMI classes and the behaviour within these. Thus we restricted sub-samples to both males

and females. For females, all IC metrics and V uong tests favoured the 5-class OP variant;

for males the ICs again, with the exception of AIC, all select the same 5-class OP model,

as do all of the V uong tests. Thus, in summary, across all the pooled and gender split

models, there is overwhelming support for the 5-class OP model over all other OP models

and importantly all MNL ones.

Although all samples agree on the number of classes and approach, in Table 10 we

examine whether there is much heterogeneity across genders with respect to the behaviour

within classes, along with the equivalent ones from the pooled sample (full model estimation

results for the two gender samples are available on request). In general, there is a remarkable

consistency across all samples. They all identify the lowest BMI range class as normal

weight, with EV s of around 20 − 22, with probabilities in the 0.12 − 0.14 range, and with

similar dispersion ranges, with σ̂1 ≈ 1.5 (with the male class here sample being slightly less

heterogeneous). Similarly, all three samples identify the next BMI range with an EV ≈
23−24; slightly more females appear to be in this class however (with a posterior probability

of just over 0.25 compared to 0.22 for males and 0.21 overall), and this female class also

appears more dispersed (σ̂m,2 = 1.07, σ̂f,2 = 1.24) .

All samples identify the next class as being in the (low) overweight range (although for

females this is right on the border); and essentially the same proprtion of individuals (18%)
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Table 10: Expected values, averaged posterior probabilities and dispersion parameters by
gender

EV Post. prob. Dispersion (σq)

Combined
Class 1; lower normal 20.58 (0.05)

∗∗
0.14 1.542 (0.03)

∗∗

Class 2; higher normal 23.50 (0.03)∗∗ 0.21 1.133 (0.03)
∗∗

Class 3; lower over 26.07 (0.04)
∗∗

0.17 1.140 (0.03)
∗∗

Class 4; higher over 28.79 (0.08)
∗∗

0.33 3.399 (0.05)
∗∗

Class 5; moderately obese 33.86 (0.29)
∗∗

0.15 6.204 (0.12)
∗∗

Overall 26.85 (0.05)
∗∗ − −

Male
Class 1; lower normal 21.59 (0.06)∗∗ 0.14 1.316 (0.04)∗∗

Class 2; higher normal 24.44 (0.04)∗∗ 0.22 1.069 (0.03)∗∗

Class 3; lower over 27.26 (0.04)∗∗ 0.18 1.166 (0.04)∗∗

Class 4; higher over 29.55 (0.15)∗∗ 0.38 4.526 (0.11)∗∗

Class 5; moderately obese 34.83 (0.83)∗∗ 0.09 7.096 (0.35)∗∗

Overall 27.42 (0.07)∗∗ − −
Female

Class 1; lower normal 19.72 (0.08)∗∗ 0.12 1.480 (0.05)∗∗

Class 2; higher normal 22.76 (0.05)∗∗ 0.25 1.241 (0.03)∗∗

Class 3; lower over 25.54 (0.05)∗∗ 0.18 1.161 (0.04)∗∗

Class 4; higher over 28.43 (0.09)∗∗ 0.33 3.024 (0.05)∗∗

Class 5; moderately obese 34.95 (0.29)∗∗ 0.12 5.268 (0.12)∗∗

Overall 26.20 (0.06)∗∗ − −

are estimated to be in this category, and dispersion parameters (at around 1.1 − 1.2) are

also incredibly similar. There is again, much alignment with EV s in the higher over class

(29, 30, 28). However, the proportions do vary a bit here, with 38% of males predicted to be

in this class compared to 33% of females, and the distribution of males within this class is

slightly more dispersed (σ̂m,4 = 4.53, σ̂f,4 = 3.02) . Finally, EV s in the top class, moderately

obese, are again extremely close, at 34 − 35, although once more the distribution of males

within this class is slightly larger (σ̂m,5 = 7.10, σ̂f,5 = 5.27), although fractionally more (3

percentage points), females are estimated to be in this class.

Thus overall, we can see that splitting the sample by gender has no real substantive affect

on our results. Indeed, a likelihood ratio test did not reject the null of equality of coeffi cients

across genders (p = 0.75).
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6 Conclusions

To evaluate the health of the nation, policy-makers place a great deal of emphasis on BMI

levels and the distribution of such. In this paper, we have furthered understanding of the

determinants of BMI, a key indicator of health risk, by proposing an extension to the latent

class methodology. Our extension allows for the ranking of expected values across classes

in estimation as well as developing a functional form for the class probabilities that is more

parsimonious than the familiar multinomial logit model. Our newly proposed econometric

approach leads to the estimation of five BMI classes (as did the traditional approach).

This compares very quite favourably with the four broad categories (Underweight, Normal,

Overweight and Obese) as identified by the WHO. Moreover, the estimated partial effects

differed dramatically across the five classes in terms of sign, size and statistical significance.

All metrics employed, clearly favoured the newly suggested approach (with the exception of

AIC; which was shown in Monte Carlo experiments, to have very poor performance). Indeed,

the experimental evidence (provided in the online appendix), suggested that, in general, the

BIC, HQIC and the V uong test statistics, are all very useful in correctly selecting the

appropriate model, whereas the AIC should be avoided.

Furthermore, we find substantive differences in terms of size and statistical significance

in the overall partial effects for many of the explanatory variables across the two approaches.

These differences highlight the importance of selecting an appropriate approach for modelling

BMI. Differing results across the two suggests that choosing incorrectly could easily lead to

incorrect associations in terms of the magnitude and even sign of the effect, which in turn

may lead to inappropriate policy prescriptions. Overall, our findings serve to highlight the

importance of selecting an appropriate modelling approach in the context of a policy-relevant

area such as BMI. It is apparent that in order to design appropriate strategies for tackling

high BMI levels and obesity, policy-makers need to fully understand their determinants and

our proposed modelling approach, which is widely applicable across a wide range of research

topics across the social sciences, is an important step in this direction.
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7 Online Appendix: Finite sample performance

To examine the validity of our modelling approach, we undertake a Monte Carlo (MC)

analysis. We generated under two scenarios: one where theMNL is the true data generating

process (dgp) and the other where the OP is. For both scenarios we based the dgp on the

actual data and specification used above, and coeffi cients from the appropriate model. In

both cases we generate according to a 3-class model and in estimation search for up to a

4-class one in each repetition. The number of MC repetitions was set at 250 in each case,

although results were essentially unchanged from 100 onwards. A range of outputs was

collected, but only for the (correct) 3-class model (OP and MNL variants).

Thus Table 11 presents the proportion of times the IC metrics choose the respective 3-

class model across all models estimated (Overall IC); the proportion of times they selected

the model when only considering all OP or MNL variants, respectively (Within IC); and

the average proportion of correct class predictions based on the maximum - posterior -

probability rule (Correct). In addition to these, as in the the empirical example(s) in the

main body of the paper, we also report the proportion of rejection probabilities of three

versions of the V uong (Vuong 1989) statistic. Again the three variants correspond to the

V uong test between the optimal two models: chosen by BIC only; by AIC only; and by

both BIC and AIC.

As with any MC experiment these results cannot necessarily be generalised to all other

situations; however, they do clearly demonstrate the validity of the approach in the current

context and moreover, give greater confidence to the empirical findings.

Considering firstly the OP dgp, Columns (1− 2) , we can see the preferable properties

of BIC (as compared to AIC), in that it correctly selects the OP 3-class model in every

instance. That is, when the OP is the true model, BIC always correctly selects the 3-class

OP approach across all models considered (all 1-, 2-, 3- and 4-class OP and MNL models).

On the other hand, AIC, tending to favour more highly parameterised models, only correctly

selects the OP 3-class model in some 40% of instances; whereas for CAIC and HQIC, these

rejection probabilities are much more favourable (at 100 and 90%, respectively). Mirroring

these results, we can see that across all models and variants, none of the IC metrics would

(erroneously) select the 3-class MNL model.

Looking at the selection probabilities within all OP models only, we see that the perfor-

mance of the AIC metric improves somewhat (to 62%), suggesting that it was incorrectly
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selecting the MNL variants in choosing across both OP and MNL models. Looking at IC

selection performance only within all MNL models, there appears to be quite a range of

them “correctly”predicting the 3-class model, from a low of 10% (CAIC) to a high of 99%

(HQIC) .

There is some evidence of the V uong test being useful in this selection. Indeed, based on

the BIC variant of this, we see that the correct model is selected 62% of the time. That is,

if one compares the best two performing models using the BIC metric, the V uong test will

correctly select the OP 3-class model in 62% of instances. The AIC version never selects the

correct model, presumably as it very rarely selects the correct OP 3-class model. Finally,

the BIC/AIC version, also has some power in selecting the correct model: selecting the

best model (BIC) versus the best according to AIC, will result in the correct model being

chosen in 40% of instances.

Turning to the V uong test for the 3-classMNL mode, we can see that the variants based

on the best AIC models and the best BIC and AIC models would essentially never pick the

3-class MNL model. On the other hand, using the BIC variant, the test would incorrectly

pick the 3-class MNL model about a quarter of the time (although this still may be of use,

if the alternative model was a 4-class one, for instance).

In summary of these OP dgp experiments: all of the BIC, CAIC and HQIC have very

good performance in correctly selecting the 3-class OP model, as does the V oung (BIC)

test; overall the AIC metric has poor performance; if one is interested in just selecting the

MNL model with the correct number of classes, the HQIC metric is extremely useful.

When the true data is generated by a 3-class MNL model, Columns (3− 4) , the perfor-

mance of the IC metrics in correctly selecting this is less convincing (Column 4). Now the

standout performer is the HQIC metric, with correct selection probabilities of just under

100%. The AIC continues to perform badly (at only 16%), and even the BIC appears

marginally worse than a 50/50 bet. Mirroring these results are the equivalent ones for the

OP model (Column 3); here we see that reliance on the BIC metric would erroneously cause

one to select the 3-class OP model just over 50% of the time (with the CAIC faring even

worse at nearly 80%). AIC would never wrongly select the OP 3-class model (but neither

would it ever substantially select the correct 3-class MNL one). Again the HQIC metric

appears a good choice here, in that whilst correctly selecting the 3-class MNL model nearly

ubiquitously, it also never incorrectly selects the 3-class OP model.
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If one were primarily concerned with simply picking the correct number of classes within

either all OP or MNL models, then all of the BIC, CAIC and HQIC metrics appear

very useful here (with the poorest performance being afforded by the HQIC within the OP

approaches; but still quite reasonable at some 80%). However, once more the AIC appears

quite unreliable here.

In short, with respect to the MNL dgp, only the HQIC metric appears to be able to

reliably select this across all OP and MNL models (although all of the BIC, CAIC and

HQIC do well in selecting within onlyMNL models). However, if one considers the V uong

statistics, we see that the BIC variant of this, has a 100% success rate. That is, if one

chooses the optimal two models with respect to BIC values, the V uong test will correctly

select the 3-class MNL model each time.

In summary of these model selection metrics then, in general one can relatively safely

disregard theAIC. For theOP dgp, theBIC, CAIC andHQIC all work very well (especially

the two former) in selecting the correct model, as does the V uong (BIC) test (although

slightly less-so). On the other hand, for the MNL dgp the HQIC appears to dominate,

and the V uong (BIC) now has a perfect success rate. Obviously in practice one will not

know how the data was generated. However, the above results clearly suggest that if one

focusses on the BIC and HQIC metrics, combined with the V uong (BIC) statistic, one is

very likely to correctly choose the right model, regardless.

Turning next to the proportion of observations correctly allocated to each class (Table

11) - generally a very important aspect of LCM applications - there is effectively little

difference between the two approaches (as noted, classes were predicted on the basis of the

maximum, posterior, probability rule). So, when the OP approach is true, the OP model

correctly predicts, on average, 69% of observations, compared to 68% for the MNL one

(based upon the assumption that the correct class model has been selected). A similarly

matched performance across the two approaches is found for the MNL dgp, at 72 and 73%,

respectively.

Thus all of the above results give us great confidence in relying on these metrics and

tests, with the exception of AIC, both in general, and in particular for our modelling BMI.

Finally, prediction of within-class EV ’s is also considered in Table 12: comparing actual

EV ’s with estimated ones based on sample means of covariates, EV (x); and averaged across

observations by predicted class EV (xi) . For the latter, individuals were allocated to classes

44



Table 11: Monte Carlo results: summary statistics

OP dgp MNL dgp
OP MNL OP MNL

Overall IC (1) (2) (3) (4)

BIC 1.00 0.00 0.55 0.45
AIC 0.40 0.00 0.00 0.16
CAIC 1.00 0.00 0.78 0.22
HQIC 0.90 0.00 0.00 0.99
Within IC
BIC 1.00 0.39 1.00 1.00
AIC 0.62 0.17 0.01 0.16
CAIC 1.00 0.10 1.00 1.00
HQIC 0.90 0.99 0.81 0.99
Correct 0.69 0.68 0.72 0.73
V uong (BIC) 0.62 0.26 0.00 1.00
V uong (AIC) 0.00 0.06 0.00 0.16
V uong (BIC,AIC) 0.40 0.00 0.00 0.16

based on the maximum posterior probability rule (in instances where there were no individ-

uals predicted to be in any particular class, simple sample averages across all observations

were used). Once more, somewhat reassuringly, no matter the approach used, both at x

and also averaged over individuals, class-specific EV ’s are very accurately estimated (again

on the assumption that the correctly classed model has been selected). For example, when

generating under OP, the true EV1 = 23.1, which is estimated exactly by the OP approach

at x, and only 0.1 out when averaged over individuals; theMNL ones are similarly also very

favourable here, at 23.1 for both. These results essentially hold throughout, implying that

within class EV ’s will be accurately, and similarly, estimated regardless of the true dgp, on

the assumption that the correct class of model has been selected.

It is intuitive to relate these findings back to the analysis of BMI. Fortunately in the

empirical example(s), there was invariably much consensus across all IC variants, with the

exception of the AIC, where all of the former tended to select the suggested OP variants.

Indeed, given the results of these current findings, one would do well to steer away from

the AIC suggestions. So for our primary example (as well as generally for the robustness

checks), all but the (unreliable) AIC metrics, as well as all of the V uong tests considered,

lent support to the 5-class OP model, again giving us great confidence in the results in our

suggested approach and the consequent findings.

The fact that theseMC experiments show that both approaches often have quite similar
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Table 12: Monte Carlo results: summary statistics

OP MNL

OP dgp
EV ’s Actual EV (x) EV (xi) Actual EV (x) EV (xi)
EV class 1 23.1 23.1 23.2 23.1 23.1 23.1
EV class 2 26.9 26.8 26.9 26.9 27.0 27.1
EV class 3 33.2 33.0 33.0 33.2 33.5 33.2

MNL dgp
EV class 1 22.6 22.5 22.4 22.6 22.6 22.5
EV class 2 26.7 26.6 26.7 26.7 26.7 26.7
EV class 3 33.2 32.4 32.1 33.2 33.3 32.6

performance across dgp’s is not to be taken as an indication that the form of the approach

taken will be inconsequential in practice. Indeed, the results from modelling BMI make this

quite clear, with many quantities of interest being quite distinct across approaches. In reality,

it is likely that neither of these approaches represent an exact description of the true dgp, but

the choice is more so of which one more closely mimics this reality in a parsimonious manner,

as compared with the “clinical laboratory”conditions of the MC experiments. Given the

results presented in this paper, it is our conjecture that this will, more often than not, be

provided y the newly suggested OP approach.

8 Online Appendix: Estimation considerations

8.1 Estimation algorithms; maximum likelihood versus EM

Model parameters were estimated by maximum likelihood. The algorithm used is predom-

inantly the BFGS gradient method. Likelihoods for latent class models are sometimes

maximized by the EM algorithm. However, this method cannot be used for this model

because the class specific functions are not separable: due to the imposed ordering across

classes, β1 appears in the conditional mean function of all Q class specific functions. The

so-calledM step of the EM algorithm involves computation for each class separately, which

would not impose the cross-class equality constraints required here. On the other hand, max-

imum likelihood estimation is generally routine and conveniently allows the construction of

the full model. In estimation we also used algorythmic derivatives, whereas analytical ones

are likely to improve convergence performance. We also used numerical procedures where
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appropriate, to evaluate relevant quantities of interest, and corresponding standard errors

were obtained using the Delta method. Robust standard errors were calculated using the

usual outer product of the gradient (OPG) estimator for the parameters of the model.

8.2 Start values

Starting values for the OP procedure were obtained in the following manner.

1. The MNL 2-class model was firstly estimated, using OLS values for the regression

and variance terms (perturbed for one of the classes), βq and V (εq) = σ2q, q = 1, 2.

In estimation to ensure well-defined variances/standard deviations, these entered the

likelihood functions as σq = exp (ωq) , where ωq is freely estimated. Starting values for

the single parameter vector γ required for a 2-class model, was obtained by a random

draw from N (0, 1) /10. Note that here, and elsewhere where appropriate, the user-

written Gauss code was benchmarked against the available commercial software (c.f.,

Limdep/Nlogit and Stata).

2. Based on γ̂ from 1., a 2-class restricted variant was estimated where start values for

βq=2 (restricted) were given by β̂q=2 (unrestrricted) /100.We note here that we do not

consider this as a valid OP variant, as due to the 2-class nature of the model, one class

by definition must embody a higher (lower) EV than the other one; and moreover the

probabilistic expressions for both will be identical. However, we use it simply as a tool

for providing sensible start values for the 3-class variant.

3. For the 3-class OP variant, we require start values for γ, µ1, µ2, βq and ωq, q = 1, 2, 3.

We set the µ values to simply split the standard normal dustribution into equal parts:

µ1 = Φ−1 (1/3) and µ2 = Φ−1 (1/3) . We set the start value for β1 = β̂1 from 2.; all

other start values were set equal to zero. Note that in estimation we used the in-built

Gauss cmlMT inequality constraint function to ensure the requisite ordering in the µq
parameters throughout. If such a function is unavailable, one could equivalently use

µq = µq−1 + exp (aq) , where aq would be freely estimated.

4. For the 4-class model, a similar progression was followed for start values: µ1 =

Φ−1 (1/4) ; µ2 = Φ−1 (1/2) ; µ3 = Φ−1 (3/4) ; β1 = β̂1 (from 3.); all other start val-

ues were set to zero.
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5. Start values for the 5-class model continued this progression.

We should note that, so long as sensible start values were given, the maximum likelihood

estimates ended-up at the same values, but speed of convergence was sometimes affected.

However, the procedures described above may not necessarily be optimal for all applications.

In practice it might be advisable to try a range of different start values, and to enter previ-

ously solved final estimates as new start values to ensure that the likelihood has achieved a

global, and not local, maximum.

Note also that Gauss code is freely available at:

https://drive.google.com/drive/folders/1rtoYfs5qfwcI4NcFpq0-pdhLJOZZEa56?usp=sharing.
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